THE LANCZOS ALGORITHM FOR SOLVING SYMMETRIC LINEAR SYSTEMS °

Horst D. Simon
Dept. of Mathematics
University of California, Berkeley
Ph.D. Dissertation

April 1982

ABSTRACT

The Lanczos Algorithm is becoming accepted as a powerful tool for finding
the eigenvalues and eigenvectors of large sparse matrices. This dissertation
considers the application of the Lanczos algorithm to the solution of large
sparse symmetric systems of linear equations. We analyze the symmetric
Lanczos process with various reorthogonalization methods, and present a
new implementation of the algorithm, whi_ch efliciently maintains orthogonal-
ity among the Lanczos vectors. This new algorithm is discussed in detail,

compared to other methods, and tested with some numerical examples.

B.N. bl

Professor B.N. Parlett

Chairman of Thesis Committee

* Research sponsored by Office of Naval Research Contract N0O0014-78-C-0013

ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor B.N. Parlett, who
supervised this dissertation. He provided support and much valuable advise
on this project. The many discussions I held with him were very instrumental
in suggesting the directions of my research. I especially appreciate his gen-
erosity with his valuable time. 1 am also grateful to Professors F.A.

Grinbaum and E. Wilson for reading this dissertation.

I would like to thank Bahram Nour-Omid for many helpful discussions we
had about the Lanczos algorithm and for providing the interesting numerical

examples in Chapter 4.

Finally I wish to thank my wife Candice for her constant patience and

support throughout my graduate studies.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

INTRODUCTION .oeoiieiiiiiiiciceicnerentotsntrssresnnssaets venscrassne sres seeesssersenenseens

1.1 Derivation and Properties

1.2 Conjugate Gradients and Related Methods for Solving Sym-

Metric Systems i e e e e
1.3 Convergence Properties

1.4 Updating the Residual Norm and Solving the Tridiagonal Sys-

1.5 Initial Guess, Starting Vector, and Treatment of Several Right

HANA SIAES .iivviiiiiiiiiiiiieririiiis i e ereetransirteeessstnesnstassssnsrasensensennranearens

2. ANALYSIS OF THE SYMMETRIC LANCZOS ALGORITHM IN FINITE
PRECISION .cooviiiiiiiiiiiniiii e e remer st e e e

2.1 A Mathematical Model of the Lanczos Algorithm in the Pres-

ence of Roundoflccuciiiiiiiiiiiii i e e e e
2.2 The Loss of Orthogonalityc.cceceiimiiriiiiiiniieniincece e e e e
2.3 LeMIMAS tiitiiiriiiiniiriiiririrc e sr s s cer s s ssanarcse s anan sae senennnsansnannns
2.4 Analysis of the Simple Lanczos Algorithm ...ccccoovveiiiiecniciiiiniannin,
2.5 Semiorthogonalization Strategiescccovvceiiiiiiciiiiiiiiiiccn e e,

2.5.1 Partial Reorthogonalizationccciviiiiiienniieiiicinnecinecensennes
2.5.2 Selective Orthogonalization

2.8 APPLCAtionS it i e e s e ee sae s sans

ii

iv

14

17

21

24

24

29

33

38

48

50

52

58

... 80

3.1 Computing the Level of Orthogonalitycvvveeeereeiieereeeeeeeee s, 80
3.2 The Behavior of the Computed Level of Orthogonality 71
3.3 Chosing Reorthogonalizationsccceeeeeereeeeeseeeeeee e esesesan.s 75
3.4 Some more Details 0n PRO ..oocecciicieiieiee e e 87
3.5 Comparison with Selective Orthogonalizationeeeeeereveecreennnns 89
3.5.1 Maintenance of Semiorthogonalitycoccceereernrerivnneesnans 89

3.5.2 Comparison of COoStS ..ovvviiviiiiiiiiiiiiii e eseeeee e eeessseeeess 92

4. NUMERICAL EXAMPLESciciiiiiiiriiicinriiee e irnes e s s sene e essveeeesssneaee s 95

iv
INTRODUCTION

In many applications one encounters the intermediate task of comput-

ing a solution vector z to the system of linear equations
Az = b , (0.1)

where 4 is a symmetric, nonsingular nxn matrix and b is an n-vector. If Als
large and sparse, there is an elegant way to exploit the sparsity by employing
4 only es a linear operator which computes 4v for any given vector v. There
are several methods known which produce an approximate solution vector
based only on repeated computation of matrix vector products, e.g., the
method of conjugate gradients (called hereafter CG) by Hestenes and Stiefel
[12], Lanczos’ [18] method of minimized iterations (called hereafter LAN),
and the algorithm SYMMLQ by Paige and Saunders [28].

These methods have several attractive features in common. There are
no special properties needed for 4 (except positive definiteness for CG), no
acceleration parameters have to be estimated, and the fast storage require-

ments are only a few n-vectors in addition to the demands of the operator A.

Since Reid [33] pointed out these advantages CG has been widely used
for solving sparse positive definite systems. By rethinking CG so that it could
be applied to indefinite (i.e. neither positive nor negative definite) systems,
Paige and Saunders created SYMMLQ. Both methods are iterative in nature,
i.e. at each step a current approximate solution vector is be updated until an
estimate for the corresponding residual norm is smaller than a prescribed
tolerance. In contrast to this updating feature the Lanczos algorithm com-
putes a set of orthonormal vectors, the Lanczos vectors. Only at the end of a

run is an approximate solution to (0.1) computed from the Lanczos vectors.

When A is positive definite, it turns out that in exact arithmetic all these
methods mentioned above produce exactly the same approximate solution.
So why reintroduce a variant of an established algorithm, which - as it
appears - has the disadvantage of requiring the storage of a large number of

vectors? The are two arguments in favor of the Lanczos algorithm:

1) The availability of the Lanczos vectors makes it possible to compute
approximate solutions for subsequent right hand sides at little cost,

whereas for CG the iteration has to be carried out for each right hand

side from the beginning.

2) Because of the influence of roundof! errors the actual implementations
of these methods differ considerably from their ideal counterparts. The
Lanczos vectors and the corresponding residual vectors in CG lose their
orthogonality and may even become linearly dependent. One might
expect that under these circumstances the algorithm is unstable and
breaks down. But the loss of orthogonality does not prevent conver-
gence, it only delays it. CG, which would terminate in exact arithmetic
after at most n steps, may in practice well take many more than n steps
for ill conditioned systems, but still produce a good solution. If ortho-
gonality among the Lanczos vectors can be maintained at some reason-
able cost, then LAN will minimize the number of calls on 4 and thus
reduce the overall cost. Finally the recent idea of preconditioning can
cut down significantly the number of steps needed (Meijerink and van

der Vorst[21]; Kershaw [16]; Jennings and Malik [14]; Manteuffel [20]).

An implementation of the Lanczos algorithm therefore faces two crucial
tasks: the storage of a certain number of Lanczos vectors and the mainte-

nance of orthogonality among them. The problem of storing the Lanczos vec-

vi

tors can be solved by using secondary storage. This should be fairly easy
since the vectors are only needed from time to time and are always accessed

sequentially.

The maintenance of orthogonality is more difficult. Traditionally (Wilkin-
son [41]; Golub, Underwood, and Wilkinson [8]) it has been suggested to use
full reorthogonalization of the Lanczos vectors at each step. This is very
expensive for the size of problem considered here. Recently Parlett and
Scott [32] introduced selective orthogonalization (SO) for the eigenvalue
problem as an economical way of maintaining orthogonality among the Lanc-
zos vectors. In [30] Parlett shows how the Lanczos algorithm with SO can be

used for the solution of symmetric linear systems.

This thesis follows the program outlined in Parlett[30] and discusses in
detail various aspects of the application of the Lanczos algorithm for solving
(0.1) for large sparse systems. Its main contributions are a new understand-
ing of the loss of orthogonality in finite precision arithmetic and a new
reorthogonalization method which we call partial reorthogonalization (PRO)

to distinguish it from Parlett and Scott’s selective orthogonalization (SO).

In Chapter 1 the Lanczos algorithm in exact arithmetic is introduced
and its relation to the method of conjugate gradients and the algorithm
SYMMLQ is exhibited. The connections with various other methods for
indefinite systems are discussed. An a priori error bound for this family of
methods is derived, based on results obtained by Kaniel [15]. Some details of
the algorithm are presented, and finally it is shown how the Lanczos algo-

rithm lends itself to the treatment of several right hand sides.

Chapter 2 presents a readable error analysis of the symmetric Lanczos

algorithm in finite precision arithmetic. The loss of orthogonality arnong the

vii

computed Lanczos vectors can now be explained satisfactorily with the help
of a recurrence formula, and Paige's Theorem {24] can be derived trom this
recurrence. A backward error analysis then shows that semiorthogonality
among the Lanczos vectors is enough to guarantee the accufacy of the com-
puted quantities up to machine precision. This is an improvement over
results by Grear [8]. Finally various orthogonalization strategies are
analyzed, and it is shown that selective orthogonalization as introduced by

Parlett and Scott [32] indeed maintains semiorthogonality among the Lanec-

zos vectors,

The results of Chapter 2 give rise to the already mentioned
reorthogonalization scheme for the Lanczos algorithm called PRO. It is
based on a recurrence which allows one to monitor the loss of orthogonality
among the Lanczos vectors directly without computing any inner products.
Based on the information from the recurrence, reorthogonalizations are
made only when necessary. Thus substantial savings are gained as compared
to full reorthogonalization. Details of the practical implementation of PRO

and a comparison with SO are discussed in Chapter 3.

The Lanczos algorithm with PRO is tested in Chapter 4. Several large sys-
tems (up to order 1000) of linear equations derived from finite element
approximations to structural engineering problems are solved. The numeri-
cal results show that the Lanczos algorithm is especially useful, when the
matrix vector product dominates other costs, or when the system has to be
solved for several right hand sides. In addition positive definite

indefinite systems can be solved with equal ease.

The results of Chapter 2 and 3 are also applicable to the eigenvalue

problemn. Therefore, whenever it is possible without distraction from the

main topic, immediate consequences of our results for the eigenvalue prob-

lem are stated.

Throughout this thesis the notation will follow Householder's convention:
small Greek letters for scalars, small Roman letters for column vectors, capi-
tal Roman letters for matrices. Symmetric letters (A,M,V,#) will be reserved
for symmetric matrices. All quantities are real unless otherwise noted.
denotes the Euclidean norm for vectors and the associated spectral norm for

matrices.

11

relation between the two methods has been pointed out by Householder in

[13, pg. 139-141].

(1.2.8) shows from a different perspective why CG in general cannot be
used for indefinite A. In this case 7; may be singular for certain values of j,
then the factorization (1.2.8) does not exist, and hence the algorithm breaks
down. Paige and Saunders [28] recognized that this difficulty can be over-
come, if a different factorization of T; is chosen. They suggest that instead of

(1.2.8) the orthogonal factorization
Ty = L;Z; (1.2.9)

is used, where Z;Z,- = J; and Z_,_ is a lower trapezoidal matrix. This factoriza-
tion always exists and is numerically stable. Paige and Saunders use a
sequence of plane rotations in order to obtain the factorization (1.2.9), and
derive a new iterative method for updating z; in the same manner as CG. This
new method is called SYMMLQ. The approximate solution computed in this
way is identical to the one computed by either LAN or CG. There is however a
subtle modification in SYMMLQ which should be mentioned. At the j-th step
the matrix 17 in (1.2.9) is sometimes replaced by the matrix L;, which is the
jxj leading part of Z,-Tl, and which differs from IT in the (j,7) element only.
This change produces an approximate solution zJ-LQ. which is different from
:z:J-CG = z;. The algorithm choses at each step among :rfc and :z:J-LQ the one with
the smaller residual norm. .erQ is usually chosen when T; is ill-conditioned.
In [28] it is reported that SYMMLQ worked well on indefinite problems, but
was slower than CG on positive definite problems due to a larger number of

operations per step.

There are several other methods, which attempt to modify CG in order

to make it also applicable for indefinite matrices, e.g. Luenberger's

12

algorithm [19] using hyperbolic pairs or Fletcher’s [6] method, taking two CG
steps at once if necessary, which is equivalent to carrying out the Bunch-

Parlett [3] algorithm using 2x2 pivots on the tridiagonal matrix 7j.

Other Krylov subspace methods for solving indefinite systems are
derived by using different subspaces and/or a different characterization of
the approximate solution vector at the j-th step. Two important classes of

algorithms are:

1) z; minimizes ||b — 4s || over all s€k7(b;4).
These methods were discussed by Rutishauser [35], Reid [33] (versions
4,56, and 8 of the CG algorithm), and Paige and Saunders [28]
(MINRES).

R) z; minimizes ||z ~s over all s €K7 (4b;4).
The feasibility of methods of this type was first recognized by Fridman
[7]. his algorithm is however unstable. Fletcher [6] (orthogonal direction
algorithm), and Stoer and Freund [38] (SF-method) present stable ver-
sions of Fridman's method. Fletcher also shows that the vectors z}%,
which are occasionally used in SYMMLQ, are identical to the iterates in

his method.

All these methods do have their relative merits in terms of savings in
storage, number of operations, or in terms of applicability to certain types of
problems. However they are all iterative in nature and, since they all at least
implicitly involve the Lanczos algorithm, they will all suffer from the same

type of errors in finite precision arithmetic.

It is important to realize that the proposed algorithm LAN, although it is
equivalent on an abstract level to the various version of CG differs radically in

its practical implementation from all the methods mentioned. This radical

13

difference lies in the storage of the Lanczos vectors q,.qa, - * 1q;- By keeping
them and maintaining orthogonality among them, LAN actually computes
something like an approximate factorization of the matrix A. LAN therefore
can be looked upon as an intermediate method in between direct and itera-
tive methods. It is iterative in the sense that implicitly at each step an
approximate solution vector is updated and improved, and it is direct in the
sense that as a byproduct the factorization of a low rank approximation to A
is computed. The increased cost of LAN as compared to CG therefore is
justified if the Lanczos vectors can be used for subsequent right hand sides in
a similar fashion as the once computed triangular factors in Gaussian elimi-
nation are used. This question is pursued further in section 1.4 and in the
numerical tests. CG and SYMMLQ were introduced here in some more detail,

because they will be used in Chapter 4 for numerical comparisons.

14

1.3. Convergence Properties.

From section 1.1 it is clear that the Lanczos algorithm replaces a com-
plicated problem by a simpler one, but it is not evident that it is also
smaller, i.e. that the residual norm becomes small already for a § « n. In
the general case we only know from the minimizing property of z; that for
positive definite 4 the error ||z —z;(|, is monotonically decreasing with
increasing j. This does not imply that the error |z —-z;| or the residual
norm |b — Az; || are monotonically decreasing. In fact it is typical for the
algorithm that |r;|| oscillates as it decreases. The behavior of
Iz = z; I, |z —=z;ll4, and |Ib - Az; || for a sample run of LAN is shown in Fig-
ure 1.1.

For positive definite 4 it is possible to derive an a priori estimate on the
number of steps required to reduce the error in the energy norm by a cer-
tain given factor. Since z;€K7(b:4), z; can be also expressed as z; = w(4)b,
where w(¢) is a polynomial of degree j-1 . Denote by P’ the set of polynomials
of degree < j and by P{ = fw|weP?, w(0) = 1}. Then using the minimizing

property of z; one obtains
—z.ll, = mi z -mw(A)b], = min |47 - w(4)b ||
lz = =z;1, min, I (A)b |l 4 ﬁP,_lﬂ 4
= min (I = m(4)4)A7/? || <= min||w(4)| [zl (1.3.1)
nepi-t weP}

Now let the spectrum of 4 be contained in the interval [v,u] with 0 < v < u.

Then

Iz = ;4 < min max_ |w(\)| (1.3.2)
lz Il 4 wePg AE[v.4]

This min-max problem is solved by the Chebychev polynomial T; of degree

adapted to the interval [v,u] and normalized so that w(0) = 1 {e.f. Rivlin [34]).

15

“zl—zj Il 4 1 _ 1
|z | - -
TR =y

Using Ty(¢) = %[($+VEE-1)’ + (¢-VE=1)7], we obtain after some computa-

tions

V-1

_ 2 ()i
1 Vie+1 VE-1 s
" = = < 2 () (1.3.4)
+y =1 .0os = eV 11
7, (ALY 14 2j K+
j(#"V | (\/E+1)

where k = %—is the spectral condition number of 4. In order to reduce the
initial error by a factor of §, has to be chosen such that

V-1

)
A =6 (1.3.5)
i.e.

In2~-1né
(YErL (1.3.8)

V-1

» Ve+l,_ 2 '

Since In (\/Tc-—l) > 7= Ve finally have that

. Vi 2
iz 5-InZ (1.3.7)

The number of steps needed in order to reduce the error in the A-norm by a
given factor is according to {1.3.7) proportional to the square root of the con-

dition number of the matrix 4.

The bound derived here is sometimes a very crude estimate, as the
example in Figure 1.1 shows. But in this generaliy it is the best possible. A
priori bounds of this type can be refined in two ways, by using more informa-
tion about the polynomial n (c.f Greenbaum [10]) or by using more informa-

tion about the spectrum of A (cf. Axelsson [2]). Atlestam [1] reports an

18

extension for the indefinite case. The resulting bounds are however no

improvement over bounds directly obtainable by considering A°Az = 4°b.

a priomi estimate

10 - . eTTOT NOTM =]

T

— —

A-norm
of the error

g

107 —
residual norm

|] | 1
20 40 60 80 100
Lanczos Steps

Figure 1.1. Behavior of the Error in Various Norms for a Sample Run of LAN.

uoYanpay anymayr

17

1.4. Updating the Residual Norm and Solving the Tridiagonal System.

We mentioned already in section 1.2 that T; f; = 8,e, has to be solved in
a stable way, since for some k < j the matrix 7, may be very ill-conditioned,
particularly when A has both positive and negative eigenvalues. In this case
the LDL’ factorization of T; may break down or give unreliable results. Since
the updating of the residual norm according to (1.1.12) also requires the fac-
torization of 7;, both tasks can be treated simultaneously. Here we want to

use the @F-factorization in order to achieve this task.

The QR-factorization can be accomplished in an efficient way by using
fast scaled rotations (Hammerling [11], Parlett [29,pg. 100-104]). Since we
are not interested in a similarity transformation of Ty, but only in a reduc-
tion of T; to upper triangular form, we simply premultiply 7; and simultane-

ously the right hand side g,e, by matrices of the type
1] [1]

1 -0 T -1

o or J (1.4.1)

Let us call the matrix on the left of type I and the matrix on the right of type
IL. The scalars g and 7 in (1.4.1) are chosen to reduce the subdiagonal ele-
ment B; to zero. The matrices in (1.4.1) represent Givens plane rotations,
scaled by a factor of cos ¥ (type 1) or sin ¥ (type 1I), where ¥ is the angle of
rotation. Therefore ¢ = tan ¥ and 7 = cot 1§, and we can choose between both
types such that || = 1or r| < 1. This enhances the stability of the reduc-

tion.

If we consider in detail the i-th step, we obtain for type L

18

[11 = , %

1 =044, 0 1% Bisx O] [‘4-01+1ﬂ¢+1 Bi+1— 01410441 —Og+1Bi4

Ois1 1 O| [Bis1 @1 Buse| = [meari®i+Bis OuarBPrartisr Buaz
0 0 1] | 0 PBise 442 0 Bi+e 0y +2

and for type I

ST I - 2

+1 =1 % Bisr O] (418 —Bi+1 TeerBis1—0441 -ﬁi+2]
1 7 ! 41 Ot Bisz| = | WHTearBinr Bint+Terrlinr Tir1Biss
D 0 1 | O PBise Bus2 0 Bi+2 Qg

In order to reduce the subdiagonal element to zero we have to set for type I:

GeerBe + Bin =0 e, Oy =~ (1.4.32)
25
and for type IL:
~ : &
& + Tis1fis1 =0 Jie, Ty =——" (1.4.3b)

Hence we choose type 1if ;4 <|& |, and type IIif |&; < Bi+1 Note that in
both case we change the diagonal element in position (i+1,i+1), and for type
Il the super diagonal element in position (i+1,i+2). The ~ indicates these
elements changed from the previous step. This algorithm cannot break down
because Bi4 > 0. If &; =0 we have a scaled rotation of type II, which inter-

changes the rows. Finally the right hand side B,e, is modified as follows:

|
(1 ol B m _ [] (1.4.42)
Oi+1 1 0] ~ i.ai+lﬁi - ﬁi*l- '
I 1] - 1
Tier —1 1 T _ Ti+174 _ ™ (1.4 4b)
l 1 7] (O] 7 { i T il

From this material we can construct algorithms for both the updating of the
residual norm, and the solution of the symmetric tridiagonal system. In the

practical algorithm we will store only 7; or 1/0; in an array named T.

19

Therefore |7(| < 1 indicates that a scaled rotation of type Il was performed

at step i, and |7;| = 1 indicates a scaled rotation of typelwith gy = 1/ 7.

In order to update the residual norm we just update the quantities
B, Bi+1, and 74 as we go along with the Lanczos algorithm. Then the residual
norm according to (1.1.12) can be found as B;4,|7;/ & . The nice feature is
that there is no need to keep the @&;, §;, and 7. These quantities can be
recomputed from the 7;, when needed for the solution i =(vnpa - ;o;)',
e.g. the @&; can be found from the relation &;+7;4,8i+; = 0, or &;/ T¢4,+8; = O.
Similarly we can find g, and n,. The algorithm for the updating procedure is
given in Table 1.3, where only four variables ®&,8,m, and 7,4 are used. The

corresponding algorithm for the back substitution is given in Table 1.4.

1. Initialization
a«an, B« Ba Mg « By

2. Loop:fori =23 -- do
Ti « —a/ By
N« Nod/ Ti
B« o+f/ 7

B « Bin1
if (|7;| < 1) then
a « T
B« BTy
N« Nold
Notd < Mold Ti
residual norm « B;,,|n/ &|

Table 1.3. Algorithm for Updating the Residual Norm.

20

1. Initialization

Pj « N5/ &
il Tj-.ﬁj i.fl’f‘j-;i <1
e TN
i ~[(B—ay/ 7)ol [-Bi(Ts+1/7g)] i |7y 21
I ~[(758~-04)p; 1/ [-B;(147F)] < ol o R
2. Fork =3,--:,jdo
iej+l—k

i {lﬂiﬂ if |7yl =1
- =
Tefiv1 i [7T¢] €1

??TH, if |Ti+2 =1

— .
T Inra/ Teee 1 |Tel €1

MTie1 M |Teal 21
temp « | i 7| <1

- temp —(Bis 1 Tis1= 00 1)Pi 41 PisnPise
.311-1{]4"?':24-1}

i

Table 1.4. Back Substitution Algorithm for Solving 7;f; = £e;.

The actual implementation can be simplified further, for example it is
possible to use only two if-statements per loop. Finally it should be noted
that this idea is not restricted to the special right hand side e, i.e., it is
possible to implement an algorithm for solving symmetric tridiagonal sys-
tems based on scaled rotations, which uses only one extra vector of storage

(for 7), and leaves the elements of the matrix unchanged.

21

1.5. Initial Guess, Starting Vector, and Treatment of Several Right Hand
Sides.

So far we have concerned ourselves only with the case where the system
Az = b had to be solved, and no additional information was available. In many
applications, however, an initial guess z4 for the solution is available.
standard procedure is then to write z = zy + 2., where z, is a correction to

the initial guess, and to solve
Az, =ro=b — Azrg (1.5.1)
instead of the original equation.

One may ask whether there is something more sophisticated which can
be done when a good guess is given, for example, one might want to start the
Lanczos algorithm with z, i.e. set g, « 2o/ | Zzpl|. It is however easy to check
that even if zy were the exact solution, the algorithm would not recognize
that and would proceed until the residual norm becomes small. Another
suggestion is to use a starting vector which has large components in the
direction of eigenvectors corresponding to the small eigenvalues of 4. But in
general it is not advisable to use any other vector than the right hand side b
as a starting vector for the Lanczos algorithm for the following reason.
pose we used the vector g, where g is an arbitrary n-vector as a starting vec-
tor for the Lanczos algorithm. Then the computation of the residual norm

according to (1.1.11) must be modified to

Ty = b - AQ; Tj_l Qj’b
=b = (Q;T; + Bj+19;+185) Ty 1 @50
=b — ;@B - Bj+195+125Ti 1 Qb

= (I - @006 — Byr195+19; (1.5.2)

22

where ¢, denotes the j-th component of the vector h;, solution to Tihy = Q,’b.
The important difference to {1.1.11) is not that @it is now a full j-vector, but
the additional (/-@; Qj')b-term in the residual. This term accounts for the
fact that in the general case the right hand side is not necessarily contained
in the Krylov subspace X7, and (I-& Q,-')b is just the orthogonal complement
of b. If g is not related to b, there is therefore no reason to hope that by
some coincidence |[(7/—; §)b | might be small for j < n. In other words, we
want b €K7 for small j. Unless we take g = b/B, the only way to guarantee
this is by choosing a g, such that m{4)q, = b, where is some polynomial of
degree j-1. This however requires to solve a system of linear equations, which
is even more complicated than the original one. In general there seems to
be no better alternative to chosing the right hand side as starting vector,
and it appears that given an initial guess zg, it is best to utilize it as in
(1.5.1), and then to proceed with the Lanczos algorithm using b —Az, as start

ing vector.

This discussion is of certain relevance for the treatment of a sequence of
right hand sides. Let us consider the case where we have stopped the first
Lanczos run for solving Az(!) = (1) at step j, because the residual became
negligible. The Lanczos vectors &; and T; are then still available and can be

used for computing an approximation to the solution z(® of the problem
Az® = p@) (1.5.3)

where b(® is a new right hand side. We can find an initial approximation z§?

to z® from span (@;) as follows:
262) = QJ Tj—IQj.b(e) (1.54)

This is just (1.1.10) for the new right hand side 5®). We have to form §;b(®,

which is now in general a full j-vector, then solve T;h; = @6, and finally

23

assemble z{?) = Q;h;. The initial guess z{® will be utilized as outlined above,
i.e. we compute a solution z{® to Az{®) = #{?) = p®@ — Az{? by starting a new
Lanczos run. The numerical results in Chapter 4 indicate that this second
run of the algorithm will need considerably fewer steps than did the first run,
provided that the second right hand side represents a physically related
problem. For an arbitrary right hand side it is not clear that span (Qj) is a
good subspace for approximation, and there may be little to be gained from
computing z{?. In this case it will be better to use a more sophisticated pro-
cedure for the treatment of consecutive right hand sides. In [30] it is
described how the Lanczos vectors from the second run can be kept orthogo-
nal to the already computed Lanczos vectors from the first run. This algo-
rithm will not only reduce the number of Lanczos steps for the second right
hand side, but it will also provide an orthonormal basis for a larger subspace,

which can be used for the third right hand side, and so on.

However it should be clear from the initial discussion in this section that
it does not pay simply to continue the old Lanczos recurrence from the first
right hand side, and wait until the residual norm becomes small, because we

cannot expect that b will be well represented in K7 (b(1;4).

24
2. ANALYSTS OF THE SYMMETRIC LANCZOS ALGORITHM IN FINITE PRECISION

A Mathematical Model of the Lanczos Algorithm in the Presence of
Roundoft

Most error analyses start out by making some assumptions on the
roundoff errors which will occur when elementary operations like addition,

are carried out in floating point computation with relative precision &.
Based on these assumptions upper bounds on the errors in vector inner pro-
ducts, matrix-vector multiplications, etc., are derived or the reader is
referred to Wilkinson [40]. After providing these tools then finally the object
of analysis itself is approached. Lengthy and complicated derivations finally
yield error bounds which are rigorous but, in most cases, unrealistically pes:
simistie.

The error analyst's dilermnma is that he has to take into account any pos-
sible contrived worst case example at each step in his analysis in order to
make it rigorous, but he also knows that this combination will hardly ever
occur in practice. By including all these cases it is not only more compli-
cated to read and understand the analysis, but it is also difficult to prove

facts which appear to be "true” from practical experience with an algorithm.

We try here to find a way out of this dilemma by using a different
approach. In this section we are going to state a set of assumptions on the
behavior of the Lanczos algorithm in finite precision. These assumptions con-
stitute a model for the actual computation. A model which includes features
(the essential ones in my opinion), but discards others (the irrelevant ones).
On this model we build a rigorous analysis. The simplification of the results
and their relation to the observed behavior of the Lanczos algorithm must

eventually justify our choice of model.

25

The presentation of the Lanczos algorithm in section 1.1 assumed an
ideal mathematical setting. However, Lanczos himself [17] was already aware
of the strong influence which roundoff had on the algorithm. The computed

quantities can differ greatly from their theoretical counterparts.

In the context of finite precision arithmetic the basic three term
recurrence (1.1.2) between the Lanczos vectors at the j-th step can be writ-

ten

Bi+195+1 = Ag; — 0595 — Bid5-1 — [y (2.1.1)

where the n-vector S accounts for the local roundoff errors at the j-th step,
and the a;,f;,9; denote from now on the corresponding computed quantities.

As in (1.1.8) the first j equations (2.1.1) can be written in matrix form
AQ; = @i Ty = Bju1gjnief + Fy (2.1.2)

where the nxj matrix F; is given by Fi=(f1f2" -f;). Abound on | |
depends on the specific implementation of the Lanczos algorithm, and on &
the machine roundoff unit. Parlett [29, pg.288] reports that no exception

has been observed to the assertion that
IF; <ela (2.1.3)

This claim is supported by a study of I S |, reported in section 3.1. In the fol-
lowing analysis we assume that (2.1.3) holds, i.e. that the local errors are at

roundoff level.
Let the jxj matrix W; = (w;) be defined by
W; = Qj’Qj (2.1.4)

Ideally the Lanczos vectors should be orthogonal, i.e. W; = I;. But this rela-

tion is completely destroyed by the effects of finite precision arithmetic. No

26

implementation of the Lanczos algorithm as described in Chapter 1 yields a
small a priori bound on | W;~/{, in fact the elements of W, —I; can become
as big as 1. The computed Lanczos vectors do not only loose orthogonality
but become linearly dependent to working precision. The growth of the ele-
ments of W;-J; will be referred to as the loss of orthogonality among the
Lanczos vectors. Let the j first Lanczos vectors 9.9z ' ' ,q; satisfy

lafqe | < w; (2.1.5)
fori=1,- -ji k=1,"7; k#j and 0 < w; < 1. The smallest w; for which
(2.1.5) holds will be called the level of orthogonality among the Lanczos vec-
tors. If w; = v&, then the Lanczos vectors will be called semiorthogonal,
Clearly, if w; = 0 the vectors are orthonormal. The following example illus-

trates the typical loss of orthogonality as the Lanczos algorithm proceeds.

100
1~
- 3
10-5 - 8
- <
L
s
(]
- Q
10—10 A g
— &
10-18 =
| |
. 40 80

Lanczos Steps

Figure 2.1. The Loss of Orthogonality among the Lanczos Vectors.

In Figure 2.1 the level of orthogonality among the Lanczos vectors is plotted

27

on a logarithmic scale for the first 55 steps of a run of the algorithm with a
matrix of order n=961, resulting from an approximation to Poisson's egua-

tion on the unit square with 31x31 grid points. The starting vector is

g, =11, --,1)*/VB0.

Some more assumptions are necessary in order to simplify the technical
details of the analysis of the loss of orthogonality. It will be assumed that the

Lanczos vectors are exactly normalized,i.e. that
g =1 Jfor k=1, (2.1.8)

and that locally the level of orthogonality among the g;'s is of the size of the

roundoff unit, i.e. that

lgeaqel <&, SJor k=1, -] (2.1.7)

Here ¢, is some constant 1 > &, > ¢. In practice it turns out that q,-'“q,- occa-
sionally may become large if g;,, is small, or equivalently if the angle
between Ag; and g; is small. This is actually not a problem peculiar to the
Lanczos algorithm, but of orthogonalizing two vectors which form an small
angle. It is solved by reorthogonalizing g;,, immediately (within the Lanczos
step) against g; if f;4, drops below some threshold. We therefore assume
that g, is a modest multiple of the roundoff unit. As long as &; « V& the
actual size of &£, is not important for the following analysis. Similarly the
later analysis will show that roundoff errors in the normalization of the g;'s

are inconsequential for the loss of orthogonality.
Finally let us assume that
no B, ever becomes neglible (2.1.8)

This is almost always true in practice, and the rare cases where a f;,; does

become small, are actually the lucky ones, since then the algorithm should

28

be terminated, having found an invariant subspace.

(2.1.1)~(2.1.8) constitute the mathematical model of the Lanczos algo-
rithm which we are going to investigate further. The goal of the remaining
chapter is to identify a mechanism which causes the loss of orthogonality in
the Lanczos algorithm, and then to analyze the algorithm in the light of this
new understanding. The results will help to clarify the role of the V& thres-
hold, which appears both in Parlett and Scott's [32] and Grear's [9] work.
The insight will also lead to a new orthogonalization procedure, which will be

discussed in the Chapter 3.

29

2.2. The Loss of OrthogonaIity.

The loss of orthogonality and the associated "instability” of the Lanczos
algorithm in the past has been credited to "an accumulation of roundoff and
cancellation errors” (Golub, Underwood, Wilkinson [B]). Paige [24] was the
first to provide a better understanding of what exactly is happening when
orthogonality is lost. However Paige does not convincingly identify a
mechanism, which would explain the loss of orthogonality directly. Recently
Grear [9] gave a new interpretation and his work is closely related to the
results of this section. He is the first one to regard the loss of orthogonality
as an amplification of the local errors which can be explained through
recurrence formulas. We follow his ideas and express the loss of orthogonal-
ity in terms of computed quantities. Thus we obtain a simpler and easier
understandable recurrence formula. This is done here in form of Theorem
2.1. Paige’s main result concerning the loss of orthogonality then immedi-

ately follows from Theorem 2.1.

The situation becomes clearer, if one follows a simple geometrical argu-
ment. Suppose the algorithm was carried out for] steps without any error
and the vectors ¢q;, - ,g; were perfectly orthogonal. Now at the j+1 st step
a small error occurs, such that 97+1 is no longer orthogonal to the previous
Lanczos vectors. From then on the algorithm is again continued without
error. Even if g;,, were constructed perfectly orthogonal to g5+ and gy, it
would no longer be orthogonal to the vectors g1 ' .gj-1, because gj,, was
not orthogonal to them. The same is true for all consecutive Lanczos vectors.

The once introduced error is propagated to future Lanczos vectors.

Now if two consecutive Lanczos vectors gr-3 and g, deviate slightly from

their correct direction then of course the vector Ag, will be also slightly

30

wrong. This by itself would not be so bad, but this already slightly wrong Ag,
will now additionally be orthogonalized against already deviating vectors and
thus the resulting g;,, will differ even more from its true direction. Once
introduced, the error is thus not only propagated, but depending on the

geometry of the g;'s it may be additionally amplified,

The loss of orthogonality therefore can be viewed as the result of an
amplification of each local error after its introduction into the computation.
The following theorem is the arithmetic equivalent of the geometric con-
siderations above. It quantifies precisely how the local error is propagated in
the algorithm, and how the level of orthogonality rises due to the mechan-

isms of the algorithm. It is the core of our analysis.
Theorem 2.1. The elements w; of the jxj matrix W; = Q,-’Q,- satisfy the fol-
lowing recurrence:

e = 1 for k =1, j
W k-1 = & for £k = 2, - J (221)
Bi+10541k = Bre+1Wj k1 + (e —0y)on + Bewjp—1 — Bywj—1k + 95Tk — Qi f;

for 1<k <j,and w4 = Wisy 5. Here wpo=0and g, = gyge ;-
Proof. Write (2.1.1) for j and for k:
Bj+195+41 = Ay — 0495 = B5q5-1 — f5 (2.2.2)

Brs 1941 = AQe — 2k — BeQe—1 — Tk (2.2.3)

Forming g¢(2.2.2) — ¢;(2.2.3) and simplifying yields the result

Theorem 2.1 was already published by Takahasi and Natori [39], but

rediscovered here independently.

31
Note that (2.2.1) can be also obtained in vector form. First premultiply
(2.1.1) by g}

Bi+1@541 = QjAg; — oy @q; — By Qqy-y - Qif; (2.2.4)

T Q95 = 05Q7%5 =~ B;Q05-1 + Byr1505ng; + Fia; — QF;

Let R; be the strictly upper triangular part of W;. i.e. R; is zero on and
below the diagonal, and let ,,i,, - - ; bet the columns of R;. And let

W4y = @954+, Then from (2.2.4) it follows that
ﬁjﬂw,-ﬂ = T,-wj - a,-'w_,- - ﬁ_,—ﬁ)‘,-_l + g;j (225)

where g; = Fiq; - €;fj. Equation (2.2.5) could have been obtained directly
from (2.2.1), by writing (2.2.1) in vector form for k = 1, -+ -j. From (2.2.5)

we can obtain an estimate for the loss of orthogonality.

ﬁjﬂwijH < (| T; I+ ‘%‘UH”@J‘ [+ Bj H@,-IJ' + 0(e[Al) (2.2.8)

< 2| Al max{|m; |I.l|@;-, |1} + 0] All) (2.2.7)

Therefore the level of orthogonality grows at most by a factor of 2[4/ 8;.,
at each step. A small B;+1 will cause a great loss of orthogonality. A Lanczos
run, which has rapidly decreasing or greatly varying f;‘s will therefore suffer

from a larger loss of orthogonality, than a run with nearly constant g;'s.

The recurrence formula (2.2.1) shows that the loss of orthogonality is
merely initiated by the local error Jfj. The growth of the elements of Wi
depends mainly on the a;‘s and Bi's. It is therefore definitely nof due to an

accumulation of roundoff or cancellation errors. Once the wjr have grown to

s
a certain level of about O(z*), the local error terms ¢Sk — gcf;, which are

O(e) contribute negligibly to the growth of the loss of orthogonality.

Paige [25] puts considerable effort into analyzing computational vari-

ants of the Lanczos algorithm in order to determine among several possible

32

variations of the algorithm the one for which the local error f; is smallest. In
the light of (2.2.1) this is irrelevant as regards the loss of orthogonality. As
long as the local error remains at the roundoff level, all computational vari-
ants will suffer from the same loss of orthogonality. The loss of orthogonality
is a phenomenon which is started by the f;, but from then on its growth is

determined by the a;'s and B;'s, i.e. by the eigenvalue distribution of A and

by the starting vector q;-

The way in which orthogonality is lost can be understood better if equa-
tion (2.2.5) is analyzed further. Let the exact spectral factorization of T; be
given by 7;S; = 5;0;, where ®; = diag(sf), - .- D), S5 = (s §),....s80),
and SJ-'= S-1, and define the vectors Y = @;s;fori =1, .. 4. Note that con-
trary to (1.1.13) we consider here the ezact eigen decomposition of the com.-
puted T;. Therefore the ¥{) and) should be referred to as the computed
Ritz values and vectors. They may differ from their ideal counterparts as
defined in (1.1.13). Especially there is no reason to expect the computed Ritz
vectors to be orthonormal. Nevertheless we will refer to them here simply as
Ritz values and vectors, since no confusion with the ideal quantities is likely.
Furthermore let 0; = e,’s/), the bottom element of the eigenvector s), and

let the eigenvectors 5/) be normalized to make o; positive.

With all this notation the remaining analysis becomes quite simple. Con-
sidering the first steps of the algorithm, the corresponding instances of for-
mula (2.2.5) can be combined in matrix form as

ﬁjﬂw,-“e;: T,RJ _RJ Tj + G:.' (2.2.8)

where G is the strictly upper triangular part of Fj@; — @/F;. Forming

s;(2.2.8)s; one obtains

33

Bjr1SiWy105 = Vs Rys; — S{Rysi%y + 5Gys;
By 14105 = S{Gysy = g (2.2.9)
This is precisely Paige's theorem:
Theorem 2.4. (Paige). Let S;. 85, Gj. 04, and y4 be defined as above. Then

the vectors g; = @s¢, fori =1, - j satisfy

. Vil
wa =S = 2.2.
J+1 Brei0n (2.2.10)

Formula (2.2.10) describes the way in which the orthogonality is lost. We
have assumed in (2.1.8) that no §;,, becomes negligible. If we also assume
that 7 is tiny like £l 4[|, the only way that y,'g;.+; can become large is by Oji

becoming small. As Paige pointed out

Ay — v || = 1AQ;sy — @8:8; = [Bj1TjmesSi+Fysy < Bjnon + |l All

and so a small oy indicates that (9, ¥;) is an approximate eigenpair of the
matrix A. Paige's theorem therefore can be stated as: loss of orthogonality

implies convergence of a Ritz pair to an eigenpair.

Lemmas.

In this section we will state and prove several Lemmas, which will be
needed in the later analysis of the Lanczos algorithm. These Lemmas are
mainly concerned with certain properties of the matrix #;=@;@; and related
matrices, and are therefore completely independent of any properties of the
Lanczos algorithm.

Let the jxj matrix ¥ be given by ¥ = (wg), with wy=1 for i=1, - 7,

—1<wy<1 for i#k, i,k =1, --j. Then define w= max |wy and
1t k<)
ink

W, =(1-w)j+wee’, W_=(l+w)lj—wee *. where the j-vectore® = (1,1, - - 1).

34

Denote by A,(#) the smallest and by A;(W) the largest eigenvalue of the

matrix W.

Lemma 1.
a) M)z 1-(j~1o.
b) A(W)< 1+(i-1)o.

e) [|W| = 1+(j -1)w.

1
d Ifwc 7-1

Proof. Application of Gershgorin's theorem =

Lemma 2. Let w=< -1—-1—. Then LL®

2 j-2

exists and

IZl =1Ll <2
IL7 =1L <=2

Proof.

L " = V)\J(LL) = V}\Jz W,’SS (1+(j—1)&))

L] = VREGTE = VNI s (1-(-1)e) * <2

Lemma 3. The Choleski factor L, of the jxj matrix W,

where 0 < w < 1, is given by

1
w

(A
1

then W~ exists and | #~!|| <

LA

-G =

-

w

- g -

= W the Choleski factorization of ¥

(2.3.1)

35

§, 0. . 0

M 62 . . .
Li=|. m2. . .|, (2.3.2)

S

M Mz - Nj-1 6

where
- (1—w)(1+{k-1)w) - o a

Ok \/ 1+(k -2)o k=1, J (2.3.3)
(2.3.4)

- 1-w =1 ... 4=
m = o T, kT
Proof. With 0 < w < 1 the matrix ¥ is symmetric and positive definite, and

its Choleski factorization W, = L,L; exists.

Consider the first step of the factorization:

Therefore 6, = Vi =VIi=1andn; = w/Vé = wand

1—0? w—e? . . w—of]
. jo—e® 1-0? .
We = Wl - _’w’l‘_;l)___:
. 1-0® w—-o?
o—e? w-w? . w-w? 1-0?

Denote now by 8, and 7, the diagonal and off diagonal elements in the matrix

,, which contains the part of # which is still to be factored at the k-th step

Then considering the k

that 3; and 7, can be computed by the recurrence

M1
8-

5 =3k—1 -

where 31 =1and 7 = w. It can be shown by induction that

3 = (1=e)(1+(k ~1)w)

1+{k -2)o k=l -j
R €)) k=1, . j-1
= Tvk-2)a ;

Finally 6, and 7, are obtained from

V&
e]
Lemma4. Ifw< 7 1 1 the Choleski factor L_ of the matrix W_
1 -)
- 1
V.= .
1 -w
|—e - 1

where 0 < w < 1, is given by

-th step in