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About This Book

The IBM® Parallel Engineering and Scientific Subroutine Library (Parallel ESSL) is
a set of high-performance mathematical subroutines.

This book is a guide and reference manual for use in doing application
programming in Fortran, C, and C++. It includes:

* An overview of Parallel ESSL and guidance information for coding and running
your program, as well as using error handling

¢ Reference information for coding each subroutine calling sequence

This book is meant to be used in conjunction with the ESSL Guide and Reference.
Where information is identical between Parallel ESSL and ESSL, such as matrix
storage modes, this book references the appropriate section of the ESSL Guide and
Reference.

This book is written for a wide class of users: scientists, mathematicians, engineers,
statisticians, computer scientists, and system programmers. It assumes a basic
knowledge of mathematics, Single Program Multiple Data (SPMD) parallel
processing concepts and familiarity with Fortran, C, or C++.

How to Use This Book

Front Matter consists of the Table of Contents, a subroutine lookup table, special
terms and abbreviated names, and other prefatory information. Use these to find
or interpret information in the book.

[Part 1, “Guide Information,” on page 1| provides guidance information for using
Parallel ESSL.

* |Chapter 1, “Overview, Requirements, and List of Subroutines,” on page 3|
gives an overview of Parallel ESSL and lists required hardware and software
products. Read this chapter first to determine the aspects of Parallel ESSL you
want to use.

« |Chapter 2, “Distributing Your Data,” on page 21| describes how to distribute
your data across processes for various types of data structures: vectors, matrices,
and sequences. Use this information when designing and coding your program.

* [Chapter 3, “Coding and Running Your Program,” on page 77| explains coding
requirements for calling Parallel ESSL from Fortran, C, and C++ programes,
performance coding tips, and how to run your program. Use this information
when coding or running your program.

+ |Chapter 4, “Migrating Your Programs,” on page 99 describes how to migrate
your program to Parallel ESSL. Use this information when updating your
program for a new release of Parallel ESSL or when moving from ScaLAPACK
to Parallel ESSL.

+ |Chapter 5, “Using Error Handling,” on page 101| describes how to use error
handling in Parallel ESSL to retrieve information about errors that occur in your
program and diagnose problems. Use this information when designing and
coding your program as well as diagnosing your problems.

[Part 2, “Reference Information,” on page 127 provides reference information you
need to code calling sequences for the Parallel ESSL subroutines. Each chapter
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contains an introduction and subroutine descriptions. To understand the
information in the subroutine descriptions, see [“Interpreting the Subroutine|
[Descriptions” on page xiii] Use the appropriate chapter when coding your
program:

* |Chapter 6, “Level 2 PBLAS,” on page 129
* |Chapter 7, “Level 3 PBLAS,” on page 237,
* |Chapter 8, “Linear Algebraic Equations,” on page 351

+ |[Chapter 9, “Eigensystem Analysis and Singular Value Analysis,” on page 675|

* |Chapter 10, “Fourier Transforms,” on page 797|

* |Chapter 11, “Random Number Generation,” on page 837
» |Chapter 12, “Utilities,” on page 845|

|[Appendix A, “BLACS Quick Reference Guide,” on page 891 provides a list of
calling sequences for the BLACS subroutines.

[Appendix B, “Sample Programs,” on page 895|contains a sample Fortran 90
application program using Parallel ESSL. It also contains sample application
programs using the Fortran 90 and Fortran 77 sparse linear algebraic equation
subroutines.

(“Glossary” on page 991| contains definitions of terms used in this book.

(“Bibliography” on page 999| provides information about publications related to
Parallel ESSL. Use it to identify and order publications with supporting
information.

How to Find a Subroutine Description

If you want to locate a subroutine description and you know the subroutine name,
you can find it listed individually or under the entry “subroutines” in the Index.

Where to Find Related Publications

If you have a question about ESSL products, IBM clustered servers, or a related
product, the online resources listed in [Table 6 on page 11]and in [“Related|
[Publications” on page 1002/ make it easy to find the information for which you are
looking.

In addition, included in [“Bibliography” on page 999|is a list of math background
publications you may find helpful, along with the necessary information for
ordering them from independent sources. See |“Bibliography” on page 999.|

How to Look Up a Bibliography Reference

Special references are made throughout this book to mathematical background
publications and software libraries, available through IBM, publishers, or other
companies. All of these are described in detail in the bibliography. A reference to
one of these is made by using a number enclosed in square brackets. The number
refers to the item listed under that number in the bibliography. For example,
reference [1] cites the first item listed in the bibliography.
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Special Terms

Standard data processing and mathematical terms are used in this book.
Terminology is generally consistent with that used for Fortran. See the Glossary for
more definitions of terms used in this book.

Distribution: Used to describe the method in which global data structures are
divided among processes. Reference reports may use the term decomposition to
mean the same thing.

Global: Used to identify arguments that must have the same value on all
processes.

Local: Used to identify arguments that may have different values on different
processes.

LOCp(): For block-cyclic data distribution, LOCp(M_) represents the number of
rows that a process would receive if M_ was distributed block-cyclically over p
rows of its process column.

The ScaLAPACK Users” Guide uses LOCr, which is equivalent to LOCp.

LOCq(): LOCq() can be used in three ways:

* For block-cyclic data distribution, LOCq(N_) represents the number of columns
that a process would receive if N_ was distributed block-cyclically over g
columns of its process row.

* For block-column data distribution, LOCq(n) represents the number of columns
that a process would receive if n was distributed block over g processes.

* For block-plane data distribution, LOCq(n) represents the number of planes that
a process would receive if n was distributed block over g processes.

The ScaLAPACK Users” Guide uses LOCc, which is equivalent to LOCq.

Optional: Indicates an argument does not have to be coded and is assigned a
default value if the argument is not present.

Process: Indicates the logical CPUs identified in the process grid. Referenced
reports may also use the terms processor or node to mean the same thing.

Process Grid: Indicates a way to view a parallel machine as a logical one- or
two-dimensional rectangular grid.

For one-dimensional process grids, the variables p and np are used interchangeably
to indicate the number of processes in a row or column of the process grid.

For two-dimensional process grids, the variables p and nprow are used
interchangeably to indicate the number of rows in the process grid. The variables g
and npcol are used interchangeably to indicate the number of columns in the
process grid.

Referenced reports or manuals may also use the terms processor mesh, processor
template, processor shape, or processor grid. These all mean the same thing.

Required: Indicates an argument must be coded in the calling sequence.

About This Book  1X



Scope: Scope can be used in two ways:

1. Refers to the portion of the parallel computer program within which the
definition of an argument remains unchanged. When the scope of an argument
is defined as global, the argument must have the same value on all processes.
When the scope of an argument is defined as local, the argument may have
different values on different processes.

2. In|Appendix A, “BLACS Quick Reference Guide,” on page 891)scope indicates
the processes that participate in the broadcast and global operations. It can
equal “all’, ‘row’, or “column’.

Short and Long Precision: Because Parallel ESSL can be used with more than one
programming language, the terms short precision and long precision are used in
place of the Fortran terms single precision and double precision.

Subroutines and Subprograms: A subroutine is a named sequence of instructions
within the Parallel ESSL library, whose execution is invoked by a call. A subroutine
can be called in one or more user programs and at one or more times within each
program. The Parallel ESSL subroutines are referred to as subprograms in the areas
of Level 2 and 3 Parallel Basic Linear Algebra Subprograms (PBLAS). The term
subprograms is used because it is consistent with the Basic Linear Algebra
Subprograms (BLAS).

How to Interpret Product Names Used in This Document

Parallel ESSL refers to the Parallel Engineering and Scientific Subroutine Library
product.

ESSL refers to the Engineering and Scientific Subroutine Library product.

MPI refers to the Message Passing Interface provided by Parallel Environment
(PE).

Abbreviated Names

The abbreviated names used in this book are defined below.

Short Name Full Name

AIX® Advanced Interactive Executive

BLACS Basic Linear Algebra Communication Subprograms
BLAS Basic Linear Algebra Subprograms

CSM Cluster Systems Management

ESSL Engineering and Scientific Subroutine Library
FDDI Fiber Distributed Data Interface

HPS High Performance Switch

HTML Hypertext Markup Language

P Internet Protocol

LAPACK Linear Algebra Package

LAPI Low-level Application Programming Interface
MPI Message Passing Interface

MPL Message Passing Library
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Short Name

Full Name

NLS National Language Support

PDF Portable Document Format

PE Parallel Environment

PBLAS Parallel Basic Linear Algebra Subprograms

IBM @server Clusters 1600

5L or Linux servers

Highly scalable cluster solution comprised of POWER
architecture-based symmetric multiprocessing (SMP) AIX

PSSP Parallel System Support Programs
ScaLAPACK Scalable Linear Algebra Package
SMP Symmetric Multi-Processing
SPMD Single Program Multiple Data

Us User Space

This book uses a variety of special fonts to distinguish between many
mathematical and programming items. These are defined below.

Special Font

Example

Description

Italic with no subscripts

m, incx, uplo

A calling sequence argument or
mathematical variable

Italic with subscripts

X1, Aijs Yia, k2

An element of a vector, matrix, or
sequence

with subscripts

iazia+m—1, jazja+n—1

X,

ix:ix+n—1, ja:ja

Bold italic lowercase X, Y, z A vector or sequence

Bold italic lowercase Xiivine1 A vector, with defined bounds
with subscripts

Bold italic uppercase A, B, C A matrix

Bold italic uppercase A A submatrix, with defined bounds

A vector (a special form of
submatrix), with defined limits

Gothic uppercase

A, B, C, AGB

NPROW=2

An array

A Fortran statement

Scalar Data Notations

Following are the special notations used in this book for scalar data items. These

notations do not imply usage of any precision, short or long.

Data Item Example Description

Character item T Character(s) in single quotation marks
Logical item .TRUE. .FALSE. True or false logical value, as indicated
Integer data 1 Number with no decimal point

Real data 1.6 Number with a decimal point

Complex data (1.0,-2.9) Real part followed by the imaginary part

About This Book
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Special Characters, Symbols, Expressions, and Abbreviations

The mathematical and programming notations used in this book are consistent
with traditional mathematical and programming usage. These conventions are
explained below, along with special abbreviations that are associated with specific
values.

Item

Description

Greek letters: «, 6, w, O

Symbolic scalar values

lal

The absolute value of a

ab The dot product of a and b
X; The i-th element of vector x
Cij The element in matrix C at row i and column j
X1 . X, Elements from x; to x,,
i=1n i is assigned the values 1 to n
Yy« Vector y is replaced by vector x
xy Vector x times vector y
a* a raised to the k power
er Exponential function of x
AT xT The transpose of matrix A; the transpose of vector x
% 1 The complex conjugate of vector x; the complex conjugate of matrix A
‘fl . Ejk The complex conjugate of the complex vector element x;, where:
if x; = (a;, ),
then X, = (a;, - b,)
The complex conjugate of the complex matrix element c;
x; AH The complex conjugate transpose of vector x; the complex conjugate transpose of
matrix A
I Identity matrix

The sum of elements x, to x,,

Ja+b

The square root of a+b

[l

The Euclidean norm of vector x, defined as:

Al

The one norm of matrix A, defined as:

m

max {3l

i=1

,1<j<n
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Item

Description

lA]l» The spectral norm of matrix A, defined as:
max{|Ax|, : ||, = 1}
lA|lg The Frobenius norm of matrix A, defined as:
m n 2
2 2 ail
i=1j=1
IIA]l, The infinity norm of matrix A, defined as:
n
max{ X |a;|,1<i<m
j=1
Al The inverse of matrix A
AT The transpose of A inverse
A The determinant of matrix A

m by n matrix A

Matrix A has m rows and n columns

sin a The sine of a
cos b The cosine of b
SIGN (a) The sign of a; the result is either + or —

address {a}

The storage address of a

size(a, dim)

The result equals the number of elements in a along a specified dimension dim or
if dim is not present the total number of array elements in a.

max(x) The maximum element in vector x

min(x) The minimum element in vector x

ceiling(x) The smallest integer that is greater than or equal to x

floor(x) The largest integer that is not greater than x

iceil(m,n) The smallest integer that is greater than or equal to m/n; that is,
iceil(m,n) = ceiling(m/n)

ilem(i1,i2) The integer least common multiple of the integers, il and i2.

int(x), x > 0

The largest integer that is less than or equal to x

m>(p, 1) m is mapped into (p, 1)

mod(x, m) x modulo m; the remainder when x is divided by m
o Infinity

n Pi, 3.14159265

Interpreting the Subroutine Descriptions

This section explains how to interpret the information in the subroutine
descriptions in Part 2 and 3 of this book. Each subroutine description explains the
function(s) performed by the subroutine(s). It provides a data types table, showing
how the data differs for each subroutine. It also contains sections that are described
below.

Syntax

This section shows the syntax for the Fortran, C, and C++ calling statements.
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Fortran, C, and C++ Syntax
This section shows the syntax for the Fortran, C, and C++ calling statements.

Fortran

CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... , arg-m)

C and C++

name-1 | name-2 | ... | name-n (arg-1, ... , arg-m);

The syntax indicates:

¢ The programming language (Fortran, C, or C++)

* Each possible subroutine name that you can code in the calling sequence. Each
name is separated by the | (or) symbol. You specify only one of these names in
your calling sequence. (You do not code the | in the calling sequence.)

* The arguments, listed in the order in which you code them in the calling
sequence. You must code them all in your calling sequence.

You can distinguish between input arguments and output arguments by looking
at the “On Entry” and “On Return” sections, respectively. An argument used for
both input and output is described in both the “On Entry” and “On Return”

sections. In this case, the input value for the argument is overlaid with the
output value.

Fortran 90 Syntax

This shows the syntax for the Fortran 90 calling statements.

Fortran 90

Equations CALL NAME (regq-1, ... , req-m)
or Cases

CALL NAME (reg-1, ..., req-m, opt-1, ..., opt-I)

The syntax indicates:
* The programming language (Fortran 90)

* The Parallel ESSL subroutine name, which is a generic name for one or more
functions.

e The arguments in the calling sequence.

The first calling sequence shows the arguments required when coding your
program. The second calling sequence shows all the arguments, required and
optional. The subroutine assigns a default value for any optional argument that
is not present.

You can distinguish between input arguments and output arguments by looking
at the “On Entry” and “On Return” sections, respectively. An argument used for
both input and output is described in both the “On Entry” and “On Return”
sections. In this case, the input value for the argument is overlaid with the
output value.

On Entry

This lists the input arguments, which are the arguments you pass to the
subroutine. Each argument description first gives the meaning of the argument,

and then gives the form of data required for the argument. (To_help you avoid
errors, output arguments are included, with a reference to the section.)
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On Return

This lists the output arguments, which are the arguments passed back to your
program from the subroutine. Each argument description first gives the meaning of
the argument, and then gives the form of data passed back to your program for
the argument.

Notes and Coding Rules

The notes describe any programming considerations and restrictions that apply to
the arguments or the data for the arguments. There may be references to other
parts of the book for further information.

Error Conditions

These are all the Parallel ESSL run-time errors that can occur in the subroutine.
They are organized under the headings, “Computational Errors”, “Input Argument
Errors”, “Resource Errors”, “Communications Errors”, and “Miscellaneous Errors”.

Example

The two reference sections in this book contain different types of examples.

Fortran Examples

The examples in Part 2 of this book show how you would call the subroutine in a
Fortran program. Each example includes:

* A description of the salient features of the example

* The calling sequence, coded in Fortran

¢ The input and output data distributed across a process grid
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Summary of Changes

The following sections summarize changes to Parallel ESSL and the Parallel ESSL
documentation for each new release or major service update for a given product
version. Within each book in the library, a vertical line to the left of text and
illustrations indicates technical changes or additions made to the previous edition
of the book.

Summary of changes
for Parallel ESSL for AIX, Version 3 Release 2
as updated, April 2005

This release of Parallel ESSL for AIX includes the following changes:

* On the AIX 5.2 64-bit kernel, Parallel ESSL for AIX now runs on clusters that
include:

— POWERS servers connected with an IBM @server pSeries® High Performance
Switch (HPS)
— BladeCenter JS20 servers and POWERS servers connected with a Myrinet-2000
Switch with Myrinet/PCI-X adapters
* Parallel ESSL for AIX now supports AIX 5.3 on standalone clusters or clusters
connected via a LAN-supporting IP.

* Parallel ESSL now provides the C interface for the BLACS.

For more details, see [“Hardware and Software Products That Can Be Used with|
[Parallel ESSL” on page 5.

Summary of changes
for Parallel ESSL for Linux on POWER, Version 3 Release 2
as updated, December 2004

This release of Parallel ESSL for Linux on POWER includes the following changes:

* Parallel ESSL for Linux" on POWER now runs on the SuSE Linux Enterprise
Server 9 for POWER (SLESY) operating system and supports clusters of IBM
POWER4, POWER5, and BladeCenter JS20 servers connected with a
Myrinet-2000 switch with Myrinet/PCI-X adapters.

¢ The C interface for the BLACS is now available.

Summary of changes
for Parallel ESSL for AIX, Version 3 Release 1
as updated, October 2003

This release of Parallel ESSL for AIX includes the following changes:

¢ Parallel ESSL for AIX supports the IBM @server pSeries High Performance
Switch (HPS) and can coexist in clusters managed by CSM.

* DParallel ESSL for AIX supports AIX 5L Version 5.2 with the 5200-01
Recommended Maintenance package (program number 5765-E62). The 32-bit
kernel is only supported on standalone clusters or clusters connected via a LAN
supporting IP.

e Parallel ESSL for AIX includes all of the subroutines in Parallel ESSL for Linux
on pSeries, Version 3 Release 1.
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* The Parallel ESSL Serial Libraries are used with the Parallel Environment MPI
Signal Handling Library. Parallel Environment 4.1 provides only binary
compatibility support for the MPI Signal Handling Library. Existing applications
that use the Parallel ESSL Serial Libraries will continue to run, but if you are
creating new applications you should use the Parallel ESSL SMP Libraries.

* Parallel ESSL for AIX provides manpages of the subroutine descriptions.

¢ Parallel ESSL for AIX documentation is no longer being shipped with the

product. It can be viewed or downloaded from the URLs listed in
-

* The Parallel ESSL for AIX software license agreement is now shipped, viewed,
and accepted electronically. (See the Parallel ESSL for AIX Installation Guide for
details.)

Summary of changes
for Parallel ESSL for Linux on pSeries, Version 3 Release 1
as updated, September 2003

This release of Parallel ESSL for Linux on pSeries includes the following changes:

* Parallel ESSL for Linux on pSeries runs on the SuSE Linux Enterprise Server 8
for pSeries (SLES8) operating system and supports the Myrinet-2000 switch with
Myrinet/PCI-X adapters.

* Parallel ESSL for Linux on pSeries includes all of the subroutines in Parallel
ESSL for AIX, Version 2 Release 3, plus all of the following:
— New Dense Linear Algebraic Equation Subroutines:

- PDPOTRI and PZPOTRI; see the subroutine description for Positive
Definite Real Symmetric or Complex Hermitian Matrix Inverse on page
- PDPOCON and PZPOCON; see the subroutine description for Estimation
of the Reciprocal of the Condition Number of a Positive Definite Real
Symmetric or Complex Hermitian Matrix on page
— New Eigensystems Analysis Subroutines:
- PZGEBRD; see the subroutine description for Reduce a General Matrix to
Bidiagonal Form on page
- PDGESVD and PZGESVD; see the subroutine description for Singular
Value Decomposition of a General Matrix on page
— New Utility subroutines:
- DESCINIT; see the subroutine description for Initialize a Type-1 Array
Descriptor with Error Checking on page
- DESCSET; see the subroutine description for Initialize a Type-1 Array
Descriptor on page 852)
- ICEIL; see the subroutine description for Compute the Ceiling of the
Division of Two Integers on page
- ILCM,; see the subroutine description for Compute the Least Common
Multiple of Two Positive Integers on page

- INDXG2L; see the subroutine description for Compute the Local Row or
Column Index of a Global Element of a Block-Cyclically Distributed Matrix
on page (857

- INDXG2P; see the subroutine description for Compute the Process Row or
Column Index of a Global Element of a Block-Cyclically Distributed Matrix
on page
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- INDXL2G,; see the subroutine description for Compute the Global Row or
Column Index of a Local Element of a Block-Cyclically Distributed Matrix
on page

- INFOGIL; see the subroutine description for Compute the Starting Local
Row or Column Index and Process Row or Column Index of a Global
Element of a Block-Cyclically Distributed Matrix on page

- INFOG2L; see the subroutine description for Compute the Starting Local
Row and Column Indices and the Process Row and Column Indices of a
Global Element of a Block-Cyclically Distributed Matrix on page

- PDLANSY, PZLANSY, and PZLANHE; see the subroutine description for
Real Symmetric, Complex Symmetric, or Complex Hermitian Matrix Norm
on page |8

* Parallel ESSL for Linux on pSeries provides manpages of the subroutine
descriptions.

* Parallel ESSL for Linux on pSeries documentation is not shipped with the
product. It can be viewed or downloaded from the URLs listed in
page 11

¢ The Parallel ESSL for Linux on pSeries software license agreement is shipped,
viewed, and accepted electronically. (See the Parallel ESSL for Linux on pSeries
Installation Guide for details.)

Summary of Changes ~ XiX
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Part 1. Guide Information

This part of the book is organized into five chapters, providing guidance
information on how to use Parallel ESSL. It is organized as follows:

* Overview, Requirements, and List of Subroutines

* Distributing Your Data

* Coding and Running Your Program

* Migrating Your Program

* Using Error Handling
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Chapter 1. Overview, Requirements, and List of Subroutines

This chapter introduces you to the IBM Parallel Engineering and Scientific
Subroutine Library (Parallel ESSL) product.

Overview of Parallel ESSL

Parallel ESSL is a scalable mathematical subroutine library that supports parallel
processing applications on clusters of processor nodes optionally connected by a
high-performance switch. Parallel ESSL supports the Single Program Multiple Data
(SPMD) programming model using the Message Passing Interface (MPI) library.

Parallel ESSL provides subroutines in the following computational areas:
* Level 2 Parallel Basic Linear Algebra Subprograms (PBLAS)

* Level 3 PBLAS

* Linear Algebraic Equations

* Eigensystem Analysis and Singular Value Analysis

¢ Fourier Transforms

* Random Number Generation

For communication, Parallel ESSL includes the Basic Linear Algebra
Communications Subprograms (BLACS), which use MPI. For computations,
Parallel ESSL uses the ESSL subroutines.

The Parallel ESSL subroutines can be called from 32-bit— and 64-bit—environment
application programs written in Fortran, C, and C++.

Parallel ESSL subroutines run under the AIX and Linux operating systems:

On AIX only The Parallel ESSL SMP Libraries are provided for
use with the Parallel Environment MPI threads
library. You can run single or multithreaded US or
IP applications on all types of nodes. However, you
cannot simultaneously call Parallel ESSL from
multiple threads. Use these Parallel ESSL libraries
if you are using both PE MPI and LAPI. The SMP
library is for use on the POWER"™ and PowerPC®
(for example, POWER4 ") SMP processors.

On AIX and Linux The Parallel ESSL GM Libraries are provided for
use with the MPICH-GM library (see ”Relateal
[Publications” on page 1002) and the Myrinet-2000
switch with Myrinet/PCI-X adapters. IP is not
supported. You can run only single-threaded
applications.

To order Parallel ESSL product, specify the appropriate program number as listed
below:

IBM Parallel ESSL for AIX 5765-F84
IBM Parallel ESSL for Linux 5765-G18
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How Parallel ESSL Works

Parallel ESSL (which supports the SPMD programming model) uses MPI for
communication during parallel processing and runs on clusters of processor nodes
optionally connected by a high-performance switch.

A parallel program, such as yours with calls to the Parallel ESSL subroutines,
executes as a number of individual, but related, parallel tasks on a number of
your system’s processor nodes. The group of parallel tasks is called a partition.
The parallel tasks of your partition can communicate to exchange data or
synchronize execution.

Your system may have an optional high-performance switch for communication.
The switch increases the speed of communication between nodes. This helps your
application program, as well as the Parallel ESSL subroutines, achieve maximum
performance.

Parallel ESSL assumes that the application program is using the SPMD
programming model, where the programs running the parallel tasks of your
partition are identical. The tasks, however, work on different sets of data.

Coding Your Program

The application developer creates a parallel program’s source code, including calls
to Parallel ESSL BLACS or MPI routines. These calls enable the parallel processes
of your partition to communicate data and coordinate their execution.

Details on what other specific coding additions are required when using Parallel
ESSL are given in |[Chapter 3, “Coding and Running Your Program,” on page 77,

Distributing Your Data
Your global data structures (vectors, matrices, or sequences) must be distributed
across your processes prior to calling the Parallel ESSL subroutines.

Because data is distributed for both input and output, no implicit bottleneck is
created by an initial scatter or ending gather operation. Parallel ESSL works in true
SPMD mode, where each process operates only on a portion of the data. Also, the
input and output data may be too large to collectively reside on a single node;
therefore, problems associated with the storage limitations of a single processor
node are eased by performing the computation in actual SPMD fashion.

See |Chapter 2, “Distributing Your Data,” on page 21| for details on distributing
your data.

Running and Testing

After writing the parallel application program containing calls to the Parallel ESSL
subroutines, the developer then begins a cycle of modification and testing. The
application program is run using the following products:

On AIX only Parallel Environment (PE)
On AIX and Linux MPICH-GM

These products include a number of compiler scripts, environment variables, and
command-line flags, which may be used to set up your execution environment.
(For example, before you execute a program, you need to set the size of your
partition—the number of parallel tasks—by setting the appropriate environment
variables or their command-line flags.)
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For further details on PE and its various capabilities, see the PE manuals available
at the URLs listed in [Table 6 on page 11} For more information about MPI, see
references [0} and [(8]. For more information about MPICH-GM, see the URL
listed in [“Related Publications” on page 1002)

Tuning for Performance

Once the parallel program is debugged, you now want to tune the program for
optimal performance. This is an important step of the process, because
performance is the key reason for using the Parallel ESSL subroutines. To tune and
analyze programs with calls to the Parallel ESSL subroutines, you may wish to use
the tools provided by PE. For details, see the PE manuals available at the URLs
listed in [Table 6 on page 11}

Accuracy of the Computations

Parallel ESSL provides accuracy comparable to libraries using equivalent
algorithms with identical precision formats. The data types operated on are
ANSI/IEEE 64-bit binary floating-point format and 32-bit integer. See the
ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-1985 for more detail.

The Fortran Language Interface to the Parallel ESSL
Subroutines

The Parallel ESSL subroutines follow standard Fortran calling conventions. When
Parallel ESSL subroutines are called from a C or C++ program, the Fortran
conventions must be used. This applies to all aspects of the interface, such as the
linkage conventions and the data conventions. For example, array ordering must
be consistent with Fortran array ordering techniques. Data and linkage conventions
for each language are given in the ESSL Guide and Reference.

Hardware and Software Products That Can Be Used with Parallel ESSL

This section describes the hardware and software products you can use with
Parallel ESSL, as well as those products for installing Parallel ESSL and displaying
the online documentation. It is divided into the following sections:

* [“Hardware Products Supported by Parallel ESSL” on page 6|

« |"Operating Systems Supported by Parallel ESSL” on page 6|

« |"Software Products Required by Parallel ESSL” on page 7|
* [“Thread Safety and Parallel ESSL” on page 10|
« |“Installation and Customization of Parallel ESSL.” on page 10|
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Hardware Products Supported by Parallel ESSL

Parallel ESSL runs on the following hardware platforms:

Table 1. Hardware platforms supported by Parallel ESSL

Product Supported Hardware

Parallel ESSL for AIX Clusters of:

* POWER4 servers connected with a High
Performance switch

* POWERS servers connected with a High
Performance switch

* POWER3 and POWER4 servers connected
with an SP Switch2

* BladeCenter JS20 processors and POWER5
servers connected with a Myrinet-2000
Switch with Myrinet/PCI-X adapters. (See
Note El)

Parallel ESSL for Linux Clusters of POWER4, POWERS5, and

BladeCenter JS20 servers connected with a
Myrinet-2000 Switch with Myrinet/PCI-X
adapters. (See Note @)

Notes:
1.
2. 1P is not supported.

64-bit applications require 64-bit hardware.

Operating Systems Supported by Parallel ESSL

Parallel ESSL runs in the following operating system environments:

Table 2. Operating systems supported by Parallel ESSL

1.

Product Supported Environment
Parallel Engineering and Scientific AIX 5L™ Version 5.2 with the appropriate
Subroutine Library for AIX, Version 3 Recommended Maintenance Package, or
Release 2 (program number 5765-G84) later. (See Notes and E.)
AIX 5L Version 5.3, or later. (See Note E)
Parallel ESSL for Linux SuSE Linux Enterprise Server 9 for POWER
(SLES9)
Notes:

When running on an SP™" system (SP Switch 2), PSSP Version 3.5 (program number
5765-D51) is also required.

However, when running on a standalone or cluster of pSeries or RS/6000
workstations and/or servers, PSSP is not required.

The 32-bit kernel is only supported on standalone clusters or clusters connected via a
LAN-supporting IP.

AIX 5.3 is only supported on standalone clusters or clusters connected via a
LAN-supporting IP; i.e., the High Performance Switch and the Myrinet-2000 switch are
not supported.

Myrinet-2000 switch support requires AIX 5L Version 5.2 with the 5200-04
Recommended Maintenance Package, or later.

High Performance Switch support requires AIX 5L Version 5.2 with the 5200-05
Recommended Maintenance Package, or later.

6  Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference




Software Products Required by Parallel ESSL

This section describes the software products that are requires by Parallel ESSL. It is
divided into the following sections:

* |“Software Products Required by Parallel ESSL for AIX"|
* |“Software Products Required by Parallel ESSL for Linux” on page 8|

Software Products Required by Parallel ESSL for AIX
Parallel ESSL for AIX requires the software products shown in for
compiling and running.

ESSL for AIX must be ordered separately.

To assist C and C++ users, two header files are provided with the Parallel ESSL for
AIX iroduct. Use of these files is described in [‘Running Your Program on AIX” on|

To assist Fortran 90 sparse linear algebraic equation users, module files are
provided with the Parallel ESSL for AIX product. Use of this file is described in
“Using Extrinsic Procedures—The Fortran 90 Sparse Linear Algebraic Equation|
Subroutines” on page 86.|

Required Software Products: The following table lists the required software
products for Parallel ESSL for AIX.

Table 3. Required Software Products for Parallel ESSL for AIX

Purpose

Required Software Product

For Compiling

IBM XL Fortran Enterprise Edition Version 9.1 for AIX (program number 5724-108)
or
IBM XL C/C++ Enterprise Edition Version 7.0 for AIX (program number 5724-111)
or

IBM XL C Enterprise Edition for AIX, Version 7.0 (program number 5724-110)
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Table 3. Required Software Products for Parallel ESSL for AIX (continued)

Purpose Required Software Product
For Linking, Loading, or IBM XL Fortran Enterprise Edition Run-Time Environment Version 9.1 for AIX. (See
Running Note .)
and
ESSL for AIX, Version 4.2 (program number 5765-F82). (See Note Q)
and
C libraries. (See Note )
and
One of the following:
For IBM HPS, SP Switch 2, and IP mode
Parallel Environment for AIX, Version 4.2
(program number 5765-F83)
For Myrinet-2000 switch The following Myricom packages:
GM 2.1 or later, which can be downloaded in
binary (installp) format from:
http://www.myri.com/scs
and
MPICH-GM 1.2.6..14-1 shared libraries. To learn
how to obtain instructions for building these, see
the Parallel ESSL “FAQs” section of the IBM
@server Cluster Information Center at the URL
listed in [Table 6 on page 11|
Notes:

1. IBM XL Fortran Enterprise Edition Run-Time Environment Version 9.1 for AIX is automatically shipped with the
compiler. It is also available for downloading from the following Web site:
http:/ /www.ibm.com /software/awdtools/fortran

2. ESSL for AIX must be ordered separately.
3. The AIX product includes the C and math libraries in the Application Development Toolkit.

Software Products Required by Parallel ESSL for Linux
Parallel ESSL for Linux requires the software products shown in [Table 4 on page 9|
for compiling and running.

To assist C and C++ users, two header files are provided. Use of these files is
described in [“Running Your Program on Linux” on page 94

To assist Fortran 90 sparse linear algebraic equation users, module files are
provided with the Parallel ESSL product. Use of this file is described in |”Usina

Extrinsic Procedures—The Fortran 90 Sparse Linear Algebraic Equation|

Subroutines” on page 86.|

Required Software Products: The following table lists the required software
products for Parallel ESSL for Linux on POWER:
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Table 4. Required Software Products for Parallel ESSL for Linux on POWER

Purpose

Required Software Product

For Compiling

For RHEL3 and SLES9
IBM XL Fortran Advanced Edition Version 9.1 for Linux

or
IBM XL C/C++ Advanced Edition Version 7.0 for Linux

For RHEL4
IBM XL Fortran Advanced Edition Version 9.1.1 for Linux

or

IBM XL C/C++ Advanced EditionVersion 7.0.1 for Linux

For Linking, Loading, or
Running

For RHEL3 and SLES9
IBM XL Fortran Advanced Edition Run-Time Environment Version 9.1 for
Linu

and

ESSL for Linux on POWER, Version 4 Release 2 (program number 5765—(;17)E
and

GCC 3.3.3 32-bit libraries on SLES9

GCC 9.0.42 64-bit libraries on SLES9

For RHEL4
IBM X)I(IIL Fortran Advanced Edition Run-Time Environment Version 9.1.1 for
Linu

and
ESSL for Linux on POWER, Version 4 Release 2 (program number 5765—G17)E

and
and

the following Myricom packages in source format, which can be downloaded from:
http://www.myri.com/scs

* GM 2.0.13 for Linux or later

* MPICH-GM 1.2.6..13

Selected levels of GM, MPICH, and MPICH-GM RPMs in binary format are available
for downloading at:

http://ppclinux.ncsa.uiuc.edu

Notes:

1. IBM XL Fortran Advanced Edition Run-Time Environment for Linux is automatically shipped with the compiler.
It is also available for downloading from the following Web site:
http:/ /www.ibm.com /software /awdtools/fortran

2. ESSL for Linux must be ordered separately.
3. Optional RPMs are required for building applications. For details, consult the Linux and compiler

documentation.
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Thread Safety and Parallel ESSL
This section describes thread safety as it relates to Parallel ESSL. It is divided into
the following sections:

* |"Thread Safety and Parallel ESSL for AIX”|

* |“Thread Safety and Parallel ESSL for Linux”]

Thread Safety and Parallel ESSL for AIX

The Parallel ESSL SMP libraries are not thread safe; however, they are thread
tolerant and can therefore be called from a single thread of a multithreaded
application. Multiple simultaneous calls to the Parallel ESSL SMP libraries from
different threads of a single process can cause unpredictable results.

The Parallel ESSL. GM libraries are neither thread safe nor thread tolerant. Use
them only when running single-threaded applications.

For more information on Thread Programming Concepts, see IBM AIX General
Programming Concepts: Writing and Debugging Programs.

Thread Safety and Parallel ESSL for Linux

Parallel ESSL for Linux is neither thread safe nor thread tolerant; therefore, you can
run only single-threaded applications.

Installation and Customization of Parallel ESSL

This section describes the installation and customization of Parallel ESSL. It is
divided into the following sections:

* |“Installation and Customization of Parallel ESSL for AIX"]
* |“Installation and Customization of Parallel ESSL for Linux”|

Installation and Customization of Parallel ESSL for AIX
Parallel ESSL is distributed on a compact disc (CD). The Parallel ESSL for AIX

Installation Guide provides the detailed information you need to install Parallel
ESSL on AIX.

The Parallel ESSL product is packaged in accordance with the AIX guidelines. The
product can be installed using the smit command, and it can be installed on
multiple nodes using the dsh command and the installp command.

Installation and Customization of Parallel ESSL for Linux
Parallel ESSL for Linux is distributed on a CD. The Parallel ESSL for Linux on

pSeries Installation Guide provides the detailed information you need to install
Parallel ESSL on Linux.

The Parallel ESSL product is packaged as RPM packages. The product can be
installed using the rpm command, as described at the following URL:

http://www.rpm.org/
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Software Products Required for Displaying Parallel ESSL

Documentation

The software products needed to display Parallel ESSL online information are

listed in [Table 5

Table 5. Software needed to display various formats of online information

Format of online

Software needed

information
HTML HTML document browser (such as Microsoft® Internet Explorer)
PDF Adobe Acrobat Reader, which is freely available for downloading
from the Adobe web site at:
http://www.adobe.com
Manpages No additional software needed. To display a specific manpage,

use the man command as follows:

* man subroutine-name

Note: These manpages will be installed in the following
directory:

On AIX /usr/share/man/cat3
On Linux /usr/share/man/man3

In order for manpages to display properly on
Linux, the LANG environment variable must
be set to either of the following values: C or
en_US.is0885915.

The manpages provided by ScaLAPACK are installed in the
/usr/share/man/manl directory. By default, Parallel] ESSL
manpages will be displayed rather than PBLAS or ScaLAPACK
manpages with the same names. If you want to access the
PBLAS or ScaLAPACK manpages, you must set the MANPATH
environment variable. See the documentation for the man
command.

Parallel ESSL Internet Resources

Parallel ESSL documentation, as well as other related information, can be displayed
or downloaded from the Internet at the URLs listed in

Table 6. Online resources for information related to ESSL products

Web Site Type of File Formats
Information Available
Provided PDF HTML

IBM @server Cluster Information Center: Documentation Yes Yes
for IBM

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

clustered-server
and pSeries
software products

IBM Publications Center:
http://w3.ehone.ibm.com/public/applications/publications/cgibin/pbi.cgi |for any IBM

Documentation Yes No

product
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Getting on the ESSL Mailing List

Late breaking information about ESSL products can be obtained by being placed
on the ESSL mailing list. Users on the mailing list will receive information about
new ESSL function and may receive customer satisfaction surveys and
requirements surveys, to provide feedback to ESSL Development on the product
and user requirements.

You can be placed on the mailing list by sending a request to either of the
following, asking to be placed on the ESSL mailing list:

International Business Machines Corporation
ESSL Development

Department 85BA/Mail Station P963

2455 South Rd.

Poughkeepsie, NY 12601-5400

e-mail: essl@us.ibm.com

Note: To be withdrawn from the ESSL mailing list, send an e-mail to the address
above.

When requesting to be placed on the mailing list or asking any questions, please
provide the following information:

* Your name

* The name of your company

* Your mailing address

* Your Internet address

* Your phone number

BLACS—Usage in Parallel ESSL for Communication

The Basic Linear Algebra Communication Subprograms (BLACS) provide
ease-of-use and portability for message passing in parallel linear algebra programs.
The BLACS efficiently support not only point-to-point operations between
processes on a logical two-dimensional process grid, but also collective
communications on such grids, or within just a grid row or column (a
one-dimensional process grid).

Most communication packages, such as MPI, require an address and a length to be
sent; therefore, they are classified as having operations based on vectors. In
programming linear algebra problems, however, it is preferable to express all
operations in terms of matrices. Vectors and scalars are simply subclasses of
matrices. The BLACS operate on matrices, as defined by an address, column size,
row size, leading dimension, and so forth.

Parallel ESSL includes the following interfaces for the BLACS:
 Fortran interface for the BLACS
* C interface for the BLACS

A BLACS quick reference guide can be found in [Appendix A, “BLACS QuicK
[Reference Guide,” on page 891

An example of the usage of BLACS in a Fortran 90 program is shown in
[Appendix B, “Sample Programs,” on page 895.
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The BLACS are documented in references [EI], , and .

List of Parallel ESSL Subroutines

This section provides an overview of the subroutines in each of the areas of
Parallel ESSL.

Level 2 PBLAS

The Level 2 PBLAS include a subset of the standard set of distributed memory
parallel versions of the Level 2 BLAS.

Note: These subroutines were designed in accordance with the proposed Level 2
PBLAS standard. (See references , , and .) If these subroutines do
not comply with the standard as approved, IBM will consider updating
them to do so.

If IBM updates these subroutines, the update could require modifications of
the calling application program.

Table 7. List of Level 2 PBLAS

Long-Precision

Descriptive Name Subprogram Page

Matrix-Vector Product for a General Matrix or Its Transpose PDGEMV
PZGEMV

Matrix-Vector Product for a Real Symmetric or a Complex Hermitian Matrix PDSYMV
PZHEMV

Rank-One Update of a General Matrix PDGER
PZGERC
PZGERU

Rank-One Update of a Real Symmetric or a Complex Hermitian Matrix PDSYR
PZHER

Rank-Two Update of a Real Symmetric or a Complex Hermitian Matrix PDSYR2
PZHER2

Matrix-Vector Product for a Triangular Matrix or Its Transpose PDTRMV
PZTRMV

Solution of Triangular System of Equations with a Single Right-Hand Sides PDTRSV P88
PZTRSV

Level 3 PBLAS

The Level 3 PBLAS include a subset of the standard set of distributed memory
parallel versions of the Level 3 BLAS.

Note: These subroutines were designed in accordance with the proposed Level 3
PBLAS standard. (See references , , and .) If these subroutines do
not comply with the standard as approved, IBM will consider updating
them to do so.

If IBM updates these subroutines, the update could require modifications of
the calling application program.
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Table 8. List of Level 3 PBLAS

Long-Precision

Descriptive Name Subprogram Page
Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate PDGEMM
Transpose PZGEMM
Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or PDSYMM
Complex Hermitian PZSYMM
PZHEMM
Triangular Matrix-Matrix Product PDTRMM
PZTRMM
Solution of Triangular System of Equations with Multiple Right-Hand Sides PDTRSM 2838
PZTRSM
Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix |PDSYRK
PZSYRK
PZHERK
Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix | PDSYR2K
PZSYR2K
PZHER2K
Matrix Transpose for a General Matrix PDTRAN
PZTRANC
PZTRANU

Linear Algebraic Equations

These subroutines consist of dense, banded, and sparse subroutines, and include a

subset of the ScaLAPACK subroutines.

Note: The dense and banded linear algebraic equations subroutines were designed
in accordance with the proposed ScaLAPACK standard. See references

ofl,

, , , and . If these subroutines do not comply with the

standard as approved, IBM will consider updating them to do so.

If IBM updates these subroutines, the update could require modifications of

the calling application program.

Dense Linear Algebraic Equations

The dense linear algebraic equation subroutines provide:

* Solutions to linear systems of equations for real and complex general matrices,
and their transposes, and for positive definite real symmetric and complex

Hermitian matrices.

* Least squares solutions to linear systems of equations for real and complex

general matrices.

* Inverse of real and complex general matrices and of positive definite real

symmetric and complex Hermitian matrices.

¢ Condition number of real and complex general matrices and of positive definite

real symmetric and complex Hermitian matrices.

Table 9. List of Dense Linear Algebraic Equation Subroutines

Long-Precision
Descriptive Name Subroutine Page
General Matrix Factorization and Solve PDGESV
PZGESV
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Table 9. List of Dense Linear Algebraic Equation Subroutines (continued)

Long-Precision

Descriptive Name Subroutine Page

General Matrix Factorization PDGETRF
PZGETRF

General Matrix Solve PDGETRS
PZGETRS

General Matrix Inverse PDGETRI @
PZGETRI

Estimate the Reciprocal of the Condition Number of a General Matrix PDGECON @
PZGECON

General Matrix QR Factorization PDGEQRF
PZGEQRF

General Matrix Least Squares Solution PDGELS
PZGELS

Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization | PDPOSV

and Solve PZPOSV

Positive Definite Real Symmetric or Complex Hermitian Matrix Factorization | PDPOTRF
PZPOTRF

Positive Definite Real Symmetric or Complex Hermitian Matrix Solve PDPOTRS 458
PZPOTRS

Positive Definite Real Symmetric or Complex Hermitian Matrix Inverse PDPOTRI @
PZPOTRI

Estimation of the Reciprocal of the Condition Number of a Positive Definite PDPOCON

Real Symmetric or Complex Hermitian Matrix PZPOCON

Banded Linear Algebraic Equations

The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for real positive definite symmetric band matrices, real
general tridiagonal matrices, diagonally-dominant real general tridiagonal matrices,
and real positive definite symmetric tridiagonal matrices.

Table 10. List of Banded Linear Algebraic Equation Subroutines

Long- Precision
Descriptive Name Subroutine Page
Positive Definite Symmetric Band Matrix Factorization and Solve PDPBSV 486
Positive Definite Symmetric Band Matrix Factorization PDPBTRF 498
Positive Definite Symmetric Band Matrix Solve PDPBTRS @
General Tridiagonal Matrix Factorization and Solve PDGTSV 8
General Tridiagonal Matrix Factorization PDGTTIRF
General Tridiagonal Matrix Solve PDGTTRS 548
Diagonally-Dominant General Tridiagonal Matrix Factorization and Solve PDDTSV
Diagonally-Dominant General Tridiagonal Matrix Factorization PDDTTRF

Chapter 1. Overview, Requirements, and List of Subroutines
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Table 10. List of Banded Linear Algebraic Equation Subroutines (continued)

Long- Precision
Descriptive Name Subroutine Page
Diagonally-Dominant General Tridiagonal Matrix Solve PDDTTRS 8
Positive Definite Symmetric Tridiagonal Matrix Factorization and Solve PDPTSV 565
Positive Definite Symmetric Tridiagonal Matrix Factorization PDPTTRF
Positive Definite Symmetric Tridiagonal Matrix Solve PDPTTRS 591

Fortran 90 Sparse Linear Algebraic Equation Subroutines

The Fortran 90 sparse linear algebraic equation subroutines provide solutions to
linear systems of equations for a real general sparse matrix. The sparse utility
subroutines provided in Parallel ESSL must be used in conjunction with the sparse
linear algebraic equation subroutines.

Table 11. List of Fortran 90 Sparse Linear Algebraic Equation Subroutines

Descriptive Name Long-Precision Page
Subroutine
Allocates Space for an Array Descriptor for a General Sparse Matrix PADALL
Allocates Space for a General Sparse Matrix PSPALL
Allocates Space for a Dense Vector PGEALL
Inserts Local Data into a General Sparse Matrix PSPINS
Inserts Local Data into a Dense Vector PGEINS
Assembles a General Sparse Matrix PSPASB
Assembles a Dense Vector PGEASB
Preconditioner for a General Sparse Matrix PSPGPR
Iterative Linear System Solver for a General Sparse Matrix PSPGIS
Deallocates Space for a Dense Vector PGEFREE
Deallocates Space for a General Sparse Matrix PSPFREE
Deallocates Space for an Array Descriptor for a General Sparse Matrix PADFREE 635

Fortran 77 Sparse Linear Algebraic Equation Subroutines

The Fortran 77 sparse linear algebraic equation subroutines provide solutions to
linear systems of equations for a real general sparse matrix. The sparse utility
subroutines provided in Parallel ESSL must be used in conjunction with the sparse
linear algebraic equation subroutines.

Table 12. List of The Fortran 77 Sparse Linear Algebraic Equation Subroutines

Descriptive Name Long-Precision Page
Subroutine

Initializes an Array Descriptor for a General Sparse Matrix PADINIT 643

Initializes a General Sparse Matrix PDSPINIT

Inserts Local Data into a General Sparse Matrix PDSPINS

Inserts Local Data into a Dense Vector PDGEINS 652
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Table 12. List of The Fortran 77 Sparse Linear Algebraic Equation Subroutines (continued)

Descriptive Name Long-Precision Page
Subroutine

Assembles a General Sparse Matrix PDSPASB 655

Assembles a Dense Vector PDGEASB

Preconditioner for a General Sparse Matrix PDSPGPR

Iterative Linear System Solver for a General Sparse Matrix PDSPGIS 664

Eigensystem Analysis and Singular Value Analysis

The eigensystems analysis subroutines provide solutions to the algebraic and
generalized eigensystem analysis problem. The singular value analysis subroutines

provide the singular value decomposition. These subroutines include a subset of

the ScaLAPACK subroutines. See references [@I] and .

Note: These subroutines were designed in accordance with the proposed

ScaLAPACK standard. If these subroutines do not comply with the standard
as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the update could require modifications of the calling

application program.

Table 13. List of Eigensystem Analysis and Singular Value Analysis Subroutines

Long-Precision
Descriptive Name Subroutine Page
Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric or | PDSYEVX
Complex Hermitian Matrix PZHEEVX
Selected Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetric or | PDSYGVX 698
Complex Hermitian Positive Definite Generalized Eigenproblem PZHEGVX
Reduce a Real Symmetric or Complex Hermitian Matrix to Tridiagonal Form PDSYTRD
PZHETRD
Reduce a Real Symmetric or Complex Hermitian Positive Definite Generalized |PDSYGST 739
Eigenproblem to Standard Form PZHEGST
Reduce a General Matrix to Upper Hessenberg Form PDGEHRD
Reduce a General Matrix to Bidiagonal Form PDGEBRD
PZGEBRD
Singular Value Decomposition of a General Matrix PDGESVD
PZGESVD

Fourier Transforms

The Fourier transform subroutines perform mixed-radix transforms in two and

three dimensions. See references and E]

Table 14. List of Fourier Transform Subroutines

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Complex Fourier Transforms in Two Dimensions PSCFT2 PDCFT2 800
Real-to-Complex Fourier Transforms in Two Dimensions PSRCFT2 PDRCFT2 807,
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Table 14. List of Fourier Transform Subroutines (continued)

Short- Precision |Long- Precision
Descriptive Name Subroutine Subroutine Page
Complex-to-Real Fourier Transforms in Two Dimensions PSCRFT2 PDCRFT2 812
Complex Fourier Transforms in Three Dimensions PSCFT3 PDCFT3
Real-to-Complex Fourier Transforms in Three Dimensions PSRCFT3 PDRCFT3
Complex-to-Real Fourier Transforms in Three Dimensions PSCRFT3 PDCRFT3 831

Random Number Generation

The random number generation subroutine generates uniformly distributed

random numbers.

Table 15. List of Random Number Generation Subroutines

Descriptive Name

Long-Precision
Subroutine

Page

Uniform Random Number Generator

PDURNG

839

Utilities

The utility subroutines perform general service functions that support Parallel

ESSL.
Table 16. List of Utility Subroutines

Descriptive Name Subprogram Page

Determine the Level of Parallel ESSL Installed on Your System IPESSL

Initialize a Type-1 Array Descriptor with Error Checking DESCINIT

Initialize a Type-1 Array Descriptor DESCSET

Compute the Ceiling of the Division of Two Integers ICEIL

Compute the Least Common Multiple of Two Positive Integers ILCM

Compute the Local Row or Column Index of a Global Element of a INDXG2L

Block-Cyclically Distributed Matrix

Compute the Process Row or Column Index of a Global Element of a INDXG2P

Block-Cyclically Distributed Matrix

Compute the Global Row or Column Index of a Local Element of a INDXL2G 861

Block-Cyclically Distributed Matrix

Compute the Starting Local Row or Column Index and Process Row or Column | INFOGIL

Index of a Global Element of a Block-Cyclically Distributed Matrix

Compute the Starting Local Row and Column Indices and the Process Row and | INFOG2L 865

Column Indices of a Global Element of a Block-Cyclically Distributed Matrix

Compute the Number of Rows or Columns of a Block-Cyclically Distributed NUMROC

Matrix Contained in a Process

General Matrix Norm PDLANGE 872
PZLANGE
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Table 16. List of Utility Subroutines (continued)

Descriptive Name Subprogram Page
Real Symmetric, Complex Symmetric, or Complex Hermitian Matrix Norm PDLANSY 879
PZLANSY
PZLANHE
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Chapter 2. Distributing Your Data

This chapter provides information on how to distribute data for your programs.
The sections include:

« [“Concepts’]

» |“Specifying and Distributing Data in Your Program” on page 26

Concepts

This section describes the general concepts used in distributing data.

About Global Data Structures

Because the Parallel ESSL subroutines support the SPMD programming model,
your global data structures (vectors, matrices, or sequences) must be distributed
across your processes prior to calling the Parallel ESSL subroutines.

Conceptually, global data structures have a defined storage mode consistent with
those used by the serial ESSL library, except for symmetric tridiagonal matrices.
For Parallel ESSL, you must store symmetric tridiagonal matrices as described in
this chapter in [“Block-Cyclically Distributing a Symmetric Tridiagonal Matrix” on|
For how to store all other data structures when using Parallel ESSL, you
should see the appropriate section in the ESSL Guide and Reference. The FFT-packed
storage mode is a new storage mode for Parallel ESSL and is described in
[“Specifying Sequences for the Fourier Transforms” on page 64/

Global data structures must be mapped to local (distributed memory) data
structures, according to the data distribution technique supported by the Parallel
ESSL subroutines that you are using. These local data structures are called local
arrays.

These data distribution techniques are described throughout this chapter and apply
equally to real and complex data structures.

About Process Grids

A parallel machine with k processes is often thought of as a one-dimensional linear
array of processes labeled 0, 1, ..., k=1. For performance reasons, it is sometimes
useful to map this one-dimensional array into a logical two-dimensional
rectangular grid, which is also referred to as process grid, of processes. The process
grid can have p process rows and g process columns, where p x q = k. A process
can now be indexed by row and column, (i,j), where 0 =i < pand 0 =j < gq.

shows six processes mapped into a process grid using row-major order.
For message passing subroutines, the BLACS_GRIDINIT default to map processes
is row-major order. In this example, process t; is mapped to Py,

Table 17. Six Processes Mapped to a 2 x 3 Process Grid Using Row-Major Order

P9 0 1 2
0 t, t, t,
1 t, t, ts
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shows six processes mapped into a process grid using column-major
order. In this example, process t; is mapped to Py;.

Table 18. Six Processes Mapped to a 2 x 3 Process Grid Using Column-Major Order

P9 0 1 2
0 t, t, t,
1 t, ts ts

All the subroutines, except the Banded Linear Algebraic Equations and Fourier
transform subroutines, can view the processes as a logical one- or two-dimensional
process grid. The Banded Linear Algebraic Equations support one-dimensional
process grids. The Fourier transform subroutines support one-dimensional,
row-oriented process grids.

Each process has local memory, and all the processes are connected by a
communication network (for example, a switch or Ethernet). In most cases k is less
than or equal to the number of processor nodes that your job is running on. In
special cases, however, the number of processes can be greater than the number of
processor nodes.

What to Do in Your Program

Prior to calling any of the subroutines, you must define your process grid and
distribute your data according to the distribution technique required by the
Parallel ESSL subroutine you are using.

The size and shape of the process grid and the way global data structures are
distributed over the processes has a major impact on performance and scalability.
For details, see [“Coding Tips for Optimizing Parallel Performance” on page 77|
Block-cyclic data distribution generally provides good load balancing for many
linear algebra computations. All subroutines support block-cyclic data
distributions, except the Fourier Transforms. These subroutines support only block
distribution, which is a special case of block-cyclic data distribution.

Some of the data distribution techniques described in this chapter are illustrated in
[Appendix B, “Sample Programs,” on page 895.|

Block, Cyclic, and Block-Cyclic Data Distributions

In this section, three types of data distribution are described in algorithmic terms:
block, cyclic, and block-cyclic. How these data distribution methods are used by
Parallel ESSL is explained later in this chapter.

The example notation means the following:

* B represents the global block row numbers.

* D represents the global block column numbers.
e p represents the process row index.

* q represents the process column index.

Distribution Techniques

An important aspect of the data distributions described here is that independent
distributions are applied over each dimension of the data structure. The algorithms
presented here for the vector in one dimension can, therefore, be used for the rows
and columns of a matrix, or even for data structures with more dimensions.
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Consider the distribution of a vector x of M data objects (elements) over P
processes. This can be described by a mapping of the global index m (0 = m < M)
of a data object to an index pair (p,i), where p (0 = p < P) specifies the process to
which the data object is mapped, and i specifies its location in the local array.

Two common distributions are the block and cyclic. The block distribution is often
used when the computational load is distributed homogeneously over a regular
data structure, such as a Cartesian grid. It assigns blocks of size r of the global
vector to the processes. For block distribution, the mapping m~(p, i) is defined as:

* m—>(floor(m/L), m mod L)

where L = ceiling(M/P). The cyclic distribution (also known as the wrapped or
scattered decomposition) is commonly used to improve load balance when the
computational load is distributed inhomogeneously over a regular data structure.
The cyclic distribution assigns consecutive entries of the global vector to successive
processes. For cyclic distribution, the mapping m—(p, i) is defined as:

* m—(m mod P, floor(m/P))

Examples of block and cyclic distribution are shown in [Figure 1| and [Figure 2,
where M = 23 data objects are distributed over P = 3 processes, using r = 8 block
size. As shown in the examples, there can be uneven distribution, where the last
block is smaller than the others. A global block number B is shown for block
distribution. For cyclic distribution, there is no concept of block numbers.

m 61 2 3 45 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
p 06 06 06 6 6 06 06 0 11111111 2 2 2 2 2 2 2
i 61 2 3 45 6 7 61 2 3 45 6 7 61 2 3 4 56
B 06 06 06 6 6 06 06 0 11111111 2 2 2 2 2 2 2
Figure 1. Block Distribution
m 01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
p | 061 2 061 2 061 2 061 2 01 2 01 2 01 2 0 1
i 06 0 0 111 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7

Figure 2. Cyclic Distribution

The block-cyclic distribution is a generalization of the block and cyclic
distributions, in which blocks of r consecutive data objects are distributed cyclically
over the p processes. This can be described by a mapping of the global index m

(0 = m < M) of a data object to an index triplet (p,b,i), where p (0 = p < P)
specifies the process to which the data object is mapped, b is the block number in
process p, and i is the location in the block. For block-cyclic distribution, the
mapping m—(p, b, i) is defined as:

e mr>(floor((m mod T)/r), floor(m/T), m mod r)

where T = rP. (It should be noted that this reverts to the cyclic distribution when
r = 1 and a block distribution when r = L.) The inverse mapping to a global index
(p, b, i)—>m is defined by:

* (p, b, i)—=>Br+i = pr+bT+i
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where B = p+bP is the global block number. An example of block-cyclic
distribution is shown in where M = 23 data objects are distributed over
P = 3 processes, using r = 2 block size. As shown in the example, there can be
uneven distribution, where the last block is smaller than the others. The inverse
mapping is shown in the second part of the example. (This shows what is stored in
the local array on each of the three processes.)

m 61 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22
p 6 061 1 2 2 6 061 1 2 2 6 061 1 2 2 6 061 1 2
b 6 06 06 6 06 0 1 11111 2 2 2 2 2 2 333 33
i 61 61 01 61 061 0 1 61 061 01 61 06 1 0
B 6 061 1 2 2 3 3 4455 6 6 7 7 8 8 9 910 10 11
Figure 3. Block-Cyclic Distribution
m 06 1 6 712131819 2 3 8 914152021 4 510 11 16 17 22
p 06 06 00 0 0 0 O 11111111 2 2 2 2 2 2 2
b 606112 2 3 3 6 06112 2 3 3 6 06112 2 3
i 61 6106101 61 61 06101 61 61 0606 1 0
B 6 06 3 3 6 6 9 9 1 1 4 4 7 71010 2 2 55 8 811

Figure 4. Inverse Mapping of Block-Cyclic Distribution
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In decomposing an m x n matrix, A, independent block-cyclic distributions are
applied in the row and column directions. Thus, suppose the matrix rows are
distributed with block size r over P processes by the A, p block-cyclic mapping, and
the matrix columns are distributed with block size s over Q processes by the vy, o
block-cyclic mapping. Then the matrix element indexed globally by (m, n) is
mapped as follows:

mlL(p,b,i)

%}

n—=(q.d, j)

The distribution of the matrix can be regarded as the tensor product of the row
and column distributions, which can be expressed as:

* (m, m)=((p, 9),b, d),(, f))

The block-cyclic matrix distribution expressed above distributes blocks of size
r X s to a grid of P x Q processes.

An example of block-cyclic distribution of an m X n = 16 x 30 matrix with block
sizer x s =3 x4andaP X Q =2 x 3 process grid is shownin
fpage 25 and [Figure 6 on page 25 The numbers in the leftmost column and on the
top of the matrix represent the global row and column numbers B and D,
respectively. [Figure 5 on page 25|shows the assignment of global blocks (B,D) to
processes (PQ).|Figure 6 on page 25 shows which global blocks each process
contains.
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In this example, the global matrix dimensions are not divisible by the respective
block sizes. All the row blocks are of size 3, except the last row block, which only
contains 1 row. All column blocks are of size 4, except the last column block, which
contains 2 columns. For example, global block (5,0) is 1 x 4, global block (1,7) is

3 x 2, and global block (0,0) is 3 x 4. The global block (5,7) is 1 x 2. The asterisk

) in[Figure]

that are not 3 x 4.

denotes which global blocks contain left over data; that is, the blocks

B,D 0 1 2 3 4 5 6 7
0 Pgo Py P> Poo Poy Poz Poo Py,
1 Py Py Py Pio Py Py, Pio Py’
2 Pyo Py, P> Poo Poy Pos Poo Py,
3 Py Py Py Pio Py Py Pio Py’
4 Poo Py P> Poo Poy Pos Poo Py,
5 Py Py Py Py Py’ Py, Py Py
Figure 5. Block Distribution Over a 2 by 3 Process Grid
B,D 0 3 6 1 4 7 2 5
0 *
2 Pyo Py, * Py
4 *
1 *
3 Py Py * Py
5 * * * * * * * *
Figure 6. Data Distribution from a Process Point-of-View
B,D 0 3 6 1 4 7 2 5
0 A0:2,0:3 0:2,12:15 QA0:2,24:27 A0:2,4:7 A0:2,16:19 30:2,28:29* A0:2,8:11 QA0:2,20:23
2 A6:8,0:3 A6:8,12:15 A6:8,24:27 A6:8,4:7 46:8,16:19 Ag:8,28:20" A6:8,8:11 A6:8,20:23
4 A12:14,0:3 A12:14,12:15 A12:14,24:27 A12:14,4:7 A12:14,16:19 A12:14,28:29" A12:14,8:11 A12:14,20:23
1 a3:5,0:3 a3:5,12:15 A3:5,24:07 aA3:5,4:7 a3:5,16:19 A3.58:20" a3:5,8:11 a3:5,20:23
3 49:11,0:3 d9:11,12:15 A9:11,24:27 A9:11,4:7 49:11,16:19 9.11,28:29" d9:11,8:11 49:11,20:23
5 a1503" 15,1215 a152407" A15,4.7" a15,16:19" A152820" a15,811" 152023

Figure 7. Distributed Matrix Elements from a Process Point-of-View

Special Usage
The block-cyclic distribution can reproduce most of the data distributions

commonly used in linear algebra computations on parallel computers. Some
examples are:

* Block distribution in the row direction is obtained by Q = 1 and
r = ceiling(M/P).

* Block distribution in the column direction is obtained by P = 1 and

s = ceiling(N/Q).
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* Block-cyclic distribution in the row direction is obtained by Q = 1 and
r < ceiling(M/P). (You might use this for distributing a single block column to
pass to Parallel ESSL.)

* Block-cyclic distribution in the column direction is obtained by P = 1 and
s < ceiling(N/Q). (You might use this for distributing a single block row to pass
to Parallel ESSL.)

* To achieve fine granularity of distribution in the following directions, specify:
— For the row direction, r = 1
— For the column direction, s = 1
— In both directions, r = 1ands = 1

* To achieve coarse granularity of distribution in the following directions, specify:
— For the row direction, r = ceiling(M/P).
— For the column direction, s = ceiling(N/Q).
— In both directions, r = ceiling(M/P) and s = ceiling(N/Q).

This section provided a detailed description of the distribution of
vectors—one-dimensional data structures. Those same techniques were then
applied to matrices—two-dimensional data structures—in the row and column
directions. If you have data structures with three or more dimensions, you can use
these same techniques by applying them in the direction of each dimension. For
example, the block distribution of a three-dimensional sequence is described in
[“Three-Dimensional Sequences” on page 68)

Specifying and Distributing Data in Your Program

This section describe the calling sequence arguments for vectors and matrices, and
shows how to distribute vectors, matrices and sequences in your program for the
following areas:

* For the Level 2 and 3 PBLAS, Dense Linear Algebraic Equations, and
Eigensystem Analysis and Singular Value Analysis subroutines, see
[Block-Cyclically-Distributed Vectors and Matrices.”]

* For the Banded Linear Algebraic Equations, see |[’Specifying

Block-Cyclically-Distributed Matrices for the Banded Linear Algebraid|

Equations” on page 29

* For the Sparse Linear Algebraic Equations, see|’Specifying Sparse Matrices for|
[the Fortran 90 and Fortran 77 Sparse Linear Algebraic Equations” on page 58

« For the Fourier Transforms, see ["Specifying Sequences for the Fourier|
[Transforms” on page 64/

An example of block-cyclic distribution of a global matrix in a Fortran 90 program
in a message passing environment is shown in |[Appendix B, “Sample Programs.”|
See the following:

* The subroutine get_diffusion_matrix in |”Module Fourier” on page 911,| which
shows how a local array can be assigned values.

» The subroutine rlocal_to_rglobal in [‘Module Scale” on page 919 |which shows
gathering the local portions of the block-cyclically-distributed real array to
generate the corresponding global matrix.

Specifying Block-Cyclically-Distributed Vectors and Matrices

For the Level 2 and 3 PBLAS, Dense Linear Algebraic Equations, and Eigensystem
Analysis and Singular Value Analysis subroutines, certain calling sequence
arguments are used to specify block-cyclically-distributed vectors or matrices.
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Calling Sequence Arguments for Block-Cyclically-Distributed
Vectors and Matrices

describes the arguments associated with a vector X.[Table 20| describes the

arguments associated with a matrix A.

Table 19. Calling Sequence Arguments for a Block-Cyclically-Distributed Vector

Argument Meaning

x is the local part of the global matrix X. To determine the size of the
local array for X, see ['Determining the Number of Rows and Columns|
[in Your Local Arrays” on page 28

ix is the row index of global matrix X.

jx is the column index of global matrix X.

desc_x is the array descriptor for global matrix X. (See [Table 21})

incx Stride for global vector X.

Note: A global vector of length 7 is distributed across process rows the same way
as an n x 1 matrix is (in this case M_X is n and N_X is 1). A global vector
of length n is distributed across process columns the same way asa 1l x n
matrix is (in this case M_X is 1 and N_X is n).

Table 20. Calling Sequence Arguments for a Block-Cyclically-Distributed Matrix

Argument Meaning

a is the local part of the global matrix A. To determine the size of the
local array for A, see ['Determining the Number of Rows and Columns|
[in Your Local Arrays” on page 28

in is the row index of the global matrix A.

ja is the column index of the global matrix A.

desc_a is the array descriptor for global matrix A. (See [Table 21})

Array Descriptors for Block-Cyclically-Distributed Matrices

An array descriptor, which is an integer array, is needed for each
block-cyclically-distributed vector or matrix. The process grid definition and array
descriptor are used to establish the mapping between the global vector or matrix
and its corresponding process and distributed memory location.

Throughout this book, the _ (underscore) symbol in the array descriptor is
followed by an X to indicate a vector or an A to indicate a matrix.

An example of setting up descriptor arrays in a Fortran 90 program is shown in
|Appendix B, “Sample Programs.”|See the subroutines initialize_rarray and
initialize_carray in ["Module Scale” on page 919

able 21| shows the type-1 array descriptor, as it is used in the Level 2 and 3
PBLAS, Dense Linear Algebraic Equations, and Eigensystem Analysis and Singular

Value Analysis subroutines.

Table 21. Type-1 Array Descriptor for Block-Cyclically Distributed Vector or Matrix

DESC_()

Symbolic name

Meaning

1

DTYPE_

Descriptor type, where DTYPE_=1

2

CTXT_

BLACS context in which the global matrix is
defined. (See [“Using the BLACS” on page 80.)
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Table 21. Type-1 Array Descriptor for Block-Cyclically Distributed Vector or
Matrix (continued)

DESC_() Symbolic name |Meaning

3 M_ Number of rows in the global matrix

4 N_ Number of columns in the global matrix

5 MB_ Row block size

6 NB_ Column block size

7 RSRC_ The process row of the p X g process grid over
which the first row of the global matrix is
distributed

8 CSRC_ The process column of the p x g process grid over
which the first column of the global matrix is
distributed

9 LLD_ Leading dimension of the local array. (See
“Determining the Number of Rows and Columns in|
Your Local Arrays.”) This value may be different on
each process.

Specifying Submatrices
After a global vector or matrix is block-cyclically distributed over a process grid,

you may decide to use only a portion of the global data structure. This is called a
submatrix. For examples of how to specify the calling sequence arguments, listed
in [Table 19]and [Table 20| for a submatrix, see:

“Example 1”7 on page 141

“Example 2” on page 144

“Example 1” on page 175

“Example 1” on page 230

“Example 1” on page 387

“Example 1” on page 464

Suppose you decide to distribute your global vector or matrix over the process
grid, starting at a process other than 0,0. For examples of how to set the array
descriptor values, listed inliable 21[ see:

“Example 1” on page 374

“Example 1” on page 387

“Example 1” on page 464

Determining the Number of Rows and Columns in Your Local
Arrays
In a Parallel ESSL calling sequence, you specify an array that contains the local

part of the global vector or matrix. To determine LOCp(M_) or LOCq(N_), which

are used in the subroutines descriptions in Part 2 of this book, you must make a
call to NUMROC:

* For LOCp(M_), which represents the number of rows that a process would
receive if M_ was distributed block-cyclically over the p rows of its process

column, you specify:

LOCp(M_) = NUMROC (M_, MB_, myrow, RSRC , p)

where:

— M_ is the number of rows in the global matrix.

— MB_ is the row block size.

- myrow is the process row index. See [“Using the BLACS” on page 80.|
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— RSRC_ is the process row over which the first row of the global matrix is
distributed.

— p is the number of rows in the p x g process grid.

* For LOCq(N_), which represents the number of columns that a process would
receive if N_ was distributed block-cyclically over the g columns of its process
row, you specify:

LOCq(N_) = NUMROC (N_, NB_, mycol, CSRC_, q)
where:
— N_ is the number of columns in the global matrix.
— NB_ is the column block size.

— mycol is the process column index. See[“Using the BLACS” on page 80

— CSRC_ is the process column over which the first column of the global matrix
is distributed.

— g is the number of columns in the p X g process grid.

Specifying Block-Cyclically-Distributed Matrices for the
Banded Linear Algebraic Equations

For the Banded Linear Algebraic Equations, certain calling sequence arguments are
used to specify block-cyclically distributed matrices on one-dimensional process
grids.

Although the global array is block-cyclically distributed, the actual submatrix used
in computation is either block-row or block-column distributed. See the
appropriate subroutine for restrictions.

Symmetric Band Matrix
A symmetric band matrix must be distributed over a one-dimensional process grid:

* Onal x p process grid, the symmetric band matrix is block-cyclically
distributed. In this case, either type-501 or type-1 array descriptor may be
specified.

* Onap x 1 process grid, the symmetric band matrix is block-cyclically
distributed as if the process grid is 1 X p. In this case, the type-501 array
descriptor must be specified.

describes the calling sequence arguments associated with a symmetric
band matrix.

Table 22. Calling Sequence Arguments for a Distributed Symmetric Band Matrix

Argument Meaning

n is the order of the global symmetric band submatrix A.

a is the local part of the global symmetric band matrix A.

ja is the column index of the global symmetric band matrix A.

desc_a is the array descriptor for the global symmetric band matrix A. For
more details, see [Table 26 on page 31| and [Table 21 on page 27}

General Tridiagonal Matrix

A general tridiagonal matrix, represented as three vectors, must be distributed over
a one-dimensional process grid using a block-cyclic data distribution. Because
vectors are one-dimensional data structures, you can use type-501, type-502, or
type-1 array descriptor regardless of whether the process grid isp x 1 or 1 x p.
[Table 23 on page 30| describes the calling sequence arguments associated with a
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general tridiagonal matrix.

Table 23. Calling Sequence Arguments for General Tridiagonal Matrix

Argument Meaning

n is the order of the global general tridiagonal submatrix A.

dl, d, du is the local part of the global vectors. (The general tridiagonal matrix A
is stored in tridiagonal storage mode in dl, d, and du.)

ia is the row index of the global general tridiagonal matrix A.

desc_a is the array descriptor for the global general tridiagonal matrix A. For

more details, see [Table 26 on page 31} |Table 21 on page 27} or [Table 27]

|0n page 32|

Symmetric Tridiagonal Matrix
A symmetric tridiagonal matrix, represented as two vectors, must be distributed
over a one-dimensional process grid using block-cyclic data distribution.

Note: For both serial ESSL and Parallel ESSL, the n— 1 elements of the equal
off-diagonals of a symmetric tridiagonal matrix are stored in a
one-dimensional vector of length n. To be compatible with ScaLAPACK, in
Parallel ESSL, the off-diagonal is chosen to be the superdiagonal and is
stored in elements ia through ia+n— 2. In the serial ESSL library, the
off-diagonal is chosen to be the subdiagonal and is stored in elements 2
through n.

Because vectors are one-dimensional data structures, you can use a type-501,

type-502, or type-1 array descriptor regardless of whether the process grid is p x 1
orl x p. describes the calling sequence arguments associated with a

symmetric tridiagonal matrix.

Table 24. Calling Sequence Arguments for a Symmetric Tridiagonal Matrix

Argument Meaning

is the order of the global symmetric tridiagonal submatrix A.

d, e is the local part of the global vectors. (The symmetric tridiagonal matrix
A is stored in parallel-symmetric-tridiagonal storage mode in d and e.)

ia is the row index of the global symmetric tridiagonal matrix A.

desc_a is the array descriptor for the global symmetric tridiagonal matrix A.

For more details, see[Table 26 on page 31} [Table 21 on page 27, or
[Table 27 on page 32}

General Matrix Consisting of Multiple Right-Hand Sides

For the Banded Linear Algebraic Equations subroutines, a general matrix consisting

of multiple right-hand sides must be distributed over a one-dimensional process

grid:

* Onap x 1 process grid, the multiple right-hand sides is block-cyclically
distributed. In this case either type-502 or type-1 array descriptor may be
specified.

* Onal x p process grid, the multiple right-hand sides is block-cyclically
distributed as if the process grid is p x 1. In this case type-502 array descriptor
must be specified.

[Table 25 on page 31| describes the calling sequence arguments associated with the
general matrix.
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Table 25. Calling Sequence Arguments for a Matrix Containing the Multiple Right-Hand
Sides

Argument Meaning

n is the number of rows in the global general submatrix B.

is the local part of the global general matrix B.

ib is the row index of the global general matrix B.

desc_b is the array descriptor for the global general matrix B. For more details,
see [Table 27 on page 32| and [Table 21 on page 27}

Array Descriptors for Banded Matrices

An array descriptor, which is an integer array, is needed for each block-distributed
matrix. The process grid definition and the array descriptor are used to establish
the mapping between the global matrix and its corresponding process and
distributed memory location.

In the Banded Linear Algebraic Equations sections throughout this book, the _
(underscore) symbol in the array descriptor is followed by an A or a B. A indicates
a banded, tridiagonal, or symmetric tridiagonal matrix. B indicates a matrix
containing the multiple right-hand sides matrix.

When you place a call to the banded or tridiagonal subroutines, you must be
careful to choose consistent combinations of array descriptor types for matrix A
and matrix B, and process grids. For consistent combinations, see the “Notes and
Coding Rules” in the subroutine descriptions in Part 2 of this book.

Therefore, depending on which subroutine you are using in the Banded Linear
Algebraic Equations, you may choose different array descriptors in the same
subroutine calling sequence. Keep in mind you must only create one process grid;
that is, CTXT_A = CTXT_B.

For example, when calling PDPBSV suppose you choose DTYPE_A = 501 for the
band matrix A and DTYPE_B = 502 for matrix B. If you specify CTXT_A as 1 X p,
you must also specify CTXT_B as 1 x p. Or if you specify CTXT_A as p x 1, you
must also specify CTXT_B as p x 1. For an example of how to set the array
descriptor values, see|[“Example” on page 494

Table 26. Type-501 Array Descriptor

DESC_() Symbolic name | Value

1 DTYPE_ DTYPE_ =501 for 1 x p or p x 1, where p is the
number of processes in a process grid.

2 CTXT_ BLACS context in which the global matrix is
defined. The BLACS process grid can be defined as
1 xporp x 1.

(See|“Using the BLACS” on page 80.)

3 N_ Number of columns in the global matrix
4 NB_ Column block size.
5 CSRC_ The process column over which the first column of

the global matrix is distributed
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Table 26. Type-501 Array Descriptor (continued)

DESC_()

Symbolic name

Value

6

LLD_

Leading dimension of the local array. (See

“Determining the Number of Rows or Columns in|

Your Local Arrays.”) This value may be different on

each process. For the tridiagonal subroutines, this
argument is ignored.

Reserved.

Table 27. Type-502 Array Descriptor

DESC_()

Symbolic name

Value

1

DTYPE_

DTYPE_ =502 for p x 1 or 1 x p, where p is the
number of processes in a process grid.

CTXT_

BLACS context in which the global matrix is
defined. The BLACS process grid can be defined as
1 xporp x 1.

(See[“Using the BLACS” on page 80.)

Number of rows in the global matrix

MB_

Row block size.

RSRC_

The process row over which the first row of the
global matrix is distributed

LLD_

Leading dimension of the local array. (See

“Determining the Number of Rows or Columns inl|

Your Local Arrays.”) This value may be different on

each process. For the tridiagonal subroutines, this
argument is ignored for matrix A.

Reserved.

Determining the Number of Rows or Columns in Your Local

Arrays

For local arrays described by type-501 array descriptor, the number of rows in the
local matrix is always equal to the number of rows in the global matrix. The
number of columns in the local array is determined as follows:

* Foral x q process grid:
LOCq(N_) = NUMROC(N_,NB_,mycol,CSRC_,q)
* For g x 1 process grid:
LOCq(N_) = NUMROC(N_,NB_,myrow,CSRC_,q)

where:

* N_ is the number of columns in the global matrix.

¢ NB_ is the column block size.

* mycol, for a1 X g process grid, is the process column index. See

Parallel ESSL for AIX, 3.

BLACS” on page 80.
pag

myrow, for a g X 1 process grid, is the process row index. See

[BLACS” on page 80|
CSRC_ is element 5 of type-501 array descriptor.

q is the number of columns in the process grid.
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For local arrays described by type-502 array descriptor, the number of columns in
the local matrix is always equal to the number of columns in the global matrix.
The number of rows in the local array is determined as follows:

e For ap x 1 process grid:

LOCp(M_) = NUMROC(M_,MB_,myrow,RSRC_,p)
* Foral x p process grid:

LOCp(M_) = NUMROC(M_,MB_,mycol,RSRC_,p)

where:
* M_ is the number of rows in the global matrix.
e MB_ is the row block size.

* myrow, for a p X 1 process grid, is the process row index. See
[BLACS” on page 80.|

e mycol, for a1 X p process grid, is the process column index. See
[BLACS” on page 80,

* RSRC_ is element 5 of type-502 array descriptor.

* p is the number of rows in the process grid.

Distributing Data Structures

You must distribute your data before calling Parallel ESSL from your message
passing program. This section shows how you how to distribute your data.

All the Parallel ESSL message passing subroutines, except the Banded Linear
Algebraic Equations and Fourier transform subroutines, support block-cyclic
distribution. The Banded Linear Algebraic Equations and the Fourier transform
subroutines only support block distribution.

The following sections provide examples for distributing data over one- or
two-dimensional process grids:

* ["Vectors”]

* |"Matrices” on page 40|

* |"Specifying Sequences for the Fourier Transforms” on page 64

Vectors

Parallel ESSL supports block-cyclic distribution for vectors over one- or
two-dimensional process grids. A vector is distributed over a single row or column
of the process grid, except for PDURNG. For PDURNG, vectors are distributed
block-cyclically over the entire one- or two-dimensional process grid using
row-major order, where the length n of the vector x must be evenly divisible by the
available processes np multiplied by the block size nb. In other words, n/(np)(nb)
must be an integer.

Block-Cyclic Distribution over One-Dimensional Process Grids
This example shows how a global vector of length 24 with blocks of size 3 is
distributed block-cyclically over one-dimensional process grids. Assume the
following:

* X=(,23,651,95,3,6,2,4,10,7,4,2,8,2,8,9, 2,3, 11, 10)

Global vector x:
B,D 0

o 8]
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B,D 0
0 Poo
4

1 Pio
5

2 Pso
6

3 Pso
7

Local arrays:
P.g | 0O

8
2
3

(<}
—_
(<}

1

(o) B
1
1

WOorIO 1 NN~ Ol
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PR WA DO

D =

For the column-oriented example, the array descriptor DESC_X contains the

following:
DESC_X() Symbolic name Value
1 DTYPE_X 1
2 CTXT_X BLACS context
3 M_X 24
4 N_X 1
5 MB_X 3
6 NB_X 1
7 RSRC_X 0
8 CSRC_X 0
9 LLD_X 6
Row-oriented, 1 x 4 process grid:
B,D 04 15 37
0 POO PGl P03
Local array
p.q 0 2 3
0 8231074 651282 953892 62431110

For the row-oriented example, the array descriptor DESC_X contains the following:

DESC_X() Symbolic name Value
1 DTYPE_X 1
2 CTXT_X BLACS context
3 M_X 1
4 N_X 24
5 MB_X 1
6 NB_X 3
7 RSRC_X 0
8 CSRC_X 0
9 LLD_X 1

Note: The same global vector was distributed over a 4 x 1 grid and then over a

1 x 4 grid. Notice the values contained in the corresponding local arrays are

identical.
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Block-Cyclic Distribution over Two-Dimensional Process Grids
This example shows how a global vector of length 18 with block size of 3 is
distributed over two-dimensional grids. When a two-dimensional process grid is
used, the global vector can be distributed over any single row or any single
column of the grid. Assume the following:

e X=(4,11,17,21,3,7,12,5,3,15,3,4,9,17, 1, 10, 9, 25)

Global vector x:

B,D 0
4
0 11
17
21
1 3
7
12
2 5
3
15
3 3
4
9
4 17
1
10
5 9
25
Two-dimensional, 2 x 3 process grid:
B,D -- -- 0
0 POO POl POZ
2
4
1 PlO Pll P12
3
5

If the global vector is distributed over the third column of a 2 x 3 process grid,
then Py, and P;, contain the following local arrays:

p,q 2

4
11
17
12
0 5
3
9
17
1
21
3
7
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15
1 3
4
10
9
25

For the single column example, the array descriptor DESC_X contains the following:

DESC_X() Symbolic name Value
1 DTYPE_X 1
2 CTXT_X BLACS context
3 M_X 18
4 N_X 1
5 MB_X 3
6 NB_X 1
7 RSRC_X 0
8 CSRC_X 2
9 LLD_X 9

If the global vector is distributed over the second row of a 2 x 3 process grid, then

Py, P11, and Py, contain the following local arrays:

41117 153 4

21379171

1253109 25

For the single row example, the array descriptor DESC_X contains the following:

DESC_X() Symbolic name Value
1 DTYPE_X 1
2 CTXT_X BLACS context
3 M_X 1
4 N_X 18
5 MB_X 1
6 NB_X 3
7 RSRC_X 1
8 CSRC_X 0
9 LLD_X 1

For PDURNG, the global vector is distributed block-cyclically over the entire 2 x 3
process grid using row-major order, as follows:

p,q 0
0 4 11 17
1 15 3 4
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Notes:

1. For PDURNG, the length n of the vector x must be evenly divisible by the
number of available processes np multiplied by the block size nb. For this
example, 18 = (6)(3).

2. For PDURNG, the array descriptor is not used.

Following is an example of uneven block-cyclic distribution for a global vector of
length 20 with block size of 3, where the two local arrays are different sizes. In this
case, a fragment of a block with two elements occurs at the end of the vector.
Assume the following:

X = (0, 5, 6, 3, 21, 5, 6, 1, 8, 9, 13, 11, 12, 15, 14, 15, 11, 17, 18, 19)

Following is a global vector x with block size 3:

B,D 0
0
0 5
6
3
1 21
5
6
2 1
8
9
3 13
11
12
4 15
14
15
5 11
17
6 18
19
Two-dimensional, 2 x 3 process grid:
B,D 0 -- --
0 PGO POl POZ
2
4
6
1 Pio P1 Piz
3
5

If the vector is distributed over the first column of a 2 x 3 process grid, then Py,
and P, contain the following local arrays:

p,q 0
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13
11
15
11
17

Array descriptor DESC_X contains the following:

DESC_X() Symbolic name Value

1 DTYPE_X 1

2 CTXT_X BLACS context

3 M_X 20

4 N_X 1

5 MB_X 3

6 NB_X 1

7 RSRC_X 0

8 CSRC_X 0

9 LLD_X 11 (For Py,)
9 (For P,,)

If the vector is distributed over the first row of the 2 x 3 process grid, then Py,

Py;, and Py, contain the following local arrays:

06 5 6 913111819

321 51215 14

Array descriptor DESC_X contains the following:

6 1 8151117

DESC_X() Symbolic name Value
1 DTYPE_X 1
2 CTXT_X BLACS context
3 M_X 1
4 N_X 20
5 MB_X 1
6 NB_X 3
7 RSRC_X 0
8 CSRC_X 0
9 LLD_X 1
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Matrices

The Parallel ESSL subroutines, except the Banded Linear Algebraic Equations,
support block-cyclic data distribution for matrices using one- or two-dimensional
process grids. The Banded Linear Algebraic Equations support only block data
distribution using one-dimensional process grids.

The following terminology is used when it is necessary to distinguish special types
of matrices:

* Full block matrix — a matrix of blocks distributed over the whole process grid.

* Block row matrix — a matrix of blocks distributed over a single row of the
process grid.

* Block column matrix — a matrix of blocks distributed over a single column of
the process grid.

* Single block matrix — a matrix consisting of a single block lying in a single
process of the process grid.

Distributed over One-Dimensional Process Grids

This section describes how to distribute a matrix block-cyclically over a
one-dimensional process grid. It also shows how matrices for the Banded Linear
Algebraic Equations are distributed over a one-dimensional process grid using
block distribution.

Block-Cyclically Distributing a Matrix: The examples that follow show how a
6 x 8 global matrix A with blocks of size 2 x 2 is distributed block-cyclically over
one-dimensional process grids. Assume the following global matrix A:

B,D 0 1 2 3
0 0 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17
1 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37
2 40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57

40

B,D 0123

0 Poo

1 Pio

2 P20

Local arrays

P>q 0

0 6 1 2 3 4 5 6 7
10 11 12 13 14 15 16 17

1 20 21 22 23 24 25 26 27
30 31 32 33 34 35 36 37

2 40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
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For the column-oriented example, the array descriptor DESC_A contains:

DESC_AC() Symbolic name Value
1 DTYPE_A 1
2 CTXT_A BLACS context
3 M_A 6
4 N_A 8
5 MB_A 2
6 NB_A 2
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A 2
Row-oriented, 1 x 2 process grid:
B,D 02 13
0 Poo Po1
1
2
Local arrays:
p.q 0 1
"""" o 1 4 5| 2 3 6 7
10 11 14 15 12 13 16 17
20 21 24 25 22 23 26 27
0 30 31 34 35 32 33 36 37
40 41 44 45 42 43 46 47
50 51 54 55 52 53 56 57
For the row-oriented example, the array descriptor DESC_A:
DESC_A() Symbolic name Value
1 DTYPE_A 1
2 CTXT_A BLACS context
3 M_A 6
4 N_A 8
5 MB_A 2
6 NB_A 2
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A 6

For an example of distributing a matrix over a one-dimensional process grid in a
Fortran 90 program, see matrix F in[Appendix B, “Sample Programs,”| which is:

* Created in subroutine initialize_carray in[“Module Scale” on page 919)

» Assigned values in subroutine get_diffusion_matrix in [“Module Fourier” on|

page 911.

+ Used in ["Program Main” on page 902.]
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Block-Cyclically Distributing a Symmetric Band Matrix: This section shows how
to distribute a symmetric band matrix A over a one-dimensional process grid using
block-cyclic distribution.

Assume the following symmetric band matrix A of size 9 x 9 with a half
bandwidth of 2:

11 21 31 0 0 0 0
21 22 32 42 0 0 O
31 32 33 34 53 0 O

[cNoNoNONoNo]

6 06 0 979899

Matrix A must be stored in upper- or lower-band-packed storage mode. The
sections that follow contain examples describing these two storage modes. In these
examples, matrix A is stored in an array with dimensions 3 x 9.

Upper-Band-Packed Storage Mode: The global matrix A with block size of 2 is stored
in upper-band-packed storage mode, as follows:

B,D 0 1 2 3 4
* % | 31 42 | 53 64 | 75 86 | 97
0 * 21 | 32 34 | 54 65 | 76 87 | 98
11 22 | 33 44 | 55 66 | 77 88 | 99

Following is a row-oriented, 1 x 3 process grid:
B,D 03 14 2

The following local arrays A are distributed block-cyclically over the 1 x 3 process
grid:

* * 75 86 31 42 97 53 64
0 * 21 76 87 32 34 98 54 65
11 22 77 88 33 44 99 55 66

where * means you do not have to store a value in that position in the local array.

However, these storage positions are required and overwritten during the
computation.
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The type-501 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_A =501 for 1 x p
2 CTXT_A BLACS context
3 N_A 9
4 NB_A 2
5 CSRC_A 0
6 LLD_A 3
7 — Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A()

Symbolic name

Value

1

DTYPE_A

DTIYPE A=1forl x p

CTXT_A

BLACS context

M_A

N_A

MB_A

NB_A

RSRC_A

CSRC_A

O |0 | [ |G|k |W|DN

LLD_A

W[ O[O | N |~V | W

Lower-Band-Packed Storage Mode: The global matrix A with block size of 2 is stored
in lower-band-packed storage mode, as follows:

B,D 0 1 2 3 4
11 22 | 33 44 | 55 66 | 77 88 | 99
0 21 32 | 3454 | 6576 | 87 98 *
3142 | 53 64 | 7586 | 97 = *

Following is a row-oriented, 1 X 3 process grid:
B,D 03 14

The following local arrays A are distributed block-cyclically over the 1 x 3 process
grid:

11 22 77 88 | 33 44 99 | 55 66
0 21 32 87 98 | 34 54 = | 6576
3142 97 * | 5364 = | 75 86

where * means you do not have to store a value in that position in the local array.

However, these storage positions are required and overwritten during the
computation.
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The type-501 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_A =501 for 1 x p
2 CTXT_A BLACS context
3 N_A 9
4 NB_A 2
5 CSRC_A 0
6 LLD_A 3
7 — Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_ A=1forl x p
CTXT_A BLACS context
M_A
N_A
MB_A
NB_A
RSRC_A
CSRC_A
LLD_A

O |0 | [ |G | |W|DN
WL O[O | N~ [V W

For more information on how to store symmetric band matrices, see the ESSL
Version 3 Release 1.1 Guide and Reference manual.

Block-Cyclically Distributing a General Tridiagonal Matrix: A general
tridiagonal matrix, represented as three vectors, must be distributed over a
one-dimensional process grid using a block-cyclic data distribution. Because
vectors are one-dimensional data structures, you can use a type-501, type-502, or
type-1 array descriptor regardless of whether the process gridis 1 X porp x 1.

The first part of this section shows how to distribute a general tridiagonal matrix A
over a p x 1 process grid. The second part shows how to distribute the same
matrix over a 1 X p process grid. In both cases, the values contained in the
corresponding local arrays are identical.

Assume the following general tridiagonal matrix A of size 7 x 7:

11 12 06 0 0 0 0
21 22 23 0 0 0 O
0 32 33 34 0 0 0
0 0 43 44 45 0 O
0 0 0 54 5556 0
06 06 0 0 656667
6 0 06 0 07677

Matrix A is stored in tridiagonal storage mode in the following three vectors:
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dl = (x, 21, 32, 43, 54, 65, 76)
d = (11, 22, 33, 44, 55, 66, 77)

du = (12, 23, 34, 45, 56, 67, *)

Block-Cyclic Distribution on a p X 1 Process Grid: The general tridiagonal matrix A

is stored in tridiagonal storage mode in vectors dl,

Following is global vector dl:

B,D 0
0 *

21
1 32

43
2 54

65
3 76

Following is global vector d:

B,D 0
0 11
22
1 33
44
2 55
66
3 77

Following is global vector du:

B,D 0
0 12
23
1 34

45
2 56

67
3 *

Following is a column-oriented, 3 X 1 process grid:

B,D 0
0 | P
3

T
2 | ko

d, and du.
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The arrays are block-cyclically distributed over the 3 x 1 process grid.

Following are the local arrays for DL:

P,q 0
0 *
21
76
1 32
43
2 54
65

Following are the local arrays for D:

p.q 0
0 11
22
77
1 33
44
2 55
66

Following are the local arrays for DU:

p,q 0

0 12
23

*

1 34
45

2 56
67

"y

where “*” means you do not have to store a value in that position in the local

array. However, these storage positions are required.

The type-502 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_A =502 for p x 1
2 CTXT_A BLACS context
3 M_A 7
4 MB_A 2
5 RSRC_A 0
6 LLD_A Not used
7 - Reserved
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Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_AC() Symbolic name Value
1 DTYPE_A DTYPE_A=1forp x 1
2 CTXT_A BLACS context
3 M_A 7
4 N_A 1
5 MB_A 2
6 NB_A 1
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A Not used

Block-Cyclic Distribution on a 1 x p Process Grid: The general tridiagonal matrix A
is stored in tridiagonal storage mode in vectors dl, d, and du. Because vectors are
one-dimensional data structures, the block-cyclically distributed arrays ona 1 x p
process grid are identical to the block-cyclically distributed arrays onap x 1

process grid.

Following is global vector dl:
B,D 0 1 2

3

0 [ *21 | 3243 | 54 65| 76 ]

Following is global vector d:
B,D 0 1 2

0 [ 11 22 | 33 44 | 55 66 |

Following is global vectors du:
B,D 0 1 2

0 [ 12 23 | 34 45 | 55 67 |

Following is a row-oriented, 1 x 3 process grid:

B,D

03

1

2

3

9

3

g

The arrays are block-cyclically distributed over the 1 x 3 process grid.

Following are the local arrays for DL:

1

32 43

2

54 65

p.q 0

0 * 21 76

Following are the local arrays for D:

1

33 44

p.q 0 2

0 11 22 77

55 66
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Following are the local arrays for DU:

0

12 23 =

7

55 67

where “*” means you do not have to store a value in that position in the local

array. However, these storage positions are required.

The type-501 array descriptor DESC_A contains the following;:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE A=501for1l x p
2 CTXT_A BLACS context
3 N_A 7
4 NB_A 2
5 CSRC_A 0
6 LLD_A Not used
7 - Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_ A=1forl x p
2 CTXT_A BLACS context
3 M_A 1
4 N_A 7
5 MB_A 1
6 NB_A 2
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A Not used

For more information on how to store general tridiagonal matrices, see the ESSL

Version 3 Release 1.1 Guide and Reference manual.

Block-Cyclically Distributing a Symmetric Tridiagonal Matrix: A symmetric
tridiagonal matrix, represented as two vectors, must be distributed over a
one-dimensional process grid using a block-cyclic data distribution. Because
vectors are one-dimensional data structures, you can use a type-501, type-502, or
type-1 array descriptor regardless of whether the process gridisp x 1 or 1 x p.

Note: For both serial ESSL and Parallel ESSL, the n— 1 elements of the equal
off-diagonals of a symmetric tridiagonal matrix are stored in a
one-dimensional vector of length n. To be compatible with ScaLAPACK, in
Parallel ESSL, the off-diagonal is chosen to be the superdiagonal and is
stored in elements 1 through n— 1. In the serial ESSL library, the off-diagonal
is chosen to be the subdiagonal and is stored in elements 2 through n.
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The first part of this section shows a how to distribute a symmetric tridiagonal
matrix A over a p X 1 process grid. The second part shows how to distribute the
same matrix over a 1 X p process grid. In both cases, the values contained in the
corresponding local arrays are identical.

Assume the following symmetric tridiagonal matrix A of size 7 x 7:

1

[ocNoNoNoNoN o]
ODOOON O
ODoOoOOoOWOMNO
S
DO PO WOO
[cN6 Nol o No Nol
[e) NN NoNoNo Nl
[N NoNoNoNoNo]

Matrix A is stored in parallel-symmetric-tridiagonal storage mode in the following
two vectors:

d = (10, 20, 30, 40, 50, 60, 70)
e = (1, 2, 3, 4‘: 5a 6’ *)

Block-Cyclic Distribution on a p x 1 Process Grid: The symmetric tridiagonal matrix
A is stored in parallel-symmetric-tridiagonal storage mode in vectors d and e.

Following is global vector d:

B,D 0
10
0 20
30
1 40
50
60
2 70

Following is global vector e:

B,D 0
1
0 2
3
1 4
5
6
2 *

Following is a column-oriented, 2 X 1 process grid:

B,D 0
0 Poo
2

1 Pio
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The arrays are block-cyclically distributed over the 2 x 1 process grid.

Following are the local arrays for D:

p,q 0

1

* W N

(o ING L I |

where * means you do not have to store a value in that position in the local array.
However, these storage positions are required.

The type-502 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_A =502 for p x 1
2 CTXT_A BLACS context
3 M_A 7
4 MB_A 3
5 RSRC_A 0
6 LLD_A Not used
7 - Reserved

Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_A=1forp x 1
2 CIXT_A BLACS context
3 M_A 7
4 N_A 1
5 MB_A 3
6 NB_A 1
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A Not used
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Block-Cyclic Distribution on a 1 X p Process Grid: The symmetric tridiagonal matrix
A is stored in parallel-symmetric-tridiagonal storage mode in vectors d and e.
Because vectors are one-dimensional data structures, the block-cyclically
distributed arrays on a 1 x p process grid are identical to the block-cyclically
distributed arrays on a p x 1 process grid.

Following is global vector d:
B,D 0 1 2

0 [102030|405060|70]

Following is global vector e:
B,D 0 1 2

0 123|456|*]

Following is a row-oriented, 1 x 2 process grid:
B,D 02 1

The arrays are block-cyclically distributed over the 1 x 2 process grid.

Following are the local arrays for D:

0 10 20 30 70

40 50 60

Following are the local arrays for E:

"y

where “*” means you do not have to store a value in that position in the local
array. However, these storage positions are required.

The type-501 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_A =501 for1 x p
2 CTXT_A BLACS context
3 N_A 7
4 NB_A 3
5 CSRC_A 0
6 LLD_A Not used
7 - Reserved
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Alternately, the type-1 array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A DTYPE_ A=1forl x p
2 CTXT_A BLACS context
3 M_A 1
4 N_A 7
5 MB_A 1
6 NB_A 3
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A Not used

Block-Cyclically Distributing a General Matrix Containing the Right-Hand
Sides: This section shows how to block-cyclically distribute a general matrix B
containing the multiple right-hand sides for the Banded Linear Algebraic Equations
subroutines.

Following is the global matrix B:

B,D 0
0 11 12 13
21 22 23
1 31 32 33
41 42 43
2 51 52 53
61 62 63
3 7172 73

B,D 0

0 | P
3

N
2 | ko

p,q 0
0 11 12 13
21 22 23
71 72 73
1 31 32 33
41 42 43
2 51 52 53
61 62 63
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The type-502 array descriptor DESC_B contains the following:

DESC_B() Symbolic name Value
1 DTYPE_B DTYPE_B =502 for p x 1
2 CTXT_B BLACS context
3 M_B 7
4 MB_B 2
5 RSRC_B 0
6 LLD_B 3 (For Py,)
2 (For P,y and P,)
7 — Reserved

Alternately, the type-1 array descriptor DESC_B contains the following:

DESC_B() Symbolic name Value
1 DTYPE_B DTYPE B=1forp x 1
2 CTXT_B BLACS context
3 M_B 7
4 N_B 3
5 MB_B 2
6 NB_B 1
7 RSRC_B 0
8 CSRC_B 0
9 LLD_B 3 (For Py,)
2 (For Py, and P,)

Block-Cyclically Distributing over Two-Dimensional Process

Grids

This section shows how to distribute general, symmetric, and upper triangular
matrices over a two-dimensional process grid using block-cyclic distribution.

Distributing a General Matrix: This example shows how the data for a global
matrix A with block size of 2 x 3 is distributed block-cyclically over the entire
2 x 3 process grid. Assume the following 9 x 26 global matrix A with 45 blocks:
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Note: In this example, the global matrix dimensions are not divisible by the

respective block size. As a result, all of the block sizes are 2 x 3, except for

blocks in the last row and the last column of the blocked matrix.

Two-dimensional, 2 x 3 process grid:
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B,D

Array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value

1 DTYPE_A 1

2 CIXT_A BLACS context

3 M_A 9

4 N_A 26

5 MB_A 2

6 NB_A 3

7 RSRC_A 0

8 CSRC_A 0

9 LLD_A 5 (For Py, Pyy, and Py,)
4 (For Py, P,3, and P;,)

Distributing a Symmetric Matrix: This example shows how the data for a global
symmetric matrix A with block size of 3 x 3 is distributed block-cyclically over a
2 x 3 process grid. Assume the following 18 x 18 global symmetric matrix A with

36 blocks:
1 2
4 5 6 7 8 9
12 13 14 15 16 17
21 22 23 24 25 26
2 3 5 7 11 13
31 4 9 16 25
5 4 5 6 10 11
7 9 6 1 2 3
11 16 10 2 11 13
13 25 11 313 2
17 36 15 4 15 4
19 49 16 517 6
23 64 20 6 19 8
29 81 21 7 21 10
31 10 25 8 23 12
37 12 26 9 25 14
41 14 30 10 27 16
43 16 31 11 29 18
47 19 35 12 31 20

B,D

024 13
Poo Po1
Pio P11
P2e P21

5
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The symmetric matrix is distributed block-cyclically in lower storage mode over a
3 x 2 process grid:

p,q 0 1
1 * * * * *x * % * * x Kk ok ok x ok Kk %
210 * * * * *x *x * * 0k 0k Kk Kk *x *x * *
31120 * * *= * % =% * x ok Kk * *x *x * *
0 10 18 27 415 4 * = =« 17 36 15 3 * *= * *x =«
11 1928 517 6 * * = 194916 6 1 * x x =«
122029 619 8 * = =« 236420 9 2 1 * x =
4 12 21 * * *x *x * * 2 * * K* * *x *x * *
51322 * * * * * % 3 1 * * * * * * *
6 14 23 * * *x * * % 5 4 5 % % % *x *x *
1 1321 30 7211020 = = 298121 2 3 3 * x =
14 22 31 8231222 4 « 311025 4 4 5 * * *
152332 9251421 5 3 371226 6 5 7 * * x
71524 1 * * *x *x * 7 9 6 * * * *x *x *
81625 211 * * * * 11 16 106 * * * * *x *
91726 313 2 * * =* 132511 * *x x x x x
2 16 24 33 10 27 16 24 6 2 41 1430 3 6 9 4 =+ =
17 25 34 11 29 1823 9 7 43 16 31 6 7 11 11 17 =
18 26 35 12 31 20 25 16 8 47 19 35 9 8 13 15 13 21

where * means you do not have to store a value in that position in the local array.
However, these storage positions are required.

Notice that the local arrays are not symmetric.

Array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A 1
2 CTXT_A BLACS context
3 M_A 18
4 N_A 18
5 MB_A 3
6 NB_A 3
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A 6

For more information on how to store symmetric matrices, see the ESSL Version 3
Release 1.1 Guide and Reference manual.

Distributing an Upper Triangular Matrix: This example shows how the data for
a global upper triangular matrix A with block size of 2 x 2 is distributed
block-cyclically over a 2 x 3 process grid. Assume the following 12 x 12 global
upper triangular matrix A with 36 blocks:

B,D 0 1 2 3 4 5

0 2 1 2 13 13 10 15 21 26 31 7 5
0 3 4 4 11 23 41 45 59 67 1 8

1 0 0 5 9 6 9 33 65 21 14 9 4
0 0 0 7 16 8 7 33 3 7 5 3
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2 0 0
0 0
3 0 0
0 0
4 0 0
0 0
5 0 0
0 0

B,D 03

14

25

23 7 10 6
313 5 6
14 1 7 2
64 16 1 7
23 81 6 15
029 9 4
0 0 5 3
0 0 0 4

The following local arrays are distributed block-cyclically in upper-triangular
storage mode over a 2 x 3 process grid:

p.q
2 1
* 3
* ok
0 *  *
* ok
* ok
* ok
* ok
* ok
1 *  *
* ok
* ok

"y

where “*” means you do not have to store a value in that position in the local
array. However, these storage positions are required.

Notice the local arrays are not upper triangular.

Chapter 2. Distributing Your Data

57



Array descriptor DESC_A contains the following:

DESC_A() Symbolic name Value
1 DTYPE_A 1
2 CTXT_A BLACS context
3 M_A 12
4 N_A 12
5 MB_A 2
6 NB_A 2
7 RSRC_A 0
8 CSRC_A 0
9 LLD_A 6

For more information on how to store triangular matrices, see the ESSL Version 3
Release 1.1 Guide and Reference manual.

Specifying Sparse Matrices for the Fortran 90 and Fortran 77
Sparse Linear Algebraic Equations

For the Fortran 90 and Fortran 77 sparse linear algebraic equation subroutines, you
must use the sparse utility subroutines provided with Parallel ESSL to build the
sparse matrices on each process in the process grid. This sections shows the calling
sequence arguments associated with the sparse matrix A.

Fortran 90 Sparse Linear Algebraic Equation Subroutines
This section contains the following sections:

+ |“Calling Sequence Arguments for the Sparse Matrix”]|

* [“Derived Data Types” on page 59|

Calling Sequence Arguments for the Sparse Matrix: This section describes the
calling sequence arguments associated with a sparse matrix A.

Table 28. Calling Sequence Arguments for the Sparse Matrix

Arguments Meaning

a is the local part of the sparse matrix A and specified as derived data
type D_SPMAT. For more details about D_SPMAT, see
[Type D_SPMAT” on page 59.|

ia is the row index of the sparse matrix A.

ja is the column index of the sparse matrix A.

desc_a is the array descriptor for the sparse matrix A and specified as derived
data type DESC_TYPE. For more details about DESC_TYPE, see
[“Derived Data Type DESC_TYPE” on page 59.|

parts is a user-supplied subroutine that specifies a mapping between a global

index for an element in the global sparse matrix and its corresponding
storage location on one or more processes.

For details about how you must define the PARTS subroutine, see
“Programming Considerations for the Parts Subroutine (Fortran 90 and|
Fortran 77)” on page 62.]
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Derived Data Types: Some of the arguments of the Fortran 90 sparse linear
algebraic equations and their utility subroutines are derived data types.

For more information on derived data types, see the XL Fortran manuals.

Derived Data Type D_SPMAT: describes the components of D_SPMAT that
you must provide as input to the PSPINS subroutine. In addition to the
components you provide, Parallel ESSL creates other components as necessary that
are only for internal use.

Table 29. Components of D_SPMAT

Components of D_SPMAT | Description Scope
M Number of local rows Local
N Number of local columns Local
FIDA Storage mode for the Clobal

submatrix

Pointer to the submatrix,
AS which contains the Local

coefficients.

Pointer to the column
IA1 numbers of each non-zero Local

element in the submatrix.

Pointer to the starting

positions of each row of the
1A2 submatrix and one position | Local

past the end of the

submatrix.
Note: The AS, IA1, and IA2 components, which are described in this table depend on how
you specify the FIDA component. This description assumes you are using storage by rows.
For details about how these components must be specified and their special restrictions,
see the appropriate argument descriptions in [“PSPINS — Inserts Local Data into a General
[Sparse Matrix” on page 613.|

Derived Data Type DESC_TYPE: Parallel ESSL builds the array descriptor, desc_a,
which is specified as derived data type DESC_TYPE, and its components, as
follows:

e PADALL allocates space for the array descriptor and initializes its components.
¢ PSPINS updates some components of the array descriptor.
* PSPASB makes final updates to some components of the array descriptor.

MATRIX_DATA is one component of the array descriptor. describes the
elements of DESC_A%MATRIX_DATA that you may want to reference. However,
your application programs should not modify the components of the array
descriptor directly. These components should only be updated with calls to PSPINS
and PSPASB.

Table 30. Elements of DESC_A%MATRIX_DATA(_)

MATRIX_DATA()) |Name Description Data Type | Limits Scope
1 DEC_TYPE T}.fpe. of c.iata Fullword Internal format Global
distribution integer
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Table 30. Elements of DESC_A%MATRIX_DATA(_) (continued)

MATRIX_DATA() Name Description Data Type | Limits Scope
Valid value, as
Fullword |returned by
2 CTXT BLACS context integer BLACS_GRIDINIT or Global
BLACS_GRIDMAP
Number of rows in Fullword
3 M the global general . v M=z0and M = N Global
. integer
sparse matrix A
Number of columns Fullword
4 N in the global general |. v N=z0and M = N Global
. integer
sparse matrix A
Fullword
5 N_ROW Number of local rows |. N_ROW = 1 Local
integer
6 N_COL Number of local Fullword N_COL = 1 Local
columnst integer

: TDESC_A%MATRIX_DATA(6) is stable after you have placed a call to PSPASB.

Fortran 77 Sparse Linear Algebraic Equation Subroutines
This section contains the following sections:

« [“Calling Sequence Arguments for the Sparse Matrix”|

* [“Array Descriptor” on page 61|

Calling Sequence Arguments for the Sparse Matrix: This section describes the
calling sequence arguments associated with a general sparse matrix A.

Table 31. Calling Sequence Arguments for the Sparse Matrix

Arguments Meaning

as is the local part of a matrix

ia is the row index of the sparse matrix.

ja is the column index of the sparse matrix.

ial is the local part of an array containing the sparse matrix indices.

ia2 is the local part of an array containing the sparse matrix indices.

infoa is an integer array for a matrix. For details about infoa see

desc_a is an array descriptor for the sparse matrix. For details about desc_a see
|“Array Descriptor” on page 61]

parts is a user-supplied subroutine that specifies a mapping between a global

index for an element in the global sparse matrix and its corresponding
storage location on one or more processes.

For details about how you must define the PARTS subroutine, see
“Programming Considerations for the Parts Subroutine (Fortran 90 and|
Fortran 77)” on page 62

Table 32. Elements of INFOA()

INFOA() Description Scope
1 Length of an array for a matrix Local
’ Length of an array containing sparse matrix Local

indices.

60  Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference




Table 32. Elements of INFOA() (continued)

INFOA() Description Scope
3 'Len.gth of an array containing sparse matrix Local
indices.
4 Storage format of the matrix. Global
5 Type of matrix. Global
6 Number of local rows. Local
7 Number of local columns. Local
8 through 30 Reserved for internal use. —
If infoa is in a subroutine calling sequence, you must always specify a value for INFOA(1),
INFOA(2), and INFOA(3).

Array Descriptor: An integer array descriptor, desc_a, is needed to establish a
mapping between the global general sparse matrix A and its corresponding
distributed memory location. You must specify an array descriptor length, DLEN,
in DESC_A(11) on input to PADINIT:

* For the maximum length you should need, use the following formulas to
calculate the length of the array descriptor, DLEN.

If there is no overlap:

DLEN = 33+3(np)+n+(N_COL)+(np—-1)(N_ROW)+(N_COL-N_ROW)
If there is no overlap, 33+3(np)+4n is an upper bound for DLEN.

If overlap occurs, add at most to DLEN:

3(np)+1+2(np)(N_ROW)

where:

- N_ROW =n

- N_COL =n

— N_ROW is approximately n/np

n is the order of the global general sparse matrix A.

np is the number of processes in the process grid.

* Use the following formula(s) to calculate a more typical value of the length of
the array descriptor, DLEN:

33+3(np)+an = DLEN = 33+6(np)+3n

where:

- l<a=2

— n is the order of the global general sparse matrix A.

— np is the number of processes in the process grid.

Note: The actual length of the array descriptor depends on the sparse matrix
structure and therefore is known after a call to PDSPASB.

Parallel ESSL builds the remaining elements in the array descriptor, as follows:
* PADINIT initializes the array descriptor.

* PDSPINS updates parts of the array descriptor.

* PDSPASB makes final updates to some parts of the array descriptor.

You may want to use some of the values in desc_a to build vector b containing the
right-hand side and vector x containing initial guess to the solution. (Parallel ESSL
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creates other elements in the array descriptor that are for internal use only.)
describes the elements of the array descriptor that you may want to
reference. Your application programs should not modify the elements of the array
descriptor directly. The elements should only be updated with calls to PDSPINS
and PDSPASB.

Table 33. Elements of DESC_A()

DESC_A( Name Description Data Type | Limits Scope
1 DEC_TYPE T).Ipe. of (;lata Fullword Internal format Global
distribution integer

Valid value, as
Fullword | returned by

integer BLACS_GRIDINIT or
BLACS_GRIDMAP

2 CTXT BLACS context Global

Number of rows in Fullword
3 M the global general M

v

Oand M = N Global

sparse matrix A integer
Number of columns Fullword
4 N in the global general |. NzOandM = N |Global
. integer
sparse matrix A
5 N_ROW Number of local Fullword 1= N_ROW = n Local
rowst integer
6 N_COL Number of local Fullword 1=NCOL = 1 Local
columnsi integer
See the formulas
1 DLEN Lengt.h of the array Fullword shoYvn.m the . Global
descriptor integer beginning of this
section.

tDESC_A(5) is stable after you have placed a call to PADINIT. You can use this value to calculate Iprcs in PDSPGPR.

FDESC_A(6) is stable after you have placed a call to PDSPASB. You can use this value to calculate Iprcs in
PDSPGPR.

DESC_A(7) through DESC_A(10) are only for internal use.

DESC_A(12) through DESC_A(DLEN) are only for internal use.

Programming Considerations for the Parts Subroutine (Fortran
90 and Fortran 77)

This section describes how to design and code the parts subroutine for use by the
Parallel ESSL Fortran 90 and Fortran 77 sparse linear algebraic equation
subroutines and their utility subroutines.

You must supply a separate subroutine that is callable by Parallel ESSL. You must
specify the name of the subroutine in the parts argument. This subroutine name is
selected by you. You must declare parts as an external subroutine in your
application program.

Coding and Designing the Parts Subroutine for the Sparse Subroutines: The
parts subroutine specifies the mapping between a global index for an element in
the global general sparse matrix A and its corresponding storage location on a
process or processes (if overlap occurs).
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You should design the parts subroutine so it receives, as input, global_index, n, and
np. It also must return to Parallel ESSL, as output, the information in the pv and nv
arguments indicating the storage location of global_index on one or more processes.

Syntax:
Fortran CALL PARTS (global_index, n, np, pv, nv)
C parts (&global_index, &n, &np, pv, &nv);
C++ extern "Fortran” void parts(const int &, const int &, const int &, int *, const int &);

parts (global_index, n, np, pv, nv);

On Entry:

global_index
is an input scalar argument containing an integer that indicates the global
index for an element in the global general sparse matrix A, where:
1 = global_index = n.

n is an input scalar argument containing an integer that indicates the order
of the global general sparse matrix A, where: n = 0.

np is an input scalar argument containing an integer that indicates the number
of processes in the process grid, where: np > 0.

On Output:

po is an output array containing integers that identify which processes are
receiving the global index, global_index, where: 0 = pov(i) < np and
1=i=nvo

no is an output scalar argument containing an integer that indicates the

number of unique processes specified in the pv argument, where:
1 =nov = np.

Notes:

1. The parts subroutine can be coded in Fortran, C, or C++. However, for C and
C++ programs, all the arguments must be passed by reference.

Examples for the PARTS Subroutine: Examples of how you could code parts for
different types of data distribution are shown in:

 |"PART_BLOCK (Block Data Distribution)” on page 956

* |“Block Data Distribution for a C Program”|

+ ["PARTBCYC (Block-Cyclic Data Distribution)” on page 956|
“PARTRAND (Random Data Distribution)” on page 957]

Block Data Distribution for a C Program:

void part_block(global_indx,n,nnodes,pv,nv)
int =*global_indx,*n,*nnodes,*pv,*nv;
{
int dim_block;
dim_block = (*n + *nnodes -1)/(*nnodes);
*nv = 1;
pv[*nv-1] = (xglobal_indx - 1)/dim_block;
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Specifying Sequences for the Fourier Transforms

This section shows how to use block-column distribution to distribute a two- or
three-dimensional sequence over a one-dimensional process grid. It also describes
how some of the two- and three-dimensional complex sequences are stored in
FFT-packed storage mode.

Two-Dimensional Sequence
Following is a two-dimensional sequence using zero-based indexing where the first
dimension is n1, and the second dimension is n2:

Qoo  do1 - - - Yon2-1
) LT I < W
Ani-1,0 Dni-1,1 *© ° * Qupq 2

Distributing Data: For the Fourier transform subroutines, a two-dimensional
sequence is distributed over a one-dimensional process grid, using block-column
distribution. The process grid must be arranged as a row (1 X g, where g is the
number of processes).

Note: Two-dimensional sequences can be thought of as two-dimensional matrices.
The term sequence is used because it is traditional for Fourier transforms.

You must distribute the input sequence sequentially to the processes in the process
grid, using block-column distribution. Parallel ESSL also returns the output
sequence using block-column distribution. The output sequence may be returned
in normal or transposed form.

A sequence can be distributed unevenly; that is, one process in the process grid
can receive an array that is smaller than other processes. It can also happen that
some processes receive no data. [“‘Example 2” on page 805| shows an example of
uneven data distribution.

LOCq(n) represents the number of columns that a process would receive if # is
distributed block over g processes. You need to calculate LOCq(n) for each process,
as follows:

* The number of columns, LOCq(n), that processes Py, through P, ; receive is
calculated as follows:

LOCq(n) = NB2 = (n+g-1)/q
* The number of columns, LOCq(n), that process P, receives is calculated as
follows:

LOCq(n) = n—(g—1)(NB2)
* Processes Py, through P, ., would not receive any data. This may happen if
there is not enough data to distribute to all the specified processes.

where:
* n represents the following:

— n is the second dimension, n2, of the sequence (for normal form)
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— n is the first dimension, n1, of the sequence (for transposed form and the
sequence is not stored in FFT-packed storage mode)

- nis n1/2 (for transposed form and the sequence is stored in FFT-packed
storage mode)

* g is the number processes in the process grid

* Py is the process that receives the last block of data. For uneven data
distribution, Py, would receive an array that is smaller than the other processes
receive.

Following is an example of block-column distribution for a two-dimensional
sequence over a one-dimensional, row-oriented process grid.

Global sequence of size 8 x 12:

B,D 0 1 2 3
0 10 20 30 40 50 60 70 80 90 100 110
11121 31 41 51 61 71 81 91 101 111
2 12 22 32 42 52 62 72 82 92 102 112
31323 33 43 53 63 73 83 93 103 113

0 4 14 24 34 44 54 64 74 84 94 104 114
51525 35 45 55 65 75 85 95 105 115
6 16 26 36 46 56 66 76 86 96 106 116
717 27 37 47 57 67 77 87 97 107 117

B,D 0 1 2 ‘ 3

0 POO POl POZ P03

Local arrays:

p.q 0 1 2 3
6 10 20 30 40 50 60 70 80 90 100 110
1 11 21 31 41 51 61 71 81 91 101 111
2 12 22 32 42 52 62 72 82 92 102 112
3 13 23 33 43 53 63 73 83 93 103 113

0 4 14 24 34 44 54 64 74 84 94 104 114

5 15 25 35 45 55 65 75 85 95 105 115
6 16 26 36 46 56 66 76 86 96 106 116
7 17 27 37 47 57 67 77 87 97 107 117

An example of the distribution of a two-dimensional sequence in a Fortran 90
program is shown in|Appendix B, “Sample Programs.”|See the following:

* The subroutine initialize-scale in ["Module Scale” on page 919 which determines
the parameters to be used for block distribution, ultimately setting up the correct
parameters for distributing an FFT sequence.

* The subroutine get-diffusion_matrix in I”Module Fourier” on page 911,| which
shows how a local array can be assigned values.

* The subroutine rlocal_to_rglobal in[“Module Scale” on page 919) which shows
gathering the local portions of the block-distributed real array to generate the
corresponding global sequence/matrix.

FFT-Packed Storage Mode: The output sequence for PSRCFT2 and PDRCFT2, and
the input sequence for PSCRFT2 and PDCRFT2 are stored in FFT-packed storage
mode because they consist of complex-conjugate, even symmetric data.
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For FFT-packed storage mode, only certain elements of the complex-conjugate,
even symmetric data are stored. This section describes how the complex elements
of sequence y, which is the output sequence for PSRCFI2 and PDRCFT?2, and the
input sequence for PSCRFI2 and PDCRFT2, are stored in global matrices Y and X,
respectively.

For example, suppose y is the two-dimensional sequence to be stored in
FFT-packed storage mode for PDRCFT?2. The following list describes how the
elements in y correspond to the elements in the global matrix Y:

* The real part of y  is stored in the real part of Y,

* The real part of y,,,, is stored in the imaginary part of ¥,

* The real part of y,;,, is stored in the real part of Y,,,, o

* The real part of y,; 5,5/, is stored in the imaginary part of Y,,,,, o

* The elements v ,.,,/,_1 are stored in elements Y.,,,, 1 o

* The elements v, /5 1.,2/>_1 are stored in elements Y, /5 1.5 10

* The rows vyy.,1 />4 ; are stored in columns Y; ;.75 1

where:

— nl is the first dimension of array y

— n2 is the second dimension of array y
-i=0,..,n2-1

The remaining elements of y are not stored because they are the complex
conjugates of elements already stored. These relationships are shown in the
following equations:

® Vour-;=Yo; where j=1,...,n2/2-1

® Vuinna—j=Yun,; Where j=1,...,n2/2-1

® Vu—io=Yio where i=1,...,n1/2-1

® Vui_in22=Yinan Where i=1, ... ,nl/2-1

® Vuroin2-;=Yi; Where i=1, ... ,nl/2-1
and j=1,...,n2/2-1,n2/2+1,...,n2-1

where:

* nl is the first dimension of array y
* n2 is the second dimension of array y

The following example, which uses zero-based indexing, has complex conjugate,
even symmetry. The dimensions of array y are 8 x 8 (that is n1 = n2 = 8), where

array vy is:

(11190) ('3923) ('8:10) ('9:4) ('990) ('93'4) ('89_10) (_39'23)
(10,-10) (4,4) (9,3) (-6,2) (-1,2) (-2,1) (-3,1) (-5,-3)
(6s'4) (133) (032) ('7:1) ('139) ('194) ('29'4) ('29'2)

(69'2) (692) ('591) ('8’8) ('194) ('19'1) ('1"8) ('13'2)

(6:0) ('332) ('9:1) ('195) ('150) ('1"5) ('9"1) ('35'2)

(692) (_192) (_198) (_1:1) (_19_4) (_89_8) (_59_1) (69_2)

(694) ('232) ('2,4) ('1"4) (']-"9) ('7"1) (03'2) (1a'3)

(10310) ('533) ('3:'1) ('29'1) (_15'2) ('63'2) (99'3) (43'4)

Because zero-based indexing is used, v, = (111,0), y3, = (-5,1), and y5, = (6,-2).
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In this example, the real part of v, is 111, the real part of y, , is-9, the real part of

Yap is 6, the real part of y,, is—1, and their imaginary parts are all zero. For the

FFT-packed storage mode, the imaginary parts at these particular positions are not

stored. Therefore, the number stored at position Y, is (111,-9), which represents

the contents of both v, and y, ,. The number stored at position Y, 4 is (6,~1),

which represents the contents of both v, , and v, ,.

The elements y, ;.3 are stored in Y; 3 ,. The elements y, ,.; are stored in Y5, The

TOWS V.3 .7 are stored in columns Y, ;5. For FFT-packed storage mode, the
elements in positions y 5., 1457, and rows ys., 5., are not stored.

Following is the global matrix Y in FFT-packed storage mode:

B,D 0 1
(111,-9) (10,-10) (6,-4)  (6,-2)
(-3,23) (4, 4) (1, 3) (6, 2)
('8’10) (93 3) (Os 2) (_5s 1)
(-9, 4) (-6, 2) (-7, 1) (-8, 8)

0 (63'1) ('13 2) ('19 9) ('1s 4)
(_39 2) (_29 1) (_ls 4) (_19_1)
(-9, 1) (-3, 1) (-2,-4) (-1,-8)
(_19 5) (_5: _3) (_29_2) (_19_2)

After the data has been distributed over the process grid, the following local arrays
for Y are stored in FFT-packed storage mode:

p.q 0 1
(111,-9) (10,-10) (6,-4) (6,-2)
('3323) (49 4) (ls 3) (63 2)
(_8910) (9’ 3) (09 2) (_59 1)
(-9, 4) (-6, 2) (-7, 1) (-8, 8)

0 (69_1) (_19 2) (_1: 9) (_154)
(-3, 2) (-2, 1) (-1, 4) (-1,-1)
('99 1) (_39 1) ('2:'4) ('13'8)
('1: 5) ('5’ '3) ('25'2) ('1"2)

Example: The following example shows how to pack data from a
two-dimensional array X into a global array XG, whose columns could then be
block-column distributed among g processes. Array X must contain
complex-conjugate even symmetric data.

Each of the g processes would get LOCq(#) consecutive columns of array XG. Array
X is stored as n1 rows by n2 columns. Array XG is stored as n2 rows by n1/2
columns. This is the transposed form required by PSCRFT2 and PDCRFT2 for the

input array.

PROGRAM PACK2D

IMPLICIT NONE

INTEGER*4 N1,N2,INDEX,JINDEX
PARAMETER(N1 = 64, N2 = 32)
COMPLEX*16 XG(0:N2-1,0:N1/2-1)
COMPLEX*16 X(0:N1-1,0:N2-1)
XG(0,0) = ( REAL(X(0,0))
XG(N2/2,0) =

DO INDEX = 1 , N2/2-1

, REAL(X(0,N2/2)) )

( REAL(X(N1/2,0)) , REAL(X(N1/2,N2/2)) )
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XG(INDEX,0) = X(0,INDEX)
XG(N2/2+INDEX,0) = X(N1/2,INDEX)
ENDDO
DO JINDEX = 0,N2-1
DO INDEX = 1,N1/2-1
XG (JINDEX, INDEX) = X (INDEX,JINDEX)
ENDDO
ENDDO
STOP
END

Three-Dimensional Sequences
Following is a three-dimensional sequence using zero-based indexing where the
first dimension is 11, the second dimension is n2, and the third dimension is n3:

Plane 0:
Apoo - - - Y210
oo - - - 914210
An1-1,00 ° ° "Aui_1n2-10
Plane 1:
Aoo1 - -« dop-1
A1 N A B
Api-101 ° * ° Api_qp2-11

Plane (n3-1):

Aoons-1 -+ - - Qon2-1,n3-1
Aons-1 * * © Ap2-1,n3-1
Aui-1,0m3-1 " " Dui-1,n2-1,n3-1
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Distributing Data: For the Fourier transform subroutines, a three-dimensional
sequence is distributed over a one-dimensional process grid, using block-plane
distribution. The process grid must be arranged as a row (1 X g, where g is the
number of processes).

Note: Three-dimensional sequences can be thought of as three-dimensional
matrices. The term sequence is used because it is traditional for Fourier
transforms.

You must distribute the three-dimensional input sequence sequentially to the
processes in the process grid, using block-plane distribution. Parallel ESSL also
returns the output sequence using block-plane distribution. The output sequence
may be returned in normal or transposed form.

A sequence can be distributed unevenly; that is, one process in the process grid
can receive an array that is smaller than other processes. It can also happen that
some processes receive no data. [‘Example 2” on page 822| shows an example of
when a process does not receive any data.

LOCq(n) represents the number of planes that a process would receive if n is
distributed block over g processes. You need to calculate LOCq(r) for each process,
as follows:

* The number of planes, LOCq(n), that processes Py, through P, ; receive is
calculated as follows:

LOCq(n) = NB3 = (n+q-1)/gq

* The number of planes, LOCq(n), that process P, receives is calculated as
follows:

LOCq(n) = n—(g—1)(NB3)
* Processes Py, through Py, would not receive any data. This may happen if
there is not enough data to distribute to all the specified processes.

where:
* n represents the following:
— n is the third dimension, 13, of the sequence (for normal form)

— n is the first dimension, n1, of the sequence (for transposed form and the
sequence is not stored in FFT-packed storage mode)

- nis n1/2 (for transposed form and the sequence is stored in FFT-packed
storage mode)

* g is the number processes in the process grid

* Py is the process that receives the last block of data. For uneven data
distribution, Py, would receive an array that is smaller than the other processes
receive.

Following is an example of block plane distribution for a three-dimensional
sequence over a one-dimensional process grid.

Three-dimensional, global sequence with four planes that are of size 2 x 2:
Plane 0: Plane 1:
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Plane 2: Plane 3:
B,D 1
0 20 21 30 31
23 24 33 34

Row-oriented, 1 x 2 process grid:

B,D 0 1

0 | P | Pa

Local arrays:

p,q 0 1

o | o1 1101 | 2021 3031

10 11 11 111 23 24 33 34

FFT-Packed Storage Mode: The output sequence for PSRCFI3 and PDRCFT3, and
the input sequence for PSCRFT3 and PDCRFT3 are stored in FFT-packed storage
mode because they consist of complex-conjugate, even symmetric data.

For FFT-packed storage mode, only certain elements of the complex-conjugate,
even symmetric data are stored. This section describes how the complex elements
of sequence y, which is the output sequence for PSRCFT3 and PDRCFT3, and the
input sequence for PSCRFT3 and PDCRFTS3, are stored in global matrices Y and X,
respectively.

For example, suppose y is the three-dimensional sequence to be stored in
FFT-packed storage mode for PDRCFT3. The following list describes how the
elements in y correspond to the complex elements in the global matrix Y:
* The real part of y, is stored the real part of ¥,

* The real part of v, ,;3,, is stored in the imaginary part of ¥

* The elements v .,3,, 1 are stored in elements Y;.,5/,5 10

* The real part of y,,,,, is stored in the real part of ;5,50

¢ The real part of ¥,/ 3,2 is stored in the imaginary part of Y5/,

* The elements v, /5 1.,3,2_1 are stored in elements Y,3/5,1.,3-10,0

* The real part of y,,;,,, is stored in the real part of Y ,,/,0

* The real part of y,;/,,3/> is stored in the imaginary part of Y; 5,50

* The elements y,,;,50,1..3/2_1 are stored in elements Y.,3,5 1 ,,2/20

* The real part of y,;/5 12,2 is stored in the real part of Y, ;5,552

* The real part of y,,; /2 ,12/2.43/2 is the imaginary part of Y3/, /20

* The elements y,,; /2 ,2/21.13/2-1 are stored in elements Y,,3/5,1..3-1.12/2,0

* The rows ¥ 1.,5/2-1, are stored in columns ¥;.,,/2 10

* The r0WS 11 /21:2/2-1,; are stored in columns Yj 5 .1:42-1,0

¢ The planes y.,;,5-1,; are stored in planes Y;; 1.,1,21

where:
- i=0,..,n2-1
-j=0,.,n31

nl is the first dimension of array y
n2 is the second dimension of array y
n3 is the third dimension of array y
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The remaining elements of y are not stored because they are the complex
conjugates of elements already stored. These relationships are shown in the
following equations:

® Vooni-k =Yook where k=1, ... ,n3/2-1

® Von22mi—k =Yonanx Where k=1,...,n3/2-1

® Vuin.0ms—k =Yanox Where k=1,...,n3/2-1

® Vuim2i2mi—k =Vuiznznx Where k=1,...,n3/2-1
® Yonr—j0=Yo o0 Where j=1,...,n2/2-1

® Your—jn3i2=Xo,jn32 where j=1,...,n2/2-1

® Vuizn2-j.0=Yar2,j0 Where j=1,...,n2/2-1

® Vuima—jm32 =Yni2,jnz Where j=1,...,n2/2-1
® Vui00=Vioo Wherei=1,...,nl/2-1

® Vui-ion32 =YVion3n where i=1, ... ,nl/2-1
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® Vuiin22.0=Yinano Wherei=1, ... ,nl/2-1
® Vui-in2i2n32 = Vin2/2.n3/2 where i=1, ... ,nl/2-1

L yO,nZ—j,n3—k:)_)0,j,k Where ]:1, cee ,I’l2/2—1 al’ld
k=1,...,n3/2-1,n3/2+1, ... ,n3-1

° yn[/2,n2—j,n3—k:yn1/2,],k Whel'e ]:1, e ,I’l2/2—1 and
k=1,...,n3/2—-1,n3/2+1, ... ,n3-1

® Vuiioms—k =Yiox Wherei=1, ... ,nl/2—-1 and
k=1,...,n3/2-1,n3/2+1, ... ,n3-1

® Vurin22mi—k =Vinans Wherei=1,...,nl/2-1 and
k=1,...,n3/2-1,n3/2+1, ... ,n3-1

® Vur_in2—jo=Vijo Wherei=1,...,nl/2-1 and
j=1..,n2/2—-1n2/2+1,...,n2-1

® Vuloina—jm32 =Yijn3n Wherei=1, ....nl/2-1 and
j=1..,n2/2—1,n2/2+1,...,n2-1

® Vuloim-1-jns—1-k =i jx Wherei=1,...,n1/2-1 and
j=1..,n2/2—-1,n2/2+1,...,n2-1
and k=1,...,n3/2-1,n3/2+1, ...,n3-1

where:
* nl is the first dimension of array y
* n2 is the second dimension of array y

* 13 is the third dimension of array y

The following example, which uses zero-based indexing, has complex-conjugate,
even symmetry. The dimensions of array y are 4 x 4 x 4 (that is
nl = n2 = n3 = 4).

Plane 0:
Y0:3,030 =
(30,0) (2,-3) (-0.3,0) (2,3)
(-1,0.7) (-1,-4) (-2,-0.7) (0.5,-2)
(_230) (_29_0~6) (2’0) (_290'6)
(-1,-0.7) (0.5,2) (-2,0.7) (-1,4)
Plane 1:
Yo3,031 =
(2,-2) (-1,1)  (0.7,-2) (-3,-2)
(2,2) (-2,-1)  (-0.5,3) (0.04,0.5)
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(-0.4,3) (-0.009,-3) (0.9,0.1) (-1,-0.2)
(-0.5,2) (0.1,0.005)

(-2,-2) (-2,-1) 0.
Plane 2:
Yo3,032 =
(3,0) (0.3,0.5) (0.1,0) (0.3,-0.5)
(-0.3,-2) (1,-3) (2,3) (-7,3)
(2,0) (2,-1) (1,0) (2,1)
(_0-392) (_0-73_3) (29_3) (153)
Plane 3:
Y0:3,033 =
[ (2,2) (-3,2) (0.7,2) (-1,-1) ]

(-2,2) (1,-0.005) (-0.5,-2) (-0.2,1)
(-0.4,-3) (-1,0.2) (0.9,-0.1) (-0.009,3)
(2,-2) (0.04,-0.5) (-0.5,-3) (-2,1)

Because zero-based indexing is used, vy, = (30,0), 51, = (-0.009,-3), and
y3,1,3 = (004,—05)

In this example, the real part of v, is 30, the real part of y , is 3, and their
imaginary parts are zero. For the FFT-packed storage mode, the imaginary parts at
these particular positions are not stored. Therefore, the element stored at position
Y 0,0 is (30,3), which represents the contents of both v, and v g ».

The element y,  ; is stored in the global matrix Y, ,, position.

The real part of y,,, is-0.3, the real part of y,,, is 0.1, and their imaginary parts
are zero. For the FFT-packed storage mode, the imaginary parts at these particular
positions are not stored. Therefore, the element stored at position Y, 4 is (=0.3,0.1),
which represents the contents of both y,,, and y , ,.

The element y,, ; is stored in the global matrix Y;,, position.

The real part of y, o is—2, the real part of y, , is 2, and their imaginary parts are
zero. For the FFT-packed storage mode, the imaginary parts at these particular
positions are not stored. Therefore, the element stored at position Y, is (-2,2),
which represents the contents of both y, o and v, ,.

The element y,  ; is stored in the global matrix Y , , position.

The real part of v, ,  is 2, the real part of y,,, is 1, and their imaginary parts are
zero. For the FFT-packed storage mode, the imaginary parts at these particular
positions are not stored. Therefore, the element stored at position Y, , , is (2,1),
which represents the contents of both y,,, and v, ».

The element y, , ; is stored in the global matrix Y3, , position.
The rows y, ; .53 are stored in columns Yy 3 ; 5. The rows y, ; o5 are stored in

columns Y33 o. The plane v, (3.5 is stored in plane Y3 .5 . For FFT-packed
storage mode, the remaining elements do not need to be stored due to symmetry.
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Following is the global matrix Y in FFT-packed storage mode:

Plane 0:
B,D 0
(30, 3) (29 _3) (_2: 2) (_29 _0-6)
(2, -2) (-1, 1) (-0.4,3) (-0.009,-3)
0 (-0.3, 0.1) (0.3, 0.5) (2, 1) (2, 1)
(0.7, -2) (-3, 2) (0.9, 0.1) (-1, 0.2)
Plane 1:
B,D 1
(-1,0.7) (-1, -4) (-2, -0.7) (0.5, -2)
(2,2) (-2,-1) (-0.5, 3)  (0.04, 0.5)
0 (-0.3,-2) (1, -3) (2, 3) (-0.7, 3)

(-2, 2) (-0.1, -0.005) (-0.5, -2) (-0.2, 1)

Following is a 1 x 2 process grid:
B,D 0

After the data has been distributed over the process grid, the following local arrays
for Y are stored in FFT-packed storage mode:

p,q 0 1
T e ) (2 ) (2, 2) (2, -0.6) | (-1,6.7) (-1, ) (2, -0.7) (0.5, 2)
(2, -2) (-1, 1) (-0.4,3) (-0.009,-3) (2,2) (-2,-1) (-0.5, 3) (0.04, 0.5)
0 (-0.3, 0.1) (0.3, 0.5) (2, 1) (2, 1) (-0.3,-2) (1, -3) (2, 3) (-0.7, 3)
(0.7, -2) (-3, 2) (0.9, 0.1) (-1, 0.2) (-2, 2) (-0.1, -0.005) (-0.5, -2) (-0.2, 1)

Example: The following example shows how to pack data from a
three-dimensional array X into a global array XG, whose planes could then be block
distributed among g processes. Array X must contain complex-conjugate even
symmetric data.

Each of the g processes would get LOCq(n) consecutive planes of array XG. Array X
is stored as n1 rows by n2 columns by n3 planes. Array XG is stored as n3 rows by
n2 columns by n1/2 planes. This is the transposed form required by PSCRFT3 and

PDCREFTS3 for the input array.

PROGRAM PACK3D

IMPLICIT NONE

INTEGER*4 N1,N2,N3

INTEGER*4 TINDEX,JINDEX,KINDEX
PARAMETER(N1 = 64, N2 = 32, N3 = 48)
COMPLEX*16 XG(0:N3-1,0:N2-1,0:N1/2-1)
COMPLEX*16 X(0:N1-1,0:N2-1,0:N3-1)

XG(0,0,0) = ( REAL(X(0,0,0)) , REAL(X(0,0,N3/2)) )
XG(N3/2,0,0) = ( REAL(X(0,N2/2,0)) , REAL(X(O,N2/2,N3/2)) )
XG(0,N2/2,0) = ( REAL(X(N1/2,0,0)) , REAL(X(N1/2,0,N3/2)) )

XG(N3/2,N2/2,0) = (REAL(X(N1/2,N2/2,0)) ,REAL(X(N1/2,N2/2,N3/2)))
DO IINDEX = 1 , N3/2-1

XG(IINDEX,0,0) = X(0,0,IINDEX)

XG(N3/2+IINDEX,0,0) = X(0,N2/2,IINDEX)

XG(IINDEX,N2/2,0) = X(N1/2,0,1INDEX)

XG(N3/2+IINDEX,N2/2,0) = X(N1/2,N2/2,1INDEX)
ENDDO
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DO KINDEX = 0,N3-1
DO JINDEX = 1,N2/2-1
XG (KINDEX,JINDEX,0) = X(0,JINDEX,KINDEX)
XG (KINDEX,N2/2+JINDEX,0) = X(N1/2,JINDEX,KINDEX)
ENDDO
ENDDO
DO KINDEX = 0,N3-1
DO JINDEX = 0,N2-1
DO IINDEX = 1,N1/2-1
XG (KINDEX,JINDEX, IINDEX) = X(IINDEX,JINDEX,KINDEX)
ENDDO
ENDDO
ENDDO
STOP
END
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Chapter 3. Coding and Running Your Program

This chapter explains the Parallel ESSL-specific procedures to follow when coding
and running your program.

Coding Tips for Optimizing Parallel Performance

Performance has been the primary objective in the design of the Parallel ESSL
subroutines. To achieve this performance goal, the Parallel ESSL subroutines use
"state-of-the-art” algorithms tailored to specific operational characteristics of the
hardware. In addition, Parallel ESSL will leverage the high performance provided
by ESSL for processor computations.

Choosing How Many MPI Tasks and Computational Threads to

Use

If you are using the Parellel ESSL SMP libraries, you need to specify the number of
MPI tasks and the number of computational threads you want ESSL and Parallel
ESSL to use. To set the number of computational threads, use the environment
variable XLSMPOPTS or OMP_NUM_THREADS, as shown in the table below.

Table 34. Specifying the Number of MPI Tasks and the Number of Computational Threads to Use on AlX

Specify one of the following environment variables:

MPI Tasks Computational Threads | XLSMPOPTS —or— OMP_NUM_THREADS

1 per Number of CPUs in the |It is not necessary to set an environment variable because the default is
processor processor node equal to the number of CPUs on the processor node.

node

1 per CPU 1 XLSMPOPTS=parthds=1 —or— OMP_NUM_THREADS=1
Multiple MPI | thds= (Number of CPUs | XLSMPOPTS=parthds=thds —or— OMP_NUM_THREADS=thds
tasks per in the processor node) /

processor (Number of MPI tasks

node per processor node)

If you are using the Parallel ESSL GM libraries, you can only run single-threaded
applications.

For further details, see the XLF or C manuals.

Parallel ESSL Techniques

The following techniques are used by most subroutines to optimize performance:
* Minimizing the impact of communications by exchanging larger blocks of data
* Blocking data to match the processor cache size

The following items also impact performance. They generally depend on the
specific parallel routine being called. See the subroutine description in the reference
section for any exceptions to these rules.

* Number and types of processors

Choosing the number of processors depends primarily on the problem size. It is
reasonable to increase the number of processors, if the global problem size
increases sufficiently to keep the amount of local data per process at a
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reasonable size. If, however, using more processes, such as 17 rather than 16,
causes you to use a one-dimensional grid rather than a two-dimensional grid,
performance may be degraded. See the next item.

Shape of process grid

For most subroutines, using a two dimensional (square or as close to square as
possible) grid is suggested. For example, if sixteen processors were used, define
a 4 by 4 process grid. For exceptions to this rule, see the subroutine descriptions
in the reference section.

Block size(s)

See the following table for suggested block sizes. The optimal block size
depends on the underlying node computations, load balancing, communications,
system buffering requirements, problem size, and dimension and shape of the
process grid. To achieve optimal performance, generally requires
experimentation, but the values specified in should provide good
performance for most cases. For exceptions to these rules, see the subroutine
descriptions in the reference section.

Table 35. Suggested Block Sizes

Area

Block Sizes

Level 2 PBLAS

24 (All subroutines,
except PDTRSV
and PZTRSV)

48 (PDTRSV
and PZTRSV)

Level 3 PBLAS

100-200 (Real subroutines)
50-100 (Complex subroutines)

Dense Linear Algebraic Equations, except PDGEQRF and 100200 (Real subroutines)

PZGEQRF

50-100 (Complex subroutines)

Eigensystems Analysis and Singular Value Analysis, 24

PDGEQREF, and PZGEQRF

Random Number Generation Data cache size / 2

Note: The data cache size can be obtained by utilizing a code fragment, shown in|"PDURNG — Uniform Random|

[Number Generator” on page 839,|under|Notes and Coding Rules|

78

For the Parallel ESSL SMP libraries:

— If you are using multiple computational threads, your performance may be
improved by setting the following environment variable:

export MALLOCMULTIHEAP=true

Note: For details, see the XLF, C, or AIX manuals.

— If you are using multiple message-passing tasks per node, specify
MP_SHARED_MEMORY=yes to specify the use of shared memory (instead of
IP or a switch) for message passing between tasks running on the same node.

You should be able to improve performance of production-level code by using

the PESSL,_ERROR_SYNC environment variable to disable error synchronization.

For details, see [“PESSL._ERROR_SYNC Environment Variable” on page 103
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Avoiding Conflicts with Parallel ESSL and ESSL Routine Names

Do not use names for your own subroutines, functions, and global variables that
are the same as any of the ESSL or Parallel ESSL routine names. All internal ESSL
and Parallel ESSL routine names that are exported begin with the “ESV” prefix, so
you should avoid using this prefix for your own routine names.

Coding Your Program

This section contains Parallel ESSL-specific application program coding
requirements and considerations for programs coded in Fortran, C, and C++. You
have the option of using either the BLACS subroutines as documented below or
the C interface for the BLACS as shown in |[Appendix A, “BLACS Quick Reference|
(Guide,” on page 891] To make a Parallel ESSL call in a parallel application
program:
1. Call the BLACS initialization subroutines (BLACS_GET followed by a call to
either BLACS_GRIDINIT or BLACS_GRIDMAP), to initialize the process grid.
For details on how to do this, see [“Using the BLACS” on page 80.

2. Ensure your data has been distributed across your process grid, according to
the particular input distribution specified by the Parallel ESSL subroutine. For
details on how to do this, see [Chapter 2, “Distributing Your Data,” on page 21}

3. Call the Parallel ESSL subroutine on all processes in the process grid (defined
earlier through the BLACS initialization calls). The Parallel ESSL subroutine call
interfaces are documented in Part 2 of this book.

4. When the Parallel ESSL subroutine returns control to the application program,
you process the solution data, which is distributed in accordance with the
output distribution specified by the Parallel ESSL subroutine.

To look at an application program outline, see the following:

* [“Application Program Outline” on page 87| (For all subroutines, except the
sparse linear algebraic equation subroutines.)

* [“Application Program Outline for the Fortran 90 Sparse Linear Algebraid
Equations and Their Utilities” on page 89|

« |”Application Program Outline for the Fortran 77 Sparse Linear Algebraid
Equations and Their Utilities” on page 90|

For an example of the use of Parallel ESSL in a sample Fortran 90 application
program solving a thermal diffusion problem, see[Appendix B, “Sample Programs,”|

Parallel ESSL supports both 32-bit- and 64-bit-environment applications. The data
model for the 64-bit environment is referred to as LP64. This data model supports
32-bit integers and 64-bit pointers. In accordance with the LP64 data model, all
Parallel ESSL integer arguments remain 32 bit.

The ESSL Guide and Reference manual contains additional information about coding
ESSL subroutine calls in Fortran, C, and C++ programs. That information also
applies to Parallel ESSL and is not repeated in this book. The specific topics you
may want to reference, that apply to Parallel ESSL, are:

* Coding the calling sequences

* Passing arguments

* Setting up scalar data

 Setting up complex data in C and C++ programs

* Setting up arrays
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Using the BLACS

A parallel machine with k processes is often thought of as a one-dimensional linear
array of processes labeled 0, 1, ..., k1. For performance reasons, it is sometimes
useful to map this one-dimensional array into a logical two-dimensional
rectangular grid, which is also referred to as process grid, of processes. The process
grid can have p process rows and q process columns, where p x g = k. A process
can now be indexed by row and column, (i,j), where 0 =i < pand 0 =j < q.

Before calling the Parallel ESSL subroutines, you need to call BLACS_GET,
followed by a call to either BLACS_GRIDINIT or BLACS_GRIDMAP to define the
size and dimensions of your process grid. This identifies what processes are
involved in the communication. You can reinitialize the BLACS, as needed, at
various points in your application program to redefine the process grid.

When you initialize the BLACS, you must specify the (total) size k of the grid to be
less than or equal to the number of MPI tasks you are using. If argument values

are not valid, an error message is issued and the program is terminated.

An example of initializing the BLACS in a Fortran 90 program is shown in

Appendix B, “Sample Programs,” on page 895.See the subroutine initialize_scale in

“Module Scale” on page 919/

BLACS_PINFO

You call the BLACS_PINFO routine when you want to determine how many
processes are available. You can use this information as input into other BLACS
routines that set up your process grid.

Syntax:
Language Call Statement
Fortran CALL BLACS_PINFO (mypnum, nprocs)
C blacs_pinfo (&mypnum, &nprocs);
C++ extern “FORTRAN" void blacs_pinfo(const int &, const int &);
blacs_pinfo (mypnum, nprocs);
On Return:
mypnum

is the local process rank (for example, message-passing task number) that
your program is currently running on.

Returned as: a fullword integer value, where: 0 = mypnum < (nprocs — 1).
nprocs is the number of processes available for the BLACS to use.

Returned as: a fullword integer value.
BLACS_ GET
You call the BLACS_GET routine when you want the values the BLACS are using

for internal defaults. The most common use is in retrieving a default system
context for input into BLACS_GRIDINIT or BLACS_GRIDMAP.

Syntax:
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Language Call Statement
Fortran CALL BLACS_GET (icontxt, what, val)
C blacs_get (&icontxt, &what, &uval);
C++ extern “FORTRAN" void blacs_get(const int &, const int &, const int &);
blacs_get (icontxt, what, val);
On Entry:
icontxt has the following meaning:
If what = 0 or 2, icontxt is ignored.
If what = 10, icontxt is the integer handle indicating the BLACS context.
Specified as: a fullword integer value.
what  indicates the BLACS internal to be returned in val. For a description of the
values of what, see|[Table 36
Table 36. Input and Output for BLACS_GET
Value of what BLACS Internals That are Returned in val
0 Handle indicating the default system context
2 BLACS debug level
10 Handle indicating the system context used to define the BLACS
context whose handle is icontxt.
You can redefine the shape of your process grid by calling
BLACS_GET with what=10. For examples on how to do this, see
the “Notes” section in [“BLACS_GRIDINIT"| or
[“BLACS_GRIDMAP” on page 83/
Specified as: a fullword integer value 0, 2, 10.
On Return:
val is the value of the BLACS internal, as defined for each value of what in
Returned as: a fullword integer value.
BLACS_GRIDINIT
You call the BLACS_GRIDINIT routine when you want to map the processes
sequentially in row-major order or column-major order into the process grid. You
must specify the same input argument values in the calls to BLACS_GRIDINIT on
every process.
Syntax:
Language Call Statement
Fortran CALL BLACS_GRIDINIT (icontxt, order, nprow, npcol)
C blacs_gridinit (&icontxt, &order, &nprow, &npcol, lorder);
C++ extern “FORTRAN" void blacs_gridinit(const int &, char *, const int &, const int &, size_t);

blacs_gridinit (icontxt, order, nprow, npcol, lorder);
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On Entry:

icontxt is the system context to be used in creating the BLACS context. For
examples on obtaining a default system context and reshaping your
process grid, see the “Notes” section.

Specified as: a fullword integer value.
order  indicates how to map processes into the process grid, where:
If order = 'R’, row-major natural ordering is used. This is the default.
If order = ’'C’, column-major natural ordering is used.
Specified as: a single character; order = 'R” or 'C’.
nprow is the number of rows in this process grid.
Specified as: a fullword integer where: 1 = nprow = p.
npcol  is the number of columns in this process grid.
Specified as: a fullword integer value where: 1 = npcol = q.
lorder  is the string length of order.

Specified as: a size_t value where: lorder = strlen(order).

On Return:

icontxt is the integer handle to the BLACS context, which is a mechanism for
partitioning communication space. A defining property of a context is that
a message in a context cannot be sent or received in another context. The
BLACS context includes the definition of a grid, and each processor’s
coordinates in the grid.

Returned as: a fullword integer value.

Notes:
1. You may obtain a default system context by calling BLACS_GET as follows:
CALL BLACS_GET(0, 0, icontxt)

2. You can redefine the shape of your process grid by calling BLACS_GET with
what=10 and then calling BLACS_GRIDINIT. The following example shows
how to create a 1 X 4 process grid, using the context from a 2 x 2 process grid:

*

* Define the 1 x 4 process grid
*

CALL BLACS_GET(0, 0, icontxt)
CALL BLACS_GRIDINIT(icontxt, 'R' 2, 2)

*

* Redefine the shape to a 1 x 4 process grid
*

CALL BLACS_GET(icontxt, 10, newcontxt)
CALL BLACS GRIDINIT(newcontxt, 'R', 1, 4)

3. Suppose you specified a total of fifteen processes in your MP_PROCS
environment variable, referred to as t, through t,,. You then call
BLACS_GRIDINIT in your Fortran program, as follows:

CALL BLACS_GRIDINIT (icontxt,'R',3,4)

The processes would be mapped sequentially in row major order into a 3 by 4
process grid as follows:
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Table 37. A 3 by 4 process grid

P, 0 1 2 3
0 t, t, t, ty
1 t, ts t, t,
2 t8 t9 tl 0 tl 1

Note: In this example, the process grid is 3 by 4. You must execute a call to
Parallel ESSL on all processes whose process row and column index
satisfy 0 = i < 3and 0 = j < 4, respectively.

BLACS_GRIDINFO
You call the BLACS_GRIDINFO routine to obtain the process row and column

index.
Syntax:
Language Call Statement
Fortran CALL BLACS_GRIDINFO (icontxt, nprow, npcol, myrow, mycol)
C blacs_gridinfo (&icontxt, &nprow, &npcol, &myrow, &mycol);
C++ extern “FORTRAN" void blacs_gridinfo(const int &, const int &, const int &, const int &,
const int &);
blacs_gridinfo (icontxt, nprow, npcol, myrow, mycol);

On Entry:

icontxt is the integer handle to the BLACS context which is a mechanism for
partitioning communication space. A defining property of a context is that
a message in a context cannot be sent or received in another context. The
BLACS context include the definition of a grid, and each process
coordinates in the grid.

Specified as: a fullword integer value, returned by BLACS_GRIDINIT or
BLACS_GRIDMAP.

On Return:
nprow is the number of rows in this process grid.

Specified as: a fullword integer where: 1 = nprow = p.
npcol  is the number of columns in this process grid.

Specified as: a fullword integer value where: 1 = npcol = g.
myrow is the process grid row index.

Returned as: a fullword integer value where: 0 = myrow < p.
mycol  is the process grid column index.

Returned as: a fullword integer value where: 0 = mycol < g.

BLACS_GRIDMAP

You call the BLACS_GRIDMAP routine when you want to map the processes in a
specific manner into a process grid. You pass in a two-dimensional array
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containing the process numbers, which is mapped into your new process grid. You
must specify the same input argument values in the calls to BLACS_GRIDMAP on
every process.

Syntax:
Language Call Statement
Fortran CALL BLACS_GRIDMAP (icontxt, usermap, ldumap, nprow, npcol)
C blacs_gridmap (&icontxt, usermap, &ldumap, &nprow, &npcol);
C++ extern “FORTRAN" void blacs_gridmap(const int &, int *, const int &, const int &, const int

&);

blacs_gridmap (icontxt, usermap, ldumap, nprow, npcol);

On Entry:

icontxt is the system context to be used in creating the BLACS context. For
examples on obtaining a default system context and reshaping your
process grid, see the “Notes” section.

Specified as: a fullword integer value.

usermap
specifies the process-to-grid mapping. USERMAP(i,j) contains the number of
the process to be mapped to the process grid, location (i,j).

Specified as: a two dimensional integer array of size Idumap by npcol.

Idumap
is the leading dimension of the integer array USERMAP.

Specified as: an integer where: ldumap = nprow
nprow is the number of rows in this process grid.

Specified as: a fullword integer where: 1 = nprow = p.
npcol  is the number of columns in this process grid.

Specified as: a fullword integer value where: 1 = npcol = g.

On Return:

icontxt is the integer handle to the BLACS context which is a mechanism for
partitioning communication space. A defining property of a context is that
a message in a context cannot be sent or received in another context. The
BLACS context include the definition of a grid, and each process
coordinates in the grid.

Returned as: a fullword integer value.

Notes:
1. You may obtain a default system context by calling BLACS_GET as follows:
CALL BLACS GET(0, 0, icontxt)

2. You can redefine the shape of your process grid by calling BLACS_GET with
what=10 and then calling BLACS_GRIDMAP. The following example shows
how to create a 1 x 4 process grid, using the context from a 2 X 2 process grid:
*

* Define the 1 X 4 process grid
*

CALL BLACS GET(0, 0, icontxt)
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CALL BLACS_GRIDMAP(icontxt, usermap, 2, 2, 2)

*
* Redefine the shape of your 2 x 2 process grid
* to a1l x 4 process grid

*

CALL BLACS_GET(icontxt, 10, newcontxt)
CALL BLACS_GRIDMAP(newcontxt, usermap, 2, 1, 4)

3. Suppose you specified a total of 15 processes in your MP_PROCS environment
variable, referred to as f, through ¢,,. You then called BLACS_GRIDMAP in
your Fortran program, as follows:

CALL BLACS_GRIDMAP (icontxtl,USERMAP,5,3,4)
Where array USERMAP1 contained the following integer values:

6 1 2 3
8 9 10 11
USERMAP1 = 4 5 6 7

then, the processes would be mapped into a 3 by 4 process grid as follows:

Table 38. 3 by 4 process grid

P, 0 1 2 3
t, t t, t,

1 ts ty tio t
2 t, ts t, t,

BLACS_GRIDMAP sets icontxtl. Use the value of icontxtl in any subsequent
calls to Parallel ESSL to use this process grid.

While the above process grid is active, another overlapping process grid can be
defined. Suppose you then called BLACS_GRIDMAP in your Fortran program
as follows:

CALL BLACS GRIDMAP(icontxt2, USERMAP2, 2, 2, 2)
where USERMAP contains the following values:

USERMAPZ = 1 2
10 11

Then the processes would be mapped into a 2 by 2 process grid as follows:

Table 39. 2 by 2 process grid

P,, 0 1
t t
1 tio ty

BLACS_GRIDMAP will set icontxt2. Use the value of icontxt2 in any subsequent
calls to Parallel ESSL to use this process grid.

Notes:

a. In this example, process t; is mapped to Py, in the first grid and to Py, in
the second grid.

b. Both grids can simultaneously be used in your program.
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BLACS_GRIDEXIT
You call the BLACS_GRIDEXIT routine to release a BLACS context.

Syntax:
Language Call Statement
Fortran CALL BLACS_GRIDEXIT (icontxt)
C blacs _gridexit (&icontxt);
C++ extern “FORTRAN” void blacs_gridexit(const int &);
blacs_gridexit (icontxt);

On Entry:

icontxt is the integer handle to the BLACS context indicating the BLACS context to
be released.

Specified as: a fullword integer value, returned by BLACS_GRIDINIT or
BLACS_GRIDMAP.

BLACS_EXIT
You call the BLACS_EXIT routine to release all the BLACS context and the memory
allocated by the BLACS.

Syntax:
Language Call Statement
Fortran CALL BLACS_EXIT (continue)
C blacs_exit (&continue);
C++ extern “FORTRAN" void blacs_exit(const int &);
blacs_exit (continue);

On Entry:

continue
has the following meaning:

If continue = 0, all the BLACS context and memory allocated by the
BLACS are released. In addition, Parallel ESSL calls MPI_Finalize to exit
from MPL There can only be one call to MPI_Finalize in your program.
Therefore, at the end of your program, you should call BLACS_EXIT with
continue = 0 or call MPI_Finalize directly.

If continue = 0, the BLACS contexts and memory allocated by the BLACS
are released, however, you can continue using MPI. When you are finished
using MPI, you need to remember to call MPI_Finalize directly.

Specified as: a fullword integer.

Using Extrinsic Procedures—The Fortran 90 Sparse Linear
Algebraic Equation Subroutines

In Fortran 90 programs, the Parallel ESSL sparse linear algebraic equation
subroutines are invoked with the CALL statement, using the features of Fortran
90—generic interfaces, optional and keyword arguments, assumed-shape arrays,
and modules.
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The Fortran 90 sparse linear algebraic equation subroutines require that an explicit
interface be provided for each extrinsic procedure entry in the scope where it is
called, using an interface block. The interface blocks for the Parallel ESSL
subroutines are provided for you in the module FOOSPARSE, so you do not have to
code the interface blocks yourself. In the beginning of your program, before any
other specification statements, you must code the statement:

use f90sparse

This gives the XL Fortran compiler access to the interface blocks. For examples of
where to code this statement in your program, see [“Application Program Outling]
for the Fortran 90 Sparse Linear Algebraic Equations and Their Utilities” on page|

9]

If you are accessing the Fortran 90 sparse linear algebraic equation subroutines
from a 64-bit-environment program, you need to modify your existing Fortran
compilation procedures to specify the location of the 64-bit module FOOSPARSE.
(See [“Running Your Program on AIX” on page 91| and [“Running Your Program on|
[Linux” on page 941)

For further details on coding the CALL statement and other related aspects of
Fortran 90 programs, see the Fortran manuals.

Setting Up the Parallel ESSL Header File for C and C++

Before you can call the Parallel ESSL subroutines from your C or C++ program:
* You must have the Parallel ESSL header file, pess1.h, installed on your system.

This header file allows you to code your function calls as described in Part 2 of
this book. You should check with your system support group to verify that the
appropriate Parallel ESSL header file is installed.

* You must code the following statement in the beginning of your C or C++
program:
#include <pessl.h>

Setting Up the C Interface for the BLACS Header File for C
and C++

Before you can call the C interface for the BLACS subroutines from your C or C++
program (as described in|Appendix A, “BLACS Quick Reference Guide,” on page]
Wl

* You must have the Cbhlacs.h header file installed on your system.
* You must code the following statement in the beginning of your C or C++
program:
#include <Cblacs.h>

Application Program Outline

For the Level 2 and 3 PBLAS, dense and banded linear algebraic equations, and
eigensystem analysis and singular value analysis subroutines, this application
program outline shows how you can use the BLACS to define a process grid, set
up a Type-1 array descriptor, call a Parallel ESSL subroutine, and exit the BLACS.
For a complete example, see |Appendix B, “Sample Programs,” on page 895

*
* Determine my process number and the total number of available
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* processes
CALL BLACS_PINFO(IAM, NNODES)

* Define a process grid that is as close to square as possible

NPROW
NPCOL

INT (SQRT (REAL (NNODES)))
NNODES/NPROW

Get the default system context
Define the process grid
Determine my process row and column index

* %k X X X

CALL BLACS_GET(0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, 'R', NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

* Only call the Parallel ESSL subroutine if I am in the process grid
IF (MYROW .LT. NPROW .AND. MYCOL .LT. NPCOL) THEN

* Setup input arrays, scalars, array descriptors, etc.

* NUMROC can be used to return the size of Tocal arrays
* For example, here is one way to setup the descriptor vector for A

DESC_A(1) = DTYPE_A

DESC_A(2) = ICONTXT

DESC_A(3) = M A

DESC_A(4) = N_A

DESC_A(5) = MB_A

DESC_A(6) = NB_A

DESC_A(7) = RSRC_A

DESC_A(8) = CSRC_A

DESC_A(9) = MAX (1, NUMROC(DESC_A(3), DESC_A(5), MYROW, DESC_A(7), NPROW))

CALL Parallel ESSL subroutine

* ok %

CALL PDTRAN(M, N, ALPHA, A, IA, JA, DESC_A, BETA, C, IC, JC, DESC_C)

*
* Process output arrays, scalars etc.

When finished with this process grid, release the process grid.

* % X

CALL BLACS_GRIDEXIT(ICONTXT)

ENDIF

At the end of the program, exit from the BLACS and MPI

* ok

CALL BLACS_EXIT(0)
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END

Application Program Outline for the Fortran 90 Sparse Linear
Algebraic Equations and Their Utilities

The following is an outline for a application program that is calling the Fortran 90
sparse linear algebraic equation subroutines and their utilities. For a more complete
example, see [“Example—Using the Fortran 90 Sparse Subroutines” on page 636| or
[“Fortran 90 Sample Sparse Program” on page 932]

USE F90SPARSE

IUser-defined subroutine
INTERFACE PARTS
SUBROUTINE PARTS(...)
INTEGER GLOBAL_INDEX, N, NP

INTEGER NV
INTEGER PV ()
END SUBROUTINE PARTS
END INTERFACE

IDefine the process grid
CALL BLACS_GET (...)

CALL BLACS_GRIDINIT(...)
CALL BLACS_GRIDINFO(...)

!Allocate space for and initialize array descriptor desc_a.
CALL PADALL(...)

IAT1ocate space and initialize some values
Ifor sparse matrix A.
CALL PSPALL(...)

IA1Tocate and build vectors b and x.
CALL PGEALL(...)

1Build the sparse matrix A with multiple calls to PSPINS.
IEach process has to call PSPINS as many times as
Inecessary to insert the local rows it owns.
!Update array descriptor desc_a.
do

CALL PSPINS(...)
enddo

1Build vectors b and x with multiple calls to PGEINS.
IEach process has to call PGEINS as many times as
Inecessary to insert the local elements it owns.
do

CALL PGEINS(...)
enddo

IFinalize the sparse matrix A and array descriptor desc_a
CALL PSPASB(...)
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IFinalize the vectors b and x.

IMatrix A and array descriptor desc_a
Imust be finalized before calling PGEASB.
CALL PGEASB(...)

!Prepare preconditioner
CALL PSPGPR(...)

1Call solver
CALL PSPGIS(...)

ICleanup and exit.

!Deallocate vectors b and x

IDeallocate matrix A and the preconditioner data structure PRC
CALL PGEFREE(...)

CALL PSPFREE(...)

IDeallocate the array descriptor desc_a only after
lvectors b and x, and matrix A are deallocated.
CALL PADFREE(...)

CALL BLACS_GRIDEXIT(...)
CALL BLACS_EXIT(...)

Application Program Outline for the Fortran 77 Sparse Linear
Algebraic Equations and Their Utilities

The following is an outline for a application program that is calling the Fortran 77
sparse linear algebraic equation subroutines and their utilities. For a complete
example, see [“Example—Using the Fortran 77 Sparse Subroutines” on page 669| or
[“Fortran 77 Sample Sparse Program” on page 941 |

EXTERNAL PARTS

IDefine the process grid
CALL BLACS GET (...)

CALL BLACS_GRIDINIT(...)
CALL BLACS_GRIDINFO(...)

IInitialize array descriptor desc_a.
CALL PADINIT(...)

IInitialize some values
Ifor sparse matrix A.
CALL PDSPINIT(...)

!Build the sparse matrix A with multiple calls to PDSPINS.
IEach process has to call PDSPINS as many times as
Inecessary to insert the local rows it owns.
!Update array descriptor desc_a.
do

CALL PDSPINS(...)
enddo
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1Build vectors b and x with multiple calls to PDGEINS.
IEach process has to call PDGEINS as many times as
Inecessary to insert the local elements it owns.
do

CALL PDGEINS(...)
enddo

IFinalize the sparse matrix A and array descriptor desc_a
CALL PDSPASB(...)

IFinalize the vectors b and x.
CALL PDGEASB(...)

!Prepare preconditioner
CALL PDSPGPR(...)

1Call solver
CALL PDSPGIS(...)

CALL BLACS_GRIDEXIT(...)
CALL BLACS_EXIT(...)

Running Your Program

This section describes both the Parallel ESSL-specific and ESSL-specific changes
you need to make to your job procedures for compiling, linking, and running your
program.

You can use any procedures you are currently using to compile, link, and run your
Fortran, C, and C++ programs, as long as you make the necessary modifications
required by Parallel ESSL.

Running Your Program on AIX

The following notes apply to running your program on AIX.

Notes:

1. The default search path for the Parallel ESSL and ESSL libraries is: /usr/11b.
(Note that /lib is a symbolic link to /usr/lib.)

If the libraries are installed somewhere else, add the path name of that
directory to the beginning of the LIBPATH environment variable, being careful
to keep /usr/lib in the path. The correct LIBPATH setting is needed both for
linking and executing the program.

For example, if you installed the Parallel ESSL libraries in /home/me/lib you
would issue ksh commands similar to the following in order to compile and
link a program:

LIBPATH=/home/me/1ib:/usr/1ib

export LIBPATH

mpx1f -0 myprog myprog.f -Tessl -Ipessl -Tblacs
After setting the LIBPATH command, the /home/me/lib directory is the
directory that gets searched first for the necessary libraries. This same search
criterion is used at both compile and link time and run time.

2. For the Parallel ESSL SMP libraries, you can use the XLSMPOPTS or
OMP_NUM_THREADS environment variable to specify options that affect
SMP execution. For details, see [Table 34 on page 77

3. If you are accessing Parallel ESSL from a 64-bit-environment program, you
must add the -q64 compiler option.
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4. Parallel ESSL supports the XL Fortran compile-time option -qextname. For
details, see the Fortran manuals.

5. The ESSL and Parallel ESSL libraries are shared libraries and must be used in
conjunction with each other. Equivalent subroutines with the same names in
other libraries (such as libblas.a) will not be used even if they are specified on
the command line in place of the ESSL library.

6. The MPICH-GM scripts are installed in /usr/bin.

Parallel ESSL for AIX—Dynamic Linking Versus Static Linking
Only dynamic linking is supported for programs using Parallel ESSL for AIX.

Parallel ESSL for AIX—Fortran Program Procedures

You do not need to modify your existing Fortran compilation procedures when
using Parallel ESSL for AIX unless you are accessing the Fortran 90 sparse linear
algebraic equation subroutines from a 64-bit-environment program. In that case,
you must add:

—I/usr/lpp/pessl.rte.common/include/64
to your compilation command (as shown in the tables that follow).

When linking and running your program, you must modify your existing job
procedures for Parallel ESSL for AIX, to set up the necessary libraries.

If you are accessing Parallel ESSL for AIX from a Fortran program, you can
compile and link using the commands in the following tables.

Table 40. Fortran program compile and link commands for use with SMP libraries

Application Mode |Command

32-bit mpx1f r -0 xyz.f -lessIsmp -Tpessismp -Tblacssmp

mpx1f_r -0 -q64 xyz.f -lesslsmp -1pessismp -Tblacssmp
64-bit
mpx1f_r -0 -q64 xyz.f -lesslsmp -1pessismp -1blacssmp -I/usr/1pp/pessl.rte.common/include/64

Table 41. Fortran program compile and link commands for use with GM libraries

Application Mode |Command

32-bit mpif77 -fc=x1f_r -0 -gnosave xyz.f -less1 -Ipesslgm -Tblacsgm

64-bit mpif77 -fc=x1f_r -0 -gnosave -q64 xyz.f -lessl -Tpessigm -Tblacsgm

Parallel ESSL for AIX supports the XL Fortran compile-time option -qextname. For
details, see the Fortran manuals.

An example of a makefile is shown in[“Sample Makefiles and Run Script for AIX”]

Parallel ESSL for AIX—C Program Procedures

The Parallel ESSL for AIX header files pess1.h and Cblacs.h, used for C and C++
programs, are installed in the /usr/include directory. You do not need to modify
your existing C compilation procedures when using Parallel ESSL for AIX, unless
you want to specify your own definitions for complex data.

If you do want to specify your own definitions for short- and long-precision
complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your compile
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and link command. Otherwise, you automatically use the definitions of short- and
long-precision complex data provided in the Parallel ESSL for AIX header file (as
shown in the tables that follow).

When linking and running your program, you must modify your existing job
procedures for Parallel ESSL for AIX, to set up the necessary libraries.

If you are accessing Parallel ESSL for AIX from a C program, you can compile and
link using the commands shown in the following tables.

Table 42. C program compile and link commands for use with SMP libraries

Application Mode

Command

32-bit

mpcc_r -0 xyz.c -lesslsmp -Tpessismp -1bTacssmp

mpcc_r -0 -D_CMPLX -D_DCMPLX xyz.c -lesslsmp -Tpesslsmp -Tblacssmp

64-bit

mpcc_r -0 -q64 xyz.c -Tesslsmp -Ipessismp -1blacssmp

mpcc_r -0 -D_CMPLX -D_DCMPLX -q64 xyz.c -lesslsmp -Tpessismp -Tblacssmp

Table 43. C program compile and link commands for use with GM libraries

Application Mode

Command

32-bit

mpicc -cc=cc_r -0 xyz.c -lessl -Ipessigm -1bTacsgm

64-bit

mpicc -cc=cc_r -0 -q64 xyz.c -less]l -Ipessligm -1blacsgm

Parallel ESSL for AIX—C++ Program Procedures

The Parallel ESSL for AIX header files pess1.h and Cblacs.h, used for C and C++
programs, are installed in the /usr/include directory. When using Parallel ESSL for
AIX, the compiler option -qnocinc=/ust/include/pessl must be specified.

If you are using the IBM Open Class® Complex Mathematics Library, you
automatically use the definition of short-precision complex data provided in the
Parallel ESSL for AIX header file. If you prefer to specify your own definition for
short-precision complex data, add -D_CMPLX to your commands (as shown in the
tables that follow). Otherwise, Parallel ESSL for AIX will use the IBM Open Class
Complex Mathematics Library or the Standard Numerics Library, as described in
ESSL Guide and Reference.

If you prefer to explicitly specify that you want to use the Standard Numerics
Library facilities for complex arithmetic, add -D_ESV_COMPLEX_ to your
command as shown in the table below.

The Parallel ESSL for AIX header file supports two alternatives for declaring scalar
output arguments. By default, the arguments are declared to be type reference. If
you prefer for them to be declared as pointers, add -D_ESVCPTR to your
commands as shown in the table below.

When linking and running your program, you must modify your existing job
procedures for Parallel ESSL for AIX to set up the necessary libraries.

If you are accessing Parallel ESSL for AIX from a C++ program, you can compile
and link using the commands shown in the following tables.
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Table 44. C++ program

compile and link commands for use with SMP libraries

Application Mode

Command

mpCC_r -0 xyz.C -lesslsmp -Tpessismp -1blacssmp -gnocinc=/usr/include/pess]

mpCC_r -0 -D_CMPLX xyz.C -lesslsmp -1pesslsmp -1blacssmp -gnocinc=/usr/include/pess]

32-bit
mpCC_r -0 -D_ESV_COMPLEX_ xyz.C -lesslsmp -1pesslsmp -1blacssmp -gnocinc=/usr/include/pess]
mpCC_r -0 -D_ESVCPTR xyz.C -lesslsmp -Tpessismp -1blacssmp -gnocinc=/usr/include/pess]
64-bit mpCC_r -0 -g64 xyz.C -lessismp -lpessismp -1blacssmp -gnocinc=/usr/include/pess]

mpCC_r -0 -D_CMPLX -q64 xyz.C -lesslsmp -1pessismp -1blacssmp -gnocinc=/usr/include/pess]
mpCC_r -0 -D_ESV_COMPLEX_ -q64 xyz.C -lesslsmp -lpesslsmp -1blacssmp -gnocinc=/usr/include/pess]

mpCC_r -0 -D_ESVCPTR -q64 xyz.C -lesslismp -1pesslsmp -1blacssmp -gnocinc=/usr/include/pess]

Table 45. C++ program

compile and link commands for use with GM libraries

Application Mode

Command

32-bit

mpicc -cc=x1C_r -0 xyz.C -Tessl -1pessigm -1blacsgm

64-bit

mpicc -cc=x1C_r -0 -q64 xyz.C -Tessl -lpessigm -1blacsgm

Running Your Program on Linux

The following notes apply to running your program on Linux.

Notes:
1. The default search paths for the Parallel ESSL libraries are as follows:

32-bit libraries The default search path is: /usr/lib

64-bit libraries The default search path is: /usr/lib64

If the libraries are installed somewhere else, you need to set the link-time and
run-time library search paths. There are two ways to set these search paths:

* Use one of the following compile/link options:

-R (or -rpath) Writes the specified run-time library search paths into the
executable program.

-L Searches the library search paths at link time, but does not
write them into the executable as run-time library search
paths.

—O0r—

* Use one of the following environment variables:

LD_LIBRARY_PATH Specifies the directories that are to be
searched for libraries at run time.

LD_RUN_PATH Specifies the directories that are to be
searched for libraries at both link and run
time.

For example, if you installed the Parallel ESSL 32-bit libraries in
/home/me/lib, you would issue ksh commands similar to the following in
order to compile and link a program:
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LD_LIBRARY PATH=/home/me/1ib:$LD LIBRARY PATH
LD_RUN_PATH=/home/me/1ib:$LD_RUN_PATH

export LD_LIBRARY_PATH

export LD_RUN_PATH

mpif77 -fc=x1f_r -0 -gnosave xyz.f -Tessl -Ipessigm -1bTacsgm

The result would be that the /home/me/lib directory is the directory that
gets searched at link time and run time.

2. If you are accessing Parallel ESSL from a 64-bit-environment program, you
must add the -q64 compiler option.

3. Parallel ESSL supports the XL Fortran compile-time option -qextname. For
details, see the Fortran manuals.

4. To access all MPICH-GM scripts, put the following in your path:
e prefix/bin
where prefix is the location where the MPICH-GM binary tree is installed.

For more information on link options and environment variables, see the
manpage for the Id command.

5. The commands in the tables below assume that you installed the IBM
compilers in the default directory, /opt/ibmcmp. If you used different
directories, you need to make the appropriate changes to the -L, -R, and -I
options.

Parallel ESSL for Linux—Dynamic Linking Versus Static Linking
Only dynamic linking is supported for programs using Parallel ESSL for Linux.

Parallel ESSL for Linux—Fortran Program Procedures

You do not need to modify your existing Fortran compilation procedures when
using Parallel ESSL for Linux unless you are accessing the Fortran 90 sparse linear
algebraic equation subroutines from a 64-bit-environment program. In that case,
you must add:

-I/opt/ibmmath/pessl/3.2/include/64

to your compilation command (as shown in the table below).

When linking and running your program, you must modify your existing
MPICH-GM job procedures for Parallel ESSL for Linux, to set up the necessary

libraries.

If you are accessing Parallel ESSL for Linux from a Fortran program, you can
compile and link using the commands in the table below.

Application Mode

Command

32-bit

mpif77 -fc=x1f_r -0 -gnosave xyz.f -lessl -Ipesslgm -Tblacsgm

64-bit

mpif77 -fc=x1f_r -0 -gnosave -q64 xyz.f -lessl -Tpessigm -1blacsgm

Parallel ESSL for Linux supports the XL Fortran compile-time option -qextname.
For details, see the Fortran manuals.

An example of a makefile is shown in|“Sample Makefiles and Run Script for
[Linux” on page 980.|
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Parallel ESSL for Linux—C Program Procedures
The Parallel ESSL for Linux header files pess1.h and Cblacs.h, used for C and
C++ programs, are installed in the /usr/include directory.

You do not need to modify your existing C compilation procedures when using
Parallel ESSL for Linux, unless you want to specify your own definitions for
complex data.

If you do want to specify your own definitions for short- and long-precision
complex data, add -D_CMPLX and -D_DCMPLX, respectively, to your compile
and link command. Otherwise, you automatically use the definitions of short- and
long-precision complex data provided in the Parallel ESSL for Linux header file (as
shown in the table below).

When linking and running your program, you must modify your existing
MPICH-GM job procedures for Parallel ESSL for Linux, to set up the necessary
libraries.

If you are accessing Parallel ESSL for Linux from a C program, you can compile
and link using the commands shown in the table below.

Application Mode

Command

mpicc -cc=cc_r -0 xyz.c -lessl -Ipesslgm -1bTacsgm

32-bit -1x1f90_r -1xlomp_ser -1x1fmath -Impichfarg
-L/opt/ibmemp/x1f/9.1/1ib -R/opt/ibmemp/x1f/9.1/1ib
64-bit mpicc -cc=cc_r -0 -q64 xyz.c -lessl -Ipessligm -1blacsgm

-1x1f90_r -1xlomp_ser -1x1fmath -Impichfarg
-L/opt/ibmemp/x1f/9.1/1ib64 -R/opt/ibmcmp/x1f/9.1/1ib64

Parallel ESSL for Linux—C++ Program Procedures
The Parallel ESSL for Linux header files pess1.h and Cblacs.h, used for C and
C++ programs, are installed in the /usr/include directory.

The Parallel ESSL for Linux header file supports two alternatives for declaring
scalar output arguments. By default, the arguments are declared to be type
reference. If you prefer for them to be declared as pointers, add -D_ESVCPTR to
your commands as shown in the table below.

When linking and running your program, you must modify your existing
MPICH-GM job procedures for Parallel ESSL for Linux to set up the necessary
libraries.

If you are accessing Parallel ESSL for Linux from a C++ program, you can compile
and link using the commands shown in the table below.

Note: The mpiCC (uppercase “CC”) scripts use compiler options not supported by
the IBM XL C/C++ Advanced Edition compiler. To avoid loader warning
messages, the mpicc (lowercase “cc”) scripts are used in the table below.

Application Mode

Command

32-bit

mpicc -cc=x1C_r -0 xyz.C -Tess1 -1pessigm -Tblacsgm
-1x1f90_r -1xlomp_ser -1x1fmath -Tmpichfarg
-L/opt/ibmemp/x1f/9.1/1ib -R/opt/ibmemp/x1f/9.1/1ib
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Application Mode

Command

64-bit

mpicc -cc=x1C_r -0 -g64 xyz.C -Tessl -Tpessigm -Tblacsgm
-1x1f90_r -1xTomp_ser -1xT1fmath -Tmpichfarg
-L/opt/ibmemp/x1f/9.1/1ib64 -R/opt/ibmemp/x1f/9.1/1ib64
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Chapter 4. Migrating Your Programs

This chapter explains many aspects of migrating your application programs.

| Migrating to Parallel ESSL for AIX Version 3 Release 2

[ No changes to your application programs are required if you are migrating from
[ Parallel ESSL for AIX Version 3 Release 1 to Parallel ESSL for AIX Version 3
| Release 2.

Migrating to Parallel ESSL for Linux Version 3 Release 2

No changes to your application programs are required if you are migrating from
Parallel ESSL for Linux Version 3 Release 1 Modification 1 to Parallel ESSL for
Linux Version 3 Release 2.

Parallel ESSL for Linux Version 3 Release 2 does not support SLESS. In most cases,
binary compatibility does not exist between SLES8 and SLES9. Therefore, SLESS
applications must be recompiled and rebuilt on SLES9.

Red Hat 3 is no longer supported.
On Linuy, if you are accessing Parallel ESSL from a C or C++ program, you must

change your compile and link commands so that they specify the IBM XL Fortran
Advanced Edition Version 9.1 for Linux libraries.

Migrating to Parallel ESSL Version 3 Release 1

The Parallel ESSL Serial Libraries are used with the Parallel Environment MPI
Signal Handling Library. Parallel Environment 4.1 provides only binary
compatibility support for the MPI Signal Handling Library. Existing appications
that use the Parallel ESSL Serial Libraries will continue to run, but if you are
creating new applications you should use the Parallel ESSL SMP libraries.

No changes to your application programs are required if you are migrating from
Parallel ESSL Version 2 Release 3 to Parallel ESSL Version 3 Release 1.

Note: If you are migrating from a release earlier than Parallel ESSL Version 2
Release 3, see the documentation for Parallel ESSL Version 2 Release 3 at the
following IBM Web site:

http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/ess1.html

Migrating from ScaLAPACK to Parallel ESSL
The following information applies to migrating from ScaLAPACK to Parallel ESSL.

Migrating from ScaLAPACK 1.5 to Parallel ESSL

If you are currently using the ScaLAPACK 1.5 offerings from the Oak Ridge
National Laboratory, Parallel ESSL uses compatible calling sequences with this
version of ScaLAPACK.
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Chapter 5. Using Error Handling

This chapter provides the following information for your use in dealing with
errors:

* How to obtain IBM support.
* What to do about NLS (National Language Support) problems.

* A description of the different types of errors that can occur in Parallel ESSL. It
explains what happens when an error occurs and, in some instances, how you
can use error handling to obtain further information.

 All of the Parallel ESSL error messages are categorized into the different error
types. There is also a description of the error message format.

Where to Find More Information About Errors

Information about errors and how to handle them can be found in the following
places:

* Specific errors associated with each Parallel ESSL subroutine are listed under
“Error Conditions” in each subroutine description in Part 2 of this book.

 Diagnostic procedures for errors associated with ESSL are provided in the ESSL
Guide and Reference manual.

Getting Help from IBM Support
Should you require help from IBM in resolving a Parallel ESSL problem, report it
and provide the following information, if available and appropriate.
1. Your customer number

2. The Parallel ESSL program number:
Parallel ESSL for AIX 5765-F84

Parallel ESSL for Linux 5765-G18
This is important information that speeds up the correct routing of your call.
3. The version and release of the operating system that you are running on.

On AIX Enter the following command:
oslevel

On Linux Enter the following command:
uname -a

This is important information that speeds up the correct routing of your call.
4. The names and versions of key products being run.

On AIX Enter the following command:
Islpp -h product

where the appropriate values of product are listed in [Table 46
En Eage 102

© Copyright IBM Corp. 1995, 2005 101



Table 46. Product File Set Names for Parallel ESSL for AIX

Product File Sets Descriptive Name
essl.* ESSL for AIX
pessL* Parallel ESSL for AIX
ppe.poe Parallel Operating Environment
xlfrte XL Fortran Run-Time Environment
xlsmp.rte SMP Run-Time Environment
xlfemp XL Fortran Compiler
vac.C C for AIX Compiler
vacpp.cmp.C VisualAge® C++ Professional for AIX
Compiler
On Linux Enter the following command:

* rpm -q package
where the appropriate values of package are listed in
Table 47. Package Names for Parallel ESSL for Linux

Product Package Descriptive Name

essl.rte ESSL for Linux

pessl.rte Parallel ESSL for Linux

xlf.rte XL Fortran Run-Time Environment

xlsmp.rte SMP Run-Time Environment

xIf.cmp XL Fortran Compiler

vac.cmp C for Linux Compiler

vacpp.cmp VisualAge C++ Professional for Linux

Compiler

5. The type of Parallel ESSL library (SMP or GM) being run.

6. The message that is returned when an error is detected.

7. Any error message relating to core dumps.

8. The compiler listings, including compiler options in effect, and any run-time
listings produced

9. Program changes made in comparison with a previous successful run

10. A small test case demonstrating the problem using the minimum number of
statements and variables, including input data

Consult your IBM Service representative for more assistance.

National Language Support

For National Language Support (NLS), all Parallel ESSL subroutines display
messages located in externalized message catalogs. English versions of the message
catalogs are shipped with the product, but your site may be using its own
translated message catalogs. The environment variable NLSPATH is used by the
various Parallel ESSL subroutines to find the appropriate message catalog.
NLSPATH specifies a list of directories to search for message catalogs. The
directories are searched, in the order listed, to locate the message catalog. In
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resolving the path to the message catalog, NLSPATH is affected by the value of the
environment variables LC_MESSAGES and LANG.

The Parallel ESSL message catalogs are in English and are located in the following
directories:

On AIX
/usr/1ib/nls/msg/C
/usr/1ib/n1s/msg/En_US
/usr/1ib/n1s/msg/en_US

On Linux
/usr/share/Tocale/en_US/LC_MESSAGES
/usr/share/locale/C

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG. For
additional information on NLS and message catalogs, see IBM AIX General
Programming Concepts: Writing and Debugging Programs.

PESSL_ERROR_SYNC Environment Variable

The PESSL_ERROR_SYNC environment variable allows you to enable and disable

error synchronization. If error synchronization is disabled, the first process

containing input-argument error(s) to finish computing, issues its error message(s)

and terminates Parallel ESSL processing on all processes. Therefore, you should

only disable error synchronization when your application program is debugged.
PESSL_ERROR_SYNC=no

_OY‘_
PESSL_ERROR_SYNC=NO

export PESSL_ERROR_SYNC

This causes Parallel ESSL to disable error synchronization in all calls to the Parallel
ESSL subroutines.

If you do not set the environment variable or you set something other than 'no” or
'NO’, Parallel ESSL uses error synchronization in all calls to the Parallel ESSL
subroutines.

Dealing with Errors

At run time, you can encounter a number of different types of errors that are
specifically related to the use of the Parallel ESSL subroutines:

* Program exceptions

* Input-argument errors (001-299, 800-999)

* Computational errors (300-399)

* Resource errors (400-499)

* Communication errors (500-599)

* Miscellaneous errors (700-799)

This section explains what causes these errors, what happens when they occur (all
are terminating, except computational errors), and what you can do to fix them.

This section also explains what to do when you receive informational and attention
messages (600-699).
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Program Exceptions

The program exceptions you can encounter in Parallel ESSL are described in the
ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard
754-1985.

Input-Argument Errors

This section describes how Parallel ESSL implements input-argument error
checking when error synchronization is enabled. For more information on the
PESSL_ERROR_SYNC environment variable, which allows you to enable or disable
ﬁr synchronization, see ['PESSL, ERROR_SYNC Environment Variable” on page]
103.

Two types of input-argument error checking may be performed:

* First, on each participating process, Parallel ESSL checks the validity of most
input-arguments in multiple stages.

When all the input-arguments in one stage are valid, Parallel ESSL checks the
validity of the input-arguments in the next stage, and so on. (The number of
errors and stages that can occur for each subroutine are listed under its “Error
Conditions” section, which is in Part 2 of this book.)

When an input argument is invalid on all participating processes in the parallel
environment, a single comprehensive error message is issued, rather than one
for each process. (This is indicated in the error message by Process(-1,-1).)
Otherwise, an error message is issued from each process where the discrepancy
occurred.

For all subroutines except DESCINIT, Parallel ESSL then terminates your
program on all processes, and any arguments in the stages that follow are not
checked. When this occurs, you should use standard programming techniques to
diagnose and fix the errors.

For subroutine DESCINIT, Parallel ESSL does not terminate your program.
Instead, Parallel ESSL issues message 0040-295, sets info to the first argument
found to have an invalid value, and returns a valid array descriptor.

* Next, Linear Algebraic Equations and Eigensystem Analysis subroutines check to
ensure that global scalar arguments are the same on all participating processes.

If the value of the global scalar argument on all processes except Py, does not
match the value of the argument at process Py, a single error message is issued.
(This is indicated in the error message by Process(-1,-1).) Otherwise, an error
message is issued from each process where the discrepancy occurred. Parallel
ESSL then terminates your program on all processes, and you should use
standard programming techniques to diagnose and fix the errors.

For all other Parallel ESSL subroutines, the global scalar arguments are not
checked to ensure they are the same for all processes.

How This Differs from ESSL:

The capabilities of ERRSET, ERRSAV, and ERRSTR, supported in ESSL, are not
provided in Parallel ESSL.

Using the capabilities of ERRSET, ERRSAV, and ERRSTR with your ESSL
subroutines does not affect the Parallel ESSL subroutines.

For the Fourier transform subroutines, an invalid transform length is not
recoverable, as in ESSL. Parallel ESSL checks the validity of the transform length

you provide to the Fourier transform subroutine. If it is not an acceptable value, a
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Parallel ESSL input-argument error message is issued, containing the next larger
acceptable transform length required for successful computing of a Fourier
transform. See the appropriate subroutine for additional constraints on valid
transform lengths. Your program is then terminated on all processes. You should
correct the value and rerun your program.

Computational Errors

Parallel ESSL computational errors are errors that occur in the computational data,
such as in your vectors and matrices, during a computation—for example, the
detection of a singular system during a factorization. (The computational errors
that can occur for each subroutine, are listed under “Computational Errors”.) When
a computational error occurs, Parallel ESSL issues an error message containing
information key to the diagnosis of the error—such as the location in the input
matrix where the singularity occurred. Any subroutine that issues a computational
error has an info argument in its calling sequence. For all the Parallel ESSL
subroutines, info is a global argument containing fullword integers, except in the
tridiagonal subroutines. For these tridiagonal subroutines, info is a local argument
containing fullword integers.

When a computational error occurs, your program continues to execute. After each
call where a computational error can occur, you should check the info output
argument to see if an error occurred and take the appropriate action. When a
computational error occurs, you should assume that the results are unpredictable.
The result of the computation is valid only if no errors have occurred.

How This Differs from ESSL:

The way you handle computational errors for Parallel ESSL differs from how you
handle them for ESSL. This is because the capabilities of ERRSET, ERRSAV, and
ERRSTR, supported in ESSL for recoverable computational errors, are not
supported in Parallel ESSL. This results in the following differences:

* You do not have the option of Parallel ESSL terminating your program when a
computational error occurs in an Parallel ESSL subroutine. Control always
returns to your program.

¢ The information about the error is returned to your program through the info
argument, rather than through a subsequent call to the EINFO subroutine.

Using the capabilities of ERRSET, ERRSAV, and ERRSTR with your ESSL
subroutines does not affect the Parallel ESSL subroutines.

Resource Errors

A resource error occurs when a buffer storage allocation request fails in a Parallel
ESSL subroutine. In general, the Parallel ESSL subroutines allocate internal
auxiliary storage dynamically as needed. Without sufficient storage, the subroutine
cannot complete the computation.

When a buffer storage allocation request fails, a resource error message is issued,
and the application program is terminated. You need to reduce the memory
constraint on the system or increase the amount of memory available before
rerunning the application program.

Ways to Reduce Memory Constraints:

The following ways may reduce memory constraints:
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 If you are using a one-dimensional process grid, change to a two-dimensional
process grid, if possible. (Keep the shape of the two-dimensional process grid as
close to a square as possible.)

 If you are using a two-dimensional process grid, change the shape of the process
grid to be a square or as close to a square as possible.

* Increase the number of nodes. As you increase the number of nodes, keep the
process grid as square as possible. For example, if using more processes, such as
17 rather than 16, causes you to use a one-dimensional grid rather than a
two-dimensional grid, performance may be degraded.

* Reduce the block sizes.

* Set the leading dimension equal to the number of rows in the local matrix.

* Investigate the load of your process and run in a more dedicated environment.

* Increase your node’s paging space.

* Select nodes with more available memory.

* Select nodes that are not being used by other programs.

* On AIX only:

— For a 32-bit environment application, consider specifying the -bmaxdata
binder option when linking your program. For details see the Fortran
publications.

— Check the setting of your user ID’s user limit (ulimit). (See the IBM AIX
Commands Reference).

Communication Errors

Communication errors are errors that occur when Parallel ESSL encounters
problems in communicating between processes—sending and receiving data or
synchronizing operations. When a communication error occurs, at least one
communication message is issued and the application program is terminated. This
is because communication errors usually indicate a serious problem, where it is not
feasible to continue.

Be aware that, due to the nature of communication errors, some error messages,
including communications error messages from various processes, may be lost.

Informational and Attention Messages

When you receive an informational or attention message, check your application to
determine why the condition was detected. You may decide to change your
application so you do not receive the message. For example, if your application
called a BLACS routine to send data from one process to the same process, you
would receive an attention message.

Parallel ESSL does not terminate your application program, but performance may
be degraded.

Miscellaneous Errors

A miscellaneous error is an error that does not fall under any of the other
categories. Miscellaneous errors are checked in stages along with input-argument
errors.

If no errors are detected in the first stage, Parallel ESSL checks the next stage, and

so on. (The number of errors and stages that can occur for each subroutine are
listed under its “Error Conditions” section.)
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When Parallel ESSL detects a miscellaneous error, you receive an error message
with information on how to correct the problem, your application program is
terminated, and any arguments in the stages that follow are not checked.

ESSL Error Messages

For problems relating directly to ESSL, see the ESSL Guide and Reference manual. If
the ESSL error resulted from a Parallel ESSL subroutine, see [“Getting Help from|
IBM Support” on page 101|to find out how to report the problem.

MPI Error Messages

If you receive an MPI error message while calling a BLACS routine, the cause is
most likely one of the following:

e The BLACS have not been initialized.

* The context passed to the BLACS routine is not the same as the context obtained
from a call to the BLACS_GET, BLACS_GRIDINIT, or BLACS_GRIDMAP
routine.

Messages

This section describes the message conventions and lists all messages for
input-argument errors, computational errors, resource errors, communication
errors, informational and attention messages, and miscellaneous errors.

Message Conventions

About Upper- and Lowercase:

The literals, such as 'N’, 'T’, ‘U’, and so forth, appear in the messages in this book
in uppercase; however, they may be specified in your Parallel ESSL calling
sequence in either upper- or lowercase, for example, 'n’, 't’, and "u’.

Message Format:

The Parallel ESSL messages are issued in your output in the following format:

rtn-name : 0040-nnn Context(l) Task(k) Process(p,q) Grid P x Q
message-text

Figure 8. Message Format

The parts of the Parallel ESSL message are as follows:
0040  is the Parallel ESSL component identification number.

nnn  is the message identification number:

001-299

Input-argument error messages
300-399

Computational error messages
400-499

Resource-allocation error messages
500-599

Communications error messages
600-699

Informational and attention messages
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700-799

Miscellaneous error messages
800-999

Input-argument error messages

Context
[ is the communication context number defined for this process grid, where
lis an integer. If I = -1, then the context is invalid; in addition, the process
and grid coordinates are set to —1.

Task(k)
is the MPI task identification number.

Process(p,q)
are the process grid coordinates, indicating the process where the error
occurred.

If p = g = -1 and the context is valid, then the same error occurred on all
the processes, but is only reported on Py,

Grid P x Q
gives the dimensions of the process grid.

message-text
describes the nature of the error. The possible unique parts are:

* For the message passing error messages, the argument number of each
argument involved in the error is included in the message description as
(ARG NO. _).

* Additional information about the error is included in the message. The
placement of this information is shown in the messages as (_)

Input-Argument Error Messages (001-299)

0040-001 Context( ) Task() Process(_, ) Grid _ x _ 0040-006 Context(_) Task() Process(_,_ ) Grid _ x _
The SCOPE (ARG NO. ) of a broadcast The SCOPE is specified by (ARG NO.
must be 'R’, 'C’, or "A’ _); therefore, the index of the source

process (ARG NO. _) must be equal to

0040-002 Context(_) Task() Process(_, ) Grid _ x _ O
UPLO (ARG NO. _), which specifies
whether an input matrix (ARG NO. ) is 0040-007 Context(_) Task() Process(_, ) Grid _ x _
upper or lower, must be "U” or 'L". The TOPOLOGY parameter (ARG NO.

_) is invalid.

0040-003 Context(_) Task(_) Process(_, ) Grid _ x _

DIAG (ARG NO. ), which specifies 0040-008 Context(_) Task(_) Process(_,_) Grid _ x _

whether an input matrix (ARG NO. ) is The requested number of processes (L)

unit, must be "U’ or 'N". is greater than the available number of
processes ().

0040-004 Context( ) Task() Process(_, ) Grid _ x _

The process row (ARG NO. _) must be 0040-009 Context(_) Task( ) Process(_, ) Grid _ x _
greater than or equal to zero and less The requested number of process rows
than the total number of processes in a () and process columns (L) must be
row. positive.

0040-005 Context(_) Task(_) Process(_, ) Grid _ x _ 0040-010 Context(_) Task(_) Process(_,_ ) Grid _ x _

The process column (ARG NO. _) must
be greater than or equal to zero and less
than the total number of processes in a
column.

The number of rows (ARG NO. ) in a
matrix must be greater than or equal to
zero.
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0040-011 Context( ) Task() Process(_, ) Grid _ x _ 0040-024 Context(_) Task( ) Process(_, ) Grid _ x _
The number of columns (ARG NO. ) in The size of the leading dimension (ARG
a matrix must be greater than or equal NO. ) of the local array must be greater
to zero. than zero.

0040-012 Context(_) Task(_) Process(_, ) Grid _ x _ 0040-025 Context(_) Task(_) Process(_,_ ) Grid _ x _
The block size (ARG NO. _) must be The process column (ARG NO. _) that
greater than zero. contains matrix (ARG NO. _) must be

equal to the process column (ARG NO.

0040-014 Context(_) Task() Process(_, ) Grid _ x _ -) that contains matrix (ARG NO. )

The stride (ARG NO. ) for a vector
must be positive. 0040-026 Context(_) Task( ) Process(_, ) Grid _ x _
The process row (ARG NO. ) that
0040-015 Context(_) Task(_) Process(_, ) Grid _ x _ contains matrix (ARG NO. ) must be
equal to the process row (ARG NO. _)
(ARG NO. ) must be a double . .
. . that contains matrix (ARG NO. )
precision odd whole number greater
than or equal to 1.0 and less than 2**48.
0040-027 Context(_) Task() Process(_, ) Grid _ x _

0040-016 Context(_) Task() Process(_, ) Grid _ x _ E:eg:er:t: iﬁi\coll‘\]eoq.u; (:f) azer;\;tnx must
(ARG NO. _) must be zero or one.

0040-017 Context(_) Task() Process(_, ) Grid _ x _ 0040-028 ISIO,F;;X{(IZ) Xalik(_lll Process(ﬁ{_;l Grid .;.x -
(ARG NO. ) must be greater than or ( . G NO. _2’ weh specthies

whether an input matrix (ARG NO. ) is
equal to zero. a full block matrix or a single block
matrix, must be ‘M’ or 'B’.

0040-018 Context( ) Task() Process(_, ) Grid _ x _

(ARG NO. ) must be greater than zero. 0040-029 Context() Task()) Process(_, ) Grid _ x _
The process row (ARG NO. _) must be

0040-019 Context(_) Task(_) Process(_,_) Grid _ x _ greater than or equal to -1 and less than
The number of rows (ARG NO. ) must the total number of rows in the process
be less than or equal to the block size grid.

(ARG NO. ).
0040-030 Context(_) Task( ) Process(_, ) Grid _ x _

0040-020 Context(_) Task(_) Process(_, ) Grid _ x _ The process column (ARG NO. _) must
The number of columns (ARG NO. ) be greater than or equal to -1 and less
must be less than or equal to the block than the total number of columns in the
size (ARG NO. ). process grid.

0040-021 Context(_) Task() Process(_, ) Grid _ x _ 0040-031 Context(_) Task(_) Process(_, ) Grid _ x _
The number of rows (ARG NO. _) must The argument which specifies whether a
be less than or equal to the size of the matrix (ARG NO. ) is workspace must
leading dimension (ARG NO. _) of its be 'Y’ or 'N’.
array.

0040-032 Context(_) Task() Process(_, ) Grid _ x _

0040-022 Context(_) Task( ) Process(_, ) Grid _ x _ TRANS (ARG NO. _), which specifies
The order of a matrix (ARG NO. _) must the computation to be performed, must
be less than or equal to the block size be 'N’, 'T’, or 'C’.

(ARG NO. ).
0040-033 Context(_) Task() Process(_, ) Grid _ x _

0040-023 Context(_) Task( ) Process(_, ) Grid _ x _ The size of leading dimension (ARG

(ARG NO. _) must be a multiple of the
product of (ARG NO. ) and the
number of processes ().

NO. ) of the local array (ARG NO. )
must be greater than or equal to ().
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0040-034 Context(_) Task() Process(_, ) Grid _ x _ 0040-044 Context(_) Task( ) Process(_, ) Grid _ x _
SIDE (ARG NO. _), which specifies The size of the leading dimension,
whether the input matrix (ARG NO. ) LLD_, (element 9 of ARG NO. ) of the
appears on the left or right of the other local array (ARG NO. _) must be greater
input matrix, must be 'L’ or 'R’. than zero.

0040-035 Context(_) Task() Process(_,_) Grid _ x _ 0040-045 Context(_) Task( ) Process(_, ) Grid _ x _
The number of right hand sides (ARG The size of leading dimension, LLD_,
NO. _) must be greater than or equal to (element 9 of ARG NO. ) of the local
zero. array (ARG NO. _) must be greater than

or equal to ().

0040-036 Context( ) Task() Process(_, ) Grid _ x _

TRANS (ARG NO. ), specifies whether 0040-046 Context(_) Task(_) Process(_, ) Grid _ x _
an input matrix (ARG NO. ), its The number of rows, M_, (element 3 of
transpose, or its conjugate transpose ARG NO. ) in the global matrix (ARG
should be used. TRANS must be 'N’, NO. _) must be greater than zero.
T, or 'C".

0040-047 Context(_) Task( ) Process(_, ) Grid _ x _

0040-037 Context(_) Task(_) Process(_, ) Grid _ x _ The number of columns, N_, (element 4
Task has issued a receive for its own of ARG NO. )) in the global matrix
broadcast. (ARG NO. ) must be greater than zero.

0040-038 Context(_) Task() Process(_, ) Grid _ x _ 0040-048 Context(_) Task( ) Process(_, ) Grid _ x _
Minimum message id in message id The global row index (ARG NO. _) of
range (element 1 of ARG NO. 3) must matrix (ARG NO. _) must be greater
be less than the maximum message id than 0.

(element 2 of ARG NO. 3).
0040-049 Context(_) Task(_) Process(_, ) Grid _ x _

0040-039 Context() Task() Process(_,_) Grid _ x _ The global column index (ARG NO. _)
The communications context (ARG NO. of matrix (ARG NO. _) must be greater
_) is invalid. than 0.

0040-040 Context( ) Task() Process(_, ) Grid _ x _ 0040-050 Context(_) Task( ) Process(_, ) Grid _ x _
The process row or column (ARG NO. The stride (ARG NO. _) for vector (ARG
_) must be greater than 0. NO. ) is 1, but the row block size,

MB_, (element 5 of ARG NO. ) is not

0040-041 Context(_) Task( ) Process(_, ) Grid _ x _ equal to the block size ('element - of
The process row, RSRC_, (element 7 of ARG NO. ) of the matrix (ARG NO. ).
ARG NO. ) must be greater than or
equal to 0 and less than the total 0040-051 Context() Task() Process(_,_) Grid _ x _
number of rows in the process grid. The row and column block sizes, MB_

and NB_, (elements 5 and 6 of ARG NO.

0040-042 Context() Task()) Process(_,_) Grid _ x _ ;:l:)lzlthe matrix (ARG NO. ) must be
The process column, CSRC_, (element 8 )
of ARG NO. ) must be greater than or
equal to 0 and less than the total 0040-052 Context(_) Task() Process(_, ) Grid _ x _
number of columns in the process grid. The submatrix referenced is

incompatible with the global matrix

0040-043 Context(_) Task() Process(_, ) Grid _ x _ definition. The global row index (ARG

The communications context, CTXT_,
(element 2 of ARG NO. _) of the matrix
(ARG NO. _) must be equal to the
communications context (element 2 of
ARG NO. ) of the matrix (ARG NO. ).

NO. _) plus the number of rows (ARG
NO. ) of the matrix (ARG NO. )
minus 1 must be less than or equal to
the number of rows, M_, (element 3 of
ARG NO. ).
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0040-053

Context( ) Task() Process(_, ) Grid _ x _
The submatrix referenced is
incompatible with the global matrix
definition. The global column index
(ARG NO. ) plus the number of
columns (ARG NO. ) of the matrix
(ARG NO. _) minus 1 must be less than
or equal to the number of columns, N_,
(element 4 of ARG NO. ).

0040-055

Context(_) Task( ) Process(_, ) Grid _ x _
The vector (ARG NO. _) is
row-distributed but the column block
size, NB_, (element 6 of ARG NO. ) is
not equal to the row block size, MB_,
(element 5 of ARG NO. _) of the matrix
(ARG NO. ).

0040-056

Context( ) Task() Process(_, ) Grid _ x _
The vector (ARG NO. ) is
column-distributed but the row block
size, MB_, (element 5 of ARG NO. ) is
not equal to the row block size, MB_,
(element 5 of ARG NO. _) of the matrix
(ARG NO. ).

0040-057

Context( ) Task() Process(_, ) Grid _ x _
The vector (ARG NO. ) is
row-distributed, but the block column
offset of the vector is not equal to the
block row offset of the matrix (ARG
NO. ).

0040-058

Context(_) Task() Process(_, ) Grid _ x _
The vector (ARG NO. ) is
row-distributed but the column block
size, NB_, (element 6 of ARG NO. ) is
not equal to the column block size, NB_,
(element 6 of ARG NO. _) of the matrix
(ARG NO. ).

0040-059

Context(_) Task(_) Process(_, ) Grid _ x _
The vector (ARG NO. ) is
row-distributed, but the block column
offset of the vector is not equal to the
block column offset of the matrix (ARG
NO. ).

0040-060

Context( ) Task() Process(_, ) Grid _ x _
The vector (ARG NO. _) is
row-distributed, but the process column
(), containing the first element of the
vector is not equal to the process
column () containing the first column
of the submatrix (ARG NO. _).

0040-061

Context(_) Task( ) Process(_, ) Grid _ x _
The vector (ARG NO. ) is
column-distributed but the row block
size, MB_, (element 5 of ARG NO. ) is
not equal to the column block size, NB_,
(element 6 of ARG NO. ) of the matrix
(ARG NO. ).

0040-062

Context(_) Task() Process(_, ) Grid _ x _
The vector (ARG NO. ) is
column-distributed, but the block row
offset of the vector is not equal to the
block column offset of the matrix (ARG
NO. ).

0040-063

Context(_) Task( ) Process(_, ) Grid _ x _
The vector (ARG NO. ) is
column-distributed, but the block row
offset of the vector is not equal to the
block row offset of the matrix (ARG
NO. ).

0040-064

Context(_) Task( ) Process(_, ) Grid _ x _
The vector (ARG NO. ) is
column-distributed, but the process row
(), containing the first element of the
vector is not equal to the process row ()
containing the first row of the submatrix
(ARG NO. ).

0040-065

Context(_) Task() Process(_,_ ) Grid _ x _
The stride (ARG NO. _) for vector (ARG
NO. _) must be equal to either 1 or the
number of rows, M_, (element 3 of ARG
NO. ).

0040-066

Context(_) Task( ) Process(_, ) Grid _ x _
The calculated block row offset and
block column offset of the submatrix
referenced within the global matrix
(ARG NO. ) must be equal.

0040-067

Context(_) Task(_) Process(_,_) Grid _ x _
Matrices (ARG NO. _) and (ARG NO. )
have incompatible block sizes. The
block size (element _ of ARG NO. )
must be equal to the block size (element
_of ARG NO. ).

0040-068

Context(_) Task() Process(_,_) Grid _ x _
The global row index (ARG NO. _) and
global column index (ARG NO. _) of
matrix (ARG NO. _) must be equal.
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0040-069 Context(_) Task() Process(_, ) Grid _ x _
(ARG NO. ), which represents a
process row or column, must be greater
than or equal to zero and less than
(ARG NO. ).

0040-070 Context(_) Task() Process(_,_) Grid _ x _
The transform length (ARG NO. _) must
be divisible by the number of tasks ().

0040-071 Context(_) Task(_) Process(_, ) Grid _ x _
The transform length (ARG NO. )
divided by the number of tasks must be
an even number.

0040-072 Context(_) Task(_) Process(_, ) Grid _ x _
The scaling parameter (ARG NO. )
must be nonzero.

0040-073 Context(_) Task(_) Process(_, ) Grid _ x _
The transform length (ARG NO. ) is
not an allowed value. The next higher
value is ().

0040-074 Context(_) Task() Process(_,_) Grid _ x _
The output data distribution format
(element 2 of ARG NO. _) must be zero
or one.

0040-075 Context(_) Task(_) Process(_, ) Grid _ x _
(Element _ of ARG NO. ) must be
either zero or greater than or equal to
the transform dimension (ARG NO. ).

0040-076 Context(_) Task(_) Process(_, ) Grid _ x _
The transform direction parameter (ARG
NO. _) must be nonzero.

0040-077 Context(_) Task(_) Process(_, ) Grid _ x _
The transform length (ARG NO. _) must
be less than or equal to () .

0040-078 Context(_) Task(_) Process(_, ) Grid _ x _
(ARG NO. ) must be nonzero.

0040-079 Context( ) Task(_) Process(_, ) Grid _ x _

The submatrix referenced must be a
block row matrix. The block row offset
plus the number of rows (ARG NO. )
of the matrix (ARG NO. _) must be less
than or equal to the row block size
(element 5 of ARG NO. ).

0040-080

Context(_) Task( ) Process(_, ) Grid _ x _
The submatrix referenced must be a
block column matrix. The block column
offset plus the number of columns
(ARG NO. ) of the matrix (ARG NO. )
must be less than or equal to the
column block size (element 6 of ARG
NO. ).

0040-081

Context(_) Task(_) Process(_, ) Grid _ x _
In the process grid, the process row (),
containing the first row of the submatrix
(ARG NO. ) must be equal to the
process row () containing the first row
of the submatrix (ARG NO. ).

0040-082

Context(_) Task(_) Process(_, ) Grid _ x _
The communications context, CTXT_,
(element 2 of ARG NO. _) of the matrix
(ARG NO. ) must be equal to the
communications context (element 2 of
ARG NO. ) of the matrix (ARG NO. ).

0040-083

Context(_) Task(_) Process(_, ) Grid _ x _
In the process grid, the process column
(), containing the first column of the
submatrix (ARG NO. _) must be equal
to the process column () containing the
first column of the submatrix (ARG NO.
2.

0040-084

Context(_) Task() Process(_,_) Grid _ x _
The dimension (ARG NO. _) of the
matrices must be greater than or equal
to zero.

0040-085

Context(_) Task( ) Process(_, ) Grid _ x _
The submatrices referenced must be
properly aligned. The block offset for
matrix (ARG NO. _) generated by (ARG
NO. _) and block size (element _ of
ARG NO. ) must be equal to the block
offset for matrix (ARG NO. _) generated
by (ARG NO. _) and block size (element
_of ARG NO. ).

0040-086

Context(_) Task() Process(_,_) Grid _ x _
The communications context (_) is not
currently active.

0040-087

Context(_) Task(_) Process(_, ) Grid _ x _
The communications context () is
invalid.
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0040-088

Context( ) Task() Process(_, ) Grid _ x _

The process grid must be defined with
the number of rows set to 1.

0040-089

Context(_) Task() Process(_, ) Grid _ x _

The vectors referenced must be
distributed along the same axis. Either
the stride (ARG NO. ) for vector (ARG
NO. _) and the stride (ARG NO. ) for
vector (ARG NO. _) must both be equal
to 1 or the stride for vector (ARG NO. _)
must be equal to the number of rows,
M_, (element 3 of ARG NO. _) and the
stride for vector (ARG NO. _) must be
equal to the number of rows, M_,
(element 3 of ARG NO. ).

0040-090

Context(_) Task( ) Process(_, ) Grid _ x _

The row block size, MB_, (element 5 of
ARG NO. ) of the matrix (ARG NO. )
must be greater than zero.

0040-091

Context(_) Task( ) Process(_, ) Grid _ x _

The column block size, NB_, (element 6
of ARG NO. _) of the matrix (ARG NO.
_) must be greater than zero.

0040-092

Context(_) Task(_) Process(_, ) Grid _ x _

The submatrix referenced must be
aligned on a row block boundary. (ARG
NO. _) minus 1 must be a multiple of
the row block size, MB_, (element 5 of
ARG NO. ) of matrix (ARG NO. ).

0040-093

Context(_) Task(_) Process(_, ) Grid _ x _

The submatrix referenced must be
aligned on a column block boundary.
(ARG NO. ) minus 1 must be a
multiple of the column block size, NB_,
(element 6 of ARG NO. _) of matrix
(ARG NO. ).

0040-094

Context(_) Task() Process(_, ) Grid _ x _

The global row index (ARG NO. _) of
vector (ARG NO. _) must be greater
than 0 and less than the number of
rows, M_, (element 3 of ARG NO. ).

0040-095

Context( ) Task() Process(_, ) Grid _ x _

The global column index (ARG NO. _)
of vector (ARG NO. _) must be greater
than 0 and less than or equal to the
number of columns, N_, (element 4 of
ARG NO. ).

0040-096 Context(_) Task( ) Process(_, ) Grid _ x _
TRANS (ARG NO. _), which specifies
the operation to be performed, must be
"T” or 'C’.

0040-097 Context(_) Task(_) Process(_,_ ) Grid _ x _
The global row index (ARG NO. _) of
matrix (ARG NO. _) must be greater
than 0 and less than or equal to the
number of rows in the global matrix,
M_, (element 3 of ARG NO. ).

0040-098 Context(_) Task(_) Process(_,_ ) Grid _ x _
The global column index (ARG NO. _)
of matrix (ARG NO. _) must be greater
than 0 and less than or equal to the
number of columns in the global matrix,
N_, (element 4 of ARG NO. _).

0040-099 Context(_) Task() Process(_,_ ) Grid _ x _
The number of rows, M_, (element 3 of
ARG NO. ) in a null matrix (ARG NO.
_) must be greater than or equal to zero.

0040-100 Context(_) Task() Process(_,_) Grid _ x _
The number of columns, N_, (element 4
of ARG NO. ) in a null matrix (ARG
NO. _) must be greater than or equal to
zero.

0040-101 Context(_) Task(_) Process(_, ) Grid _ x _
The number of rows (ARG NO. _) of a
matrix must be the same for all
processes.

0040-102 Context(_) Task(_) Process(_,_) Grid _ x _
The number of columns (ARG NO. _) of
a matrix must be the same for all
processes.

0040-103 Context(_) Task( ) Process(_,_ ) Grid _ x _
The order (ARG NO. _) of a matrix must
be the same for all processes.

0040-104 Context(_) Task() Process(_, ) Grid _ x _
The global row index (ARG NO. _) of
the matrix (ARG NO. _) must be the
same for all processes.

0040-105 Context(_) Task(_) Process(_,_) Grid _ x _

The global column index (ARG NO. _)
of the matrix (ARG NO. _) must be the
same for all processes.
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0040-106 Context(_) Task() Process(_, ) Grid _ x _ 0040-115 Context(_) Task( ) Process(_, ) Grid _ x _
UPLO (ARG NO. _), which specifies The process row RSRC_, (element 7 of
whether an input matrix (ARG NO. ) is ARG NO. _) must be the same for all
upper or lower, must be the same for all processes.
processes.

0040-116 Context(_) Task(_) Process(_, ) Grid _ x _

0040-107 Context(_) Task() Process(_,_) Grid _ x _ The process column CSRC_, (element 8
TRANS (ARG NO. _), which specifies of ARG NO. _) must be the same for all
whether an input matrix, its transpose, processes.
or its conjugate transpose should be
used, must be the same for all processes. 0040-117 Context( ) Task() Process(_, ) Grid _ x _

The number of elements (ARG NO. _)

0040-108 Context( ) Task(_) Process(_, ) Grid _ x _ in a work array (ARG NO. _) must be
NRHS (ARG NO. ), which specifies the zero, to indicate dynamic allocation,
number of right hand sides in the minus one, to indicate workspace query,
system to be solved, must be the same or greater than or equal to () if a work
for all processes. array is being supplied.

0040-109 Context( ) Task() Process(_, ) Grid _ x _ 0040-118 Context( ) Task( ) Process(_, ) Grid _ x _
ILO (ARG NO. ), which specifies a ILO (ARG NO. ), which specifies a
lower range of rows or columns in a lower range of rows or columns in a
matrix, must be the same for all matrix, must be greater than or equal to
processes. one and less than or equal to the larger

of one and the order (ARG NO. _) of

0040-110 Context(_) Task() Process(_, ) Grid _ x _ the matrix.

IHI (ARG NO. ), which specifies an

upper range of rows or columns in a 0040-119 Context(_) Task( ) Process(_, ) Grid _ x _

matrix, must be the same for all IHI (ARG NO. ), which specifies an

processes. upper range of rows or columns in a
matrix, must be greater than or equal to

0040-111 Context(_) Task( ) Process(_, ) Grid _ x _ th(ei smaAli:éolfI(I)LO (AfRﬁ NO. ‘.) an((ii the
The number of rows, M_, (element 3 of ;) rder ( - ) of the matrix an

. . ess than or equal to the order (ARG
ARG NO. ) in the global matrix (ARG NO. ) of the matrix.
NO. _) must be the same for all -
processes.
0040-120 Context(_) Task( ) Process(_, ) Grid _ x _

0040-112  Context( ) Task() Process(_, ) Grid _ x _ The r°w".i]fl‘t“b.“;fdhvecf°; rffere“.“d '

The number of columns, N_, (element 4 iln(:(.)rr.lp.atl e with the globa n.1atr1x
. . efinition. The global column index
of ARG NO. ) in the global matrix
(ARG NO. ) must be the same for all (ARG NO. ) plus the number of
T columns (ARG NO. ) of the vector
processes. (ARG NO. _) minus 1 must be less than
or equal to the number of columns, N_,
0040-113 Context(_) Task( ) Process(_, ) Grid _ x _ (element 4 of ARG NO. ).
The row block size MB_, (element 5 of
ARG NO. ) of the global matrix (ARG 0040-121 Context(_) Task() Process(_, ) Grid _ x _
NO. ) must be the same for all The column-distributed vector
processes. referenced is incompatible with the
global matrix definition. The global row
0040-114 Context() Task( ) Process(_, ) Grid _ x _ index (ARG NO. _) plus the number of

The column block size NB_, (element 6
of ARG NO. ) of the global matrix
(ARG NO. _) must be the same for all
processes.

rows (ARG NO. _) of the vector (ARG
NO. _) minus 1 must be less than or
equal to the number of rows, M_,
(element 3 of ARG NO. ).
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0040-122 Context( ) Task() Process(_, ) Grid _ x _ 0040-131 Context(_) Task( ) Process(_, ) Grid _ x _
JOBZ (ARG NO. ), which specifies The number of rows, M_ (element 3 of
whether or not to compute eigenvectors, ARG NO. )) in the global matrix (ARG
must be "N’ or "V’. NO. _) must be equal to the number of

rows, M_ (element 3 of ARG NO. ) in

0040-123 Context(_) Task( ) Process(_, ) Grid _ x _ the global matrix (ARG NO. ).

RANGE (ARG NO. _), which specifies

which eigenvalues to find, must be "A’, 0040-132 Context(_) Task( ) Process(_,_ ) Grid _ x _

V', or T, The number of columns, N_ (element 4
of ARG NO. ) in the global matrix

0040-124 Context() Task() Process(_, ) Grid _ x _ (ARG NOf. ) lmust be equil ! to the ¢
VU (ARG NO. ), which specifies the number of columns, N_. (element 4 o

. ARG NO. ) in the global matrix (ARG
upper bound of the interval to be NO. ).
searched for eigenvalues, must be -
greater than VL (ARG NO. ), which
specifies the lower bound of the interval 0040-133 Context(_) Task( ) Process(_, ) Grid _ x _
to be searched for eigenvalues. The process row, RSRC_ (element 7 of
ARG NO. ) must be zero.

0040-125 Context(_) Task() Process(_, ) Grid _ x _

IL (ARG NO. _), which specifies the 0040-134 Context(_) Task() Process(_,_ ) Grid _ x _
index of the smallest eigenvalue to be The process column, CSRC_ (element 8
returned, must be greater than or equal of ARG NO. _) must be zero.
to 1.

0040-135 Context(_) Task(_) Process(_, ) Grid _ x _

0040-126 Context(_) Task( ) Process(_, ) Grid _ x _ The process row, RSRC_ (element 7 of
IU (ARG NO. ), which specifies the ARG NO. _) must be equal to the
index of the largest eigenvalue to be process row, RSRC_ (element 7 of ARG
returned, must be greater than or equal NO. ).
to the smaller of the order (ARG NO. )

;fcghe)matnx (ARG NO. ) and IL (ARG 0040-136 Context(_) Task(_) Process(_, ) Grid _ x _
. _) and less than or equal to the
order of the matrix. The process column, CSRC_ (element 8
of ARG NO. _) must be equal to the
process column, CSRC_ (element 8 of
0040-127 Context(_) Task() Process(_, ) Grid _ x _ ARG NO. ).
The global row index (ARG NO. _) of
the matrix (ARG NO. ) must be 1. 0040-137 Context( ) Task( ) Process(_, ) Grid _ x _
ORFAC (ARG NO. ), which specifies

0040-128 Context( ) Task() Process(_, ) Grid _ x _ which eigenvectors should be
The global column index (ARG NO. _) orthogonalized, must be the same for all
of the matrix (ARG NO. _) must be 1. processes.

0040-129 Context(_) Task(_) Process(_, ) Grid _ x _ 0040-138 Context(_) Task(_) Process(_,_ ) Grid _ x _
The global row index (ARG NO. _) of JOBZ (ARG NO. ), which specifies
the matrix (ARG NO. _) must be equal whether or not to compute eigenvectors,
to the global row index (ARG NO. ) of must be the same for all processes.
the matrix (ARG NO. ).

0040-139 Context(_) Task( ) Process(_,_ ) Grid _ x _

0040-130 Context( ) Task() Process(_, ) Grid _ x _ RANGE (ARG NO. ), which specifies

The global column index (ARG NO. )
of the matrix (ARG NO. _) must be
equal to the global column index (ARG
NO. _) of the matrix (ARG NO. ).

which eigenvalues to find, must be the
same for all processes.

Chapter 5. Using Error Handling 115



0040-140

Context(_) Task() Process(_, ) Grid _ x _
VL (ARG NO. ), which specifies the
lower bound of the interval to be
searched for eigenvalues, must be the
same for all processes.

0040-141

Context(_) Task() Process(_,_) Grid _ x _
VU (ARG NO. ), which specifies the
upper bound of the interval to be
searched for eigenvalues, must be the
same for all processes.

0040-142

Context( ) Task(_) Process(_, ) Grid _ x _
IL (ARG NO. _), which specifies the
index of the smallest eigenvalue to be
returned, must be the same for all
processes.

0040-143

Context( ) Task() Process(_, ) Grid _ x _
IU (ARG NO. _), which specifies the
index of the largest eigenvalue to be
returned, must be the same for all
processes.

0040-144

Context(_) Task() Process(_, ) Grid _ x _
The vector (ARG NO. ) is
row-distributed and TRANS (ARG NO.
_) is "T” or 'C’, but the process column
(), containing the first element of the
vector is not equal to the process
column () containing the first column
of the submatrix (ARG NO. ).

0040-145

Context() Task() Process(_, ) Grid _ x _
The vector (ARG NO. ) is
column-distributed and TRANS (ARG
NO. ) is 'N’, but the process row (),
containing the first element of the
vector is not equal to the process row ()
containing the first row of the submatrix
(ARG NO. ).

0040-146

Context( ) Task(_) Process(_, ) Grid _ x _
ABSTOL (ARG NO. _), which specifies
the absolute error tolerance for the
eigenvalues, must be the same for all
processes.

0040-147

Context(_) Task( ) Process(_, ) Grid _ x _
No attributes or key is defined for the
communicator. The probable cause is
that the BLACS have not been
initialized.

0040-148 Context(_) Task( ) Process(_, ) Grid _ x _
MPI is not initialized. The probable
cause is that the BLACS have not been
initialized.

0040-149 Context(_) Task(_) Process(_, ) Grid _ x _
The Cartesian grid is not defined. The
probable cause is that the BLACS have
not been initialized.

0040-150 Context( ) Task() Process(_,_ ) Grid _ x _
The Cartesian grid is not defined as
two-dimensional. The probable cause is
that the BLACS have not been
initialized.

0040-230 Context(_) Task(_) Process(_, ) Grid _ x _
The process grid must be defined with
either the number of process rows or the
number of process columns set to 1.

0040-231 Context(_) Task() Process(_, ) Grid _ x _
The number of columns, N_, (element 3
of ARG NO. ) in the global matrix
(ARG NO. _) must be the same for all
processes.

0040-232 Context(_) Task(_) Process(_, ) Grid _ x _
The block size (element 4 of ARG NO.
_) must be equal to ().

0040-233 Context(_) Task() Process(_,_) Grid _ x _
The process row, RSRC_, (element 5 of
ARG NO. ) must be equal to ().

0040-234 Context(_) Task(_) Process(_, ) Grid _ x _
The size of leading dimension, LLD_,
(element 6 of ARG NO. _) of the local
array (ARG NO. _) must be greater than
or equal to ().

0040-235 Context(_) Task(_) Process(_, ) Grid _ x _
Argument () must be greater than or
equal to ().

0040-236 Context(_) Task(_) Process(_, ) Grid _ x _
DTYPE_ (element 1 of ARG NO. ),
which specifies the descriptor type,
must be the same for all processes.

0040-237 Context(_) Task(_) Process(_, ) Grid _ x _

The communications context, CTXT_,
(element 2 of ARG NO. _), must be the
same for all processes.

116  Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference



0040-238

Context( ) Task() Process(_, ) Grid _ x _
The number of elements in the matrix
(ARG NO. _) supplied to store the factor
must be greater than or equal to ().

0040-239

Context(_) Task(_) Process(_, ) Grid _ x _
TRANS (ARG NO. _), which specifies
the operation to be performed, must be
‘N’ or 'n’.

0040-242

Context( ) Task() Process(_, ) Grid _ x _
The number of rows, M_, (element 3 of
ARG NO. )) in the global matrix must
be greater than the half-bandwidth, K.

0040-243

Context( ) Task() Process(_, ) Grid _ x _
The half bandwidth, K, (ARG NO. )
must be the same for all processes.

0040-245

Context(_) Task(_) Process(_, ) Grid _ x _
The process row or column, (element 5
of ARG NO. _) must be equal to ().

0040-248

Context(_) Task(_) Process(_, ) Grid _ x _
The half bandwidth (ARG NO. _) of a
matrix must be greater than or equal to
zero.

0040-249

Context( ) Task() Process(_, ) Grid _ x _

The half bandwidth (ARG NO. ) of the
band matrix (ARG NO. _) must be less
than the order of the matrix.

0040-250

Context(_) Task() Process(_, ) Grid _ x _

The number of rows (ARG NO. _) of
matrix (ARG NO. _) must be smaller
than or equal to the product of the
number of processors and the block size
(element _ of ARG NO. _) minus the
modulus of (ARG NO. _) minus one
with the block size (element _ of ARG
NO. ).

0040-272

Context( ) Task() Process(_, ) Grid _ x _

The value of UPLO is U. NB_ (element
_of ARG NO. _) must be greater than
or equal to the half bandwidth, K (ARG
NO. ).

0040-276

Context(_) Task() Process(_, ) Grid _ x _

The number of columns, N_, (element 4
of ARG NO. ) in the global matrix
must be greater than or equal to the
number of right hand sides (ARG NO.
2.

0040-277 Context(_) Task( ) Process(_, ) Grid _ x _
The global row index (ARG NO. _) of
matrix (ARG NO. _) must be greater
than 0 and less than or equal to the
number of rows in the global matrix,
M_, (element _ of ARG NO. ).

0040-278 Context(_) Task( ) Process(_,_ ) Grid _ x _
The global column index (ARG NO. _)
of matrix (ARG NO. _) must be greater
than 0 and less than or equal to the
number of columns in the global matrix,
N_, (element _ of ARG NO. ).

0040-279 Context(_) Task() Process(_,_ ) Grid _ x _
The block size (element 4 of ARG NO.
_) must be the same for all processes.

0040-280 Context(_) Task( ) Process(_,_ ) Grid _ x _
The process column CSRC_, (element 5
of ARG NO. _) must be the same for all
processes.

0040-281 Context(_) Task(_) Process(_, ) Grid _ x _
The number of columns, N_, (element 3
of ARG NO. ) in the global matrix
(ARG NO. ) must be greater than zero.

0040-282 Context( ) Task( ) Process(_,_) Grid _ x _
The process row RSRC_, (element 5 of
ARG NO. _) must be the same for all
processes.

0040-286 Context(_) Task( ) Process(_, ) Grid _ x _
The descriptor type, DTYPE_ (element 1
of ARG NO. ) is invalid. The valid
descriptor type for this routine is _.

0040-287 Context(_) Task(_) Process(_,_) Grid _ x _
The submatrix referenced is
incompatible with the global matrix
definition. The global column index
(ARG NO. ) plus the number of
columns (ARG NO. _) of the matrix
(ARG NO. _) minus 1 must be less than
or equal to the number of columns, N_,
(element 3 of ARG NO. ).

0040-289 Context(_) Task(_) Process(_, ) Grid _ x _

The row block size, MB_, (element 4 of
ARG NO. ) of the matrix (ARG NO. )
must be greater than zero.
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0040-290 Context(_) Task() Process(_, ) Grid _ x _ 0040-294 Context(_) Task( ) Process(_, ) Grid _ x _
The number of columns, N_, (element 3 The descriptor type, DTYPE_ (element 1
of ARG NO. ) in a null matrix (ARG of ARG NO. ) is invalid. Valid
NO. _) must be greater than or equal to descriptor types for this routine are _, _,
zero. and _.

0040-291 Context(_) Task() Process(_,_) Grid _ x _ 0040-295 Context(_) Task( ) Process(_, ) Grid _ x _
The column block size, NB_, (element 4 End of input-argument error reporting.
of ARG NO. ) of the matrix (ARG NO. The first argument found to have an
_) must be greater than zero. invalid value was (ARG NO. _). Parallel

ESSL has returned a valid array
0040-292 Context(_) Task() Process(_, ) Grid _ x _ descriptor (ARG NO. ).
The order (ARG NO. _) of matrix (ARG
NO. _) must be smaller than or equal to 0040-297 Context(_) Task()) Process(_, ) Grid _ x _
the product of the number of processors End of global input-argument error
and the block size (element _ of ARG reporting. For more information, refer to
NO. _) minus the modulus of (ARG NO. Parallel ESSL Guide and Reference.
_) minus one with the block size
(element _ of ARG NO. ). 0040-299 Context(_) Task( ) Process(_, ) Grid _ x _
End of input-argument error reporting.
0040-293 Context(_) Task(_) Process(_, ) Grid _ x _ For more information, refer to Parallel

The descriptor type, DTYPE_ (element 1
of ARG NO. ) is invalid. Valid
descriptor types for this routine are _
and _.

ESSL Guide and Reference.

Note: There are more input-argument error messages listed in [“Input-Argument Error Messages|

[(800-999)” on page 122

Computational Error Messages (300-399)

0040-300 Context( ) Task() Process(_, ) Grid _ x _ 0040-305 Context( ) Task( ) Process(_, ) Grid _ x _
The input matrix (ARG NO. ) is No eigenvalues were computed since
singular. The first diagonal element the Gershgorin interval initially used
found to be exactly 0 was in column (). was incorrect.

0040-301 Context(_) Task(_) Process(_, ) Grid _ x _ 0040-306 Context(_) Task(_) Process(_, ) Grid _ x _
The storage space, specified by (ARG (L) eigenvectors failed to converge after
NO. )) is insufficient. () bytes are () iterations. The indices are stored in
required. IFAIL (ARG NO. ).

0040-302 Context(_) Task( ) Process(_, ) Grid _ x _ 0040-307 Context(_) Task( ) Process(_, ) Grid _ x _
The matrix (ARG NO. _) is not positive Eigenvectors corresponding to one or
definite. The leading minor of order (L) more clusters of eigenvalues could not
has a nonpositive determinant. be reorthogonalized because of

insufficient workspace. The indices of

0040-303 Context(_) Task() Process(_, ) Grid _ x _ the clusters are stored in ICLUSTR

. . (ARG NO. ).
Bisection failed to converge for some
eigenvalues. The eigenvalues may not
be as accurate as the absolute and 0040-308 Context(_) Task(_) Process(_, ) Grid _ x _
relative tolerances. All of the eigenvectors between VL
(ARG NO. ) and VU (ARG NO. )
0040-304 Context( ) Task() Process(_, ) Grid _ x _ could not be computed due to

The number of eigenvalues computed
(ARG NO. _) does not match the
number of eigenvalues requested.

insufficient workspace. The number of
eigenvectors computed is returned in
NZ (ARG NO. ).
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0040-309 Context( ) Task() Process(_, ) Grid _ x _ 0040-317 Context(_) Task( ) Process(_, ) Grid _ x _
The number of eigenvalues computed The preconditioner, as specified by
(ARG NO. _) does not equal the number argument (ARG NO. ) for sparse matrix
of eigenvectors computed (ARG NO. ). (ARGS NO. _-)) is unstable.

0040-310 Context(_) Task(_) Process(_, ) Grid _ x _ 0040-318 Context(_) Task(_) Process(_,_ ) Grid _ x _
The input matrix is either (nearly) The sparse matrix (ARGS NO. _-)
singular or reducible. The value of contains duplicated coefficients.

INFO is (). The portion of the global
:ubmatrlx storeq on process () and 0040-319 Context(_) Task() Process(_, ) Grid _ x _
actored locally is either (nearly) Th trix () tai :
singular or reducible. A pivot element € sparse matrix L) contains empty
whose magnitude is too small or zero row(s).
was detected.

0040-320 Context(_) Task() Process(_,_) Grid _ x _

0040-311 Context(_) Task(_) Process(_, ) Grid _ x _ The sparse matrix (ARGS NO. _-)

The input matrix is not diagonally contains empty row(s).

dominant. The value of INFO is (). The

portion of the global submatrix stored 0040-321 Context(_) Task( ) Process(_,_) Grid _ x _

on process (_) and factored locally is not The input matrix is either (nearly)

diagonally dominant. A pivot element singular or reducible. The value of

whose magnitude is too small or zero INFO is (). The portion of the global

was detected. submatrix stored on process (1)
representing interactions with other

0040-312 Context(_) Task(_) Process(_, ) Grid _ x _ processes 15 elfher (nearly) singular or
The input matrix is not positive reduc%ble. A pivot element whose
definite. The value of INFO is (). The magnitude is too small or zero was
portion of the global submatrix stored detected.
on process () and factored locally is not
positive definite. A pivot element whose 0040-322 Context(_) Task(_) Process(_, ) Grid _ x _
value is less than or equal to a small The input matrix is not diagonally
positive number was detected. dominant. The value of INFO is (). The

portion of the global submatrix stored

0040-313 Context(_) Task( ) Process(_, ) Grid _ x _ on process O represe.ntmg 1r}teract10ns
The maximum number of specified w1th. other processes is not diagonally
. . dominant. A pivot element whose value
iterations (L) has been performed . .
without satisfying the convergence is less than or equal to a small positive
criterion as specified by (). number was detected.

0040-314 Context(_) Task()) Process(_, ) Grid _ x _ 0040-323 gﬁnt.e Xt(—t) Tastk.(_). Proctess(_{t_.) Grid _x _
The preconditioner, as specified by ° IpUt matrix 15 not postiive
argument () for sparse matrix () is defn’nte. The value of INFO is (). The
unstable. portion of the global submatrix stored

on process (_) representing interactions
with other processes is not positive

0040-315 Context( ) Task( ) Process(_, ) Grid _ x _ definite. A pivot element whose value is
The sparse matrix (_) contains less than or equal to a small positive
duplicated coefficients. number was detected.

0040-316 Context(_) Task() Process(_, ) Grid _ x 0040-324 Context(_) Task() Process(_, ) Grid _ x _

The maximum number of specified
iterations () has been performed
without satisfying the convergence
criterion as specified by (ARG NO. ).

The inverse of matrix (ARG NO. )
could not be computed. The first
diagonal element of the factored matrix
found to be exactly zero was in column

Q).
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0040-325 Context(_) Task() Process(_, ) Grid _ x _ 0040-399 Context(_) Task( ) Process(_, ) Grid _ x _
The singular values of matrix (ARG NO. Job is terminated. Optional argument (_)
_) failed to converge. (L) elements of the was not specified, but a computational
superdiagonal of an intermediate error occurred. The value returned is ().
bidiagonal form failed to converge to
zero.

0040-326 Context() Task() Process(_,_) Grid _ x _

The singular values (ARG NO. 0) are
not the same on all processes.
Resource Error Messages (400-499)
0040-400 Context(_) Task(_) Process(_, ) Grid _ x _
An internal buffer allocation has failed
due to insufficient memory.
0040-401 Context(_) Task()) Process(_, ) Grid _ x _
Unable to allocate component(s) of
derived data type (1) due to insufficient
memory.
Communication Error Messages (500-599)
0040-501 Context(_) Task(_) Process(_, ) Grid _ x _ O for its own task id.
During process grid synchronization,
task(_) has reported an incorrect grid 0040-503 Context(_) Task( ) Process(_, ) Grid _ x _
(/). Actual grid dimension is (_,_). During process grid synchronization,
task() has returned an incorrect

0040-502 Context(_) Task() Process(_,_) Grid _ x _ :nes)sage id range (). Expected range is
During process grid synchronization, -
task( ) has returned an incorrect value
Informational and Attention Messages (600-699)

0040-600 Context(_) Task() Process(_, ) Grid _ x _ 0040-605 Context(_) Task() Process(_, ) Grid _ x _
Attention: process is sending data to Attention: gettimeofday system call
itself. returned bad rc ().

0040-601 Context(_) Task(_) Process(_, ) Grid _ x _ 0040-606 Context(_) Task(_) Process(_, ) Grid _ x _
Attention: process is receiving data from Attention: Attempt to change message id
itself. range after process grid definition.

Message id range not changed.

0040-602 Context(_) Task() Process(_, ) Grid _ x _

Attention: process has received data 0040-607 Context() Task() Process(_, ) Grid _ x _
whose length () differs from the Attention: Configuration parameter
expected length (). (ARG NO. ) is invalid.

0040-603 Context( ) Task() Process(_, ) Grid _ x _ 0040-608 Context(_) Task( ) Process(_, ) Grid _ x _
Attention: The message id range for Attention: Application waited for
point-to-point communications will be memory allocation.
reused every (L) messages.

0040-609 Context() Task( ) Process(_,_) Grid _ x _

0040-604 Context(_) Task(_) Process(_,_) Grid _ x _ Attention: getrusage system call

Attention: The message id range for
scoped communications will be reused
every () operations.

returned bad rc ().
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0040-610 Context( ) Task() Process(_, ) Grid _ x _ 0040-615 Context(_) Task( ) Process(_, ) Grid _ x _
Attention: Attempt to define process Attention: Environment variable
grid before calling BLACS_GET. PESSL_DESC_TYPE has specified the
use of obsolete descriptor vectors.
0040-611 Context(_) Task() Process(_, ) Grid _ x _
Attention: BLACS system context can 0040-616 Context(_) Task( ) Process(_, ) Grid _ x _
only be set by calling BLACS_GET. Convergence indicator for iterative
method () at step (): ().
0040-612 Context(_) Task(_) Process(_, ) Grid _ x _
Attention: The number of rings cannot 0040-617 Context(_) Task( ) Process(_, ) Grid _ x _
be set to zero. Message buffer space exceeded for error
message number (). One or more
0040-613 Context(_) Task(_) Process(_, ) Grid _ x _ instances gf the message was
Attention: The number of branches () suppressec.
must be greater than zero.
0040-618 Context(_) Task(_) Process(_, ) Grid _ x _
0040-614 Context(_) Task() Process(_, ) Grid _ x _ }:;g?:g‘;ﬂ;:er:g;z: ::;:ili:iiel(ilt;ue to
Attention: Cannot set BLACS debug ’
level.
Miscellaneous Error Messages (700-799)
0040-700 Context(_) Task() Process(_, ) Grid _ x _ 0040-707 Context(_) Task( ) Process(_,_ ) Grid _ x _
Internal Parallel ESSL error number (). The process grid must be defined with
Contact your IBM service representative. the number of columns set to 1.
0040-701 Context(_) Task() Process(_, ) Grid _ x _ 0040-708 Context(_) Task() Process(_, ) Grid _ x _
Unable to open Parallel ESSL Message The user supplied subroutine () has
Catalog. See your System Administrator produced an incorrect output. Argument
for further assistance. (0 must be greater than or equal to 1
and less than or equal to the number of
0040-702 Context(_) Task() Process(_, ) Grid _ x _ processes in the process grid.
Internal Parallel ESSL error: message
buffer space exceeded for error message 0040-709 Context() Task() Process(_,_) Grid _ x _
number (). Contact your IBM service The user supplied subroutine () has
representative. produced an incorrect output. Argument
(O must be greater than or equal to 0
0040-703 Context( ) Task() Process(_, ) Grid _ x _ and less tl.lar:d:he the numl?(elr of
Internal Parallel ESSL error: message processes In the process gric.
number requested () is outside of the
valid range. Contact your IBM service 0040-710 Context() Task() Process(_,_) Grid _ x _
representative. The user supplied subroutine (ARG
NO. _) has produced an incorrect
0040-704 Context(_) Task( ) Process(_, ) Grid _ x _ Outplll.t ) c(lARl? NO.' ) of thi user
Parallel ESSL has been called from supplied subroutine must be greater
. . A than or equal to 1 and less than or equal
outside the process grid definition. to the number of in th
processes in the
process grid.
0040-705 Context(_) Task() Process(_, ) Grid _ x _
The c.ommumcatlons context () is 0040-711 Context(_) Task( ) Process(_, ) Grid _ x _
invalid. The user supplied subroutine (ARG
NO. _) has produced an incorrect
0040-706 Context(_) Task( ) Process(_, ) Grid _ x _ output. (ARG NO. ) of the user

The process grid must be defined with
the number of rows set to 1.

supplied subroutine must be greater
than or equal to 0 and less than the
number of processes in the process grid.
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0040-712

Context(_) Task() Process(_, ) Grid _ x _

The size of input array (ARG NO. )
must be greater than or equal to ().

0040-713

Context( ) Task() Process(_, ) Grid _ x _

Environment variable
PESSL_DESC_TYPE has specified the
use of obsolete descriptor vectors. You
must update the descriptor vectors in

your program as described in the
Parallel ESSL Guide and Reference.

0040-799

Context(_) Task( ) Process(_, ) Grid _ x _
Unable to locate message number ().
Please refer to the chapter entitled
*Using Error Handling’ in the Parallel
ESSL Guide and Reference (SA22-7906)
for the full message text.

Input-Argument Error Messages (800-999)

0040-800

Context(_) Task( ) Process(_, ) Grid _ x _

DTYPE_ (element _ of ARG NO. ) for
matrix (ARG NO. _) is _. The process
grid for matrix (ARG NO. _) must be
defined with the number of rows set to
1.

0040-801

Context( ) Task() Process(_, ) Grid _ x _

DTYPE_ (element _ of ARG NO. ) for
matrix (ARG NO. ) is _. The process
grid for matrix (ARG NO. _) must be
defined with the number of columns set
to 1.

0040-802

Context( ) Task() Process(_, ) Grid _ x _

The global column index, (ARG NO. )
must be equal to the global row index
(ARG NO. ).

0040-803

Context(_) Task(_) Process(_, ) Grid _ x _

The submatrix referenced is
incompatible with the global matrix
definition. The global row index (ARG
NO. _) plus the number of rows (ARG
NO. ) of the matrix (ARG NO. )
minus 1 must be less than or equal to
the number of rows, N_, (element _ of
ARG NO. ).

0040-804

Context(_) Task() Process(_, ) Grid _ x _

The number of rows, M_, (element _ of
ARG NO. ) in the global matrix (ARG
NO. _) must be equal to one.

0040-805

Context( ) Task(_) Process(_, ) Grid _ x _

The number of columns, N_, (element _
of ARG NO. ) in the global matrix
(ARG NO. ) must be equal to one.

0040-806

Context( ) Task() Process(_, ) Grid _ x _

DTYPE_ (element _ of ARG NO. ) is
one. At least one of the following must
be true: For the global matrix (ARG NO.
_), the number of rows, M_, (element _
of ARG NO. ) must be equal to one or

the number of columns, N_, (element _
of ARG NO. _) must be equal to one.

0040-807 Context(_) Task( ) Process(_,_ ) Grid _ x _
The row block size MB_, (element _ of
ARG NO. )) of the global matrix (ARG
NO. _) must be the same for all
processes.

0040-816 Context(_) Task() Process(_, ) Grid _ x _
The process grid must be defined with
the number of columns set to 1.

0040-817 Context(_) Task() Process(_,_) Grid _ x _
The size of array (ARG NO. _) must be
greater than or equal to ().

0040-818 Context( ) Task() Process(_,_) Grid _ x _
The array descriptor (L) has not been
initialized. Routine (L) must be called
prior to this routine.

0040-819 Context(_) Task() Process(_, ) Grid _ x _
The array descriptor (L) contains invalid
component(s). Routine () must be
called prior to this routine.

0040-820 Context(_) Task(_) Process(_, ) Grid _ x _
The array descriptor (1) contains invalid
component(s).

0040-821 Context(_) Task( ) Process(_, ) Grid _ x _
The pointer(s) specified by argument (L)
are not associated and therefore cannot
be freed.

0040-822 Context(_) Task( ) Process(_, ) Grid _ x _
The size of array (L) must be greater
than or equal to (). Routine (1) must be
called prior to this routine.

0040-823 Context(_) Task(_) Process(_, ) Grid _ x _

The sparse matrix () is invalid. Routine
() must be called prior to this routine.
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0040-824 Context(_) Task(_) Process(_, ) Grid _ x _
The sparse matrix (L) was not initialized
properly. Some local row(s) are missing.
Additional calls to (1) may be required.

0040-825 Context(_) Task(_) Process(_, ) Grid _ x _
The value of argument () is ();
therefore argument () is required.

0040-826 Context(_) Task() Process(_, ) Grid _ x _
The storage format () specified for
sparse matrix (L) must be ().

0040-827 Context(_) Task( ) Process(_, ) Grid _ x _
Argument (L) must be equal to ().

0040-828 Context(_) Task() Process(_, ) Grid _ x _
The storage format for sparse matrix (1)
must be (). Routine () must be called
prior to this routine.

0040-829 Context(_) Task() Process(_, ) Grid _ x _
The contents of array descriptor (ARG
NO. ) are invalid.

0040-830 Context(_) Task(_) Process(_, ) Grid _ x _
The sparse matrix (ARGS NO. _-) is
invalid. Routine () must be called prior
to this routine.

0040-831 Context(_) Task(_) Process(_, ) Grid _ x _
(ARG NO. ) must be greater than or
equal to () and less than or equal to ().

0040-832 Context( ) Task() Process(_, ) Grid _ x _
The storage format of sparse matrix
(ARGS NO. _-) is invalid.

0040-833 Context(_) Task( ) Process(_, ) Grid _ x _
One or more of the rows requested for
insertion with () does not belong to
this process.

0040-834 Context( ) Task() Process(_, ) Grid _ x _
One or more of the rows requested for
insertion with (ARG NO. _) does not
belong to this process.

0040-835 Context(_) Task(_) Process(_, ) Grid _ x _

Argument (L) must be the same for all
processes.

0040-836 Context(_) Task( ) Process(_, ) Grid _ x _
Argument (L) must be greater than or
equal to () and less than or equal to ().

0040-837 Context(_) Task(_) Process(_, ) Grid _ x _
The sparse matrix (ARGS NO. _-_) was
not initialized properly. Some local
row(s) are missing. Additional calls to
(0 may be required.

0040-838 Context(_) Task( ) Process(_,_ ) Grid _ x _
The storage format (ARG NO. _)
specified for sparse matrix (ARGS NO.
_-_) must be ().

0040-839 Context(_) Task() Process(_, ) Grid _ x _
(ARG NO. ) must be equal to ().

0040-840 Context(_) Task( ) Process(_, ) Grid _ x _
(ARG NO. _) must be the same for all
processes.

0040-841 Context(_) Task( ) Process(_, ) Grid _ x _
Element () of array (ARG NO. _) must
be equal to ().

0040-842 Context(_) Task(_) Process(_,_ ) Grid _ x _
Element () of array (ARG NO. _) must
be greater than or equal to () and less
than or equal to ().

0040-843 Context(_) Task(_) Process(_,_ ) Grid _ x _
The process row, RSRC_, (element _ of
ARG NO. ) must be greater than or
equal to 0 and less than the total
number of rows in the process grid.

0040-844 Context(_) Task(_) Process(_, ) Grid _ x _
The process column, CSRC_, (element _
of ARG NO. _) must be greater than or
equal to 0 and less than the total
number of columns in the process grid.

0040-845 Context(_) Task(_) Process(_, ) Grid _ x _
The process column, CSRC_, (element _
of ARG NO. _) must be equal to the
process row, RSRC_, (element _ of ARG
NO. ).

0040-846 Context(_) Task(_) Process(_,_) Grid _ x _

The workspace size (ARG NO. _) has

been specified as minus one for a subset
of the processes and therefore it must be
specified as minus one for all processes.
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0040-847 Context(_) Task() Process(_, ) Grid _ x _
The preconditioner (1) contains invalid
components. Routine () must be called
prior to this routine.

0040-848 Context(_) Task(_) Process(_, ) Grid _ x _
The preconditioner (ARG NO. )
contains invalid components. Routine
() must be called prior to this routine.

0040-849 Context( ) Task() Process(_, ) Grid _ x _
The size of array (L) must be greater
than or equal to () and less than or
equal to ().

0040-850 Context(_) Task(_) Process(_, ) Grid _ x _
The matrix type () specified for sparse
matrix (L) must be ().

0040-851 Context(_) Task(_) Process(_, ) Grid _ x _
The matrix type (ARG NO. ) specified
for sparse matrix (ARGS NO. _- ) must
be ().

0040-852 Context(_) Task( ) Process(_, ) Grid _ x _
Element () of vector (ARG NO. _) must
be greater than or equal to zero.

0040-853 Context( ) Task() Process(_, ) Grid _ x _
Element () of vector (ARG NO. _) must
be the same for all processes.

0040-854 Context( ) Task() Process(_, ) Grid _ x _
LWORK (ARG NO. _), which specifies
the size of the local work array, must be
the same for all processes.

0040-855 Context(_) Task(_) Process(_, ) Grid _ x _
The preconditioner data structure (1)
must be passed unchanged to the solver
subroutine.

0040-856 Context( ) Task() Process(_, ) Grid _ x _
The preconditioner data structure (ARG
NO. _) must be passed unchanged to the
solver subroutine.

0040-857 Context(_) Task() Process(_, ) Grid _ x _

The size of array (L) must be greater
than or equal to ().

0040-858 Context(_) Task( ) Process(_, ) Grid _ x _
The global row index (ARG NO. _) of
matrix (ARG NO. _) must be greater
than 0 and less than or equal to the
number of columns in the global matrix,
N_, (element _ of ARG NO. ).

0040-859 Context( ) Task( ) Process(_, ) Grid _ x _
The process row, RSRC_, (element _ of
ARG NO. ) must be equal to the
process row, RSRC_, (element _ of ARG
NO. ).

0040-860 Context(_) Task(_) Process(_, ) Grid _ x _
TRANS (ARG NO. ), which specifies
the computation to be performed, must
be ‘N’ or 'T".

0040-861 Context( ) Task( ) Process(_, ) Grid _ x _
TRANS (ARG NO. _), which specifies
the computation to be performed, must
be ‘N’ or 'C’.

0040-862 Context(_) Task(_) Process(_,_ ) Grid _ x _
NORM (ARG NO. _), which specifies
whether to calculate the 1-norm
condition number or the infinity-norm
condition number, must be ‘1", 'O’, or 'T".

0040-863 Context( ) Task( ) Process(_, ) Grid _ x _
ANORM (ARG NO. ), which specifies
the norm of the matrix, must be the
same for all processes.

0040-864 Context(_) Task(_) Process(_, ) Grid _ x _
NORM (ARG NO. ), which specifies
which condition number is required,
must be the same for all processes.

0040-865 Context( ) Task( ) Process(_,_ ) Grid _ x _
NORM (ARG NO. ), which specifies
the computation to be performed, must
be IMI’ 111’ IOI’ III’ IFI’ 01‘ IEI.

0040-866 Context(_) Task() Process(_, ) Grid _ x _
IBTYPE (ARG NO. _), which specifies
the problem type, must be 1, 2, or 3.

0040-867 Context(_) Task(_) Process(_, ) Grid _ x _

IBTYPE (ARG NO. _), which specifies
the problem type, must be the same for
all processes.
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0040-868

Context( ) Task() Process(_, ) Grid _ x _

JOBU (ARG NO. _), which specifies
whether or not to compute left singular
vectors, must be ‘N’ or "V’.

0040-869

Context(_) Task(_) Process(_, ) Grid _ x _

JOBVT (ARG NO. ), which specifies
whether or not to compute right
singular vectors, must be 'N” or "V’.

0040-870

Context( ) Task() Process(_, ) Grid _ x _

JOBU (ARG NO. _), which specifies
whether or not to compute left singular
vectors, must be the same for all
processes.

0040-871

Context(_) Task(_) Process(_, ) Grid _ x _

JOBVT (ARG NO. ), which specifies
whether or not to compute right
singular vectors, must be the same for
all processes.

0040-872

Context(_) Task( ) Process(_, ) Grid _ x _

(ARG NO. ) must be greater than or
equal ().
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Part 2. Reference Information

This part of the book is organized into seven areas, providing reference
information for coding the Parallel ESSL subroutines. It is organized as follows:
* Level 2 PBLAS

* Level 3 PBLAS

* Linear Algebraic Equations

* Eigensystem Analysis and Singular Value Analysis

* Fourier Transforms

¢ Random Number Generation

« Utilities
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Chapter 6. Level 2 PBLAS

This chapter describes the Level 2 PBLAS subroutines.

Overview of the Level 2 PBLAS Subroutines

The Level 2 PBLAS include a subset of the standard set of distributed memory
parallel versions of the Level 2 BLAS.

Note: These subroutines are designed in accordance with the proposed Level 2
PBLAS standard. (See references , , and .) If these subroutines do
not comply with the standard as approved, IBM will consider updating
them to do so. If IBM updates these subroutines, the update could require
modifications of the calling application program.

Table 48. List of Level 2 PBLAS

Long-Precision

Descriptive Name Subprogram Page

Matrix-Vector Product for a General Matrix or Its Transpose PDGEMV
PZGEMV

Matrix-Vector Product for a Real Symmetric or a Complex Hermitian Matrix PDSYMV
PZHEMV

Rank-One Update of a General Matrix PDGER 168
PZGERC
PZGERU

Rank-One Update of a Real Symmetric or a Complex Hermitian Matrix PDSYR
PZHER

Rank-Two Update of a Real Symmetric or a Complex Hermitian Matrix PDSYR2 @
PZHER2

Matrix-Vector Product for a Triangular Matrix or Its Transpose PDTRMV
PZTRMV

Solution of Triangular System of Equations with a Single Right-Hand Sides PDTRSV P88
PZTRSV
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PDGEMV and PZGEMV

Level 2 PBLAS Subroutines

This section contains the Level 2 PBLAS subroutine descriptions.
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PDGEMV and PZGEMV

PDGEMV and PZGEMV — Matrix-Vector Product for a General Matrix
or Its Transpose

Purpose

PDGEMYV computes one of the following matrix-vector products:
* Yy cxAx+Py
sy« O(ATx+/5'y

PZGEMV computes one of the following matrix-vector products:
* y caAx+Py

« y < aAx+fy

« y < aA x+py

where, in the formulas above:

* A represents the global general submatrix Ajq.izim-1, jasja+n—1-

* x represents the global vector:

For transa = 'N”:

- Forincx = M_X, it is Xiviv jxsjxen-1-

- Forincx = 1 and incx # M_X, it is Xivixen-1, juj-

For transa = "T" or 'C":

- Forincx = M_X, it is Xivix jxjxem—1-
- Forincx = 1 and incx # M_X, it is Xicixim-1, jxsjr-

* y represents the global vector:

— For transa = 'N”:

- Forincy = MY, itis Y.y, jyjyem—1-

- Forincy = 1and incy = MY, itis Y;

For transa = "T" or 'C":

- Forincy = MY, it is Y.y jysiven-1-
- Forincy = 1and incy # M_Y, itis Y;

* o and B are scalars.

yiiy+m—1, jyjy

yiiy+n—1, jyjy*

Note: No data should be moved to form AT or A™; that is, the matrix A should
always be stored in its untransposed form.

In the following three cases, no computation is performed and the subroutine
returns after doing some parameter checking:

e m=20

*en=20

* «is zero and f is one.

See references and .

Table 49. Data Types

o B, A xy Subprogram
Long-precision real PDGEMV
Long-precision complex PZGEMV
Syntax
Fortran CALL PDGEMV | PZGEMV (transa, m, n, alpha, a, ia, ja, desc_a, x, ix, jx, desc_x, incx, beta, y, 1y, jy,

desc_y, incy)
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PDGEMV and PZGEMV

C and C++

pdgemv | pzgemv (transa, m, n, alpha, a, ia, ja, desc_a, x, ix, jx, desc_x, incx, beta, y, iy, jy, desc_y,
incy);

On Entry
transa  indicates the form of matrix A to use in the computation, where:

If transa

'N’, A is used in the computation.

If transa = 'T’, A" is used in the computation.

If transa = 'C’, A™ is used in the computation.
Scope: global
Specified as: a single character; transa = 'N’, "T’, or 'C’.

m is the number of rows in submatrix A used in the computation, and:
If transa = 'N’, it is the number of elements in vector y.
If transa = 'T” or 'C’, it is the number of elements in vector x.
Scope: global
Specified as: a fullword integer; m = 0.

n is the number of columns in submatrix A used in the computation, and:
If transa = ’'N’, it is the number of elements in vector x.
If transa = "T” or 'C/, it is the number of elements in vector y.
Scope: global
Specified as: a fullword integer; n = 0.

alpha  is the scalar a.

Scope: global

Specified as: a number of the data type indicated in [Table 49 on page 131}

a is the local part of the global general matrix A. This identifies the first
element of the local array A. This subroutine computes the location of the
first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow,
and mycol; therefore, the leading LOCp(ia+m-1) by LOCq(ja+n~-1) part of
the local array A must contain the local pieces of the leading ia+m-1 by
ja+n—1 part of the global matrix.

Note: No data should be moved to form AT or AY; that is, the matrix A
should always be stored in its untransposed form.
Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers
of the data type indicated in [Table 49 on page 131} Details about the
block-cyclic data distribution of global matrix A are stored in desc_a.

ia is the row index of the global matrix A, identifying the first row of the
submatrix A.

Scope: global
Specified as: a fullword integer; 1 = iz = M_A and ia+m-1 = M_A.

ja is the column index of the global matrix A, identifying the first column of
the submatrix A.
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Scope: global
Specified as: a fullword integer; 1 = ja = N_A and ja+n-1 = N_A.

desc_a is the array descriptor for global matrix A, described in the following table:
desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_A Number of rows in the global Ifm=0orn-=0: Global
matrix MA =0
Otherwise:
MA =1
4 N_A Number of columns in the If m=0o0rn=0: Global
global matrix N_A=z0
Otherwise:
N_A=1
5 MB_A Row block size MB_A = 1 Global
6 NB_A Column block size NB_A =1 Global
7 RSRC_A The process row of the p x ¢ 0 = RSRC_A < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_A The process column of the p x q |0 = CSRC_A < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_A The leading dimension of the LLD_A = max(1,LOCp(M_A)) Local
local array
Specified as: an array of (at least) length 9, containing fullword integers.
x is the local part of the global matrix X. This identifies the first element of

ix

the local array X. This subroutine computes the location of the first element
of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol;
therefore, assuming the following:

If transa = 'N’, numx = n
If transa = 'T" or 'C’, numx = m

the following must be true:

e If incx = M_X, the leading LOCp(ix) by LOCq(jx+numx—1) part of the
local array X must contain the local pieces of the leading ix by
jx+numx—1 part of the global matrix.

* Ifincx = 1 and incx # M_X, the leading LOCp(ix+numx—1) by LOCq(jx)
part of the local array X must contain the local pieces of the leading
ix+numx—-1 by jx part of the global matrix.

Scope: local
Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers

of the data type indicated in [Table 49 on page 131} Details about the
block-cyclic data distribution of the global matrix X are stored in desc_x.

has the following meaning:
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jx

If incx = M_X, it indicates which row of global matrix X is used for vector
x.

If incx = 1 and incx = M_X, it is the row index of global matrix X,
identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 = ix = M_X, and if incx = 1 and
incx # M_X, then:

'N’, then ix+n-1 = M_X.
"T” or 'C’, then ix+m-1 = M_X.

If transa

If transa

has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the
first element of vector x.

If incx = 1 and incx = M_X, it indicates which column of global matrix X
is used for vector x.

Scope: global

Specified as: a fullword integer; 1 = jx = N_X, and if incx = M_X, then:
If transa = 'N’, then jx+n-1 = N_X.

If transa = "T" or 'C/, then jx+m-1 = N_X.

desc_x is the array descriptor for global matrix X, described in the following table:

desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
2 CTXT_X BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_X Number of rows in the global If transa = ‘N’ and n = 0: Global
matrix MX=0
If transa = 'T" and m = 0:
MX =0
Otherwise:
MX =1
4 N_X Number of columns in the If transa = 'N’ and n = 0: Global
global matrix N.X=z0
If transa = 'T” and m = 0:
N.X=z=0
Otherwise:
NX=z1
5 MB_X Row block size MB_ X = 1 Global
6 NB_X Column block size NB_ X =1 Global
7 RSRC_X The process row of the p x ¢ 0 = RSRC_X < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_X The process column of the p x g |0 = CSRC_X < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_X The leading dimension of the LLD_X z max(1,LOCp(M_X)) Local
local array
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Specified as: an array of (at least) length 9, containing fullword integers.
is the stride for global vector x.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:

If incx = M_X, then x is a row-distributed vector.

If incx = 1 and incx # M_X, then x is a column-distributed vector.

is the scalar .

Scope: global

Specified as: a number of the data type indicated in [Table 49 on page 131]

is the local part of the global matrix Y. This identifies the first element of
the local array Y. This subroutine computes the location of the first element
of the local subarray used, based on iy, jy, desc_y, p, q, myrow, and mycol;
therefore, assuming the following:

If transa = 'N’, numy = m
If transa = 1" or 'C’, numy = n

the following must be true:

e If incy = MY, the leading LOCp(iy) by LOCq(jy+numy—-1) part of the
local array Y must contain the local pieces of the leading iy by
jy+numy—-1 part of the global matrix.

e Ifincy = 1 and incy # M_Y, the leading LOCp(iy+numy-1) by LOCq(jy)
part of the local array Y must contain the local pieces of the leading
iy+numy-1 by jy part of the global matrix.

When f is zero, y need not be set on input.
Scope: local
Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers

of the data type indicated in [Table 49 on page 131| Details about the
block-cyclic data distribution of the global matrix Y are stored in desc_y.

has the following meaning:

If incy = MY, it indicates which row of global matrix Y is used for vector
y.

If incy = 1 and incy = M_Y, it is the row index of global matrix Y,
identifying the first element of vector y.

Scope: global

Specified as: a fullword integer; 1 < iy = M_Y, and if incy = 1 and
incy # M_Y, then:

If transa = ‘N, then iy+m-1 = M_Y.
If transa = 'T’ or 'C’, then iy+n-1 = M_Y.
has the following meaning:

If incy = MY, it is the column index of global matrix Y, identifying the
first element of vector y.
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If incy = 1 and incy = M_Y, it indicates which column of global matrix Y is
used for vector y.

Scope: global

Specified as: a fullword integer; 1 = jy = N_Y, and if incy = M_Y, then:
If transa = 'N’, then jy+m—-1 = N_Y.

If transa = 'T” or 'C’, then jy+n-1 = N_Y.

desc_y is the array descriptor for global matrix Y, described in the following table:

desc_y Name Description Limits Scope
1 DTYPE Y Descriptor type DTYPE_Y=1 Global
2 CTXT_Y BLACS context Valid value, as returned by Global

BLACS_GRIDINIT or
BLACS_GRIDMAP

3 MY Number of rows in the global If transa = 'N” and m = 0: Global
matrix MY =0
If transa = 'T" and n = O:
MY =0
Otherwise:
MY =1
4 N_Y Number of columns in the If transa = ‘N’ and m = O: Global
global matrix N_Y=0
If transa = 'T" and n = O:
N_Y =0
Otherwise:
N_Y =1
5 MB_Y Row block size MB.Y = 1 Global
6 NB_Y Column block size NB_Y = 1 Global
7 RSRC_Y The process row of the p x ¢ 0 = RSRCLY < p Global

grid over which the first row of
the global matrix is distributed

8 CSRC_Y The process column of the p x g |0 = CSRC_Y < ¢ Global
grid over which the first column
of the global matrix is
distributed

9 LLD_Y The leading dimension of the LLD_Y z max(1,LOCp(M_Y)) Local
local array

Specified as: an array of (at least) length 9, containing fullword integers.
incy  is the stride for global vector y.

Scope: global

Specified as: a fullword integer; incy = 1 or incy = M_Y, where:

If incy = MY, then y is a row-distributed vector.

If incy = 1 and incy = M_Y, then y is a column-distributed vector.

On Return

Y is the updated local part of the global matrix Y, containing the results of
the computation.

Scope: local
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Returned as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers
of the data type indicated in [Table 49 on page 131}

Notes and Coding Rules

1.
2.

8.

These subroutines accept lowercase letters for the transa argument.

For PDGEMY, if you specify 'C’ for transa, it is interpreted as though you
specified "T".

The matrix and vectors must have no common elements; otherwise, results are
unpredictable.

The NUMROC utility subroutine can be used to determine the values of
LOCp(M_) and LOCq(N_) used in the arcument descriptions above. For details,
see ["Determining the Number of Rows and Columns in Your Local Arrays” on|
page 28 and ['NUMROC — Compute the Number of Rows or Columns of 4|
Block-Cyclically Distributed Matrix Contained in a Process” on page 868 .|

For suggested block sizes, see [‘Coding Tips for Optimizing Parallel|
[Performance” on page 77.

The following values must be equal: CTXT_A = CTXT_X = CTXT_Y.

The following coding rules depend upon the values specified for transa and
incx:

e If transa = ‘N’ and incx = M_X:
— The following block sizes must be equal: NB_A = NB_X.

— In the process grid, the process column containing the first column of the
submatrix X must also contain the first column of the submatrix A; that is,
iacol = ixcol, where:

- idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
- ixcol = mod((((jx—1)/NB_X)+CSRC_X), q)

— The block column offset of x must be equal to the block column offset of

A; that is, mod(jx—1, NB_X) = mod(ja—1, NB_A).
o If transa = ‘N’ and incx = 1( # M_X):

— The following block sizes must be equal: NB_A = MB_X.

— The block row offset of x must be equal to the block column offset of A;
that is, mod(ix—1, MB_X) = mod(ja—1, NB_A).

e If transa = 'T” or 'C’ and incx = M_X:
— The following block sizes must be equal: MB_A = NB_X.

— The block column offset of x must be equal to the block row offset of A;

that is, mod(jx—1, NB_X) = mod(ia—1, MB_A).
o If transa = "T" or 'C" and incx = 1( # M_X):

— The following block sizes must be equal: MB_A = MB_X.

— In the process grid, the process row containing the first row of the
submatrix X must also contain the first row of the submatrix A; that is,
iarow = ixrow, where:

- iarow = mod((((ia—1)/MB_A)+RSRC_A), p)
- ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

— The block row offset of x must be equal to the block row offset of A; that
is, mod(ix—1, MB_X) = mod(ia—1, MB_A).

The following coding rules depend upon the values specified for transa and
incy:
* If transa = ‘N’ and incy = M_Y:

— The following block sizes must be equal: MB_A = NB_Y.
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— The block column offset of y must be equal to the block row offset of A;
that is, mod(jy—1, NB_Y) = mod(ia—1, MB_A).
o If transa = ‘N’ and incy = 1( = M_Y):
— The following block sizes must be equal: MB_A = MB_Y.

— In the process grid, the process row containing the first row of the
submatrix Y must also contain the first row of the submatrix A; that is,
iarow = iyrow, where:

- darow = mod((((in—1)/MB_A)+RSRC_A), p)
- iyrow = mod((((fy—1)/MB_Y)+RSRC_Y), p)

— The block row offset of y must be equal to the block row offset of A; that

is, mod(iy—1, MB_Y) = mod(ia-1, MB_A).
e If transa = "T" or 'C’" and incy = M_Y:

— The following block sizes must be equal: NB_A = NB_Y.

— In the process grid, the process column containing the first column of the
submatrix Y must also contain the first column of the submatrix A; that is,
iacol = iycol, where:

- iacol = mod((((ja—1)/NB_A)+CSRC_A), q)
- iycol = mod((((jy—1)/NB_Y)+CSRC_Y), q)

— The block column offset of y must be equal to the block column offset of

A; that is, mod(jy—1, NB_Y) = mod(ja—1, NB_A).
e If transa = "T" or 'C’" and incy = 1( = M_Y):

— The following block sizes must be equal: NB_A = MB_Y.

— The block row offset of y must be equal to the block column offset of A;
that is, mod(iy-1, MB_Y) = mod(ja—1, NB_A).

9. An example of the use of this subroutine in a thermal diffusion application
program is shown in|Appendix B, “Sample Programs.”| See ["Program Main” on|

Error Conditions

Computational Errors
None

Resource Errors
Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:

1. DTYPE_A is invalid.
2. DTYPE_X is invalid.
3. DTYPE_Y is invalid.

Stage 2:
1. CTXT_A is invalid.

Stage 3:
1. This subroutine was called from outside the process grid.

Stage 4:
1. transa # 'N’, 'T’, or 'C’
2. m< 0
3. n<0
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15.
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23.
24.

25.
26.

27.
28.
29.
30.
31.
32.
33.

SO NOOA
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M_A < Oand (m = 0orn = 0); M_A < 1 otherwise
N_A <0Oand (m = 0orn = 0); N_A < 1 otherwise
MB A <1

NB_A <1

RSRC_A < 0 or RSRC_A
CSRC_A < 0 or CSRC_A
ina <1

ja <1

If (n = 0 and transa = 'N’) or (im = 0 and transa = "T" or 'C’):
MX <0

NX <0

Otherwise:
MX <1
NX<1

In all cases:

MB X < 1

NB X < 1

RSRC_X < 0 or RSRC_X
CSRC_X < 0 or CSRC_X
CTXT_A = CIXT_X

ix <1

jx <1

If ;m = 0and transa = 'N’) or (n = 0 and transa = "T" or 'C’):
MY <0

NY<O

Otherwise:
MY <1
NY<1

In all cases:

MB.Y < 1

NBY <1

RSRC_Y < 0 or RSRC_Y
CSRC_Y < 0 or CSRC_Y
CTXT_A = CTXT_Y

iy <1

jy <1

v v
N

v v
=

v v
(A=)

Stage 5: If m # 0 and n = O:

1.

o o

10.
11.

12.

ia > M_A

2. ja>N_A
3.
4

a+m-1 > M_A

ja+n=1 > N_A

If (n 2 0.and transa = 'N’) or (m # 0 and transa = "T" or 'C’):
ix > M_X

jx > N_X

If ;m # 0 and transa = 'N’) or (n # 0 and transa = "T" or 'C’):
iy > MY

jy > N_Y

If incx = M_X and transa = 'N”:

NB_X # NB_A

mod(jx—1, NB_X) # mod(ja—1, NB_A)

n # 0and jx+n-1 = N_X

If incx = M_X and transa = "T" or 'C”:

NB_X # MB_A
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13. mod(jx—1, NB_X) = mod(ia—1, MB_A)
14. m = 0 and jx+m-1 = N_X

If incx = 1( # M_X) and transa = 'N’:
15. MB_X = NB_A
16. mod(ix—1, MB_X) # mod(ja—1, NB_A)
17. n # 0 and ix+n-1 = M_X

If incx = 1( # M_X) and transa = "T" or 'C":
18. MB_X = MB_A
19. mod(ix—1, MB_X) # mod(ia—1, MB_A)
20. m # 0 and ix+m-1 = M_X

In all cases:
21. incx # M_X and incx # 1

If incy = MY and transa = 'N”:
22. NB.Y = MB_A
23. mod(jy—1, NB_Y) # mod(ia—-1, MB_A)
24. m # 0 and jy+m-1 = N_Y

If incy = M_Y and transa = "T" or 'C":
25. NB_Y = NB_A
26. mod(jy—-1, NB_Y) # mod(ja—1, NB_A)
27. n # 0and jy+n-1 = N_Y

If incy = 1( # M_Y) and transa = 'N":
28. MB_Y # MB_A
29. mod(iy—1, MB_Y) # mod(ia—1, MB_A)
30. m # 0and iy+m-1 = M_Y

If incy = 1( # M_Y) and transa = "T" or 'C":
31. MB_Y # NB_A
32. mod(iy—1, MB_Y) # mod(ja—1, NB_A)
33. n # 0and iy+n-1 = M_Y

In all cases:
34. incy # M_Y and incy = 1

Stage 6: If fransa = 'N”:

1. If incx = M_X, then (in the process grid) the process column containing the
first column of the submatrix X does not contain the first column of the
submatrix A; that is, iacol # ixcol, where:

e idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
e ixcol = mod((((jx—1)/NB_X)+CSRC_X), q)

2. If incy = 1( # ML_Y), then (in the process grid) the process row containing the
first row of the submatrix Y does not contain the first row of the submatrix A;
that is, iarow # iyrow, where:

* darow = mod((((ia—1)/MB_A)+RSRC_A), p)
* iyrow = mod((((7y—1)/MB_Y)+RSRC_Y), p)
If transa = 'T” or 'C":

3. Ifincx = 1( # M_X), then (in the process grid) the process row containing the
first row of the submatrix X does not contain the first row of the submatrix A;
that is, iarow # ixrow, where:

* darow = mod((((ia—1)/MB_A)+RSRC_A), p)
e ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

4. If incy = MY, then (in the process grid) the process column containing the first
column of the submatrix Y does not contain the first column of the submatrix
A; that is, iacol # iycol, where:
¢ iacol = mod((((ja—1)/NB_A)+CSRC_A), q)

e iycol = mod((((jy—1)/NB_Y)+CSRC_Y), gq)

In all cases:
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5. LLD_A < max(1, LOCp(M_A))
6. LLD_X < max(1, LOCp(M_X))
7. LLD_Y < max(1l, LOCp(M_Y))

Examples

Example 1

This example computes y = aAx+fy using a 2 x 2 process grid. The input
matrices A, X, and Y, used here, are the same as A, B, and C, used in
for PDGEMM. The updated portion of Y is the same as for C in

PDGEMM, as this computation is equivalent to a portion of the PDGEMM
computation.

This example uses a global submatrix A within a global matrix A by specifying
ia = 3 and ja = 1. It uses vectors x and y, which are column-distributed vectors
within a column of X and Y, respectively, by specifying incx = 1, ix = 1, and

jx = 2forxand incy = 1,iy = 3, and jy = 2 for y.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

TRANSA M N ALPHA A IA JA DESC A X IX JX
|| | | | ||
CALL PDGEMV( 'N' , 4,5 , 1.0 ,A,3,1, DESCA,X,1,2,
DESC_X INCX BETA Y Iy Jy DESC_Y INCY
| | | [ | |
DESC X , 1, 2.0 ,Y,3,2,DESCY, 1)
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontxf icontxfll icontxM
M_ 6 5 6
N_ 5 4 4
MB_ 3 2 3
NB_ 2 2 2
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See below2 See belowl See belowd

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
LLD_Y = MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

In this example, LLD_A = LLD_Y = 3 on all processes, LLD_X = 3 on Py, and
Py, and LLD_X = 2 on P,y and Py;.
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After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
4 x 5 submatrix A, starting at row 3 and column 1 in global general 6 x 5 matrix
A with block size 3 x 2:

B,D 0 1 2
0 .
1.0 -1.0 -1.0 1.0 2.0
-3.0 2.0 2.0 2.0 0.0
1 4.0 0.0 -2.0 1.0 -1.0
-1.0 -1.0 1.0 -3.0 2.0

B,D 02 1
0 Poo Pox
1 Pio Py

p,q 0 1

0 .
1.0 -1.0 2.0 -1.0 1.0
-3.0 2.0 0.0 2.0 2.0

1 4.0 0.0 -1.0 -2.0 1.0
-1.0 -1.0 2.0 1.0 -3.0

After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a
column-distributed vector. Following is the global vector x of size 5 x 1, starting at
row 1 and column 2 in 5 x 4 global matrix X with block size 2 x 2:

B,D 0 1
0 . -1.0
2.0
1 0.0
-1.0
2 2.0

B,D 0 1

0 Poo Po1
2

1 Pio Piy

142  Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference



PDGEMV and PZGEMV

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a
column-distributed vector. Following is the global vector y of size 4 x 1, starting at
row 3 and column 2 in 6 X 4 global matrix Y with block size 3 x 2:

B,D 0 1

B,D 0 } 1
0 POO POl
1 PlO Pll

p.q 0 1
0 .

0.5

0.5
1 0.5

0.5
Output:

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a
column-distributed vector. Following is the global vector y of size 4 x 1, starting at
row 3 and column 2 in 6 x 4 global matrix ¥ with block size 3 x 2:

B,D 0 1

B,D 0 1
0 Poo Po1
1 P1o Py
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Local arrays for y:

P,q 0 1
0 .

1.0

6.0
1 -6.0

7.0
Example 2

This example computes y = aAx+fy using a 2 x 2 process grid. The input
matrices A, X, and Y, used here, are the same as A, B, and C, used in
for PDGEMM.

This example uses a global submatrix A within a global matrix A by specifying

ia = 2 and ja = 2. It uses vector x, which is a row-distributed vector within a row
of X, by specifying incx = M_X = 5, ix = 4, and jx = 2. It uses vector y, which is
a column-distributed vector within a column of Y, by specifying incy = 1, iy = 2,

and jy = 3.

Call Statements and Input:
ORDER = 'R'

NPROW = 2

NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

TRANSAM N ALPHA A IA JA DESC_A X IX JX
| | [ | |1 |
CALL PDGEMV( 'N' , 4,3 , 1.0 ,A,2,2, DESCA,X, 4,2,
DESC_X INCX BETA Y IY JY DESC_Y INCY
| [ |
DESC X , 5, 2.0 , Y, 2,3 ,DESCY, 1)
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontxf icontxl icontxid
M_ 6 5 6
N_ 5 4 4
MB_ 3 2 3
NB_ 2 2 2
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See belon2 See belowd See belowd
Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A
LLD X
LLD_Y

MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
MAX(1,NUMROC(M X, MB_X, MYROW, RSRC_X, NPROW))
MAX (1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))
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In this example, LLD_A = LLD_Y = 3 on all processes, LLD_X = 3 on Py, and
Py, and LLD_X = 2 on P,y and Py;.

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
4 x 3 submatrix A, starting at row 2 and column 2 in global general 6 X 5 matrix
A with block size 3 x 2:

B,D 0 1 2
0 0:0 1:0 1:0

-1.0 -1.0 1.0

2.0 2.0 2.0
1 0.0 -2.0 1.0

B,D 02 1
0 Poo Pos
1 Pio P11

p.q 0 1

0 0.0 1.0 1.0
1.0 1.0 1.0
2.0 2.0 2.0

1 0.0 2.0 1.0

After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a row-distributed
vector. Following is the global vector x of size 1 x 3, starting at row 4 and column
2in 5 x 4 global matrix X with block size 2 x 2:

B,D 0 1

0

B,D 0 1

0 Poo Pos
2

1 Pio P1

Local arrays for x:
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After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a
column-distributed vector. Following is the global vector y of size 4 X 1, starting at
row 2 and column 3 in 6 x 4 global matrix ¥ with block size 3 x 2:

B,D 0 1
0 0.5
0.5
0.5
1 0.5

The following is the 2 x 2 process grid:

B,D 0 1
0 Poo Po1
1 Pio Piy

P»q 0 1
0 0.5
0.5
0.5
1 0.5
Output:

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a
column-distributed vector. Following is the global vector y of size 4 x 1, starting at
row 2 and column 3 in 6 X 4 global matrix ¥ with block size 3 x 2:

B,D 0 1
0 1.0
0.0
-1.0
1 -2.0

The following is the 2 x 2 process grid:
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B,D 0 1
0 Poo Po1
1 P1o Py

p.q 0 1
0 1.0
0.0
-1.0
1 -2.0
Example 3

This example computes y = aAx+By using a 2 x 2 process grid. The input
matrices A, X, and Y, used here, are the same as A, B, and C, used in
for PZGEMM. The updated portion of Y is the same as for C in
PZGEMM, as this computation is equivalent to a portion of the PZGEMM

computation.
This example uses vectors x and y, which are column-distributed vectors within a
column of X and Y, respectively, by specifying incx = 1, ix = 1, and jx = 2 for x

and incy = 1,iy = 1,and jy = 2 for y.

Call Statements and Input:

ORDER = 'R’
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

TRANSA M N ALPHA A IA JA DESC A X IX JX
| | [ | |1
CALL PZGEMV( 'N' , 6 , 3 , ALPHA , A, 1,1, DESCA, X, 1,2,
DESC_X INCX BETA Y Iy JY DESC_Y INCY
| | | [
DESC X , 1, BETA ,Y, 1,2 ,DESCY, 1)
ALPHA = (1.0,0.0)
BETA = (2.0,0.0)
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontxM icontxtd icontx
M_ 6 3 6
N_ 3 2 2
MB 2 2 2
NB 2 2 2
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See belon2 See below? See belowd
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Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
LLD_Y = MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

In this example:

LLD_A = LLD_Y = 4 on Py, and Py,
LLD_X = 2 on Py, and Py,
LLD_A = LLD_Y = 2 on Py and Py
LLD_ X =1 on Py, and Py,

Global general 6 x 3 matrix A with block size 2 x 2:

B,D 0 1
0 (1.0,5.0) (9.0,2.0) (1.0,9.0)
(2.0,4.0) (8.0,3.0) (1.0,8.0)
1| (3.0.3.0) (7.0,5.0) | (1.0,7.0)
(4.0,2.0) (4.0,7.0) (1.0,5.0)
2 | (5.0.1.0) (5.0,1.0) | (1.0,6.0)
(6.0,6.0) (3.0,6.0) (1.0,4.0)
The following is the 2 x 2 process grid:
B,D 0 1
0 POO POl
2
1 PIO Pll
Local arrays for A:
P>q 0 1
| @50 (9.0.2.0) | (1.0,9.0)
(2.0,4.0) (8.0,3.0) (1.0,8.0)
0 (5.0,1.0) (5.0,1.0) (1.0,6.0)
(6.0,6.0) (3.0,6.0) (1.0,4.0)
1| (3.0.3.0) (7.0,5.0) | (1.0,7.0)
(4.0,2.0) (4.0,7.0) (1.0,5.0)

After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a
column-distributed vector. Following is the global vector x of size 3 x 1, starting at
row 1 and column 2 in 3 x 2 global matrix X with block size 2 x 2:

B,D 0
0 (2.0,7.0)
(6.0,8.0)
O )

The following is the 2 x 2 process grid:
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POO P01
PlE) Pl 1
arrays for x:
0
(2.0,7.0)
(6.0,8.0)
(4.0,5.0)
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After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a
column-distributed vector. Following is the global vector y of size 6 x 1, starting at
row 1 and column 2 in 6 x 2 global matrix ¥ with block size 2 x 2:

B,D

0

(0.5,0.0)
(0.5,0.0)

B,D 0 --
0 POO POl
2
1 PlO Pll
Local arrays for y:
P>q 0
(0.5,0.0)
(0.5,0.0)
0 (0.5,0.0)
(0.5,0.0)
1 (0.5,0.0)
(0.5,0.0)
Output:

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a
column-distributed vector. Following is the global vector y of size 6 x 1, starting at
row 1 and column 2 in 6 X 2 global matrix Y with block size 2 x 2:

B,D
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2 . (0.0.112.0)
(-75.0.135.0)

The following is the 2 x 2 process grid:

B,D 0 --
0 Poo Po1
2

1 P1o Piy

P.q 0
(-35.0,142.0)
(-35.0,141.0)
0 ( 0.0,112.0)
(-75.0,135.0)
1 (-43.0,146.0)
(-58.0,131.0)
Example 4

This example computes y = aAx+fy using a 2 x 2 process grid. The input
matrices A, X, and Y, used here, are the same as A, B, and C, used in
for PZGEMM.

This example uses vector x, which is a row-distributed vector within a row of X,
by specifying incx = M_X = 3, ix = 1, and jx = 1. It uses vector y, which is a
column-distributed vector within a column of Y, by specifying incy = 1, iy = 1,

and jy = 1.
Call Statements and Input:
ORDER = 'R’

NPROW = 2

NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

TRANSA M N ALPHA A IA JA DESC A X IX JX
| | | ||
CALL PZGEMV( 'N' , 6 , 2 , ALPHA , A, 1,1, DESCA, X, 1,1,
DESC_X INCX BETA Y Iy JY DESC_Y INCY
| | | [
DESC X , 3, BETA ,Y, 1,1 ,DESCY, 1)
ALPHA = (1.0,0.0)
BETA = (2.0,0.0)
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontxfl icontxfl icontxid
M_ 6 3 6
N_ 3 2 2
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Desc_A Desc_X Desc_Y
MB_ 2 2 2
NB_ 2 2 2
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See below? See belowl See belowd

Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A
LLD X
LLD_Y

In this example:

Pyp, and Py,

LLD_A = LLD_Y =4 on
LLD_X = 2 on Py, and Py,
LLD_A = LLD_.Y = 2 on

P,y and Py

LLD X =1 on Py and Py

MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

Global general 6 x 3 matrix A with block size 2 x 2:

B,D 0

0 (1.0,5.0) (9.0,2.0)
(2.0,4.0) (8.0,3.0)

1| (3.0.3.0) (7.0.5.0)
(4.0,2.0) (4.0,7.0)

2 | (5.0.1.0) (5.0,1.0)
(6.0,6.0) (3.0,6.0)

B,D 0 1

0 Poo Po1
2

1 Pio P1

p.q 0
(1.0,5.0) (9.0,2.0)
(2.0,4.0) (8.0,3.0)
0 (5.0,1.0) (5.0,1.0)
(6.0,6.0) (3.0,6.0)
1| (3.0,3.0) (7.0,5.0)
(4.0,2.0) (4.0,7.0)

1
(1.0,9.0)
(1.0,8.0)
(1.0,6.0)
(1.0,4.0)
(1.0,7.0)
(1.0,5.0)

After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a row-distributed
vector. Following is the global vector x of size 1 x 2, starting at row 1 and column
1in 3 x 2 global matrix X with block size 2 x 2:
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B,D 0

0 (1.0,8.0) (2.0,7.0)

B,D 0 --
0 Poo Po1
1 Pio Pi

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a
column-distributed vector. Following is the global vector y of size 6 x 1, starting at
row 1 and column 1 in 6 X 2 global matrix ¥ with block size 2 x 2:

B,D 0
0 (0.5,0.0)
(0.5,0.0)
1| (500 .
(0.5,0.0)
2 | (0500 .
(0.5,0.0)

B,D 0 --

0 Poo Po1
: }

1 Pio Pi

0 )
1 (0.5,0.0)
(0.5,0.0)
Output:

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a

152  Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference



PDGEMV and PZGEMV

column-distributed vector. Following is the global vector y of size 6 x 1, starting at
row 1 and column 1 in 6 X 2 global matrix Y with block size 2 x 2:

B,D 0

0 (-34.0, 80.0)
(-34.0, 82.0)
1 (-41.0, 86.0)
(-52.0, 76.0)
2 ( 1.0, 78.0)
(-77.0, 87.0)

B,D 0 --

0 Poo Po1
2

1 Pio P1y

p.q 0
(-34.0, 80.0)
(-34.0, 82.0)
0 ( 1.0, 78.0)
(-77.0, 87.0)
1 (-41.0, 86.0)
(-52.0, 76.0)
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PDSYMV and PZHEMV — Matrix-Vector Product for a Real Symmetric
or a Complex Hermitian Matrix

Purpose

These subroutines compute the matrix-vector product:
* Yy caAx+Py

where, in the formula above:
* A represents the global submatrix Aju.ign-1, jajarn—1-
* x represents the global vector:

— Forincx = M_X, it is Xivir, jusjxn—1-

— FPorinex = Tand incx # M_X, it is Xivivin1, jxsjr
* y represents the global vector:

— Forincy = MY, it is Y., jyijyen-1-

— Forincy = Tand incy # MY, it is Yy .iyn1, jysjy-
* o and B are scalars.

and:

* For PDSYMYV, submatrix A is real symmetric.
* For PZHEMYV, submatrix A is complex Hermitian.

In the following two cases, no computation is performed and the subroutine
returns after doing some parameter checking:

*n=20

* «is zero and f is one.

See references and .

Table 50. Data Types

o B, A xy Subprogram
Long-precision real PDSYMV
Long-precision complex PZHEMV
Syntax
Fortran CALL PDSYMV | PZHEMV (uplo, n, alpha, a, ia, ja, desc_a, x, ix, jx, desc_x, incx, beta, y, iy, jy,
desc_y, incy)
C and C++ pdsymv | pzhemv (uplo, n, alpha, a, ia, ja, desc_a, x, ix, jx, desc_x, incx, beta, y, iy, jy, desc_y, incy);

On Entry

uplo  indicates whether the upper or lower triangular part of the global
submatrix A is referenced, where:

If uplo = "U’, the upper triangular part is referenced.
If uplo = 'L’, the lower triangular part is referenced.
Scope: global

Specified as: a single character; uplo = "U” or 'L’

n is the number of rows and columns in submatrix A and the number of
elements in vectors x and y used in the computation.

Scope: global
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Specified as: a fullword integer; n = 0.
is the scalar a.

Scope: global

Specified as: a number of the data type indicated in [Table 50 on page 154|

is the local part of the global real symmetric or complex Hermitian matrix
A. This identifies the first element of the local array A. This subroutine
computes the location of the first element of the local subarray used, based
on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1)
by LOCq(ja+n—-1) part of the local array A must contain the local pieces of
the leading ia+n-1 by ja+n—1 part of the global matrix, and:

e If uplo = 'U’, the leading n X n upper triangular part of the global
submatrix Ajy.iz1-1, jajasn—1 Must contain the upper triangular part of the
submatrix, and the strictly lower triangular part is not referenced.

 If uplo = 'L, the leading n x n lower triangular part of the global
submatrix Ajy.iz1n-1, jajasn—1 MUst contain the lower triangular part of the
submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers
of the data type indicated in [Table 50 on page 154] Details about the square
block-cyclic data distribution of global matrix A are stored in desc_a.

is the row index of the global matrix A, identifying the first row of the
submatrix A.

Scope: global
Specified as: a fullword integer; 1 = in = M_A and ia+n-1 = M_A.

is the column index of the global matrix A, identifying the first column of
the submatrix A.

Scope: global
Specified as: a fullword integer; 1 = ja = N_A and ja+n-1 = N_A.

is the array descriptor for global matrix A, described in the following table:

desc_a

Name

Description Limits Scope

DTYPE_A

Descriptor type DTYPE_A=1 Global

CIXT_A

BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP

Number of rows in the global Ifn=0~0: Global
matrix M_A
Otherwise:

M_A

v
o

v
—

Number of columns in the If n =0: Global
global matrix N_A
Otherwise:

N_A

v
(e}

v
—_

MB_A

Row block size MB_A =z 1 Global

NB_A

Column block size NB_A =1 Global
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desc_a Name Description Limits Scope
7 RSRC_A The process row of the p x ¢ 0 = RSRC_A < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_A The process column of the p x g |0 = CSRC_A < g Global
grid over which the first column
of the global matrix is
distributed
9 LLD_A The leading dimension of the LLD_A =z max(1,LOCp(M_A)) Local
local array

Specified as: an array of (at least) length 9, containing fullword integers.

x is the local part of the global matrix X. This identifies the first element of
the local array X. This subroutine computes the location of the first element
of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol;
therefore:

e If incx = M_X, the leading LOCp(ix) by LOCq(jx+n—1) part of the local
array X must contain the local pieces of the leading ix by jx+n-1 part of
the global matrix.

e Ifincx = 1 and incx = M_X, the leading LOCp(ix+n-1) by LOCq(jx) part
of the local array X must contain the local pieces of the leading ix+n-1
by jx part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(IN_X) array, containing numbers

of the data type indicated in [Table 50 on page 154, Details about the

block-cyclic data distribution of the global matrix X are stored in desc_x.

ix has the following meaning:

If incx = M_X, it indicates which row of global matrix X is used for vector

X.

If incx = 1 and incx = M_X, it is the row index of global matrix X,

identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 = ix = M_X and:

If incx = 1 and incx # M_X, then ix+n-1 = M_X.

jx has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the

first element of vector x.

If incx = 1 and incx # M_X, it indicates which column of global matrix X

is used for vector x.

Scope: global

Specified as: a fullword integer; 1 = jx = N_X and:

If incx = M_X, then jx+n-1 = N_X.

desc_x is the array descriptor for global matrix X, described in the following table:

desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
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desc_x Name Description Limits Scope
2 CTXT_X BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_X Number of rows in the global If n =0: Global
matrix MX =0
Otherwise:
MX =1
4 N_X Number of columns in the If n =0: Global
global matrix N.X =0
Otherwise:
NX =1
5 MB_X Row block size MB_X =z 1 Global
6 NB_X Column block size NB_X = 1 Global
7 RSRC_X The process row of the p x ¢ 0 = RSRC_X < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_X The process column of the p x q |0 = CSRC_X < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_X The leading dimension of the LLD_X = max(1,LOCp(M_X)) Local

local array

incx

beta

Specified as: an array of (at least) length 9, containing fullword integers.
is the stride for global vector x.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:

If incx = M_X, then x is a row-distributed vector.

If incx = 1 and incx # M_X, then x is a column-distributed vector.

is the scalar S.

Scope: global

Specified as: a number of the data type indicated in [Table 50 on page 154

is the local part of the global matrix Y. This identifies the first element of

the local array Y. This subroutine computes the location of the first element

of the local subarray used, based on iy, jy, desc_y, p, q, myrow, and mycol;
therefore:

e If incy = M_Y, the leading LOCp(iy) by LOCq(jy+n-1) part of the local
array Y must contain the local pieces of the leading iy by jy+n-1 part of
the global matrix.

e Ifincy = 1 and incy # M_Y, the leading LOCp(iy+n-1) by LOCq(jy) part
of the local array Y must contain the local pieces of the leading iy+n-1
by jy part of the global matrix.

When f is zero, y need not be set on input.

Scope: local
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Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers
of the data type indicated in [Table 50 on page 154 Details about the
block-cyclic data distribution of the global matrix Y are stored in desc_y.

iy has the following meaning:

If incy = MY, it indicates which row of global matrix Y is used for vector
y.

If incy = 1 and incy = M_Y, it is the row index of global matrix ¥,
identifying the first element of vector y.

Scope: global

Specified as: a fullword integer; 1 < iy = M_Y and:

If incy = 1 and incy # M_Y, then iy+n-1 = M_Y.
v has the following meaning:

If incy = MY, it is the column index of global matrix ¥, identifying the
first element of vector y.

If incy = 1 and incy = M_Y, it indicates which column of global matrix Y is
used for vector y.

Scope: global
Specified as: a fullword integer; 1 = jy = N_Y and:
If incy = MY, then jy+n-1 = N_Y.

desc_y is the array descriptor for global matrix ¥, described in the following table:

desc_y Name Description Limits Scope
1 DTYPE_Y Descriptor type DTYPE_Y=1 Global
2 CTXT_Y BLACS context Valid value, as returned by Global

BLACS_GRIDINIT or
BLACS_GRIDMAP

3 M_Y Number of rows in the global If n =0: Global
matrix MY =0
Otherwise:
MY =21
4 N_Y Number of columns in the If n =0: Global
global matrix NY=0
Otherwise:
N_Y =21
5 MB_Y Row block size MBY =z 1 Global
NB_Y Column block size NB_Y =1 Global
7 RSRC_Y The process row of the p x ¢ 0 = RSRCLY < p Global

grid over which the first row of
the global matrix is distributed

8 CSRC_Y The process column of the p x g |0 = CSRC_Y < ¢ Global
grid over which the first column
of the global matrix is
distributed

9 LLD_Y The leading dimension of the LLD_Y = max(1,LOCp(M_Y)) Local
local array

Specified as: an array of (at least) length 9, containing fullword integers.
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is the stride for global vector y.

Scope: global

Specified as: a fullword integer; incy = 1 or incy = M_X, where:
If incy = MY, then y is a row-distributed vector.

If incy = 1 and incy = M_Y, then y is a column-distributed vector.

Return

is the updated local part of the global matrix Y, containing the results of
the computation.

Scope: local

Returned as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers
of the data type indicated in [Table 50 on page 154}

Notes and Coding Rules

1.
2.

10.

11.

These subroutines accept lowercase letters for the uplo argument.

The matrix and vectors must have no common elements; otherwise, results are
unpredictable.

The imaginary parts of the diagonal elements of a complex Hermitian matrix
A are assumed to be zero, so you do not have to set these values.

The NUMROC utility subroutine can be used to determine the values of
LOCp(M_) and LOCq(N_) used in the argument descriptions above. For
details, see ["Determining the Number of Rows and Columns in Your Locall
Arrays” on page 28/ and |"NUMROC — Compute the Number of Rows o1
Columns of a Block-Cyclically Distributed Matrix Contained in a Process” on|

page 868.|

For suggested block sizes, see[’Coding Tips for Optimizing Parallel|
[Performance” on page 77/

The following values must be equal: CTXT_A = CTXT_X = CTXT_Y.

The global matrix A must be distributed using a square block-cyclic
distribution; that is, MB_A = NB_A.

The block row and block column offsets of the global matrix A must be equal;
that is, mod(in—1, MB_A) = mod(ja—1, NB_A).

The vectors x and y must be distributed along the same axis—that is, they
must both be row distributed or column distributed, where:

e incx = M_X and incy = M_Y for row distribution

e incx = 1( # M_X) and incy = 1( # M_Y) for column distribution

If incx = M_X and incy = M_Y, then (in the process grid) the process column
containing the first column of the submatrix A must also contain the first
column of the submatrices X and Y; that is:

* iacol = ixcol
* iacol = iycol
e where:

— iacol = mod((((ja—1)/NB_A)+CSRC_A), q)

— ixcol = mod((((jx—1)/NB_X)+CSRC_X), g)

— iycol = mod((((jy—1)/NB_Y)+CSRC_Y), g)
If incx = 1( # M_X) and incy = 1( # M_Y), then (in the process grid) the
process row containing the first row of the submatrix A must also contain the
first row of the submatrices X and Y; that is:

* jarow = ixrow
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e iarow = iyrow

* where:
— darow = mod((((in—1)/MB_A)+RSRC_A), p)
— ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)
- iyrow = mod((((iy—1)/MB_Y)+RSRC_Y), p)

12. If incx = M_X:

* The block column offset of x must be equal to the block column offset of A;
that is, mod(jx—1, NB_X) = mod(ja—1, NB_A).

* The following block sizes must be equal: NB_X = NB_A.
13. If incx = 1( # M_X):

* The block row offset of x must be equal to the block column offset of A;
that is, mod(ix—1, MB_X) = mod(ja—1, NB_A).

* The following block sizes must be equal: MB_X = NB_A.
14. If incy = MY

* The block column offset of y must be equal to the block row offset of A;
that is, mod(jy—1, NB_Y) = mod(ia—1, MB_A).
* The following block sizes must be equal: NB_Y = MB_A.
15. If incy = 1( # M_Y):
* The block row offset of y must be equal to the block row offset of A; that is,
mod(iy—1, MB_Y) = mod(ia—1, MB_A).
* The following block sizes must be equal: MB_Y = MB_A.

Error Conditions

Computational Errors
None

Resource Errors
Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:

1. DTYPE_A is invalid.
2. DTYPE_X is invalid.
3. DTYPEY is invalid.

Stage 2:
1. CTXT_A is invalid.

Stage 3:
1. This subroutine was called from outside the process grid.

Stage 4:

1. uplo 2 'U or 'L’
n<20
MB X <1
NB X <1
M X < 0and n = 0, M_X < 1 otherwise
N_X < 0and n = 0; N_X < 1 otherwise
RSRC_X < 0 or RSRC_X = p

q

v v

CSRC_X < 0 or CSRC_X
CTXT_A = CTXT_X

CoNOORA~ALD
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

PDSYMV and PZHEMV

ix <1

jx <1

MB.Y < 1

NB.Y <1

MY < 0Oandn = 0; M_Y < 1 otherwise
N_Y <0andn = 0; N_Y < 1 otherwise
RSRC_Y < 0 or RSRC_Y =z p
CSRC_Y < 0or CSRCLY = g
CTXT_A = CTXT_Y

iy <1

jy <1

RSRC_A < 0 or RSRC_A =
CSRC_A < 0 or CSRC_A =
M_A < 0Oand (m = 0 and n = 0); M_A < 1 otherwise
N A <QOand (m = 0and n = 0); N_A < 1 otherwise
NB_A <1

MB_A <1

ja <1

ia <1

Stage 5:

1.

8.
9.
10.
1.
12.
13.

14.
15.
16.
17.
18.
19.

20.
21.

N kN

MB_A # NB_A

Ifn = 0:

ix > M_X

jx > N_X

iy > M_Y

jy > N_Y
a+n-1 > M_A
ja+n=1 > N_A

If incx = M_X and incy = M_Y:
NB_A # NB_X

MB_A # NB_Y

mod(jx—1, NB_X) # mod(ja—1, NB_A)
mod(jy—1, NB_Y) # mod(in—1, MB_A)
n # 0 and jx+n-1 > N_X

n # 0and jy+n-1 > N_Y

If incx = 1( # M_X) and incy = 1( # M_Y):
NB_A = MB_X

MB_A # MB_Y

mod(ix—1, MB_X) # mod(ja—1, NB_A)
mod(iy—1, MB_Y) # mod(ia—1, MB_A)
n # 0 and ix+n-1 > M_X

n # 0and iy+n-1 > M_Y

Otherwise:

incx # M_X and incx = 1

incy # M_Y and incy = 1

Stage 6:

A

LLD_A < max(1, LOCp(M_A))

LLD_X < max(1, LOCp(M_X))

LLD_Y < max(1, LOCp(M_Y))

mod(ia-1, MB_A) # mod(ja—1, NB_A)

If incx = M_X and incy = M_Y, then (in the process grid) the process column
containing the first column of the submatrix A does not contain the first
column of the submatrices X and Y; that is:
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* ixcol # iacol

e iycol # iacol

* where:
— idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
— ixcol = mod((((jx—1)/NB_X)+CSRC_X), q)
— iycol = mod((((jy—1)/NB_Y)+CSRC_Y), q)

6. If incx = 1( # M_X) and incy = 1( # M_Y), then (in the process grid) the
process row containing the first row of the submatrix A does not contain the
first row of the submatrices X and Y; that is:

* iXrow # iarow

* iyrow # iarow

* where:
— darow = mod((((in—1)/MB_A)+RSRC_A), p)
— ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)
— iyrow = mod((((iy—1)/MB_Y)+RSRC_Y), p)

Examples

Example 1
This example computes y = aAx+fy using a 2 x 2 process grid.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO N ALPHA A IA JA DESC A X IX JX

CALL PDSYMV( 'U* ,8, 1.0 ,A,1,1, DESCA,X, 1, 1,

DESC_X  INCX BETA Y IY JY DESC_Y INCY

DESCX, 1 ,0.600 ,Y, 1, 1,DESCY, 1)

Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1

CTXT_ icontxfd icontx{d icontxf@
M_ 8 8 8
N_ 8 1 1
MB_ 2 2 2
NB_ 2 1 1
RSRC_ 0 0 0
CSRC_ 0 0 0

LLD_ See below? See belowd See belowd

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROMW))
LLD X = MAX(1,NUMROC(M X, MB_X, MYROW, RSRC_X, NPROW))
LLD_Y = MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))
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In this example, LLD_A = LLD_X = LLD_Y = 4 on all processes.

Global real symmetric matrix A of order 8 with block size 2 x 2:

B,D 0 1 2 3
0 0.0 -1.0 -1.0 0.0 0.0 0.0 0.0 0.0
1.0 0.0 1.0 0.0 1.0 0.0 1.0
1 -1.0 -1.0 0.0 0.0 1.0 0.0
-1.0 1.0 1.0 0.0 1.0
2 -1.0 0.0 0.0 0.0
1.0 0.0 0.0
3 0.0 0.0
0.0

B.D 02 |13
0 POO POl
2
1 PlO Pll
3

p,q 0 1
0.0 -1.0 0.0 0.0 -1.0 0.0 0.0 0.0
. 1.0 0.0 1.0 0.0 1.0 0.0 1.0
0 -1.0 0.0 0.0 0.0
1.0 0.0 0.0
0.0 0.0 -1.0 -1.0 1.0 0.0
1.0 1.0 -1.0 0.0 1.0
1 0.0 0.0
0.0

Global vector x of size 8 x 1 with block size 2:

B,D 0
0 1.0
1.0
1 1.0
1.0
2 1.0
1.0
3 1.0
1.0

The following is the 2 x 2 process grid:
B,D 0
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2
1 Pio
3
Local arrays for x:
P.q 0
1.0
1.0
0 1.0
1.0
1.0
1.0
1 1.0
1.0
Output:

Global vector y of size 8 x 1 with block size 2:

B,D

0

The following is the 2 x 2 process grid:

0
-2.0
3.0
-2.0
2.0
0.0
3.0
1.0
2.0

B,D 0 --
0 POO POI
2
1 PlO P11
3
Local arrays for y:
P.q 0
-2.0
3.0
0 0.0
3.0
-2.0
2.0
1 1.0
2.0
Example 2

This example computes y = aAx+fy using a 2 x 2 process grid.
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Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values.

Call Statements and Input:

ORDER
NPROW
NPCOL

IRI
2
2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO N ALPHA A IA JA DESC A X IX JX
| ||
CALL PZHEMV( 'U' , 6 , ALPHA , A, 1,1, DESCA, X, 1, 1,
DESC_X  INCX BETA Y IY JY DESC_Y INCY
| | R |
DESCX, 1 , BETA ,Y, 1, 1,DESCY, 1)
ALPHA = (1.0,0.0)
BETA = (0.0,0.0)
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontx icontxf@ icontx™
M_ 6 6 6
N_ 6 1 1
MB_ 2 2 2
NB_ 2 1 1
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See below? See below See belowl

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
LLD_Y = MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

In this example, LLD_A = LLD_X = LLD_Y = 4 on Py, and Py, and
LLD A = LLD X = LLD_Y = 2 on Py, and Py;.

Global complex Hermitian matrix A of order 6 with block size 2 x 2:

B,D 0 1 2
0 (0.0, 0.0) (-1.0, 1.0) | (-1.0,-2.0) ( 0.0, 3.0) | ( 2.0, 1.0) ( 1.0, 0.0)
(2.0, 0.0) | (5.0, 4.0) (2.0, 0.0) | (-1.0,-1.0) ( 0.0, 2.0)
1| (0.0, 0.0) (1.0, 0.0) | (0.0, 0.0) ( 1.0, 1.0)
(4.0, 0.0) | (2.0,-1.0) (-1.0,-1.0)
> | .| e 0.0 (0.0, 2.0)
(1.0, 0.0)
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The following is the 2 x 2 process grid for A:

B,D

B,D

0

02 1
Poo Po1
Pio Pi

0
(0.0, .) (-1.0, 1.0) ( 2.0, 1.0) ( 1.0, 0.0)
(2.0, .) (-1.0,-1.0) ( 0.0, 2.0)
. (-1.0, . ) (0.0, 2.0)
. (1.0, .)
T (e, 0.0) (1.0, 1.0)
(2.0,-1.0) (-1.0,-1.0)
Global vector x of size 6 x 1 with block size 2:
0
(-1.0, 1.0)
(2.0, 1.0)
(1.0, 2.0)
(-2.0,-3.0)
(0.0, 1.0)
(1.0, 0.0)

B,D 0 --
0 POO POl
2
1 PlO P11
Local arrays for x
P>q 0
(-1.0, 1.0)
(2.0, 1.0)
0 (0.0, 1.0)
(1.0, 0.0)
(1.0, 2.0)
1 (-2.0,-3.0)
Output:

Global vector y of size 6 x 1 with block size 2:

B,D

166

, -7.0)
11.0)

1
(-1.0,-2.0) (0.0, 3.0)
(5.0, 4.0) (2.0, 0.0)
(0.0, L) (1.0, .)

(4.0, .)
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B,D 0 --

0 Poo Pos
2

1 Pio P1
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PDGER, PZGERC, and PZGERU — Rank-One Update of a General
Matrix

Purpose

PDGER and PZGERU compute the following rank-one update:
« Acaxy'+A

PZGERC computes the following rank-one update:
o Acoxy™+A

where, in the formula above:
* A represents the global general submatrix A
* x represents the global vector:

— Forincx = M_X, it is Xivin, jwsjuem—1-

— Forincx = 1 and inex # M_X, it i8 Xivixim-1, jryjx-
* y represents the global vector:

— Forincy = MY, it is Y., jysjyen-1-

— Forincy = 1and incy # M_Y, itis ¥;
* o is a scalar.

ia:ia+m-1, jaja+n—1+

yiiy+n—1, jyjy*

Note: No data should be moved to form y' or y'; that is, the vector y should
always be stored in its untransposed form.

In the following three cases, no computation is performed and the subroutine
returns after doing some parameter checking:

e m=0
e n=20
* o is zero.

See references and .

Table 51. Data Types

oA x Yy Subprogram
Long-precision real PDGER
Long-precision complex PZGERC and PZGERU
Syntax

On Entry
m is the number of rows in submatrix A and the number of elements in

vector x used in the computation.

Scope: global

Specified as: a fullword integer; m = 0.
n is the number of columns in submatrix A and the number of elements in

vector y used in the computation.

Scope: global

Specified as: a fullword integer; n = 0.
alpha  is the scalar a.

Scope: global
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Specified as: a number of the data type indicated in [Table 51 on page 168}

is the local part of the global matrix X. This identifies the first element of

the local array X. This subroutine computes the location of the first element

of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol;
therefore:

e If incx = M_X, the leading LOCp(ix) by LOCq(jx+m—1) part of the local
array X must contain the local pieces of the leading ix by jx+m—-1 part of
the global matrix.

e Ifincx = 1 and incx # M_X, the leading LOCp(ix+m—1) by LOCq(jx)
part of the local array X must contain the local pieces of the leading
ix+m—1 by jx part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers
of the data type indicated in [Table 51 on page 168 Details about the
block-cyclic data distribution of the global matrix X are stored in desc_x.

has the following meaning:

If incx = M_X, it indicates which row of global matrix X is used for vector
X.

If incx = 1 and incx = M_X, it is the row index of global matrix X,
identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 = ix = M_X and:
If incx = 1 and incx # M_X, then ix+m-1 = M_X.
has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the
first element of vector x.

If incx = 1 and incx = M_X, it indicates which column of global matrix X
is used for vector x.

Scope: global
Specified as: a fullword integer; 1 = jx = N_X and:
If incx = M_X, then jx+m-1 = N_X.

desc_x is the array descriptor for global matrix X, described in the following table:

desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
2 CTXT_X BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_X Number of rows in the global If m = 0: Global
matrix M_X =0
Otherwise:
MX =1
4 N_X Number of columns in the If m=0: Global
global matrix N.X =0
Otherwise:
NX =1
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desc_x Name Description Limits Scope
5 MB_X Row block size MB X = 1 Global
6 NB_X Column block size NB_ X =z 1 Global
7 RSRC_X The process row of the p x ¢ 0 = RSRC_X < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_X The process column of the p x g |0 = CSRC_X < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_X The leading dimension of the LLD_X =z max(1,LOCp(M_X)) Local
local array

170

incx

Yy

Specified as: an array of (at least) length 9, containing fullword integers.
is the stride for global vector x.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:

If incx = M_X, then x is a row-distributed vector.

If incx = 1 and incx # M_X, then x is a column-distributed vector.

is the local part of the global matrix Y. This identifies the first element of

the local array Y. This subroutine computes the location of the first element

of the local subarray used, based on iy, jy, desc_y, p, q, myrow, and mycol;
therefore:

e If incy = M_Y, the leading LOCp(iy) by LOCq(jy+n—-1) part of the local
array Y must contain the local pieces of the leading iy by jy+n-1 part of
the global matrix.

e Ifincy = 1 and incy # M_Y, the leading LOCp(iy+n-1) by LOCq(jy) part
of the local array Y must contain the local pieces of the leading iy+n-1
by jy part of the global matrix.

Note: No data should be moved to form y" or y*; that is, the vector y
should always be stored in its untransposed form.
Scope: local

Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers
of the data type indicated in [Table 51 on page 168 Details about the
block-cyclic data distribution of the global matrix Y are stored in desc_y.

has the following meaning:

If incy = MY, it indicates which row of global matrix Y is used for vector
Y.

If incy = 1 and incy = MY, it is the row index of global matrix ¥,
identifying the first element of vector y.

Scope: global
Specified as: a fullword integer; 1 = iy = M_Y and:
If incy = 1 and incy = M_Y, then iy+n-1 = M_Y.

has the following meaning:
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If incy = MY, it is the column index of global matrix Y, identifying the
first element of vector y.

If incy = 1 and incy = M_Y, it indicates which column of global matrix Y is
used for vector y.

Scope: global
Specified as: a fullword integer; 1 = jy = N_Y and:
If incy = MY, then jy+n-1 = N_Y.

desc_y is the array descriptor for global matrix Y, described in the following table:
desc_y Name Description Limits Scope
1 DTYPE Y Descriptor type DTYPE_Y=1 Global
2 CTXT_Y BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 MY Number of rows in the global If n=0: Global
matrix MY =0
Otherwise:
MY =1
4 N_Y Number of columns in the If n =0: Global
global matrix N_Y =0
Otherwise:
N_Y =1
5 MB_Y Row block size MB.Y =z 1 Global
6 NB_Y Column block size NB_Y = 1 Global
7 RSRC_Y The process row of the p x ¢ 0 = RSRCLY < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_Y The process column of the p x g |0 = CSRC_Y < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_.Y The leading dimension of the LLD_Y = max(1,LOCp(M_Y)) Local
local array
Specified as: an array of (at least) length 9, containing fullword integers.
incy  is the stride for global vector y.
Scope: global
Specified as: a fullword integer; incy = 1 or incy = M_X, where:
If incy = MY, then y is a row-distributed vector.
If incy = 1 and incy = M_Y, then y is a column-distributed vector.
a is the local part of the global general matrix A. This identifies the first

element of the local array A. This subroutine computes the location of the
first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow,
and mycol; therefore, the leading LOCp(ia+m-1) by LOCq(ja+n—-1) part of
the local array A must contain the local pieces of the leading ia+m—1 by
ja+n—1 part of the global matrix.

Scope: local
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Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers
of the data type indicated in [Table 51 on page 168 Details about the
block-cyclic data distribution of global matrix A are stored in desc_a.

is the row index of the global matrix A, identifying the first row of the
submatrix A.

Scope: global
Specified as: a fullword integer; 1 = in = M_A and ia+m-1 = M_A.

ja is the column index of the global matrix A, identifying the first column of
the submatrix A.
Scope: global
Specified as: a fullword integer; 1 = ja = N_A and ja+n-1 = N_A.
desc_a is the array descriptor for global matrix A, described in the following table:
desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_A Number of rows in the global If m=0orn=0: Global
matrix M A=z0
Otherwise:
MA =1
4 N_A Number of columns in the If m=0o0rmn=0: Global
global matrix N_A=0
Otherwise:
N A=z1
5 MB_A Row block size MB_A = 1 Global
NB_A Column block size NB_A =1 Global
7 RSRC_A The process row of the p x ¢ 0 = RSRC_A < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_A The process column of the p x g |0 = CSRC_A < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_A The leading dimension of the LLD_A =z max(1,LOCp(M_A)) Local
local array
Specified as: an array of (at least) length 9, containing fullword integers.
On Return
a is the updated local part of the global matrix A, containing the results of
the computation.
Scope: local
Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers
of the data type indicated in [Table 51 on page 168
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Notes and Coding Rules

1.

The matrix and vectors must have no common elements; otherwise, results are
unpredictable.

The NUMROC utility subroutine can be used to determine the values of
LOCp(M. ) and LOCqg(N ) used in the arcument descriptions above. For details,
see ["Determining the Number of Rows and Columns in Your Local Arrays” 0n|

page 28 and ['NUMROC — Compute the Number of Rows or Columns of a|

Block-Cyclically Distributed Matrix Contained in a Process” on page 868 .|

For suggested block sizes, see [“Coding Tips for Optimizing Parallel|

[Performance” on page 77|

The following values must be equal: CTXT_A = CIXT_X = CTXT_Y.

If incx = M_X:

¢ The block column offset of x must be equal to the block row offset of A; that
is, mod(jx—1, NB_X) = mod(in—1, MB_A).

* The following block sizes must be equal: NB_X = MB_A.

If incx = 1( =2 M_X):

* In the process grid, the process row containing the first row of the submatrix
A must also contain the first row of the submatrix X; that is, iarow = ixrow,
where:

— idarow = mod((((ia—1)/MB_A)+RSRC_A), p)
— ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

¢ The block row offset of x must be equal to the block row offset of A; that is,
mod(ix—1, MB_X) = mod(ia—1, MB_A).

* The following block sizes must be equal: MB_X = MB_A.

If incy = MLY:

* In the process grid, the process column containing the first column of the
submatrix A must also contain the first column of the submatrix Y; that is,
iacol = iycol, where:

— idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
- iycol = mod((((jy—1)/NB_Y)+CSRC_Y), q)

¢ The block column offset of y must be equal to the block column offset of A;
that is, mod(jy—1, NB_Y) = mod(ja—1, NB_A).

* The following block sizes must be equal: NB_Y = NB_A.

If incy = 1( # M_Y):

¢ The block row offset of y must be equal to the block column offset of A; that
is, mod(iy—1, MB_Y) = mod(ja—1, NB_A).

* The following block sizes must be equal: MB_Y = NB_A.

Error Conditions

Computational Errors
None

Resource Errors
Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:

1.
2.

DTYPE_A is invalid.
DTYPE X is invalid.
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3. DTYPE_Y is invalid.

Stage 2:

1.

CTXT_A is invalid.

Stage 3:

1.

This subroutine was called from outside the process grid.

Stage 4:

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

COoNOOA~ALD

m < 0

n<20

MX < 0and m = 0, M_X < 1 otherwise
N_X < 0and m = 0; N_X < 1 otherwise
MB X < 1

NB X <1

RSRC_X < 0 or RSRC_X
CSRC_X < 0 or CSRC_X
CTXT_A = CTXT_X

ix <1

jx <1

MY < Oandn = 0; M_Y < 1 otherwise
N_Y <0and n = 0; N_Y < 1 otherwise

MB_.Y < 1

NB.Y < 1

RSRC_Y < O or RSRC_Y = p

CSRC_Y < 0or CSRCLY = g

CTXT_A = CTXT_Y

iy <1

jy <1

M_A < 0Oand (m = 0orn = 0); M_A < 1 otherwise
N_A <0Oand (m = 0orn = 0); N_A < 1 otherwise
MB_A <1

NB_A <1

RSRC_A < 0 or RSRC_A
CSRC_A < 0 or CSRC_A
ia <1

ja <1

v v

SIS

7

v v
ESEIN

Stage 5: If m = Oand n = 0:

1.
2. ja > N_A

3.

4. ja+n-1 > N_A

oo

9.
10.
11.

12.

ia > M_A

a+m-1 > M_A

If m # 0:
ix > M_X
jx > N_X

If n = 0:

iy > M_Y

jy > N_Y

If incx = M_X:

NB_X # MB_A

mod(jx-1, NB_X) # mod(ia—1, MB_A)
m # 0 and jx+m-1 > N_X

If incx = 1( = M_X):

MB_X = MB_A
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13.
14.

15.

16.
17.
18.

19.
20.
21.

22.

mod(ix—1, MB_X) # mod(ia—1, MB_A)
m # 0 and ix+m-1 > M_X
Otherwise:

incx # M_X and incx = 1

If incy = MLY:

NB_Y # NB_A

mod(jy-1, NB_Y) # mod(ja—1, NB_A)
n # 0and jy+n-1 > N_Y

If incy = 1( # M_Y):

MB_Y # NB_A

mod(iy-1, MB_Y) # mod(ja—1, NB_A)
n # 0and iy+n-1 > M_Y

Otherwise:

incy # M_Y and incy = 1

Stage 6:
If incx = 1( # M_X), then (in the process grid) the process row containing the
first row of the submatrix A does not contain the first row of the submatrix X;

1.

3.
4.
5.

that is, iarow # ixrow, where:

PDGER, PZGERC, and PZGERU

* idarow = mod((((ia—1)/MB_A)+RSRC_A), p)

e ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

If incy = MY, then (in the process grid) the process column containing the first
column of the submatrix A does not contain the first column of the submatrix

Y; that is, iacol # iycol, where:
* iacol
* iycol
LLD_A < max(1, LOCp(M_A))
LLD_X < max(1, LOCp(M_X))
LLD_Y < max(1, LOCp(M_Y))

Examples

Example 1
This example computes A = axy'+A using a 2 x 2 process grid. It uses a global
submatrix A within a global matrix A by specifying in = 2 and ja = 2. It uses
vector x, which is a column-distributed vector within a column of global matrix X,
by specifying incx = 1, ix = 2, and jx = 1. It uses vector y, which is a
row-distributed vector within a row of global matrix ¥, by specifying

incy = MY =1,iy =1, and jy = 2.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

M N ALPHA X IX JX  DESC X INCX Y IY
CALL PDGER( 9 , g , 1.000 , i , i , l , DEéC_X , l , l ,

DESCY INCY A IA JA  DESCA

DESC_Y , , L , i , i , DESCA )

mod((((ja—1)/NB_A)+CSRC_A), q)
mod((((jy-1)/NB_Y)+CSRC_Y), q)

Chapter 6. Level 2 PBLAS 175



PDGER, PZGERC, and PZGERU

Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1

CTXT_ icontxM icontxtd icontyid
M_ 10 11 1
N_ 10 1 11
MB_ 4 4 1
NB_ 4 1 4
RSRC_ 0 0 0
CSRC_ 0 0 0

LLD_ See below? See belowB See belowl
Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
LLD_Y = MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

In this example, LLD_A = 6 on Py, and Py;, LLD_A = 4 on P;, and Py,
LLD_X = 7 on Poo, LLD_X = 4 on Plo, LLD_Y = ]. on POO al’ld POl'

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
9 x 9 submatrix A, starting at row 2 and column 2 in global general 10 x 10
matrix A with block size 4 x 4:

B,D 0 1 2
12.0 22.0 32.0 42.0 52.0 62.0 72.0 82.0 92.0
0 13.0 23.0 33.0 43.0 53.0 63.0 73.0 83.0 93.0
14.0 24.0 34.0 44.0 54.0 64.0 74.0 84.0 94.0
15.0 25.0 35.0 45.0 55.0 65.0 75.0 85.0 95.0
16.0 26.0 36.0 46.0 56.0 66.0 76.0 86.0 96.0
1 17.0 27.0 37.0 47.0 57.0 67.0 77.0 87.0 97.0
18.0 28.0 38.0 48.0 58.0 68.0 78.0 88.0 98.0
2 19.0 29.0 39.0 49.0 59.0 69.0 79.0 89.0 99.0
20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0
The following is the 2 x 2 process grid:
B,D 02 1
0 POO P01
2
1 PlE) Pll
Local arrays for A:
p,q 0 1
12.0 22.0 32.0 82.0 92.0 42.0 52.0 62.0 72.0
13.0 23.0 33.0 83.0 93.0 43.0 53.0 63.0 73.0
0 14.0 24.0 34.0 84.0 94.0 44.0 54.0 64.0 74.0
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19.0 29.0 39.0 89.0 99.0 49.0 59.0 69.0 79.0
20.0 30.0 40.0 90.0 100.0 50.0 60.0 70.0 80.0
15.0 25.0 35.0 85.0 95.0 45.0 55.0 65.0 75.0
16.0 26.0 36.0 86.0 96.0 46.0 56.0 66.0 76.0
1 17.0 27.0 37.0 87.0 97.0 47.0 57.0 67.0 77.0
18.0 28.0 38.0 88.0 98.0 48.0 58.0 68.0 78.0

After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a
column-distributed vector. Following is the global vector x of size 9 x 1, starting at
row 2 and column 1 in 11 x 1 global matrix X with block size 4 x 1:

B,D 0

1.0
0 1.0
1.0
1.0
1.0
1 1.0
1.0
1.0
2 1.0

B,D 0 --
0 Poo Pos
2

1 Pio P1

p,q 0
1.0
1.0

0 1.0
1.0
1.0
1.0
1.0

1 1.0
1.0

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a row-distributed
vector. Following is the global vector y of size 1 x 9, starting at row 1 and column
2in 1 x 11 global matrix ¥ with block size 1 x 4:

B,D 0 1 2

0 [ . 2.0 3.0 40 | 5.0 6.0 7.0 8.0 | 9.0 10.0 . ]
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The following is the 2 x 2 process grid:

B,D 02 1
0 Poo P01
- Pw P11

p.q 0 1
0 . 2.0 3.0 4.0 9.0 10.0 . 5.0 6.0 7.0 8.0
Output:

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
9 x 9 submatrix A, starting at row 2 and column 2 in global general 10 x 10
matrix A with block size 4 x 4:

B,D 0 1 2
14.0 25.0 36.0 47.0 58:0 69.0 80.0 91.0 102.0

0 15.0 26.0 37.0 48.0 59.0 70.0 81.0 92.0 103.0
16.0 27.0 38.0 49.0 60.0 71.0 82.0 93.0 104.0
17.0 28.0 39.0 50.0 61.0 72.0 83.0 94.0 105.0
18.0 29.0 40.0 51.0 62.0 73.0 84.0 95.0 106.0

1 19.0 30.0 41.0 52.0 63.0 74.0 85.0 96.0 107.0 |8
20.0 31.0 42.0 53.0 64.0 75.0 86.0 97.0 108.0

2 21.0 32.0 43.0 54.0 65.0 76.0 87.0 98.0 109.0
22.0 33.0 44.0 55.0 66.0 77.0 88.0 99.0 110.0

The following is the 2 x 2 process grid:

B,D 02 1
0 Poo Po1
2

1 P1o P11

P,q 0 1
14.0 25.0 36.0 91.0 102.0 47.0 58.0 69.0 80.0
15.0 26.0 37.0 92.0 103.0 48.0 59.0 70.0 81.0
0 16.0 27.0 38.0 93.0 104.0 49.0 60.0 71.0 82.0
21.0 32.0 43.0 98.0 109.0 54.0 65.0 76.0 87.0
22.0 33.0 44.0 99.0 110.0 55.0 66.0 77.0 88.0
17.0 28.0 39.0 94.0 105.0 50.0 61.0 72.0 83.0
18.0 29.0 40.0 95.0 106.0 51.0 62.0 73.0 84.0
1 19.0 30.0 41.0 96.0 107.0 52.0 63.0 74.0 85.0
20.0 31.0 42.0 97.0 108.0 53.0 64.0 75.0 86.0
Example 2

This example computes A = oxy''+A using a 2 x 2 process grid. It uses a global
submatrix A within a global matrix A by specifying in = 2 and ja = 2. It uses
vector x, which is a column-distributed vector within a column of global matrix X,
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by specifying incx = 1, ix = 2, and jx = 1. It uses vector y, which is a
row-distributed vector within a row of global matrix ¥, by specifying

incy = MY =1,iy = 1,and jy = 2.

Call Statements and Input:

ORDER = 'R’
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

M N ALPHA IX JX DESC_X INCX Y Iy JY

X
| . | I N R
X

CALL PZGERC( 9 , 9, ALPHA , X, 2,1, DESCX, 1 ,Y, 1, 2,
DESC Y INCY A IA

[

DESCY, 1 ,A, 2

JA  DESC_A
, 2, DESCA )

ALPHA = (1.0, -1.0)

Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1

CTXT_ icontxfl icontxtl icontxfd
M_ 10 11 1
N_ 10 1 11
MB_ 4 4 1
NB_ 4 1 4
RSRC_ 0 0 0
CSRC_ 0 0 0

LLD_ See below? See belowl See belowd
Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
LLD_Y = MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

In this example, LLD_A = 6 on Py, and Py, LLD_A = 4 on Py and Py,

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
9 x 9 submatrix A, starting at row 2 and column 2 in global general 10 x 10
matrix A with block size 4 x 4:
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P11

02
Pio

The following is the 2 x 2 process grid:

Local arrays for A:

B,D

POI
Pll
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Poo
Pio

-
1 () ]
1 A~~~ |~~~ h
! oo ioeeg — 50
PR g S [ U S S c
1 1 O .-
I« o n e oaa I o a aoa =
! ceeee Ioee c M
1 NSO D I 10O~ o -
1 LR S e’ T I N N N . p— wn
Stttk [tttk B
H <
] ~———~~ |~~~ m i
i o oo  ocooo
1 aaEss H 2 Q. %
1 NNNNN | NNNN ..
1 1 < —
I« o a a a o« I o a a s o
! ceeee Ioee > X
1 NN | 10O~ = N
1 OLWOWOON | OOV S o N
e e — | ———— o .m
1
] A~~~ |~~~ I.Bf <)
! coooo oo o] O.E
1 NNNNN | NN NN ﬂknu» ]
! DU R g.lxk
! coooe oo Sh = O
1 AT D | OO O 92} W.mlo
1 OO | OLWLWOLW0 o] [3)
poLLess s g 8.
1
I o~~~ |~~~ o > c
1 Ccoocooo oo ® m..rlt
o aaEEs i ? =
TR RS B maw
1 LI R B D A I B | LI} e Cb
e W Wl e Wl o
! cooor oo ..km. VlOVA
1 NSO D | OO 0 [eY0]
' SSESTTO IS T ST == bas
EESININININIE ENINININS 9's g -3
! > Q
=
_ et
1 1
“ \OI\OI\O/\OI\OIH\OI\OI\OIWI = .y &
..... ? D
1 R i e B B O B B B B |
! L ..m.mb moq.a
1 eooeg 19ge9 bt.l.w
p 2eesas T r
1 NOSFOND | 10O~ D o Wl
! SO oS ..L..hL 2 &b
T e 2 _ = —
I o~ —~——= O )
! Soooe looae n T K X
1 cCooo® oo O o % o
| | = o=
I+ o o o o .« I e a .
1 CO0O0D I OO -
I e e e e . I . ®x n 9 o
1 NSO D | 0O D B e= D e
1 00O I WD D = =
L2222 2222 £ —
1
] N~~~ e~ |~~~ —~ < ud r
I @z iasas mt o S
| Socss issss 9 EE 333
< 5 .=
I+ o o o o .« I e n .
' egeeg Igeag Lu..«n..im‘loA < o
1 NSO | IDON D QS ® 59 ¢« o & &
1 MMMt 1T ooMmomom ga N [oNoNo)
I R e > @ @
e s W 8D & © — =
I oo ioees c T c —
1 L e B B I B I B B B | tl L
] ] - © mz
I+ o o o o =« I e n.
! eoeg 19ee9 ..onw.wm W o
I NSNS 10O~ =2—="00 = <)
i NNNN® NN <O & m

e e e N e b b L
00000“0000
NNNNN T NN

PDGER, PZGERC, and PZGERU

B,D
p,q

The following is the 2 x 2 process grid:

B,D
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Local arrays for x:

P,q 0
(1.0, 4.0)
(1.0, 3.0)

0 (1.0, 2.0)
(1.0,-3.0)
(1.0,-4.0)
(1.0, 1.0)
(1.0, 0.0)

1 (1.0,-1.0)
(1.0,-2.0)

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a row-distributed
vector. Following is the global vector y of size 1 x 9, starting at row 1 and column
2in 1 x 11 global matrix Y with block size 1 x 4:

B.D 0 1 2

0 [ . (2.0, 1.0) (3.0, 1.0) (4.0, 1.0) | (5.0, 1.0) (6.0, 1.0) (7.0, 1.0) (8.0, 1.0) | (9.0, 1.0) (10.0, 1.0) ]

The following is the 2 x 2 process grid:

B,D 02 1
0 Poo Pos
== Pio P11

0 . (2.0, 1.0) (3.0, 1.0) (4.0, 1.0) (9.0, 1.0) (10.0, 1.0) . (5.0, 1.0) (6.0, 1.0) (7.0, 1.0) (8.0, 1.0)
Output:

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
9 x 9 submatrix A, starting at row 2 and column 2 in global general 10 x 10
matrix A with block size 4 x 4:

. (25.0, 3.0) (40.0, 5.0) (55.6, 7.0)| (70.9, 9.9) (85.0, 11.0) (100.0, 18.8) (115.0, 20.0)| (136.0, 22.0) (145.0, 24.0)
0| . (23.0, 2.0) (37.0, 3.0) (51.0, 4.0)| (65.0, 5.0) (79.0, 6.0) ( 93.0, 12.0) (107.0, 13.0)| (121.0, 14.0) (135.0, 15.0)
. (21.0, 1.0) (34.0, 1.0) (47.0, 1.0)| (60.0, 1.0) (73.0, 1.0) ( 86.0, 6.0) ( 99.0, 6.0)| (112.0, 6.0) (125.0, 6.0)

(19.0, 0.0) (31.0, -1.0) (43.0, -2.0)| (55.0, -3.0) (67.0, -4.0) ( 79.0, 0.0) ( 91.0, -1.0)| (103.0, -2.0) (115.0, -3.0)

(17.0, -1.0) (28.0, -3.0) (39.0, -5.0)| (50.0, -7.0) (61.0, -9.0) ( 72.0, -6.0) ( 83.0, -8.0)| ( 94.0,-10.0) (105.0,-12.0)

1 (15.0, -2.0) (25.0, -5.0) (35.0, -8.0)| (45.0,-11.0) (55.0,-14.0) ( 65.0,-12.0) ( 75.0,-15.0)| ( 85.0,-18.0) ( 95.0,-21.0)
(13.0, -3.0) (22.0, -7.0) (31.0,-11.0)| (40.0,-15.0) (49.0,-19.0) ( 58.0,-18.0) ( 67.0,-22.0)| ( 76.0,-26.0) ( 85.0,-30.0)

2| . (11.0, -4.0) (19.0, -9.0) (27.0,-14.0)| (35.0,-19.0) (43.0,-24.0) ( 51.0,-24.0) ( 59.0,-29.0)| ( 67.0,-34.0) ( 75.0,-39.0)
. (9.0, -5.0) (16.0,-11.0) (23.0,-17.0)| (30.0,-23.0) (37.0,-29.0) ( 44.0,-30.0) ( 51.0,-36.0)| ( 58.0,-42.0) ( 65.0 48j0)

The following is the 2 x 2 process grid:
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B,D 02 1

0 Poo Po1
2

1 Pio P1y

p.q 0
(25.0, 3.0) (40.0, 5.0) (55.0, 7.0) (130.0, 22.0) (145.0, 24.0)
(23.0. 2.0) (37.0. 3.0) (51.0., 4.0) (121.0, 14.0) (135.0, 15.0)
0 (21.0. 1.0) (34.0, 1.0) (47.0, 1.0) (112.0. 6.0) (125.0, 6.0)
(1.0, -4.0) (19.0, -9.0) (27.0,-14.0) ( 67.0,-34.0) ( 75.0,-39.0)
(9.0, -5.0) (16.0.-11.0) (23.0.-17.0) ( 58.0.-42.0) ( 65.0,-48.0)

(9.0, 0.0) (31.0, -1.0) (43.0, -2.0) (103.0, -2.0) (115.0, -3.0)
(17.0. -1.0) (28.0, -3.0) (39.0, -5.0) ( 94.0.-10.0) (105.0,-12.0)
1 (15.0. -2.0) (25.0. -5.0) (35.0, -8.0) ( 85.0.-18.0) ( 95.0.-21.0)
(13.0. -3.0) (22.0, -7.0) (31.0.-11.0) ( 76.0.-26.0) ( 85.0,-30.0)

Example 3

This example computes A = axy'+A using a 2 x 2 process grid. It uses a global

submatrix A within a global matrix A by specifying ia

2 and ja = 2. It uses

vector x, which is a column-distributed vector within a column of global matrix X,

by specifying incx = 1, ix = 2, and jx

1. It uses vector y, which is a

row-distributed vector within a row of global matrix Y, by specifying

incy = MY = 1,iy = 1,and jy = 2.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)

CALL BLACS:GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

M N ALPHA X IX JX DESC_X INCX Y 1Y JY
| | | | I
CALL PZGERU( 9 , 9, ALPHA , X, 2,1, DESCX, 1 Y, 1, 2,
DESC.Y INCY A IA JA DESC_A
I |
DESCY, 1 ,A, 2, 2, DESCA )
ALPHA = (1.0,-1.0)
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontxfl icontxfd icontxid
M_ 10 11 1
N_ 10 1 11
MB_ 4 4 1
NB_ 4 1 4
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See belon2 See belowd See belowB
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icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

Notes:

1.
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B,D 0 --
0 Poo Po1
2

]' PlO Pll

Local arrays for x:

p.q 0
(1.0, 4.0)
(1.0, 3.0)

0 (1.0, 2.0)
(1.0,-3.0)
(1.0,-4.0)
(1.0, 1.0)
(1.0, 0.0)

1 (1.0,-1.0)
(1.0,-2.0)

After the global matrix Y is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector y, which is a row-distributed
vector. Following is the global vector y of size 1 x 9, starting at row 1 and column
2in 1 x 11 global matrix Y with block size 1 x 4:

B,D 0 1 2

0 [ . (2.0, 1.0) (3.0, 1.0) (4.0, 1.0) | (5.0, 1.0) (6.0, 1.0) (7.0, 1.0) (8.0, 1.0) | (9.0, 1.0) (10.0, 1.0) ]

The following is the 2 x 2 process grid:

B,D 02 1
0 Poo Po1
== Pio Pis

0 . (2.0, 1.0) (3.0, 1.0) (4.0, 1.0) (9.0, 1.0) (10.0, 1.0) . (5.0, 1.0) (6.0, 1.0) (7.0, 1.0) (8.0, 1.0)

Output:

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
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9 x 9 submatrix A, starting at row 2 and column 2 in global general 10 x 10
matrix A with block size 4 x 4:

B,D 0 1 2

. . .0: 17.0) (64.0; 19.0) (79.0; 21.0) (94.0: 28.0) (109.0; 30.0) (124.0; 32.0) (139.0: 34.0)
0 . (19.0, 10.0) (33.0, 11.0) (47.0, 12.0)| (61.0, 13.0) (75.0, 14.0) (89.0, 20.0) (103.0, 21.0)| (117.0, 22.6) (131.0, 23.0)
.0, 7.0)| (58.0, 7.0) (71.0, 7.0) (84.0, 12.0) ( 97.0, 12.0)| (116.0, 12.0) (123.0, 12.0)

(19.0, 4.0) (31.0, 3.0) (43.0, 2.0)| (55.0, 1.0) (67.0, 0.0) (79.0, 4.0) ( 91.0, 3.0)| (103.0, 2.0) (115.0, 1.0)
(19.0, 1.0) (30.0, -1.0) (41.0, -3.0)| (52.0, -5.0) (63.0, -7.0) (74.0, -4.0) ( 85.0, -6.0)| ( 96.0, -8.0) (107.0,-10.0)
1 (19.0, -2.0) (29.0, -5.0) (39.0, -8.0)| (49.0,-11.0) (59.0,-14.0) (69.0,-12.0) ( 79.0,-15.0)| ( 89.0,-18.0) ( 99.0,-21.0)
(19.0, -5.0) (28.0, -9.0) (37.0,-13.0)| (46.0,-17.0) (55.0,-21.0) (64.0,-20.0) ( 73.0,-24.0)| ( 82.0,-28.0) ( 91.0,-32.0)
2 (19.0, -8.0) (27.0,-13.0) (35.0,-18.0)| (43.0,-23.0) (51.0,-28.0) (59.0,-28.0) ( 67.0,-33.0)| ( 75.0,-38.0) ( 83.0,-43.0)
(19.0,-11.0) (26.0,-17.0) (33.0,-23.0)| (40.0,-29.0) (47.0,-35.0) (54.0,-36.0) ( 61.0,-42.0)| ( 68.0,-48.0) ( 75.0,-54.0)

B,D 02 1

0 Poo Pos
2

1 Pio P1

p.q 0 1

(19.0, 4.0) (31.0, 3.0) (43.0, 2.0) (103.0, 2.0) (115.0, 1.0) | (55.0, 1.0) (67.0, 0.0) (79.0, 4.0) ( 91.0, 3.0)
(19.0, 1.0) (30.0, -1.0) (41.0, -3.0) ( 96.0, -8.0) (107.0,-10.0) | (52.0, -5.0) (63.0, -7.0) (74.0, -4.0) ( 85.0, -6.0)
1 (19.0, -2.0) (29.0, -5.0) (39.0, -8.0) ( 89.0,-18.0) ( 99.0,-21.0) | (49.0,-11.0) (59.0,-14.0) (69.0,-12.0) ( 79.0,-15.0)
(19.0, -5.0) (28.0, -9.0) (37.0,-13.0) ( 82.0,-28.0) ( 91.0,-32.0) | (46.0,-17.0) (55.0,-21.0) (64.0,-20.0) ( 73.0,-24.0)
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PDSYR and PZHER — Rank-One Update of a Real Symmetric or a
Complex Hermitian Matrix

Purpose

PDSYR computes the following rank-one update:
o Acoxx"+A

PZHER computes the following rank-one update:
o Acoxx+A

where, in the formula above:
* A represents the global submatrix A
* x represents the global vector:

— Forincx = M_X, it is Xivix, jwjwan-1-

— Forincx = 1 and incx # M_X, it i8 Xivivin1, jxjx-
* o is a scalar.

in:ia+n—-1, ja;ja+n-1-

and:
* For PDSYR, submatrix A is real symmetric.
e For PZHER, submatrix A is complex Hermitian.

Note: No data should be moved to form xT or x; that is, the vector x should
always be stored in its untransposed form.

In the following two cases, no computation is performed and the subroutine
returns after doing some parameter checking:

en=290

* «is zero.

See references and .

Table 52. Data Types

A, x o Subprogram
Long-precision real Long-precision real PDSYR
Long-precision complex Long-precision real PZHER

Syntax
Fortran CALL PDSYR | PZHER (uplo, n, alpha, x, ix, jx, desc_x, incx, a, ia, ja, desc_a)
C and C++ pdsyr | pzher (uplo, n, alpha, x, ix, jx, desc_x, incx, a, ia, ja, desc_a);

On Entry

uplo  indicates whether the upper or lower triangular part of the global
submatrix A is referenced, where:

If uplo

"U’, the upper triangular part is referenced.

If uplo = 'L’, the lower triangular part is referenced.
Scope: global

Specified as: a single character; uplo = 'U’ or L.

186  Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference




PDSYR and PZHER

n is the number of rows and columns in submatrix A and the number of
elements in vector x used in the computation.

Scope: global

Specified as: a fullword integer; n = 0.

alpha  is the scalar a.
Scope: global
Specified as: a number of the data type indicated in [Table 52 on page 186|
X is the local part of the global matrix X. This identifies the first element of
the local array X. This subroutine computes the location of the first element
of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol;
therefore:

e If incx = M_X, the leading LOCp(ix) by LOCq(jx+n—1) part of the local
array X must contain the local pieces of the leading ix by jx+n-1 part of
the global matrix.

e Ifincx = 1 and incx # M_X, the leading LOCp(ix+n-1) by LOCq(jx) part
of the local array X must contain the local pieces of the leading ix+n—-1
by jx part of the global matrix.

Note: No data should be moved to form x' or x*’; that is, the vector x

should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers

of the data type indicated in [Table 52 on page 186 Details about the

block-cyclic data distribution of the global matrix X are stored in desc_x.
ix has the following meaning:

If incx = M_X, it indicates which row of global matrix X is used for vector

x.

If incx = 1 and incx = M_X, it is the row index of global matrix X,

identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 = ix = M_X and:

If incx = 1 and incx # M_X, then ix+n-1 = M_X.

jx has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the

first element of vector x.

If incx = 1 and incx = M_X, it indicates which column of global matrix X

is used for vector x.

Scope: global

Specified as: a fullword integer; 1 = jx = N_X and:

If incx = M_X, then jx+n-1 = N_X.

desc_x is the array descriptor for global matrix X, described in the following table:
desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
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desc_x Name Description Limits Scope
2 CTXT_X BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_X Number of rows in the global If n =0 Global
matrix MX =0
Otherwise:
MX=1
4 N_X Number of columns in the If n=0: Global
global matrix N.X=z0
Otherwise:
NX=z1
5 MB_X Row block size MB_X = 1 Global
6 NB_X Column block size NB. X = 1 Global
7 RSRC_X The process row of the p x ¢ 0 = RSRC_X < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_X The process column of the p x q |0 = CSRC_X < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_X The leading dimension of the LLD_X = max(1,LOCp(M_X)) Local
local array
Specified as: an array of (at least) length 9, containing fullword integers.
incx  is the stride for global vector x.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:

If incx = M_X, then x is a row-distributed vector.

If incx = 1 and incx # M_X, then x is a column-distributed vector.

a is the local part of the global real symmetric or complex Hermitian matrix

A. This identifies the first element of the local array A. This subroutine

computes the location of the first element of the local subarray used, based

on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1)
by LOCq(ja+n—1) part of the local array A must contain the local pieces of
the leading ia+n—1 by ja+n-1 part of the global matrix, and:

e If uplo = 'U’, the leading n X n upper triangular part of the global
submatrix Ajy.iz1y-1, jajasn—1 Must contain the upper triangular part of the
submatrix, and the strictly lower triangular part is not referenced.

 If uplo = 'L, the leading n x n lower triangular part of the global
submatrix Ajy.iz1n-1, jajasn—1 MUst contain the lower triangular part of the
submatrix, and the strictly upper triangular part is not referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers

of the data type indicated in [Table 52 on page 186 Details about the square

block-cyclic data distribution of global matrix A are stored in desc_a.
ia is the row index of the global matrix A, identifying the first row of the
submatrix A.
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Scope: global
Specified as: a fullword integer; 1 = in = M_A and ia+n-1 = M_A.

ja is the column index of the global matrix A, identifying the first column of
the submatrix A.
Scope: global
Specified as: a fullword integer; 1 = ja = N_A and ja+n-1 = N_A.
desc_a is the array descriptor for global matrix A, described in the following table:
desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_A Number of rows in the global Ifn=0: Global
matrix M.A =0
Otherwise:
MA=z1
4 N_A Number of columns in the If n=0: Global
global matrix N A=0
Otherwise:
NA=1
5 MB_A Row block size MB_A =1 Global
6 NB_A Column block size NB_A = 1 Global
7 RSRC_A The process row of the p x ¢ 0 = RSRC_A < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_A The process column of the p x g |0 = CSRC_A < g Global
grid over which the first column
of the global matrix is
distributed
9 LLD_A The leading dimension of the LLD_A = max(1,LOCp(M_A)) Local
local array
Specified as: an array of (at least) length 9, containing fullword integers.
On Return
a is the updated local part of the global matrix A, containing the results of

the computation.
Scope: local

Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers
of the data type indicated in [Table 52 on page 186,

Notes and Coding Rules

1. These subroutines accept lowercase letters for the uplo argument.

2. The matrix and vector must have no common elements; otherwise, results are
unpredictable.
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10.

The imaginary parts of the diagonal elements of the complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On
output, they are set to zero except when N is zero or « is zero, in which case
no computation is performed.

The NUMROC utility subroutine can be used to determine the values of
LOCp(M_) and LOCg(N_) used in the argument descriptions above. For
details, see [‘Determining the Number of Rows and Columns in Your Locall
Arrays” on page 28| and ["NUMROC — Compute the Number of Rows of
Columns of a Block-Cyclically Distributed Matrix Contained in a Process” on|

page 868.|

For suggested block sizes, see[“Coding Tips for Optimizing Parallell
[Performance” on page 77)

The following values must be equal: CTXT_A = CTXT_X.

The global matrix A must be distributed using a square block-cyclic

distribution; that is, MB_A = NB_A.

The block row and block column offsets of the global matrix A must be equal;

that is, mod(ia—1, MB_A) = mod(ja—1, NB_A).

If incx = M_X:

* In the process grid, the process column containing the first column of the
submatrix A must also contain the first column of the submatrix X; that is,
iacol = ixcol, where:

— iacol = mod((((ja—1)/NB_A)+CSRC_A), q)
— ixcol = mod((((jx—1)/NB_X)+CSRC_X), g)

* The block column offset of x must be equal to the block row offset of A;
that is, mod(jx—1, NB_X) = mod(ia—1, MB_A).

* The following block sizes must be equal: NB_X = NB_A.

If incx = 1( = M_X):

¢ In the process grid, the process row containing the first row of the
submatrix A must also contain the first row of the submatrix X; that is,
iarow = ixrow, where:

— darow = mod((((in—1)/MB_A)+RSRC_A), p)
— ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

* The block row offset of x must be equal to the block row offset of A; that is,
mod(ix—1, MB_X) = mod(ia—1, MB_A).
* The following block sizes must be equal: MB_X = MB_A.

Error Conditions

Computational Errors

None

Resource Errors

Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:

1.

DTYPE_A is invalid.

2. DTYPE_X is invalid.

Stage 2:

1.

CTXT_A is invalid.
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Stage 3:

1.

This subroutine was called from outside the process grid.

Stage 4:

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

©CONOO AWM~

uplo # "U” or 'L’

n<20

M X < 0and n = 0, M_X < 1 otherwise
N X < 0and n = 0; N_X < 1 otherwise
MB X < 1

NB X < 1

RSRC_X < 0 or RSRC_X
CSRC_X < 0 or CSRC_X
CTXT_A # CTXT_X

ix <1

jx <1

M_A < Qandn = 0, M_A < 1 otherwise
N_A < Oand n = 0, N_A < 1 otherwise
MB_A <1

NB_A <1

RSRC_A < 0 or RSRC_A
CSRC_A < 0 or CSRC_A
in <1

ja <1

v v

v v

Stage 5:

1.

©o®

10.

11.
12.
13.

14.

No oo kwN

NB_A = MB_A

Ifn #0:
ia > M_A
ja > N_A
ia+n-1 > M
ja+n-1 > N
ix > M_X
jx > N_X
If incx = M_X:

NB_X = NB_A

mod(jx—1, NB_X) # mod(in—1, MB_A)
n = 0and jx+n-1 > N_X

If incx = 1( # M_X):

MB_X # MB_A

mod(ix—1, MB_X) # mod(ia—1, MB_A)
n # 0 and ix+n-1 > M_X

Otherwise:

incx # M_X and incx = 1

_A
A

Stage 6:

1.
2.

mod(ja—1, NB_A) # mod(ia—1, MB_A)

If incx = M_X, then (in the process grid) the process column containing the
first column of the submatrix A does not contain the first column of the
submatrix X; that is, iacol # ixcol, where:

¢ idacol = mod((((ja—1)/NB_A)+CSRC_A), q)

¢ ixcol = mod((((jx—1)/NB_X)+CSRC_X), )

If incx = 1( # M_X), then (in the process grid) the process row containing the
first row of the submatrix A does not contain the first row of the submatrix X;
that is, iarow # ixrow, where:

* iarow = mod((((ia—1)/MB_A)+RSRC_A), p)
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e ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)
4. LLD_A < max(1, LOCp(M_A))
5. LLD_X < max(1, LOCp(M_X))

Examples

Example 1

This example computes A = oxx'+A using a 2 x 2 process grid.

Call Statements and Input:

ORDER = 'R’
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO N ALPHA X IX JX DESC_ X INCX A IA JA DESCA

| | |
CALL PDSYR( 'L' , 9, 1.6D0 , X , 1, 1 , DESCX , 1 , A, 1,1, DESC_A)

Desc_A Desc_X
DTYPE_ 1 1

CTXT_ icontxfd icontxfd
M_ 9 9
N_ 9 1
MB_ 4 4
NB_ 4 1
RSRC_ 0 0
CSRC_ 0 0

LLD_ See below? See below?

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))

In this example, LLD_A = 5 on Py, and Py;, LLD_A = 4 on P;, and Py,

LLD_X = 5 on Py, and LLD_X = 4 on Py,,.

Global real symmetric matrix A of order 9 with block size 4
B,D 0 1
1.0 .
2.0 12.0 .
0 3.0 13.0 23.0 .
4.0 14.0 24.0 34.0
5.0 15.0 25.0 35.0 45.0 .
6.0 16.0 26.0 36.0 46.0 56.0 .
1 7.0 17.0 27.0 37.0 47.0 57.0 67.0 .
8.0 18.0 28.0 38.0 48.0 58.0 68.0 78.0
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2 9.0 19.0 29.0 39.0 49.0 59.0 69.0 79.0 | 89.0 J

The following is the 2 x 2 process grid:
B,D 02 | 1

p.q 0
1.0 .
2.0 12.0 .

0 3.0 13.0 23.0 .
4.0 14.0 24.0 34.0 .
9.0 19.0 29.0 39.0 89.0
5.0 15.0 25.0 35.0
6.0 16.0 26.0 36.0

1 7.0 17.0 27.0 37.0

8.0 18.0 28.0 38.0

46.0 56.0 .
47.0 57.0 67.0 .
48.0 58.0 68.0 78.0

Global vector x of size 9 x 1 with block size 4:

B,D 0

S e N el e e T B N S e

ol N oNoNoNoN N oNoNoNo]

The following is the 2 x 2 process grid:
B,D 0 --

P.q 0
1.0
1.0
0 1.0
1.0
1.0
1.0
1.0
1 1.0
1.0
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Output:

Global real symmetric matrix A of order 9 with block size 4 x 4:

B,D 0 1 2
2.0 .
3.0 13.0 .
0 4.0 14.0 24.0 .
5.0 15.0 25.0 35.0
6.0 16.0 26.0 36.0 46.0 .
7.0 17.0 27.0 37.0 47.0 57.0 .
1 8.0 18.0 28.0 38.0 48.0 58.0 68.0 .
9.0 19.0 29.0 39.0 49.0 59.0 69.0 79.0
2 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

The following is the 2 x 2 process grid:

B,D 02 1
0 Poo Po1
2

1 Pio Py

p,q 0 1
2.0 .
3.0 13.0

0 4.0 14.0 24.0 .
5.0 15.0 25.0 35.0 . . . .
10.0 20.0 30.0 40.0 90.0 50.0 60.0 70.0 80.0
6.0 16.0 26.0 36.0 46.0 .
7.0 17.0 27.06 37.0 47.0 57.0 .

1 8.0 18.0 28.0 38.0 48.0 58.0 68.0 .
9.0 19.0 29.0 39.0 49.0 59.0 69.0 79.0

Example 2
This example computes A = oxx''+A using a 2 x 2 process grid.

Note: The imaginary parts of the diagonal elements of a complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On

output, they are set to zero except when N is zero or « is zero.

Call Statements and Input:

ORDER = 'R’
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO N ALPHA X IX JX DESC_ X INCX A IA JA DESCA

CALL PZHER( 'L* , 3, 1.6D0 , X, 1,1 ,DESCX, 1 , A, 1,1, DESC_A)
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Desc_A Desc_X
DTYPE_ 1 1

CTXT_ icontx icontyid
M_ 3 3
N_ 3 1
MB_ 2 2
NB 2 1
RSRC_ 0 0
CSRC_ 0 0

LLD_ See below? See below?

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))

In this example, LLD_A = 2 on Py, and Py, LLD_A = 1 on Py and Py,
LLD_X = 2 on Py, and LLD_X = 1 on Py,

Global complex Hermitian matrix A of order 3 with block size 2 x 2:

B,D ¢] 1
(1.0, 0.0) .

0 (3.0,-5.0) (7.0, 0.0)

1| (2.0, 3.0) (4.0, 8.0) | (6.0, 0.0)

The following is the 2 x 2 process grid:

B,D 02 1
0 Poo Po1
1 P1o Py

B,D 0
(1.0,2.0)
0 (4.0,0.0)

1 (3.0,4.0)

The following is the 2 x 2 process grid:
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B,D 0 --
0 Poo Po1
1 P1o P11

P>q 0
(1.0,2.0)
0 (4.0,0.0)
1 (3.0,4.0)
Output:

Global complex Hermitian matrix A of order 3 with block size 2 x 2:
B,D 0 1

.0, 0.0) .
.0,-13.0) (23.0, 0.0)

1 (13.0, 1.0) (16.0,24.0) | (31.0, 0.0)

The following is the 2 x 2 process grid:

B,D 02 1
0 POO P01
1 P1o P11

196 Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference



PDSYR2 and PZHER2

PDSYR2 and PZHER2 — Rank-Two Update of a Real Symmetric or a
Complex Hermitian Matrix

Purpose

PDSYR2 computes the following rank-two update:
« A< oxy"+ayx"+A

PZHER2 computes the following rank-two update:

A « oxy” +oyx"+A

where, in the formula above:
* A represents the global submatrix Ajg.ign-1, jajarn—1-
* x represents the global vector:

— Forincx = M_X, it is Xivir jujxrn—1-
For incx = 1 and incx = M_X, it is X,
* y represents the global vector:

— FPorincy = MY, it is Y., jyijyen-1-
For incy = 1 and incy = MY, itis Y,
e «is a scalar.

iix+n—1, jxijxe

yiiy+n—1, jyjy*

and:
¢ For PDSYR2, submatrix A is real symmetric.
e For PZHER?2, submatrix A is complex Hermitian.

Note: No data should be moved to form x", x*, y", or y'’; that is, the vectors x
and y should always be stored in their untransposed form.

In the following two cases, no computation is performed and the subroutine
returns after doing some parameter checking:

e n=20

* «is zero.

See references and ||
Table 53. Data Types

A x Yy Subprogram
Long-precision real PDSYR2
Long-precision complex PZHER2
Syntax
Fortran CALL PDSYR2 | PZHER? (uplo, n, alpha, x, ix, jx, desc_x, incx, y, 1y, jy, desc_y, incy, a, ia, ja, desc_a)
C and C++ pdsyr2 | pzher2 (uplo, n, alpha, x, ix, jx, desc_x, incx, y, iy, jy, desc_y, incy, a, ia, ja, desc_a);
On Entry

uplo  indicates whether the upper or lower triangular part of the global
symmetric submatrix A is referenced, where:

If uplo = "U’, the upper triangular part is referenced.

If uplo = 'L’, the lower triangular part is referenced.
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alpha

jx

Scope: global
Specified as: a single character; uplo = "U” or 'L".

is the number of rows and columns in submatrix A and the number of
elements in vectors x and y used in the computation.

Scope: global
Specified as: a fullword integer; n = 0.
is the scalar a.

Scope: global

Specified as: a number of the data type indicated in [Table 53 on page 197|

is the local part of the global matrix X. This identifies the first element of

the local array X. This subroutine computes the location of the first element

of the local subarray used, based on ix, jx, desc_x, p, 4, myrow, and mycol;
therefore:

e If incx = M_X, the leading LOCp(ix) by LOCq(jx+n—1) part of the local
array X must contain the local pieces of the leading ix by jx+n-1 part of
the global matrix.

e Ifincx = 1 and incx # M_X, the leading LOCp(ix+n-1) by LOCq(jx) part
of the local array X must contain the local pieces of the leading ix+n-1
by jx part of the global matrix.

Note: No data should be moved to form x" or x'; that is, the vector x
should always be stored in its untransposed form.
Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers
of the data type indicated in [Table 53 on page 197} Details about the
block-cyclic data distribution of the global matrix X are stored in desc_x.

has the following meaning:

If incx = M_X, it indicates which row of global matrix X is used for vector
x.

If incx = 1 and incx = M_X, it is the row index of global matrix X,
identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 = ix = M_X and:
If incx = 1 and incx # M_X, then ix+n-1 = M_X.
has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the
first element of vector x.

If incx = 1 and incx = M_X, it indicates which column of global matrix X
is used for vector x.

Scope: global
Specified as: a fullword integer; 1 = jx = N_X and:
If incx = M_X, then jx+n-1 = N_X.

desc_x is the array descriptor for global matrix X, described in the following table:
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desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
2 CTXT_X BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_X Number of rows in the global If n =0: Global
matrix M_X =0
Otherwise:
MX=1
4 N_X Number of columns in the If n =0: Global
global matrix N X=z0
Otherwise:
NX=z1
5 MB_X Row block size MB_ X = 1 Global
NB_X Column block size NB_ X =1 Global
7 RSRC_X The process row of the p x ¢ 0 = RSRC_X < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_X The process column of the p x g |0 = CSRC_X < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_X The leading dimension of the LLD_X = max(1,LOCp(M_X)) Local

local array

ncx

Specified as: an array of (at least) length 9, containing fullword integers.
is the stride for global vector x.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:

If incx = M_X, then x is a row-distributed vector.

If incx = 1 and incx # M_X, then x is a column-distributed vector.

is the local part of the global matrix Y. This identifies the first element of

the local array Y. This subroutine computes the location of the first element

of the local subarray used, based on iy, jy, desc_y, p, q, myrow, and mycol;
therefore:

e If incy = M_Y, the leading LOCp(iy) by LOCq(jy+n-1) part of the local
array Y must contain the local pieces of the leading iy by jy+n-1 part of
the global matrix.

e Ifincy = 1 and incy # M_Y, the leading LOCp(iy+n-1) by LOCq(jy) part
of the local array Y must contain the local pieces of the leading iy+n-1
by jy part of the global matrix.

Note: No data should be moved to form y" or y*'; that is, the vector x
should always be stored in its untransposed form.
Scope: local

Specified as: an LLD_Y by (at least) LOCq(N_Y) array, containing numbers
of the data type indicated in [Table 53 on page 197 Details about the
block-cyclic data distribution of the global matrix Y are stored in desc_y.
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iy has the following meaning:
If incy = MY, it indicates which row of global matrix Y is used for vector
y.
If incy = 1 and incy # M_Y, it is the row index of global matrix ¥,
identifying the first element of vector y.
Scope: global
Specified as: a fullword integer; 1 = iy = M_Y and:
If incy = 1 and incy = M_Y, then iy+n-1 = M_Y.
v has the following meaning:
If incy = MY, it is the column index of global matrix Y, identifying the
first element of vector y.
If incy = 1 and incy = M_Y, it indicates which column of global matrix Y is
used for vector y.
Scope: global
Specified as: a fullword integer; 1 = jy = N_Y and:
If incy = MY, then jy+n-1 = N_Y.
desc_y is the array descriptor for global matrix Y, described in the following table:
desc_y Name Description Limits Scope
1 DTYPE_Y Descriptor type DTYPE_Y=1 Global
2 CTXT_Y BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 MY Number of rows in the global If n =0: Global
matrix MY =0
Otherwise:
MY =1
4 N_Y Number of columns in the Ifn=0: Global
global matrix N_Y =0
Otherwise:
N.Y =1
5 MB_Y Row block size MBY = 1 Global
6 NB_Y Column block size NB_Y = 1 Global
7 RSRC_Y The process row of the p x ¢ 0 = RSRCLY < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_Y The process column of the p x g |0 = CSRC_Y < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_Y The leading dimension of the LLD_Y = max(1,LOCp(M_Y)) Local
local array
Specified as: an array of (at least) length 9, containing fullword integers.
incy  is the stride for global vector y.
Scope: global
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Specified as: a fullword integer; incy = 1 or incy = M_X, where:
If incy = MY, then y is a row-distributed vector.

If incy = 1 and incy = M_Y, then y is a column-distributed vector.

a is the local part of the global real symmetric or complex Hermitian matrix

A. This identifies the first element of the local array A. This subroutine

computes the location of the first element of the local subarray used, based

on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading LOCp(ia+n-1)
by LOCq(ja+n—1) part of the local array A must contain the local pieces of
the leading ia+n—1 by ja+n-1 part of the global matrix, and:

* If uplo = 'U’, the leading n x n upper triangular part of the global
symmetric submatrix Ajq.igin-1, jajarn— mMust contain the upper triangular
part of the submatrix, and the strictly lower triangular part is not
referenced.

* If uplo = 'L’, the leading n x n lower triangular part of the global
symmetric submatrix Ajq.igin-1, jajarn— mMust contain the lower triangular
part of the submatrix, and the strictly upper triangular part is not
referenced.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers

of the data type indicated in [Table 53 on page 197 Details about the square

block-cyclic data distribution of global matrix A are stored in desc_a.
ia is the row index of the global matrix A, identifying the first row of the

submatrix A.

Scope: global

Specified as: a fullword integer; 1 = in = M_A and ia+n-1 = M_A.

ja is the column index of the global matrix A, identifying the first column of

the submatrix A.

Scope: global

Specified as: a fullword integer; 1 = ja = N_A and ja+n-1 = N_A.

desc_a is the array descriptor for global matrix A, described in the following table:
desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CIXT_A BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_A Number of rows in the global Ifn=0: Global
matrix MA =0
Otherwise:
MA=z1
4 N_A Number of columns in the If n=0: Global
global matrix N A=0
Otherwise:
NA=1
5 MB_A Row block size MB_A =1 Global
6 NB_A Column block size NB_A =1 Global
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desc_a

Name

Description Limits Scope

7

RSRC_A

The process row of the p x ¢ 0 = RSRC_A < p Global
grid over which the first row of
the global matrix is distributed

CSRC_A

The process column of the p x g |0 = CSRC_A < g Global
grid over which the first column
of the global matrix is
distributed

LLD_A

The leading dimension of the LLD_A =z max(1,LOCp(M_A)) Local
local array

202

Specified as: an array of (at least) length 9, containing fullword integers.

On Return

a

is the updated local part of the global matrix A, containing the results of
the computation.

Scope: local

Returned as: an LLD_A by (at least) LOCq(N_A) array, containing numbers
of the data type indicated in [Table 53 on page 197

Notes and Coding Rules

1.
2.

10.

These subroutines accept lowercase letters for the uplo argument.

The matrix and vectors must have no common elements; otherwise, results are
unpredictable.

The imaginary parts of the diagonal elements of the complex Hermitian
matrix are assumed to be zero, so you do not have to set these values. On
output, they are set to zero except when N is zero or « is zero, in which case
no computation is performed.

The NUMROC utility subroutine can be used to determine the values of
LOCp(M_) and LOCq(N_) used in the argument descriptions above. For
details, see [“Determining the Number of Rows and Columns in Your Local|
Arrays” on page 28/ and ["NUMROC — Compute the Number of Rows o1
Columns of a Block-Cyclically Distributed Matrix Contained in a Process” on|

page 868.|

For suggested block sizes, see|’Coding Tips for Optimizing Parallel|
[Performance” on page 77/

The following values must be equal: CTXT_A = CTXT_X = CTXT_Y.

The vectors x and y must be distributed along the same axis—that is, they
must both be row distributed or column distributed, where:

e incx = M_X and incy = M_Y for row distribution

e incx = 1( # M_X) and incy = 1( # M_Y) for column distribution

The global symmetric matrix A must be distributed using a square block-cyclic

distribution; that is, MB_A = NB_A.

The block row and block column offsets of the global symmetric matrix A

must be equal; that is, mod(ia—1, MB_A) = mod(ja—1, NB_A).

If incx = M_X:

¢ In the process grid, the process column containing the first column of the
submatrix X must also contain the first column of the submatrix A; that is,

iacol = ixcol, where:
— iacol = mod((((ja—1)/NB_A)+CSRC_A), q)
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— ixcol = mod((((jx—1)/NB_X)+CSRC_X), )

* The block column offset of x must be equal to the block row offset of A;
that is, mod(jx—1, NB_X) = mod(ia—1, MB_A).

* The following block sizes must be equal: NB_X = NB_A.
11. If incx = 1( # M_X):

* In the process grid, the process row containing the first row of the
submatrix X must also contain the first row of the submatrix A; that is,

iarow = ixrow, where:
— idarow = mod((((ia—1)/MB_A)+RSRC_A), p)
- ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

* The block row offset of x must be equal to the block row offset of A; that is,
mod(ix—1, MB_X) = mod(ia—1, MB_A).

* The following block sizes must be equal: MB_X = MB_A.

12. If incy = MLY:

¢ In the process grid, the process column containing the first column of the
submatrix Y must also contain the first column of the submatrix A; that is,
iacol = iycol, where:

— idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
— iycol = mod((((jy—1)/NB_Y)+CSRC_Y), g)

¢ The block column offset of y must be equal to the block row offset of A;
that is, mod(jy—1, NB_Y) = mod(ia—1, MB_A).

* The following block sizes must be equal: NB_Y = NB_A.

13. Ifincy = 1( = M_Y):

* In the process grid, the process row containing the first row of the
submatrix Y must also contain the first row of the submatrix A; that is,
iarow = iyrow, where:

— idarow = mod((((ia—1)/MB_A)+RSRC_A), p)
- iyrow = mod((((7y—1)/MB_Y)+RSRC_Y), p)

* The block row offset of y must be equal to the block row offset of A; that is,
mod(iy—1, MB_Y) = mod(ia—1, MB_A).

* The following block sizes must be equal: MB_Y = MB_A.

Error Conditions

Computational Errors
None

Resource Errors
Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:

1. DTYPE_A is invalid.
2. DTYPE_X is invalid.
3. DTYPE_Y is invalid.

Stage 2:
1. CTXT_A is invalid.

Stage 3:
1. This subroutine was called from outside the process grid.
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Stage 4:

1.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

CoNOA~ALN

uplo # "U" or 'L’

n<0

MX < 0andn = 0; M_X < 1 otherwise
N X < 0and n = 0; N_X < 1 otherwise
MB X < 1

NB X < 1

RSRC_X < 0 or RSRC_X
CSRC_X < 0 or CSRC_X
CTXT_A = CTXT_X

ix <1

jx <1

MY < 0Oandn = 0; M_Y < 1 otherwise
N.Y <0andn = 0; N_Y < 1 otherwise
MB.Y < 1

NB Y < 1

RSRC_Y < 0 or RSRC_Y
CSRC_Y < 0 or CSRC_Y
CTXT_A = CTXT_Y
iy <1

jy <1

MA <Qandn = O; M
N A<Oandn = 0; N
MB_ A <1

NB_A <1

RSRC_A < 0 or RSRC_A
CSRC_A < 0 or CSRC_A
ia <1

ja <1

v v
SIS

[\
N

_A < 1 otherwise
A < 1 otherwise

v v
=

Stage 5:

1.

10.
11.
12.

13.
14.
15.

16.

17.
18.
19.

CoNOALDN

NB_A # MB_A

Ifn = 0:
ia > M_A
ja > N_A
a+n-1 > M_A

ja+n=1 > N_A

ix > M_X

jx > N_X

iy > MY

jy > N_Y

If incx = M_X:

NB_X # NB_A

mod(jx—1, NB_X) # mod(in—1, MB_A)
n # 0and jx+n-1 > N_X

If incx = 1( # M_X):

MB_X # MB_A

mod(ix—1, MB_X) # mod(ia—1, MB_A)
n # 0 and ix+n-1 > M_X

Otherwise:

incx # M_X and incx # 1

If incy = MLY:

NB_Y # NB_A

mod(jy—1, NB_Y) # mod(ia—-1, MB_A)
n # 0and jy+n-1 > N_Y
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If incy = 1( = M_Y):
20. MBLY = MB_A
21. mod(iy-1, MB_Y) = mod(ia—1, MB_A)
22. n = 0and iy+n-1 > M_Y

Otherwise:
28. incy # M_Y and incy = 1

Stage 6:

1. mod(ja—1, NB_A) # mod(ia—1, MB_A)

2. If incx = M_X, then (in the process grid) the process column containing the
first column of the submatrix A does not contain the first column of the
submatrix X; that is, iacol # ixcol, where:

e idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
¢ ixcol = mod((((jx—1)/NB_X)+CSRC_X), gq)

3. If incx = 1( # M_X), then (in the process grid) the process row containing the
first row of the submatrix A does not contain the first row of the submatrix X;
that is, iarow # ixrow, where:

* iarow = mod((((ia—1)/MB_A)+RSRC_A), p)
e ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

4. If incy = M_Y, then (in the process grid) the process column containing the first
column of the submatrix A does not contain the first column of the submatrix
Y; that is, iacol # iycol, where:

e idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
* iycol = mod((((jy—1)/NB_Y)+CSRC_Y), q)

5. If incy = 1( # M_Y), then (in the process grid) the process row containing the
first row of the submatrix A does not contain the first row of the submatrix Y;
that is, iarow # iyrow, where:

* iarow = mod((((ia—1)/MB_A)+RSRC_A), p)
* iyrow = mod((((7y—1)/MB_Y)+RSRC_Y), p)

6. LLD_A < max(1, LOCp(M_A))

7. LLD_X < max(1, LOCp(M_X))

8. LLD_Y < max(1, LOCp(M_Y))

Examples

Example 1
This example computes A = oxy +ayx'+A using a 2 x 2 process grid.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO N ALPHA X IX JX DESC_X INCX Y IY JY
|| | | ||
CALL PDSYR2( 'L' , 9, 1.0 ,X,1,1, DESCX, 1 , Y ,1,1,
DESC.Y INCY A IA JA DESCA
||
DESCY, 1 ,A, 1,1, DESCA )
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontx Ml icontxf@ icontxid
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Desc_A Desc_X Desc_Y

M_ 9 9 9

N_ 9 1 1

MB 4 4 4

NB 4 1 1
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See belowZ See belowl See belowd

Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A
LLD X
LLD_Y

MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

In this example, LLD_A = 5 on Py, and Py;, LLD_A = 4 on P;, and Py,

LLD_X = LLD_Y = 5 on Py, and LLD_X = LLD_Y = 4 on Py,

Global real symmetric matrix A of order 9 with block size 4 x 4:

B,D
1.0
2.0
0 3.0
4.0
5.0
6.0
1 7.0
8.0
2 9.0

B,D 02
0 Poo
2

1 Pro

p,q
1.0
2.0

0 3.0
4.0
9.0
5.0
6.0

1 7.0
8.0

Global vector x of size 9 x 1 with block size 4:

0

1

0 .
.0 34.0
0

34.0

35.0 45.0

36.0 46.0

37.0 47.0

38.0 48.0
0 39.0 49.0

X 2 process grid:

39.0 89.0

67.0 .
68.0 78.0

69.0 79.0

58.0 68.0 78.0
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B,D 0
1.0
1.0
0 1.0
1.0
1.0
1.0
1 1.0
1.0
2 1.0

B,D 0 --

0 Poo Pos
2

1 Pio Py

p,q 0
1.0
1.0

0 1.0
1.0
1.0
1.0
1.0

1 1.0
1.0

Global vector y of size 9 x 1 with block size 4:

B,D 0
2.0
2.0
0 2.0
2.0
2.0
2.0
1 2.0
2.0
2 2.0

The following is the 2 x 2 process grid:

B,D 0 --

0 Poo Po1
2

1 Pio P1y

Local arrays for y:
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p.q 0
2.0
2.0
0 2.0
2.0
2.0
2.0
2.0
1 2.0
2.0
Output:

Global real symmetric matrix A of order 9 with block size 4 x 4:

B,D

0 1
5.0 .
6.0 16.0 .
7.0 17.0 27.0 .
8.0 18.0 28.0 38.0
9.0 19.0 29.0 39.0 49.0 .
10.0 20.0 30.0 40.0 50.0 60.0 .
11.0 21.0 31.0 41.0 51.0 61.0 71.0 .
12.0 22.0 32.0 42.0 52.0 62.0 72.0 82.0
13.0 23.0 33.0 43.0 53.0 63.0 73.0 83.0

2

X 2 process grid:

B,D 02 1
0 POO POl
2
1 PlO P11
Local arrays for A:
P>q 0 1
5.0 .
6.0 16.0 .
0 7.0 17.0 27.0 .
8.0 18.0 28.0 38.0 . . . . .
13.0 23.0 33.0 43.0 93.0 53.0 63.0 73.0 83.0
9.0 19.0 29.0 39.0 49.0 .
10.0 20.0 30.0 40.0 50.0 60.0
1 11.0 21.0 31.0 41.0 51.0 61.0 71.0 .
12.0 22.0 32.0 42.0 52.0 62.0 72.0 82.0
Example 2
This example computes:

A — A+ oxy™ + ot

using

208

a 2 x 2 process grid.
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Note: The imaginary parts of the diagonal elements of a complex Hermitian

matrix are assumed to be zero, so you do not have to set these values. On

output, they are set to zero except when N is zero or « is zero.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO N ALPHA X IX JX DESC_X INCX Y Iy JY
| | | ||
CALL PZHER2( 'L' , 3, ALPHA , X, 1,1, DESCX, 1 , Y, 1,1,
DESC_Y INCY A IA JA DESCA
|
DESCY, 1 ,A,1,1,DESCA )
ALPHA = (1.0,0.0)
Desc_A Desc_X Desc_Y
DTYPE_ 1 1 1
CTXT_ icontx Ml icontxf@ icontxid
M_ 3 3 3
N_ 3 1 1
MB_ 2 2 2
NB_ 2 1 1
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See below? See belowd See belowd

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
LLD_Y = MAX(1,NUMROC(M_Y, MB_Y, MYROW, RSRC_Y, NPROW))

In this example, LLD_A = 2 on Py, and Py;, LLD_A = 1 on Py, and Py,
LLD X = LLD_Y = 2 on Py, and LLD_X = LLD_Y = 1 on Py

Global complex Hermitian matrix A of order 3 with block size 2 x 2:
B,D 0 1

1 (2.0, 3.0) (4.0, 8.0) | (6.0, 0.0)

The following is the 2 x 2 process grid:
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B,D 0 1
0 Poo Po1
1 Pio P11

Global vector x of size 3 x 1 with block size 2:
B,D 0

B,D 0 --
0 Poo Po1
1 Pio Pi

Global vector y of size 3 x 1 with block size 2:
B,D 0

B,D 0 --
0 Poo Po1
1 Pio ’ P
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Output:

Global complex Hermitian matrix A of order 3 with block size 2 x 2:
B,D 0 1

.0, 0.0) .
.0,-10.0) ( 23.0, 0.0)

1 ( 9.0, 4.0) (14.0, 23.0) | ( 26.0, 0.0)

The following is the 2 x 2 process grid:

B,D 0 1
0 Poo Pos
1 Pio Py

.0, 0.0) .
.0,-10.0) ( 23.0, 0.0)

1 ( 9.0, 4.0) (14.0, 23.0)

( 26.0, 0.0)
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PDTRMV and PZTRMV — Matrix-Vector Product for a Triangular Matrix
or Its Transpose

Purpose

PDTRMV computes one of the following matrix-vector products:
° 1. x<Ax
© 2.x¢A'x

PZTRMV computes one of the following matrix-vector products:
° 1. x<Ax

¢ 2.x¢A'x
« 3. xcAMx

where, in the formulas above:
* A represents the global triangular submatrix A;zjosn1, jayja+n-1-
* x represents the global vector:

— For incx

— For incx =

M_X/ it is Xix:ix, jxjx+n—1+
1 and incx # M_X, it is Xiyjvin-1, jujx-

Note: No data should be moved to form AT or A™; that is, the matrix A should

always be stored in its untransposed form.

If n = 0, no computation is performed and the subroutine returns after doing some
parameter checking. See references and .

Table 54. Data Types

A, x Subprogram
Long-precision real PDTRMV
Long-precision complex PZTRMV
Syntax
Fortran CALL PDTRMV | PZTRMV (uplo, transa, diag, n, a, ia, ja, desc_a, x, ix, jx, desc_x, incx)
C and C++ pdtrmv | pztrmv (uplo, transa, diag, n, a, ia, ja, desc_a, x, ix, jx, desc_x, incx);

On Entry

uplo

transa

indicates whether the upper or lower triangular part of the global
triangular submatrix A is referenced, where:

If uplo =

If uplo

"U’, the upper triangular part is referenced.

'L’, the lower triangular part is referenced.

Scope: global

Specified as: a single character; uplo = "U’ or 'L".

indicates the form of matrix A to use in the computation, where:

If transa
If transa

If transa

= 'N’, A is used in the computation.

= 'T’, A" is used in the computation.

'C’, A" is used in the computation.

Scope: global
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Specified as: a single character; transa = 'N’, "T’, or 'C’.

ding  indicates the characteristics of the diagonal of matrix A, where:

If ding = 'U’, A is a unit triangular matrix.

If diag = 'N’, A is not a unit triangular matrix.

Scope: global

Specified as: a single character; ding = "U” or 'N’.

n is the order of global triangular submatrix A and the length of global
vector x.

Scope: global

Specified as: a fullword integer; n = 0.

a is the local part of the global triangular matrix A. This identifies the first
element of the local array A. This subroutine computes the location of the
first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow,
and mycol; therefore, the leading LOCp(ia+n-1) by LOCq(ja+n-1) part of
the local array A must contain the local pieces of the leading ia+n-1 by
ja+n—1 part of the global matrix, and:

e If uplo = 'U’, the leading n X n upper triangular part of the global
triangular submatrix Ajy.is1n-1, jajasn— Must contain the upper triangular
part of the submatrix, and the strictly lower triangular part is not
referenced.

 If uplo = 'L, the leading lower triangular part of the global triangular
submatrix Ajy.ip1n-1, jajasn—1 Must contain the lower triangular part of the
submatrix, and the strictly upper triangular part is not referenced.

Note: No data should be moved to form AT or AY; that is, the matrix A

should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers

of the data type indicated in [Table 54 on page 212} Details about the

block-cyclic data distribution of global matrix A are stored in desc_a.

ia is the row index of the global matrix A, identifying the first row of the
submatrix A.

Scope: global

Specified as: a fullword integer; 1 < iz and ia+n-1 = M_A.

ja is the column index of the global matrix A, identifying the first column of
the submatrix A.

Scope: global

Specified as: a fullword integer; 1 = ja and ja+n-1 = N_A.

desc_a is the array descriptor for global matrix A, described in the following table:

desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by Global

BLACS_GRIDINIT or
BLACS_GRIDMAP
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desc_a Name Description Limits Scope
3 M_A Number of rows in the global If n =0: Global
matrix M_A =0
Otherwise:
MA =1
4 N_A Number of columns in the If n =0: Global
global matrix N_A =0
Otherwise:
MA =1
5 MB_A Row block size MB_A =z 1 Global
NB_A Column block size NB_A = 1 Global
7 RSRC_A The process row of the p x ¢ 0 = RSRC_A < p Global

grid over which the first row of
the global matrix is distributed

8 CSRC_A The process column of the p x q |0 = CSRC_A < ¢ Global
grid over which the first column
of the global matrix is
distributed

9 LLD_A The leading dimension of the LLD_A = max(1,LOCp(M_A)) Local
local array

Specified as: an array of (at least) length 9, containing fullword integers.

x is the local part of the global matrix X. This identifies the first element of
the local array X. This subroutine computes the location of the first element
of the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol;
therefore:

e If incx = M_X, the leading LOCp(ix) by LOCq(jx+n-1) part of the local
array X must contain the local pieces of the leading ix by jx+n-1 part of
the global matrix.

e Ifincx = 1 and incx # M_X, the leading LOCp(ix+n-1) by LOCq(jx) part
of the local array X must contain the local pieces of the leading ix+n-1
by jx part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers
of the data type indicated in [Table 54 on page 212 Details about the
block-cyclic data distribution of the global matrix X are stored in desc_x.

ix has the following meaning:

If incx = M_X, it indicates which row of global matrix X is used for vector
xX.

If incx = 1 and incx = M_X, it is the row index of global matrix X,
identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 = ix = M_X and:

If incx = 1 and incx # M_X, then ix+n-1 = M_X.
jx has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the
first element of vector x.
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If incx = 1 and incx = M_X, it indicates which column of global matrix X
is used for vector x.

Scope: global
Specified as: a fullword integer; 1 = jx = N_X and:
If incx = M_X, then jx+n-1 = N_X.

desc_x is the array descriptor for global matrix X, described in the following table:

desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
2 CTXT_X BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_X Number of rows in the global If n =0: Global
matrix MX =0
Otherwise:
MX=1
4 N_X Number of columns in the If n =0: Global
global matrix N.X=z0
Otherwise:
MX =1
5 MB_X Row block size MB_X = 1 Global
6 NB_X Column block size NB_ X =1 Global
7 RSRC_X The process row of the p x ¢ 0 = RSRC_X < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_X The process column of the p x g |0 = CSRC_X < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_X The leading dimension of the LLD_X z max(1,LOCp(M_X)) Local

local array

Specified as: an array of (at least) length 9, containing fullword integers.

incx  is the stride for global vector x.
Scope: global
Specified as: a fullword integer; incx = 1 or incx = M_X, where:
If incx = M_X, then x is a row-distributed vector.
If incx = 1 and incx # M_X, then x is a column-distributed vector.
On Return
x is the updated local part of the global matrix X, containing the results of

the computation.
Scope: local

Returned as: an LLD_X by (at least) LOCq(N_X) array, containing numbers
of the data type indicated in [Table 54 on page 212}
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Notes and Coding Rules

1.

10.

11.

These subroutines accept lowercase letters for the uplo, transa, and diag
arguments.

For PDTRMY, if you specify ‘C’ for transa, it is interpreted as though you
specified "T".

The matrix and vector must have no common elements; otherwise, results are
unpredictable.

PDTRMV and PZTRMYV assume certain values in your array for parts of a
triangular matrix. For unit triangular matrices, the elements of the diagonal
are assumed to be one. When using an upper or lower triangular matrix, the
unreferenced elements in the strictly lower or upper triangular part,
respectively, are assumed to be zero. As a result, you do not have to set these
values.

The NUMROC utility subroutine can be used to determine the values of
LOCp(M_) and LOCg(N_) used in the argument descriptions above. For
details, see [“Determining the Number of Rows and Columns in Your Locall
Arrays” on page 28/ and|“"NUMROC — Compute the Number of Rows o1
Columns of a Block-Cyclically Distributed Matrix Contained in a Process” on|

page 868.|

For suggested block sizes, see[Coding Tips for Optimizing Parallel|
[Performance” on page 77

The following values must be equal: CTXT_A = CTXT_X.

The global triangular matrix A must be distributed using a square block-cyclic
distribution; that is, MB_A = NB_A.

The block row and block column offsets of the global triangular matrix A
must be equal; that is, mod(ia—1, MB_A) = mod(ja—1, NB_A).

If incx = M_X:

* The following block sizes must be equal: NB_X = MB_A = NB_A

¢ In the process grid, the process column containing the first column of the
submatrix A must also contain the first column of the submatrix X; that is,
iacol = ixcol, where:
— idacol = mod((((ja—1)/NB_A)+CSRC_A), q)
— ixcol = mod((((jx—1)/NB_X)+CSRC_X), g)

* The block column offset of x must be equal to the block row and block
column offsets of A; that is, mod(jx—1, NB_X) = mod(ja-1,
NB_A) = mod(ia—1, MB_A).

If incx = 1( # M_X):

* The following block sizes must be equal: MB_X = MB_A = NB_A

* In the process grid, the process row containing the first row of the
submatrix A must also contain the first row of the submatrix X; that is,
iarow = ixrow, where:

— darow = mod((((in—1)/MB_A)+RSRC_A), p)
— ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

¢ The block row offset of x must be equal to the block row and block column
offsets of A; that is, mod(ix—1, MB_X) = mod(ia—1, MB_A) = mod(ja-1,
NB_A).

Error Conditions

Computational Errors
None
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Resource Errors
Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:
1. DTYPE_A is invalid.
2. DTYPE_X is invalid.

Stage 2:
1. CTXT_A is invalid.

Stage 3:
1. This subroutine was called from outside the process grid.

Stage 4:

uplo # "U” or 'L’

transa # 'N’, "T’, or 'C’

diag # ‘N’ or 'U’

n<0

M_A < Oand n = 0, M_A < 1 otherwise
N_A < Oand n = 0, N_A < 1 otherwise
MB_A <1

NB_ A <1

RSRC_A < 0 or RSRC_A
10. CSRC_A < 0 or CSRC_A
11. CTXT_A = CTXT_X

12. M_X < 0andn = 0; M_X < 1 otherwise
13. N.X < 0andn = 0; N_X < 1 otherwise

©CONOO AWM~

v v
KSEIAN

14. MB. X <1
15. NB_.X <1
16. RSRC_X < 0 or RSRC_X z p
17. CSRC_X < 0 or CSRC_X =z g

Stage 5:
1. MB_A = NB_A
2. mod(in—1, MB_A) # mod(ja—1, NB_A)
Ifn = 0:
3. ix > M X
4. jx > N_X
5. ia > M_A
6. ja > N_A
7. ia+n-1 > M_A
8. ja+n-1 > N_A
If incx = M_X:
9. NB_A = NB_X
10. mod(jx—1, NB_X) # mod(ja—1, NB_A)
11. n # 0 and jx+n-1 > N_X
If incx = 1( # M_X):
12. MB_A = MB_X
13. mod(ix—1, MB_X) # mod(ia—1, MB_A)
14. n # 0 and ix+n-1 > M_X
Otherwise:
15. incx #= 1 and incx = M_X

Stage 6:
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LLD_A < max(1, LOCp(M_A))

LLD_X < max(1, LOCp(M_X))

3. If incx = M_X, then (in the process grid) the process column containing the
first column of the submatrix A does not contain the first column of the
submatrix X; that is, iacol # ixcol, where:

* iacol = mod((((ja—1)/NB_A)+CSRC_A), q)
* ixcol = mod((((jx—1)/NB_X)+CSRC_X), gq)

4. If incx = 1( = M_X), then (in the process grid) the process row containing the

first row of the submatrix A does not contain the first row of the submatrix X;

that is, iarow # ixrow, where:

N —

 darow = mod((((ia—1)/MB_A)+RSRC_A), p)
 ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)
Examples
Example 1

This example computes x = Ax using a 2 x 2 process grid. It uses a global
submatrix A within a global matrix A by specifying in = 2 and ja = 2. It uses
vector x, which is a column-distributed vector within a column of X, by specifying
incx = 1,ix = 2,and jx = 1.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO TRANSA DIAG N A IA JA DESC A X IX JX
[ | |
CALL PDTRMV( 'U" , 'N' , 'N* , 12 ,A, 2,2, DESCA , X, 2,1,
DESC_X INCX
DESC X , 1)
Desc_A Desc_X
DTYPE_ 1 1
CTXT_ icontxfd icontxfl
M_ 13 13
N_ 13 1
MB_ 3 3
NB_ 3 1
RSRC_ 0 0
CSRC_ 0 0
LLD_ See belon2 See below3

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROMW))
LLD X = MAX(1,NUMROC(M X, MB_X, MYROW, RSRC_X, NPROW))
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In this example, LLD_A = 7 on Py, and Py;, LLD_A = 6 on Py, and Py,
LLD_X = 7 on Py, and LLD_X = 6 on Py,

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
submatrix A of order 12, starting at row 2 and column 2 in global triangular matrix
A of order 13 with block size 3 x 3:

0 1 2 3 4
1.0 2.0 1.0 2.0 1.0 1.0 3.0 1.0 1.0 2.0 3.0 2.0
3.0 2.0 3.0 1.0 2.0 3.0 1.0 1.0 2.0 3.0 3.0
3.0 1.0 3.0 2.0 1.0 2.0 1.0 2.0 3.0 1.0

1.0 2.0 2.0 1.0 1.0 1.0 2.0 3.0 2.0

2.0 1.0 2.0 2.0 1.0 2.0 3.0 3.0

1.0 2.0 1.0 1.0 2.0 3.0 1.0

2.0 1.0 1.0 2.0 3.0 2.0

2.0 1.0 2.0 3.0 3.0

3.0 1.0 3.0 1.0

2.0 2.0 2.0

1.0 3.0

1.0

B,D 024 13
0 PGE) P01
2
4
1 PlE) P11
3

P.q 0 1
1.0 2.0 1.0 3.0 1.0 2.0 1.0 2.0 1.0 1.0 2.0 3.0
3.0 2.0 3.0 1.0 3.0 2.0 3.0 1.0 1.0 2.0 3.0
0 1.0 2.0 1.0 1.0 1.0 2.0 3.0
2.0 1.0 2.0 1.0 2.0 3.0
2.0 3.0 1.0 2.0 3.0

1.0

2.0 1.0 2.0 1.0 3.0 1.0 3.0 1.0 2.0 3.0
2.0 1.0 1.0 2.0 1.0 2.0 1.0 2.0 3.0
1.0 2.0 2.0 3.0 2.0 1.0 2.0 3.0
1 1.0 3.0 1.0 3.0
2.0 2.0 2.0
3.0 1.0

After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a
column-distributed vector. Following is the global vector x of size 12 X 1, starting
at row 2 in 13 x 1 global matrix X with block size 3 x 1:
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B,D 0
0 2.0
3.0
1.0
1 2.0
3.0
1.0
2 2.0
3.0
1.0
3 2.0
3.0
4 1.0

The following is the 2 x 2 process grid:

B,D 0 --
0 POE) POl
2

4

1 PIO P11
3

Output:

After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a
column-distributed vector. Following is the global vector x of size 12 x 1, starting
at row 2 in 13 x 1 global matrix X with block size 3 x 1:

B,D 0

0 12.0
18.0
39.0

| 31.0
34.0
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B,D 0 --
0 POO P01
2

4

1 PlO P11
3

Example 2
This example computes x = Ax using a 2 x 2 process grid.

Note: For unit triangular matrices, the elements of the diagonal are assumed to be
one, so you do not have to set these values.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO TRANSA DIAG N A IA JA DESCA X IX JX
CALL PZTRMV( 'L' , 'N', 'ﬁ' , L , A , l , l , DE£C_A , L , l , l ,
DESC_X INCX
DESC X , 1)
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Desc_A Desc_X
DTYPE_ 1 1

CTXT_ icontxM icontxd
M_ 4 4
N_ 4 1
MB_ 2 2
NB 2 1
RSRC_ 0 0
CSRC_ 0 0

LLD_ See below? See below2
Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))

In this example, LLD_A = 2 on Py, and Py, LLD_A = 2 on Py and Py,
LLD_X = 2 on Py, and LLD_X = 2 on Py,

Global triangular matrix A of order 4 with block size 2 x 2:

B,D 0 1
(1.0,0.0) .
0 (1.0,1.0) (1.0,0.0)
(1.0,1.0) (3.0,3.0) | (1.0,0.0) .
1 (3.0,3.0) (4.0,4.0) | (3.0,3.0) (1.0,0.0)

B,D 0 1
0 Poo Pos
1 Pio P1y

P,q 0 1

o | (1.0.1.0)

o e.0) G0 | . .
1| (3.0.3.0) (4.0.4.0) | (3.0.3.0)

B,D 0
(1.0,1.0)
0 (2.0,2.0)
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The following is the 2 x 2 process grid:

B,D 0 --

0 POO P01

1 PlO Pll

Local arrays for x:

P.q 0
(1.0,1.0)

0 (2.0,2.0)
(3.0,3.0)

1 (4.0,4.0)

Output:

B,D

B,D

0

0 -
PGO P01
PlO P11

PDTRMV and PZTRMV
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PDTRSV and PZTRSV — Solution of Triangular System of Equations
with a Single Right-Hand Side

Purpose

PDTRSV performs one of the following solves for a triangular system of equations
with a single right-hand side:

Solution Equation
1. x¢A 'x Ax =b
2. x¢A " x A'x = b

PZTRSV performs one of the following solves for a triangular system of equations
with a single right-hand side:

Solution Equation
1. x¢A Ax = b
2. x¢A x A'x = b
3. x¢A My APx = b

where, in the formulas above:
* A represents the global triangular submatrix Aj.josn-1, jayja+n-1-
* x represents the global vector:

— Forincx = M_X, it is Xiir jsjxn—1-

— Forincx = 1 and incx # M_X, itis X;

xix+n—1, jx;jx:

Notes:

1. The term b used in the systems of equations listed above represents the
right-hand side of the system. It is important to note that in these subroutines

the right-hand side of the equation is actually provided in the input-output
argument Xx.

2. No data should be moved to form AT or A", that is, the matrix A should
always be stored in its untransposed form.

If n = 0, no computation is performed and the subroutine returns after doing some
parameter checking. See references and .

Table 55. Data Types

A, x Subprogram
Long-precision real PDTRSV
Long-precision complex PZTRSV
Syntax
Fortran CALL PDTRSV | PZTRSV (uplo, transa, diag, n, a, ia, ja, desc_a, x, ix, jx, desc_x, incx)
C and C++ pdtrsv | pztrsv (uplo, transa, diag, n, a, ia, ja, desc_a, x, ix, jx, desc_x, incx);

On Entry

uplo  indicates whether the upper or lower triangular part of the global
triangular submatrix A is referenced, where:

If uplo = "U’, the upper triangular part is referenced.
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If uplo = 'L’, the lower triangular part is referenced.

Scope: global

Specified as: a single character; uplo = "U” or 'L’

indicates the form of matrix A used in the system of equations, where:
If transa = 'N’, A is used in the system of equations.

If transa = 'T’, A" is used in the system of equations.

If transa = 'C’, A™ is used in the system of equations.

Scope: global

Specified as: a single character; transa = 'N’, "T’, or 'C’.
indicates the characteristics of the diagonal of matrix A, where:
If diag = 'U’, A is a unit triangular matrix.

If ding = 'N’, A is not a unit triangular matrix.

Scope: global

Specified as: a single character; ding = "U” or 'N’.

is the order of global triangular submatrix A and the length of global
vector x.

Scope: global

Specified as: a fullword integer; n = 0.

is the local part of the global triangular matrix A, used in the system of
equations. This identifies the first element of the local array A. This
subroutine computes the location of the first element of the local subarray
used, based on ia, ja, desc_a, p, q, myrow, and mycol; therefore, the leading
LOCp(ia+n-1) by LOCq(ja+n—1) part of the local array A must contain the
local pieces of the leading ia+n—1 by ja+n—1 part of the global matrix, and:
e If uplo = 'U’, the leading n X n upper triangular part of the global
triangular submatrix Ajq.iz1n-1, jajasn— Must contain the upper triangular
part of the submatrix, and the strictly lower triangular part is not
referenced.

e If uplo = 'L’, the leading lower triangular part of the global triangular
submatrix Ajpiz -1, jajasn—1 Must contain the lower triangular part of the
submatrix, and the strictly upper triangular part is not referenced.

Note: No data should be moved to form AT or AY; that is, the matrix A
should always be stored in its untransposed form.
Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers
of the data type indicated in [Table 55 on page 224 Details about the
block-cyclic data distribution of global matrix A are stored in desc_a.

is the row index of the global matrix A, identifying the first row of the
submatrix A.

Scope: global
Specified as: a fullword integer; 1 = iz and ia+n-1 = M_A.
is the column index of the global matrix A, identifying the first column of

the submatrix A.

Chapter 6. Level 2 PBLAS 225



PDTRSV and PZTRSV

Scope: global
Specified as: a fullword integer; 1 = ja and ja+n-1 = N_A.

desc_a is the array descriptor for global matrix A, described in the following table:

desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by Global

BLACS_GRIDINIT or
BLACS_GRIDMAP

3 M_A Number of rows in the global If n =0: Global
matrix M_A =0
Otherwise:
MA =1
4 N_A Number of columns in the If n =0: Global
global matrix N_A=0
Otherwise:
MA =1
5 MB_A Row block size MB_A =1 Global
6 NB_A Column block size NB_A = 1 Global
7 RSRC_A The process row of the p x ¢ 0 = RSRC_A < p Global

grid over which the first row of
the global matrix is distributed

8 CSRC_A The process column of the p x q |0 = CSRC_A < ¢ Global
grid over which the first column
of the global matrix is
distributed

9 LLD_A The leading dimension of the LLD_A = max(1,LOCp(M_A)) Local
local array

Specified as: an array of (at least) length 9, containing fullword integers.

x is the local part of the global matrix X, containing the right-hand side of
the triangular system to be solved. This identifies the first element of the
local array X. This subroutine computes the location of the first element of
the local subarray used, based on ix, jx, desc_x, p, q, myrow, and mycol;
therefore:

e If incx = M_X, the leading LOCp(ix) by LOCq(jx+n—1) part of the local
array X must contain the local pieces of the leading ix by jx+n-1 part of
the global matrix.

e Ifincx = 1 and incx # M_X, the leading LOCp(ix+n-1) by LOCq(jx) part
of the local array X must contain the local pieces of the leading ix+n-1
by jx part of the global matrix.

Scope: local

Specified as: an LLD_X by (at least) LOCq(N_X) array, containing numbers
of the data type indicated in [Table 55 on page 224 Details about the
block-cyclic data distribution of the global matrix X are stored in desc_x.

ix has the following meaning:

If incx = M_X, it indicates which row of global matrix X is used for vector
X.

226  Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference



jx

PDTRSV and PZTRSV

If incx = 1 and incx = M_X, it is the row index of global matrix X,
identifying the first element of vector x.

Scope: global

Specified as: a fullword integer; 1 = ix = M_X and:
If incx = 1 and incx # M_X, then ix+n-1 = M_X.
has the following meaning:

If incx = M_X, it is the column index of global matrix X, identifying the
first element of vector x.

If incx = 1 and incx = M_X, it indicates which column of global matrix X
is used for vector x.

Scope: global
Specified as: a fullword integer; 1 = jx = N_X and:
If incx = M_X, then jx+n-1 = N_X.

desc_x is the array descriptor for global matrix X, described in the following table:

desc_x Name Description Limits Scope
1 DTYPE_X Descriptor type DTYPE_X=1 Global
2 CTXT_X BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_X Number of rows in the global If n =0: Global
matrix M_X =0
Otherwise:
MX =1
4 N_X Number of columns in the If n =0: Global
global matrix N X=z0
Otherwise:
MX =1
5 MB_X Row block size MB X =1 Global
6 NB_X Column block size NB_ X = 1 Global
7 RSRC_X The process row of the p x ¢ 0 = RSRC_X < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_X The process column of the p x g |0 = CSRC_X < ¢ Global
grid over which the first column
of the global matrix is
distributed
9 LLD_X The leading dimension of the LLD_X = max(1,LOCp(M_X)) Local

local array

incx

Specified as: an array of (at least) length 9, containing fullword integers.
is the stride for global vector x.

Scope: global

Specified as: a fullword integer; incx = 1 or incx = M_X, where:

If incx = M_X, then x is a row-distributed vector.

If incx = 1 and incx # M_X, then x is a column-distributed vector.
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On Return

X

is the updated local part of the global matrix X, containing the solution
vector.

Scope: local

Returned as: an LLD_X by (at least) LOCq(N_X) array, containing numbers
of the data type indicated in [Table 55 on page 224

Notes and Coding Rules

1.

10.

11.

These subroutines accept lowercase letters for the uplo, transa, and diag
arguments.

For PDTRSYV, if you specify 'C’ for transa, it is interpreted as though you
specified "T".

The matrix and vector must have no common elements; otherwise, results are
unpredictable.

PDTRSV and PZTRSV assume certain values in your array for parts of a
triangular matrix. For unit triangular matrices, the elements of the diagonal
are assumed to be one. When using an upper or lower triangular matrix, the
unreferenced elements in the strictly lower or upper triangular part,
respectively, are assumed to be zero. As a result, you do not have to set these
values.

The NUMROC utility subroutine can be used to determine the values of
LOCp(M_) and LOCq(N_) used in the argument descriptions above. For
details, see ["Determining the Number of Rows and Columns in Your Locall
Arrays” on page 28/ and |"NUMROC — Compute the Number of Rows o1
Columns of a Block-Cyclically Distributed Matrix Contained in a Process” on|

page 868.|

For suggested block sizes, see[’Coding Tips for Optimizing Parallel|
[Performance” on page 77/

The following values must be equal: CTXT_A = CTXT_X.

The global triangular matrix A must be distributed using a square block-cyclic
distribution; that is, MB_A = NB_A.

The block row and block column offsets of the global triangular matrix A
must be equal; that is, mod(ia—1,MB_A) = mod(ja—1,NB_A).

If incx = M_X:

* The following block sizes must be equal: NB_X = MB_A = NB_A

e If transa = 'T’, then (in the process grid) the process column containing the
first column of the submatrix A must also contain the first column of the
submatrix X; that is, iacol = ixcol, where:

— iacol = mod((((ja—1)/NB_A)+CSRC_A), q)
— ixcol = mod((((jx—1)/NB_X)+CSRC_X), g)
* The block column offset of x must be equal to the block row and block
column offsets of A; that is, mod(jx—1, NB_X) = mod(ja—1,
NB_A) = mod(ia—1, MB_A).
If incx = 1( # M_X):
* The following block sizes must be equal: MB_X = MB_A = NB_A

e If transa = 'N’, then (in the process grid) the process row containing the
first row of the submatrix A must also contain the first row of the submatrix
X; that is, iarow = ixrow, where:

— idarow = mod((((in—1)/MB_A)+RSRC_A), p)
— ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

Parallel ESSL for AIX, 3.2, and Parallel ESSL for Linux on POWER, 3.2, Guide and Reference



PDTRSV and PZTRSV

¢ The block row offset of x must be equal to the block row and block column
offsets of A; that is, mod(ix—1, MB_X) = mod(ia—1, MB_A) = mod(ja-1,
NB_A).

Error Conditions

Computational Errors
None

Resource Errors
Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:
1. DTYPE_A is invalid.
2. DTYPE_X is invalid.

Stage 2:
1. CTXT_A is invalid.

Stage 3:
1. This subroutine was called from outside the process grid.

Stage 4:

1. uplo # 'U or 'L’
transa # 'N’, "T’, or 'C’
diag # ‘N’ or 'U’
n<20
M_A < Oand n = 0, M_A < 1 otherwise
N_A < Oand n = 0; N_A < 1 otherwise
MB_A <1
NB_A <1
RSRC_A < 0 or RSRC_A
10. CSRC_A < 0 or CSRC_A
11. CTXT_A = CTXT_X
12. M_X < 0andn = 0; M_X < 1 otherwise
13. N.X < 0andn = 0; N_X < 1 otherwise
14. MB_ X <1
15. NB_. X <1
16. RSRC_X < 0 or RSRC_X
17. CSRC_X < 0 or CSRC_X

CoNOORALD

v v
= =

v v

SIS

Stage 5:

1. MB_A = NB_A

2. mod(in—1, MB_A) # mod(ja—1, NB_A)
Ifn = 0:

ix > M_X
jx > N_X

ia > M_A
ja > N_A

ia+n-1 > M_A
ja+n=1 > N_A

If incx = M_X:

9. NB_A = NB_X
10. mod(jx—1, NB_X) # mod(ja—1, NB_A)

©ONO® O~
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11. n = 0 and jx+n-1 > N_X
If incx = 1( # M_X):
12. MB_A # MB_X
13. mod(ix—1, MB_X) # mod(ia—1, MB_A)
14. n # 0 and ix+n-1 > M_X

Otherwise:
15. incx # 1 and incx # M_X

Stage 6:

1. LLD_A < max(1l, LOCp(M_A))

2. LLD_X < max(1, LOCp(M_X))

3. If incx = M_X and transa = "T’, then (in the process grid) the process column
containing the first column of the submatrix A does not contain the first
column of the submatrix X; that is, iacol # ixcol, where:
¢ idacol = mod((((ja—1)/NB_A)+CSRC_A), q)

* ixcol = mod((((jx—1)/NB_X)+CSRC_X), )

4. If incx = 1( # M_X) and transa = 'N’, then (in the process grid) the process
row containing the first row of the submatrix A does not contain the first row
of the submatrix X; that is, iarow # ixrow, where:

* darow = mod((((ia—1)/MB_A)+RSRC_A), p)
e ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

Examples

Example 1

This example solves x¢A™'x using a 2 x 2 process grid, where A is a unit
triangular matrix. It uses a global submatrix A within a global matrix A by
specifying ia = 2 and ja = 2. It uses vector x, which is a row-distributed vector
within a row of global matrix X, by specifying incx = M_X = 1,ix = 1, and

jx = 2.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. This subroutine assumes a value of 1.0 for the diagonal elements.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO TRANSA DIAG N A IA JA DESCA X IX JX
| | | ||
CALL PDTRSV( 'L' , 'N* , 'U' , 12 ,A,2,2,DESCA, X, 1,2,
DESC_X INCX
| |
DESC X , 1)
Desc_A Desc_X
DTYPE_ 1 1
CTXT_ icontxfl icontxM
M_ 13 1
N_ 13 13
MB_ 3 1
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Desc_A Desc_X
NB_ 3 3
RSRC_ 0 0
CSRC_ 0 0
LLD_ See belowZ See below?

Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A
LLD X

MAX(1,NUMROC(M_A, MB_A, MYRO
MAX(1,NUMROC(M_X, MB_X, MYRO

W, RSRC_A, NPROW))
W, RSRC_X, NPROW))

In this example, LLD_A = 7 on Py, and Py;, LLD_A = 6 on P, and P;;, and

LLD_X = 1 on all processes.

After the global matrix A is distributed over the process grid, only a portion of the
global data structure is used—that is, global submatrix A. Following is the global
submatrix A of order 12, starting at row 2 and column 2 in global triangular matrix

A of order 13 with block size 3 x 3:

0 1 2

1.0 .

2.0 1.0

3.0 2.0 1.0 .

1.0 3.0 2.0 1.0

2.0 1.0 3.0 2.0 1.0

3.0 2.0 1.0 3.0 2.0 1.0 .

1.0 0 2.0 1.0 3.0 2.0 1.0 .
2.0 1.0 3.0 2.0 1.0 3.0 2.0 1.0
3.0 2.0 1.0 3.0 2.0 1.0 3.0 2.0
1.0 3.0 2.0 1.0 3.0 2.0 1.0 3.0
2.0 1.0 3.0 2.0 1.0 3.0 2.0 1.0
3.0 2.0 1.0 3.0 2.0 1.0 3.0 2.0

B,D 024 13
0 PGO P01
2
4
1 PIO P11
3

Local arrays for A:

2 process grid:
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P>q 0 1
2:0 . . . .
0 3.0 2.0 . 1.0 3.0 2.0
1.0 3.0 2.0 . 2.0 1.0 3.0
2.0 1.0 3.0 2.0 . 3.0 2.0 1.0 .
3.0 2.0 1.0 3.0 2.0 1.0 3.0 2.0 1.0 3.0 2.0
3.0 2.0 .
1.0 3.0 2.0 .
2.0 1.0 . . . 3.0 2.0 .
1 3.0 2.0 1.0 3.0 2.0 1.0 3.0 2.0 .
1.0 3.6 2.0 1.0 3.0 2.0 1.0 3.0 2.0 .
2.0 1.0 3.0 2.0 1.0 3.0 2.0 1.0 3.0 2.0
After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a row-distributed
vector. Following is the global vector x of size 1 x 12, starting at row 1 and
column 2 in 1 x 13 global matrix X with block size 1 x 3:
B,D 0 1 2 3 4
0 [ 2.0 7.0 | 13.0 15.0 17.0 | 26.0 28.0 27.0 | 39.0 41.0 37.0 | 52.0]
The following is the 2 x 2 process grid:
B,D 024 13
0 POO POI
- PIO Pll
Local arrays for x:
p,q 0 1
0 . 2.0 7.0 26.0 28.0 27.0 52.0 13.0 15.0 17.0 39.0 41.0 37.0
Output:
After the global matrix X is distributed over the process grid, only a portion of the
global data structure is used—that is, global vector x, which is a row-distributed
vector. Following is the global vector x of size 1 x 12, starting at row 1 and
column 2 in 1 x 13 global matrix X with block size 1 x 3:
B,D 0 1 2 3 4
0 [ 2.0 3.0 | 1.0 2.0 3.0 | 1.0 2.0 3.0 | 1.0 2.0 3.0 | 1.0]

232

The following is the 2 x 2 process grid:

B,D 024 13
0 Poo Po1
== P1o P11

Local arrays for x:
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1.0 2.0 3.0 1.0 1.0 2.0 3.0 1.0 2.0 3.0

Example 2
This example solves x¢A™'x using a 2 x 2 process grid, where A is a unit
triangular matrix.

Note: Because matrix A is unit triangular, the diagonal elements are not
referenced. This subroutine assumes a value of (1.0,0.0) for the diagonal
elements.

Call Statements and Input:

ORDER = 'R’
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

UPLO TRANSA DIAG N A IA JA DESC A X IX JX
[N O I | |
CALL PZTRSV( 'L' , 'N* , 'U' , 4 ,A,1,1,DESCA, X, 1,1,
DESC_X INCX
DESC X , 1)
Desc_A Desc_X
DTYPE_ 1 1
CTXT_ icontxfl icontxf
M_ 4 4
N_ 4 1
MB_ 2 2
NB_ 2 1
RSRC_ 0 0
CSRC_ 0 0
LLD_ See below? See belowd

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:
LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD X = MAX(1,NUMROC(M_X, MB_X, MYROW, RSRC_X, NPROW))
In this example, LLD_A = 2 on Py, and Py;, LLD_A = 2 on P, and P;;, and
LLD_X = 2 on Pyy and Py,

Global triangular matrix A of order 4 with block size 2 x 2:
B,D 0 1
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B,D 0 |1
0 POO POl
1 PlO P11

Global vector x of size 4 x 1 with block size 2:
B,D 0

B,D 0 --
0 Poo Po1
1 Pio Pis

Output:

B,D 0
(1.0,1.0)
0 (2.0,2.0)

The following is the 2 x 2 process grid:
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B,D 0 --
0 Poo Po1
1 Pio Py

p,q 0
(1.0,1.0)
0 (2.0,2.0)
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This chapter describes the Level 3 PBLAS subroutines.

Overview of the Level 3 PBLAS Subroutines

The Level 3 PBLAS include a subset of the standard set of distributed memory

parallel versions of the Level 3 BLAS.

Note: These subroutines are designed in accordance with the proposed Level 3
PBLAS standard. (See references , , and .) If these subroutines do
not comply with the standard as approved, IBM will consider updating
them to do so. If IBM updates these subroutines, the update could require
modifications of the calling application program.

Table 56. List of Level 3 PBLAS

Long-Precision

Descriptive Name Subprogram Page
Matrix-Matrix Product for a General Matrix, Its Transpose, or Its Conjugate PDGEMM
Transpose PZGEMM
Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric or PDSYMM
Complex Hermitian PZSYMM
PZHEMM
Triangular Matrix-Matrix Product PDTRMM
PZTRMM
Solution of Triangular System of Equations with Multiple Right-Hand Sides PDTRSM D88
PZTRSM
Rank-K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix |PDSYRK
PZSYRK
PZHERK
Rank-2K Update of a Real or Complex Symmetric or a Complex Hermitian Matrix | PDSYR2K
PZSYR2K
PZHER2K
Matrix Transpose for a General Matrix PDTRAN
PZTRANC
PZTRANU

© Copyright IBM Corp. 1995, 2005
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Level 3 PBLAS Subroutines

This section contains the Level 3 PBLAS subroutine descriptions.
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PDGEMM and PZGEMM — Matrix-Matrix Product for a General Matrix,
Its Transpose, or Its Conjugate Transpose

Purpose

PDGEMM performs any one of the following combined matrix computations:
s C<«aAB+BC

+ C<«aAB™+BC

+ C<«aA"B+BC

+ C<aA"B™+pC

PZGEMM performs any one of the following combined matrix computations:
* C <« aAB+BC

s C<aAB™+BC

C«aA"B+8C

* C<aA"B"+BC

s C «aAY"B+BC

+ C«aA"B™+BC

+ C<xAB"+pC

+ C <« aA"BH4BC

+ C < aA"BY4BC

where, in the PDGEMM and PZGEMM formulas above:
* A represents the global general submatrix:
For transa = 'N’, it is Ajpiam—, jajask—1-
— For transa = "T" or 'C’, it is Ajzinsi, jajarm—1-
* B represents the global general submatrix:
For transb = "N, it is Bip.iprk-1, jbrjpn—1-
For transb = "T" or 'C’, it is Bip.ipsn-1, jbijprk—1-
* Crepresents the global general submatrix Cigcim-1, jejcin-1-
* o and B are scalars.

Note: No data should be moved to form AT, A", BT, or B'}; that is, the A and B
matrices should always be stored in their untransposed forms.

In the following four cases, no computation is performed and the subroutine
returns after doing some parameter checking:

e m=20

*en=20

* «is zero and f is one.

* k = 0 and B is one.

Assuming the above conditions do not exist, if § is not one and k is 0, then BC is
returned.

See references and .

Table 57. Data Types

A B C o p Subroutine
Long-precision real PDGEMM
Long-precision complex PZGEMM
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Syntax
Fortran CALL PDGEMM | PZGEMM (transa, transb, m, n, k, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b, beta, c, ic,
jc, desc_c)
C and C++ pdgemm | pzgemm (transa, transb, m, n, k, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b, beta, c, ic, jc,
desc_c);
On Entry

transa  indicates the form of matrix A to use in the computation, where:

If transa = 'N’, A is used in the computation.

If transa = 'T’, A™ is used in the computation.

If transa = 'C’, A™ is used in the computation.

Scope: global

Specified as: a single character; transa = 'N’, "T’, or 'C’

transb  indicates the form of matrix B to use in the computation, where:

If transb = 'N’, B is used in the computation.
If transb = 'T’, B" is used in the computation.
If transb = 'C’, B™ is used in the computation.

Scope: global
Specified as: a single character; transb = 'N’, "T’, or 'C’
m is the number of rows in submatrix C used in the computation, and:
If transa = 'N’, it is the number of rows in submatrix A.
If transa = 'T” or 'C’, it is the number of columns in submatrix A.
Scope: global
Specified as: a fullword integer; m = 0.
n is the number of columns in submatrix C used in the computation, and:
If transb = 'N’, it is the number of columns in submatrix B.
If transb = "T’ or 'C’, it is the number of rows in submatrix B.
Scope: global
Specified as: a fullword integer; n = 0.
k has the following meaning:
If transa = ’'N’, it is the number of columns in submatrix A.
If transa = 'T” or 'C’, it is the number of rows in submatrix A.
In addition:
If transb = 'N’, it is the number of rows in submatrix B.
If transb = 'T" or 'C’, it is the number of columns in submatrix B.
Scope: global
Specified as: a fullword integer; k = 0.

alpha  is the scalar a.
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Scope: global

Specified as: a number of the data type indicated in [Table 57 on page 239}

a is the local part of the global general matrix A. This identifies the first
element of the local array A. This subroutine computes the location of the
first element of the local subarray used, based on ia, ja, desc_a, p, q, myrow,
and mycol; therefore:
 If transa = 'N’, the leading LOCp(ia+m-1) by LOCq(ja+k-1) part of the

local array A must contain the local pieces of the leading ia+m-1 by
ja+k—1 part of the global matrix.

» If transa = 'T" or 'C’, the leading LOCp(ia+k-1) by LOCq(ja+m-1) part of
the local array A must contain the local pieces of the leading ia+k-1 by
ja+m-1 part of the global matrix.

Note: No data should be moved to form AT or AY; that is, the matrix A

should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_A by (at least) LOCq(N_A) array, containing numbers

of the data type indicated in [Table 57 on page 239 Details about the

block-cyclic data distribution of global matrix A are stored in desc_a.

ia is the row index of the global matrix A, identifying the first row of the
submatrix A.

Scope: global

Specified as: a fullword integer; 1 = iz = M_A, and:

If transa = 'N’, then ig+m-1 = M_A.

If transa = 'T” or 'C’, then in+k-1 = M_A.

ja is the column index of the global matrix A, identifying the first column of
the submatrix A.

Scope: global

Specified as: a fullword integer; 1 = ja = N_A, and:

If transa = 'N’, then ja+k-1 = N_A.

If transa = "1’ or 'C’, then ja+m-1 = N_A.

desc_a is the array descriptor for global matrix A, described in the following table:

desc_a Name Description Limits Scope
1 DTYPE_A Descriptor type DTYPE_A=1 Global
2 CTXT_A BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_A Number of rows in the global If m=0ork=0: Global
matrix MA =0
Otherwise:
MA =1
4 N_A Number of columns in the If m =0ork=0: Global
global matrix N_A=z0
Otherwise:
N A=1
5 MB_A Row block size MB_A = 1 Global
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desc_a Name Description Limits Scope
6 NB_A Column block size NB_A =1 Global
7 RSRC_A The process row of the p x ¢ 0 = RSRC_A < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_A The process column of the p x g |0 = CSRC_A < g Global
grid over which the first column
of the global matrix is
distributed
9 LLD_A The leading dimension of the LLD_A = max(1,LOCp(M_A)) Local
local array

Specified as: an array of (at least) length 9, containing fullword integers.

b is the local part of the global general matrix B. This identifies the first
element of the local array B. This subroutine computes the location of the
first element of the local subarray used, based on ib, jb, desc_b, p, q, myrow,
and mycol; therefore:
 If transb = 'N’, the leading LOCp(ib+k-1) by LOCq(jb+n—1) part of the

local array B must contain the local pieces of the leading ib+k-1 by
jb+n—1 part of the global matrix.

* If transb = "T" or 'C’, the leading LOCp(ib+n-1) by LOCq(jb+k-1) part of
the local array B must contain the local pieces of the leading ib+n-1 by
jb+k—=1 part of the global matrix.

Note: No data should be moved to form BT or BY; that is, the matrix B

should always be stored in its untransposed form.

Scope: local

Specified as: an LLD_B by (at least) LOCq(N_B) array, containing numbers

of the data type indicated in [Table 57 on page 239 Details about the

block-cyclic data distribution of global matrix B are stored in desc_b.

ib is the row index of the global matrix B, identifying the first row of the
submatrix B.

Scope: global

Specified as: a fullword integer; 1 = ib = M_B, and:

If transb = 'N’, then ib+k-1 = M_B.

If transb = "T” or 'C’, then ib+n-1 = M_B.

jb is the column index of the global matrix B, identifying the first column of
the submatrix B.

Scope: global

Specified as: a fullword integer; 1 = jb = N_B, and:

If transb = 'N’, then jb+n-1 = N_B.

If transb = "T” or 'C’, then jb+k-1 = N_B.

desc_b is the array descriptor for global matrix B, described in the following table:

desc_b Name Description Limits Scope
1 DTYPE_B Descriptor type DTYPE_B=1 Global
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desc_b Name Description Limits Scope
2 CTXT_B BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_B Number of rows in the global If k=0orn=0: Global
matrix MB=z0
Otherwise:
MB =1
4 N_B Number of columns in the If k=0o0orn=0: Global
global matrix N_B =0
Otherwise:
NB=1
5 MB_B Row block size MB_B = 1 Global
6 NB_B Column block size NB_B = 1 Global
7 RSRC_B The process row of the p x ¢ 0 = RSRC_B < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_B The process column of the p x g |0 = CSRC_B < g Global
grid over which the first column
of the global matrix is
distributed
9 LLD_B The leading dimension of the LLD_B = max(1,LOCp(M_B)) Local

local array

beta

ic

jc

Specified as: an array of (at least) length 9, containing fullword integers.
is the scalar B.

Scope: global

Specified as: a number of the data type indicated in [Table 57 on page 239}

is the local part of the global general matrix C. This identifies the first
element of the local array C. This subroutine computes the location of the
first element of the local subarray used, based on ic, jc, desc_c, p, q, myrow,
and mycol; therefore, the leading LOCp(ic+m—1) by LOCq(jc+n-1) part of
the local array C must contain the local pieces of the leading ic+m—1 by
je+n—1 part of the global matrix.

When B is zero, C need not be set on input.
Scope: local

Specified as: an LLD_C by (at least) LOCq(N_C) array, containing numbers
of the data type indicated in [Table 57 on page 239 Details about the
block-cyclic data distribution of global matrix C are stored in desc_c.

is the row index of the global matrix C, identifying the first row of the
submatrix C.

Scope: global
Specified as: a fullword integer; 1 = ic = M_C and ic+m-1 = M_C.

is the column index of the global matrix C, identifying the first column of
the submatrix C.

Scope: global
Specified as: a fullword integer; 1 = jc = N_C and je+n-1 = N_C.
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desc_c is the array descriptor for global matrix C, described in the following table:

desc_c Name Description Limits Scope
1 DTYPE _C Descriptor type DTYPE_C=1 Global
2 CIXT_C BLACS context Valid value, as returned by Global
BLACS_GRIDINIT or
BLACS_GRIDMAP
3 M_C Number of rows in the global If m=0orn=0: Global
matrix MC=0
Otherwise:
MC=z1
4 N_C Number of columns in the If m=0ormn=0: Global
global matrix N.C=0
Otherwise:
NC=z1
5 MB_C Row block size MB.C = 1 Global
6 NB_C Column block size NB.C = 1 Global
7 RSRC_C The process row of the p x ¢ 0 = RSRC_C < p Global
grid over which the first row of
the global matrix is distributed
8 CSRC_C The process column of the p x g |0 = CSRC_C < g Global
grid over which the first column
of the global matrix is
distributed
9 LLD_C The leading dimension of the LLD_C = max(1,LOCp(M_C)) Local
local array
Specified as: an array of (at least) length 9, containing fullword integers.
On Return
c is the updated local part of the global matrix C, containing the results of
the computation.
Scope: local
Returned as: an LLD_C by (at least) LOCq(N_C) array, containing numbers
of the data type indicated in [Table 57 on page 239,
Notes and Coding Rules
1. These subroutines accept lowercase letters for the transa and transb arguments.
2. For PDGEMV, if you specify ‘C’ for the transa or transb argument, it is
interpreted as though you specified "T".
3. The matrices must have no common elements; otherwise, results are
unpredictable.
4. The NUMROC utility subroutine can be used to determine the values of
LOCp(M_) and LOCqg(N_) used in the arcument descriptions above. For details,
see ["Determining the Number of Rows and Columns in Your Local Arrays” on|
page 28 and ['NUMROC — Compute the Number of Rows or Columns of a|
Block-Cyclically Distributed Matrix Contained in a Process” on page 868 .|
5. For suggested block sizes, see [“Coding Tips for Optimizing Parallell
|Perf0rmance" on page 77.|
6. The following values must be equal: CTXT_A = CTXT_B = CTXT_C.
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7. The coding rules described in this note depend upon which matrix—A, B, or

C—is used as the reference matrix, which is referred to, in general, as matrix X.
For each of the three possible selections for the reference matrix, there is a
unique set of coding rules that must be met. These are detailed in and
[Table 59 on page 246| Follow these steps to select a reference matrix and
determine what coding rules to use:

Step 1: First, the reference matrix is selected. For optimal performance, the
reference matrix is selected based on the arguments m, n, and k, as follows:

e If k = min(m, n), then X = C

e If n = min(m, k), then X = A

e If m = min(n, k), then X = B

The matrix selected must satisfy coding rules a and d, described below, to be a
suitable reference matrix. If it does, you go to step 2. If it does not, then it
checks to see if either of the other two matrices satisfies coding rules a, ¢, and
d, making one of them a suitable reference matrix. If one of them is suitable,
then you go to step 2. If neither matrix is suitable, an error condition results.

Step 2: After a suitable reference matrix is chosen in Step 2, all remaining
coding rules, described below, are checked. If the rules are satisfied, the
subroutine continues normally. If they are not, an error condition results.
Coding Rules: Following are the coding rules:
a. The reference matrix must be aligned on a block boundary; that is:

* ix—1 must be a multiple of MB_X.

* jx—1 must be a multiple of NB_X.

These indexes are indicated in column 5 of for each entry for X.

b. The block sizes that must be equal are indicated in column 4 of for
each entry for X. The rules for block sizes depend only upon the values of
transa and transb, and not on the reference matrix selected; however, for
your convenience, the rules are repeated in the table for each reference
matrix.

c. Given the reference matrix X, additional rules apply to the block row and
block column offsets of the two nonreference matrices. These rules are listed
in column 7 of for each entry for X. These rules must only be met
when looping is required—that is, either of the conditions in column 8 is
met.

d. The indexes of the nonreference matrices, which need to be on a block
boundary, are listed in column 6 of [Iable 58| for each entry for X.

Table 58. Coding Rules for the Reference Matrix X

-1- | 2 -3- 4 -5- -6- -7- -8
X transa transb (b) (a) (G)) © (V]
Equal Block Block Equal Conditions
Block Sizes Bndry | Bndry Block Offsets For Looping
For For (If Looping
X Other is Required)
A "N’ "N’ MB_A = MB_C ia, ja ib, ic | mod(jb—1, NB_B) | n+mod(jb—1, NB_B) > NB_B
NB_B = NB_C = —-or—
NB_A = MB_B mod(jc-1, NB_C) | n+mod(jc—1, NB_C) > NB_C
A "N’ ‘T"or | MB_A = MB_C ia, ja jb, ic | mod(ib—1, MB_B) | n+mod(ib—-1, MB_B) > MB_B
' MB_B = NB_C = —or—
NB_A = NB_B mod(jc-1, NB_C) | n+mod(jc—1, NB_C) > NB_C
A "T" or "N’ NB_A = MB_C ia, ja ib, ic | mod(jb—1, NB_B) | n+mod(jb—1, NB_B) > NB_B
< NB_B = NB_C = —-or—
MB_A = MB_B mod(jc-1, NB_C) | n+mod(jc—1, NB_C) > NB_C
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Table 58. Coding Rules for the Reference Matrix X (continued)

1- | - -3~ —4- —5- . —7- -8
X transa transb (b) (a) (d) (o) (0
Equal Block Block Equal Conditions
Block Sizes Bndry | Bndry Block Offsets For Looping
For For (If Looping
X Other is Required)
A "T” or "T” or NB_A = MB_C ia, ja jb, ic | mod(ib—1, MB_B) |n+mod(ib-1, MB_B) > MB_B
' ' MB_B = NB_C = —or—
MB_A = NB_B mod(jc-1, NB_C) | n+mod(jc-1, NB_C) > NB_C
B N’ N’ | MB_A = MB_C | ib, jb ja, jc |mod(ia—1, MB_A)m+mod(ia—1, MB_A) > MB_A
NB_B = NB_C = —or—
NB_A = MB_B mod(ic—1, MB_C) m+mod(ic—1, MB_C) > MB_C
B "N’ "T” or MB_A = MB_C ib, jb ja, jc  |mod(ia—1, MB_A)in+mod(ia-1, MB_A) > MB_A
(el MB_B = NB_C = —or—
NB_A = NB_B mod(ic—1, MB_C) m+mod(ic-1, MB_C) > MB_C
B "T” or "N’ NB_A = MB_C ib, jb ia, jc  |mod(ja—1, NB_A) mm+mod(ja—1, NB_A) > NB_A
(&4 NB_B = NB_C = —or—
MB_A = MB_B mod(ic—1, MB_C) m+mod(ic-1, MB_C) > MB_C
B "T” or "T” or NB_A = MB_C ib, jb ia, jc  |mod(ja—1, NB_A) mm+mod(ja—1, NB_A) > NB_A
(&4 (4 MB_B = NB_C = —or—
MB_A = NB_B mod(ic-1, MB_C) fn+mod(ic-=1, MB_C) > MB_C
C ‘N’ ‘N’ MB_A = MB_C ic, jc ia, jb |mod(ja—1, NB_A) | k+mod(ja—1, NB_A) > NB_A
NB_B = NB_C = —or—
NB_A = MB_B mod(ib—1, MB_B) | k+mod(ib-1, MB_B) > MB_B
() "N’ "T" or MB_A = MB_C ic, jc ia, ib  |mod(ja—1, NB_A) | k+mod(ja—1, NB_A) > NB_A
(4 MB_B = NB_C = —or—
NB_A = NB_B mod(jb—1, NB_B) | k+mod(jb—1, NB_B) > NB_B
C "T" or "N’ NB_A = MB_C ic, jc ja, jb |mod(in—1, MB_A) |k+mod(in=-1, MB_A) > MB_A
(4 NB_B = NB_C = —or—
MB_A = MB_B mod(ib—1, MB_B) | k+mod(ib-1, MB_B) > MB_B
C "T" or "T” or NB_A = MB_C ic, jc ja, ib  |mod(in—1, MB_A) |k+mod(in=-1, MB_A) > MB_A
(G (G4 MB_B = NB_C = —or—
MB_A = NB_B mod(jb—1, NB_B) | k+mod(jb—1, NB_B) > NB_B
e. Additional rules apply to the row and column alignment of the various
matrices in the process grid; specifically, the process row or process column
containing the first row or column of the reference submatrix X,
respectively, must also contain the first row or column of one of the other
two nonreference submatrices, as indicated in column 4 of [Table 59| for each
entry for X. Following is the definition of ixrow and ixcol, which holds true
for A, B, and C:
* ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)
* ixcol = mod((((jx—1)/NB_X)+CSRC_X), gq)
Table 59. Coding Rules for the Reference Matrix X
-1- -2- -3- -4
X transa transb (e)
Process Grid
Alignment
A "N’ ‘N’ iarow = icrow
A ‘N’ "T" or 'C’ iarow = icrow
ibcol = iacol
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Table 59. Coding Rules for the Reference Matrix X (continued)

-1- —-2- -3- -4
X transa transb (e)
Process Grid
Alignment
A "T" or 'C’ "N’ iarow = ibrow
A T or 'C’ T or 'C’ (no rules)
B "N’ "N’ ibcol = iccol
B "N’ "T" or 'C’ ibcol = iacol
B "T" or 'C’ "N’ iarow = ibrow
ibcol = iccol
B T or 'C’ T or 'C’ (no rules)
C ‘N’ ‘N’ iarow = icrow
ibcol = iccol
C ‘N’ "T" or 'C’ iarow = icrow
C "T" or 'C’ "N’ ibcol = iccol
C T or 'C’ T or 'C’ (no rules)

Example: Following is an example of the coding rules necessary for the case
where transa = ‘N’ and transb = 'N’, where the reference matrix selected is A.
Following are the indexes, dimensions, and block sizes used in the computation
for the matrices:

Indexes: ic jc ia ja ib jb ic jc

Dimensions: C (m, n)
¢« a A(m,k) B(k,n) + B C(m,n)
| |

Block Sizes: MB_C NB_C MB_A NB_A MB_B NB_B MB_C NB_C
a. A must be aligned on a block boundary, as indicated in column 5 in

[Table 58 on page 245}

* ia—1 must be a multiple of MB_A.

* ja—1 must be a multiple of NB_A.

b. The block sizes that correspond to each matrix dimension must be equal,
where MB_ represents the row dimension and NB_ represents the column
dimension, as indicated in column 4 in [Table 58 on page 245
* MB_A = MB_C
* NB_B = NB_C
* NB_A = MB_B

c. As shown above, m and k are the dimensions of the reference matrix A;
therefore, n is used to determine if looping is required; that is, if one of the
following is true, as indicated in column 8 in [Table 58 on page 245
* n+mod(jc-1, NB_C) > NB_C
* n+mod(jb—1, NB_B) > NB_B
then the following offsets must be equal, as indicated in column 7 in
ITable 58 on page 245}

* mod(jb—1, NB_B) = mod(jc-1, NB_C)

d. The other indexes from each of the nonreference matrices—not used in ¢
above—must be aligned on a block boundary, as indicated in column 6 in
|Tab1e 58 on page 245|
¢ ic—1 must be a multiple of MB_C.
¢ ib—1 must be a multiple of MB_B.
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e. In the process grid, the process row containing the first row of the
submatrix A must also contain the first row of the submatrix C, as indicated
in column 4 in|Table 59 on page 246} that is, iarow = icrow, where:

* idarow = mod((((ia—1)/MB_A)+RSRC_A), p)
 icrow = mod((((ic—1)/MB_C)+RSRC_QC), p)

Error Conditions

Computational Errors
None

Resource Errors
Unable to allocate work space

Input-Argument and Miscellaneous Errors

Stage 1:

1. DTYPE_A is invalid.
2. DTYPE_B is invalid.
3. DTYPE_C is invalid.

C < 1 otherwise
_C < 1 otherwise

10. M_.C < 0Oand (m = 0orn = 0);

11. NC < Oand (m = 0orn = 0);

12. ia < 1

13. ib < 1

14, ic < 1

15. ja <1

16. jb < 1

17. je < 1

18. MB_A < 1

19. MB_B < 1

20. MB_C < 1

21. NB_A <1

22. NB_B <1

23. NB_C <1

24. RSRC_A < 0 or RSRC_A =

25. RSRC_B < 0 or RSRC_B =

26. RSRC_C < 0 or RSRC_C =
A =
B =

Stage 2:
1. CTIXT_A is invalid.
Stage 3:
1. The subroutine was called from outside the process grid.
Stage 4:
1. transa # 'N’, "T’, or 'C’
2. transb = 'N’,'T’, or 'C’
3. m<0
4. n <0
5. k<0
6. M_A <0Oand (m = 0ork = 0); M_A < 1 otherwise
7. N.A <0Oand (m = 0ork = 0); N_A < 1 otherwise
8. M_ B <Oand (k = 0orn = 0); M_B < 1 otherwise
9. N.B<Oand (k =0orn = 0); N_B < 1 otherwise
M_
N

27. CSRC_A < 0 or CSRC_
28. CSRC_B < 0 or CSRC
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30.
31.
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CSRC_C < 0or CSRC_C =z g
CTXT_A = CTXT_B
CTXT_A = CIXT_C

Stage 5: If m # 0 and k = O:

_L
©C©Oo®N

11.
12.

13.
14.
15.
16.
17.

18.

19.

ook~

transa = ‘N’ and ia+m-1 > M_A
transa = 'T" or 'C’" and ia+k-1 > M_A

transa = ‘N’ and ja+k-1 > N_A
transa = "T" or 'C’ and ja+m-1 > N_A
ia > M_A

ja > N_A

Ifn #0and k = O:

transb = 'N’” and ib+k-1 > M_B
transb = 'T” or 'C" and ib+n-1 > M_B
transb = ‘N’ and jb+n-1 > N_B
transb = "T” or 'C" and jb+k-1 > N_B
ib > M_B

jb > N_B

Ifm=0andn = 0:

ic+m-1 > M_C

je+n=1 > N_C

ic > M_C

je > N_C

For the reference matrix (defined in notelz in ["Notes and Coding Rules” on|

h—)age 244|b and the appropriate fransa and transb values, the indexes listed in
column 5 of [Table 58| are not aligned on a block boundary, where boundary
alignment is defined as:

* ix—1 must be a multiple of MB_X.
* jx—1 must be a multiple of NB_X.
For the two nonreference matrices (defined in note [7] in ["Notes and Coding]
[Rules” on page 244) and the appropriate transa and transb values, the indexes
listed in column 6 of [Table 5§ are not aligned on a block boundary. Using Z to
represent one of the nonreference matrices, each boundary alignment is
expressed as one of the following:

* iz—1 must be a multiple of MB_Z.
¢ jz—1 must be a multiple of NB_Z.
For the reference matrix (defined in note [7] in ['Notes and Coding Rules” on]
and the appropriate transa and transb values, if looping occurs—that
is, one of the conditions in column 8 of is true—then the block offsets
indicated in column 7 are not equal.

Stage 6:

1.

Sl

For the appropriate transa and transb values indicated in (where the
reference matrix does not matter), some of the block sizes indicated in column
4 are not equal.

LLD_A < max(1, LOCp(M_A))

LLD_B < max(1, LOCp(M_B))

LLD_C < max(1, LOCp(M_Q))

In the process grid, the process row or process column containing the first row
or column of the reference submatrix X (defined in notelzl in
[Coding Rules” on page 244), respectively, does not contain the first row or
column of one of the other two nonreference submatrices, as indicated in
column 4 of [Table 59, Following is the definition of ixrow and ixcol, which holds
true for A, B, and C:

e ixrow = mod((((ix—1)/MB_X)+RSRC_X), p)

e ixcol = mod((((jx—1)/NB_X)+CSRC_X), gq)
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Examples

Example 1
This example computes C = BC+axAB using a 2 X 2 process grid.

Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS_GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

TRANSA TRANSB M N K ALPHA A IA JA DESC_A B IB JB
[ | | | |
CALL PDGEMM( 'N', 'N' , 6 ,4 ,5,1.000 ,A,1,1,DESCA,B, 1,1,
DESC_B BETA C IC JC DESC_C
|
DESC B, 2.600 , C, 1, 1, DESC C)
Desc_A Desc_B Desc_C
DTYPE_ 1 1 1
CTXT_ icontxfl icontxfl icontx
M_ 6 5 6
N_ 5 4 4
MB_ 3 2 3
NB_ 2 2 2
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See below? See belowd See belowd
Notes:

1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M A, MB_A, MYROW, RSRC_A, NPROW))
LLD_B = MAX(1,NUMROC(M B, MB_B, MYROW, RSRC_B, NPROW))
LLD_C = MAX(1,NUMROC(M_C, MB_C, MYROW, RSRC_C, NPROW))

In this example, LLD_A = LLD_C = 3 on all processes, and LLD_B = 3 on P,
and Py, and LLD_B = 2 on P;, and Py;.

Global general 6 x 5 matrix A with block size 3 x 2:

B,D 0 1 2
1.0 2.0 -1.0 -1.0 4.0

0 2.0 0.0 1.0 1.0 -1.0
1.0 -1.0 -1.0 1.0 2.0
-3.0 2.0 2.0 2.0 0.0

1 4.0 0.0 -2.0 1.0 -1.0
-1.0 -1.0 1.0 -3.0 2.0

The following is the 2 x 2 process grid:
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B,D

0

B,D

B,D

The following is the 2 x 2 process grid:

0
1.0 -1.0 0.0 2.0
2.0 2.0 -1.0 -2.0
1.0 0.0 -1.0 1.0
-3.0 -1.0 1.0 -1.0
4.0 2.0 -1.0 1.0

0 1

0

PDGEMM and PZGEMM
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B,D 0 1
0 Poo Po1
1 P1o P11

P,q 0 1
0.5 0.5 0.5 0.5
0 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
1 0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5
Output:

Global general 6 x 4 matrix C with block size 3 x 2:

B,D 0 1
24.0 13.0 -5.0 3.0

0 -3.0 -4.0 2.0 4.0
4.0 1.0 2.0 5.0
-2.0 6.0 -1.0 -9.0

1 -4.0 -6.0 5.0 5.0
16.0 7.0 -4.0 7.0

B,D 0 1
0 Poo Po1
1 Pio Pi

P,q 0 1
24.0 13.0 -5.0 3.0
0 -3.0 -4.0 2.0 4.0
4.0 1.0 2.0 5.0
-2.0 6.0 -1.0 -9.0
1 -4.0 -6.0 5.0 5.0
16.0 7.0 -4.0 7.0
Example 2

This example computes C = BC+xAB using a 2 X 2 process grid.
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Call Statements and Input:

ORDER = 'R'
NPROW = 2
NPCOL = 2

CALL BLACS GET (0, 0, ICONTXT)
CALL BLACS_GRIDINIT(ICONTXT, ORDER, NPROW, NPCOL)
CALL BLACS_GRIDINFO(ICONTXT, NPROW, NPCOL, MYROW, MYCOL)

TRANSA TRANSB M N K ALPHA A IA JA DESC_A B IB JB
|| | || | ||
CALL PZGEMM('N' , 'N' , 6 , 2 , 3, (1.0D0,0.0D0) , A, 1,1 ,DESCA,B, 1,1
DESC_B BETA C IC JC DESCC
| | |
DESC B , (2.0D0,0.0D0) , C, 1, 1, DESC C)
Desc_A Desc_B Desc_C
DTYPE_ 1 1 1
CTXT_ icontx icontx icontx
M_ 6 3 6
N_ 3 2 2
MB_ 2 2 2
NB_ 2 2 2
RSRC_ 0 0 0
CSRC_ 0 0 0
LLD_ See belowd See belowd See belowd

Notes:
1. icontxt is the output of the BLACS_GRIDINIT call.
2. Each process should set the LLD_ as follows:

LLD_A = MAX(1,NUMROC(M_A, MB_A, MYROW, RSRC_A, NPROW))
LLD_B = MAX(1,NUMROC(M B, MB_B, MYROW, RSRC_B, NPROW))
LLD_C = MAX(1,NUMROC(M C, MB_C, MYROW, RSRC_C, NPROW))

In this example, LLD_A = 4 on Py, and Py; and LLD_A = 2 on Py, and Py;.

LLD_B = 2on Py, and LLD_B = 1 on P;,. LLD_C = 4 on Pyy and LLD_C = 2

on Py,

Global general 6 x 3 matrix A with block size 2 x 2:

B,D 0 1

0 (1.0,5.0) (9.0,2.0) (1.0,9.0)
(2.0,4.0) (8.0,3.0) (1.0,8.0)

1| (3:0,3.0) (7.0,5.0) | (1.0,7.0)
(4.0,2.0) (4.0,7.0) (1.0,5.0)

2 | (5.0,1.0) (5.0,1.0) | (1.0,6.0)
(6.0,6.0) (3.0,6.0) (1.0,4.0)

The following is the 2 x 2 process grid:
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0 1
Poo Po1
Pio Pi

(6.0,2.0) (4.0,5.0)

The following is the 2 x 2 process grid:

B,D

Global general 6 x 2 matrix C with block size 2 x 2:

B,D

0

B,D

254

0 -
POE) POl
P10 Pll

(6.0,2.0) (4.0,5.0)

0 -
POO POl
PlO Pll
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Local arrays for C:
P.q 0
(0.5,0.0) (0
(0.5,0.0) (0
0 (0.5,0.0) (0
(0.5,0.0) (0
1| (05,00 (o
(0.5,0.0) (0.
Output:

Global general 6 x 2 matrix C with block size 2 x 2:

B,D

0

The following is the 2

B,D

(8.0,103.0)
(-55.0,116.0)

0 -
POO POl
PIO Pll

(0.0.112.0)
(-75.0.135.0)

X 2 process grid:

(-35.0.142.0)
(-35.0.141.0)
(0.0.112.0)

(-75.0.135.0)
(-43.0.146.0)
(-58.0.131.0)

PDGEMM and PZGEMM
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PDSYMM, PZSYMM, and PZHEMM — Matrix-Matrix Product Where One
Matrix is Real or Complex Symmetric or Complex Hermitian

Purpose

These subroutines compute one of the following matrix-matrix products:
* 1. C<aAB+SC
* 2. C<aBA+SC

where, in the formulas above:
* A represents the global submatrix:

— Forside = 'L, itis A

ia:ia+m—-1, jaja+m—1+

- Forside = 'R, it is Aia:ia+n71, jazja+n—1-
* B represents the global general submatrix Bj.p.,/-1, jpijp-n—1-
¢ Crepresents the global general submatrix Ci.jcm-1, jejcin—1-
* o and B are scalars.

and:

* For PDSYMM, submatrix A is real symmetric.
* For PZSYMM, submatrix A is complex symmetric.
e For PZHEMM, submatrix A is complex Hermitian.

In the following two cases, no computation is performed and the subroutine
returns after doing some parameter checking:

em=0o0rn =0

* «is zero and f is one.

See references and .

Table 60. Data Types

o B A B, C Subprogram
Long-precision real PDSYMM
Long-precision complex PZSYMM and PZHEMM
Syntax
Fortran CALL PDSYMM | PZSYMM | PZHEMM (side, uplo, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b,
beta, c, ic, jc, desc_c)
C and C++ pdsymm | pzsymm | pzhemm (side, uplo, m, n, alpha, a, ia, ja, desc_a, b, ib, jb, desc_b, beta, c, ic, jc,
desc_c);
On Entry
side indicates whether A