NERSCPowering Scientific Discovery Since 1974

Science Vignettes

Filter by Year
 

Towards Simpler Fusion Power Devices

The ability to model self-organized magnetically confined plasma systems is an important tool for the goal of predictive modeling of devices for design of fusion power systems. This work has expanded the confidence in the modeling of a complicated plasma configuration that imposes large perturbations with a time-dependent 3-D structure. Read More »

Cutting Edge Simulations of Lasers Interacting With Dense Plasmas

Intense laser pulses can quickly deposit large amounts of energy into solid materials, thus creating dense plasmas and subjecting matter to extreme temperature and pressure. This is useful in a variety of scientific applications, such as laboratory astrophysics, accelerating particles to high energies over short distances, or generating light pulses lasting just attoseconds. Read More »

Vulnerability of the Antarctic Ice Sheet

A team led from Berkeley Lab used a highly-resolved model of the Antarctic Ice Sheet to systematically examine vulnerability to regional collapse of its floating ice shelves and the resulting potential for large contributions to sea level rise (SLR). Read More »

Exploring the High-Pressure Materials Genome

Researchers at Northwestern University developed a novel computational framework that runs on NERSC’s Cori supercomputer to rapidly explore apparent paradox of material phases that exist in nature that should be unstable according to calculations that assume idealized conditions of zero pressure and zero temperature. Using this method, the stability of these material phases is better understood, and the team has identified several new intermetallic high-pressure phases that can be realized with existing experimental techniques. Read More »

DOE Models Simulate Antarctic Ice Sheet Evolution

Ice sheet models developed under a DOE SciDAC project and run at NERSC have contributed to three international model intercomparison projects focused on assessing the future evolution of the Antarctic ice sheet. Read More »

Filter by Year