NERSCPowering Scientific Discovery Since 1974


NERSC9 Perlmutter Cabinet Art


DOE and Cray announced on Oct. 30, 2018, that NERSC's next supercomputer will be a Cray pre-exascale system. The system is scheduled to be delivered in Spring of 2021.

To highlight NERSC's commitment to advancing research, the new system will be named “Perlmutter” in honor of Saul Perlmutter, an astrophysicist at Berkeley Lab and a professor of physics at the University of California, Berkeley who shared the 2011 Nobel Prize in Physics for his contributions to research showing that the expansion of the universe is accelerating. Dr. Perlmutter is also director of the Berkeley Institute for Data Science and leads the international Supernova Cosmology Project. He has been a NERSC user for many years, and part of his Nobel Prize-winning work was carried out on NERSC machines.

Perlmutter, a Cray system code-named “Shasta”, will be a heterogeneous system comprising both CPU-only and GPU-accelerated nodes, with a performance of more than 3 times Cori, NERSC’s current platform. It will include a number of innovations designed to meet the diverse computational and data analysis needs of NERSC’s user base and speed their scientific productivity. The new system derives performance from advances in hardware and software, including a new Cray system interconnect, code-named Slingshot, which is designed for data-centric computing. Slingshot’s Ethernet compatibility, advanced adaptive routing, first-of-a-kind congestion control, and sophisticated quality of service capabilities improve system utilization and performance and scalability of supercomputing and AI applications and workflows. The system will also feature NVIDIA GPUs with new Tensor Core technology, direct liquid cooling and will be NERSC’s first supercomputer with an all-flash scratch filesystem. Developed by Cray to accelerate I/O, the 30-petabyte Lustre filesystem will move data at a rate of more than 4 terabytes/sec.

box graphic showing proposed N9 architecture


In parallel with the development and deployment of the Perlmutter system, NERSC will offer users a robust application readiness plan for simulation, data and learning applications through the NERSC Exascale Science Applications Program (NESAP). Support for complex workflows through new scheduling techniques and support for Exascale Computing Project (ECP) software is also planned on the new system.

The new system will be located in Wang Hall at Berkeley Lab, the site of NERSC's current supercomputers. NERSC is the DOE Office of Science’s (SC’s) mission high performance computing facility, supporting more than 7,000 scientists and 700 projects annually. The Perlmutter system represents SC’s ongoing commitment to extreme-scale science, developing new energy sources, improving energy efficiency, discovering new materials and analyzing massive data sets from scientific experimental facilities.

Related Material