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The Story in 5 Chapters 

I.  The Science 
II.  Application Complexity: Motivation for using frameworks 
III.  The Cactus Framework 
IV.  Fringe Benefits of Using Frameworks 
V.  Relationship of “frameworks” to Patterns and Langauges 
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Chapter I 

The Science 



Numerical Relativity 

  Community where Cactus originated; still strong 
user group 

  ~5 out of the ~9 strongest groups use Cactus, 
worldwide 

  Currently very active field, many publications/
year, more than $1M in federal grants involving 
LSU (current home institution for Cactus) 
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Einstein’s Equations & Gravitational Waves 
  Einstein’s General Relativity 

  Fundamental theory of Physics (Gravity) 
  Among most complex equations of physics 

–  Dozens of coupled, nonlinear hyperbolic-elliptic  
equations with 1000’s of terms 
–  Barely have capability to solve after a century 

  Predict black holes, gravitational waves, etc. 
  Exciting new field about to be born:  Gravitational Wave 

Astronomy 
  Fundamentally new information about Universe 
  What are gravitational waves??: Ripples in spacetime curvature, caused by 

matter motion,  causing distances to change: 

  A last major test of Einstein’s theory:  do they exist? 
  Eddington:  “Gravitational waves propagate at the speed of thought” 
  1993 Nobel Prize Committee:  Hulse-Taylor Pulsar (indirect evidence) 
  20xx Nobel Committee:   ??? (For actual detection…) 

s(t)       h = δs/s ~ 10-22 !  Colliding BH’s and NS’s... 



6 

Detecting Gravitational Waves 
• LIGO, VIRGO (Pisa), GEO600,… $1 Billion Worldwide 
• Was Einstein right?  5-10 years, we’ll see! 
• We’ll need numerical relativity to: 

• Detect them…pattern matching 
against numerical templates to 
enhance signal/noise ratio 

• Understand them…just what 
are the waves telling us? 

4km 

Hanford Washington Site 



Gravitational Wave Astronomy 
New field, fundamentally new information about the universe 



Motivation for Grand Challenge Simulations  

EU Network 
Astrophysics 
  10 EU Institutions, 

3 years 
  Try to finish these 

problems … 
  Entire Community 

becoming Grid 
enabled 

Examples of Future of  
Science & Engineering 
  Require Large Scale Simulations, 

beyond reach of any single machine 
  Require Large Geo-Distributed 

Cross-Disciplinary Collaborations  
  Require Grid Technologies, but not 

yet using them! 
  Both Apps and Grids Dynamic… 

NSF Black Hole 
Grand Challenge 
  8 US Institutions, 

5 years 
  Towards colliding 

black holes 

NASA Neutron Star  
Grand Challenge 
  5 US Institutions 
  Towards  colliding 

neutron stars 





90 years of Research on Black Holes 
  Finite Difference Evolution of 

Einstein’s Equations (ADM-BSSN 
method) 

  Schwartzchild (1916 solution!) 
  Kerr (Spinning, charged, 1963!) 
  Misner (head-on collision) 

  Good for calibration, but not a likely 
event 

  16Gigs of Memory for 190^3 Octant 
Symmetry in 3D on 512 CPU CM5 in 
‘95 

  Grazing Collisions & Full In-Spiral 
  This is astrophysically relevant! 
  No analytic solution 
  1.5 TByte 5Tflops for bitant 

symmetry on NERSC-3 
  3 Tbyte req. for full 3D 
  10Tbytes for wave extraction 
  Initial Conditions (the next big thing) 
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Axisymmetric Black Hole Simulations 

Evolution of Highly Distorted 
Black Hole 

Collision of two Black Holes 
(“Misner Data”) 



12 

NSF Black Hole Grand Challenge Alliance 
  University of Texas (Matzner, Browne) 
  NCSA/Illinois/AEI (Seidel, Saylor,  
                              Smarr, Shapiro, Saied) 
  North Carolina (Evans, York) 
  Syracuse (G. Fox) 
  Cornell (Teukolsky) 
  Pittsburgh (Winicour) 
  Penn State (Laguna, Finn) 

Develop Code 
To Solve Gµν = 

0




Apparent Horizon Boundary Conditions 



Big Splash in Scientific American 
(Image By Werner Benger) 
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NASA Neutron Star Grand Challenge 

  NCSA/Illinois/AEI (Saylor, Seidel, Swesty, Norman) 
  Argonne (Foster) 
  Washington U (Suen) 
  Livermore (Ashby) 
  Stony Brook (Lattimer) 

“A Multipurpose Scalable Code for Relativistic Astrophysics” 

Develop Code 
To Solve Gµν = 8πTµν




Understanding Neutron Star Collisions 
(NASA NSNSGC collaboration, 1998) 



Rotationally deformed 
protoneutron star, 
formed in a core 
collapse [C. D. Ott; R. 
Kähler] 

Current Science 
Gamma Ray Bursts from Core Collapse Supernova 



Computational Challenges 
in Gamma Ray Bursts 

  Complex physics: Einstein equations, 
hydrodynamics, nuclear physics, radiation transport 
(neutrinos), magnetic fields, photon transport -- 
different physics important at different times 

  Large scale differences: ~25 m near black hole, 
~1000 km overall domain 

  Long term evolution, millions of 
(inherently sequential) time steps 



Gamma Ray Bursts 

 Most energetic events 
known in universe 

 Grand challenge in 
astrophysics; likely to be 
detected by LIGO in 
coming years 

 Combines many fields of 
physics 

 Requires (at least) 
petascale computing 



Petascale Needs 
of Gamma Ray Bursts 

 Conservative total estimates [See Ott et al.,  Mardi Gras 
conference, Baton Rouge 2008]: 
 Large scale differences: ~25 m near central black hole, 
~1000 km overall domain 
 3 TByte memory (with 10 levels of AMR) 
 300 million time steps 
 in total 6 million Pflop (6 Zflop) 
 ~70 days at sustained 1 Pflop/s 
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Chapter II 

Application Complexity 
(why use frameworks?) 



Application Code Complexity 
  Application Complexity has Grown 

  Big Science on leading-edge HPC systems is a multi-
disciplinary, multi-institutional, multi-national efforts! 
(and we are not just talking about particle 
accelerators and Tokamaks) 

  Looking more like science on atom-smashers 

  Advanced Parallel Languages are 
Necessary, but NOT Sufficient! 
  Need higher-level organizing constructs for teams of 

programmers 



Application Code Complexity 

  HPC is looking more and more like traditional “big science” experiments. 
  QBox: Gordon Bell Paper title page 

  Its just like particle physics papers! 
  Looks like discovery of the Top Quark! 



Community Codes & Frameworks 
(hiding complexity using good SW engineering)   

  Clearly separate roles and responsibilities of your expert 
programmers from that of the domain experts/scientist/
users (productivity layer vs. performance layer) 

  Define a social contract between the expert programmers 
and the domain scientists 

  Enforces and facilitates SW engineering style/discipline to 
ensure correctness 

  Hides complex domain-specific parallel abstractions from 
scientist/users to enable performance (hence, most 
effective when applied to community codes) 

  Allow scientists/users to code nominally serial plug-ins that 
are invoked by a parallel “driver” (either as DAG or 
constraint-based scheduler) to enable productivity 



Framework User/Developer Roles 
Developer Roles Conceptual Model Instantiation 
Application: Assemble 
solver modules to solve 
science problems.  

Neutron Star Simulation: 
Hydrodynamics + GR Solver 
using Adaptive Mesh 
Refinement (AMR) 

BSSN GR Solver + 
MoL integrator + 
Valencia Hydro + 
Carpet AMR Driver + 
Parameter file (params for 
NS) 

Solver: Write solver 
modules to implement 
algorithms. Solvers use 
driver layer to implement 
“idiom for parallelism”.  

Elliptic Solver PETSC Elliptic Solver pkg. 
(in C) 
BAM Elliptic Solver (in C++ & 
F90) 
John Town’s custom BiCG-
Stab implementation (in F77) 

Driver: Write low-level data 
allocation/placement, 
communication and 
scheduling to implement 
“idiom for parallelism” for a 
given “dwarf”.  

Parallel boundary exchange 
idiom for structured grid 
applications 

Carpet AMR Driver 
SAMRAI AMR Driver 
GrACE AMR driver 
PUGH (MPI unigrid driver) 
SHMUGH (SMP unigrid 
driver) 



Framework: Segmenting Developer Roles 

Developer Roles Domain 
Expertise 

CS/Coding 
Expertise 

Hardware 
Expertise 

Application: Assemble solver 
modules to solve science 
problems. (eg. combine hydro+GR
+elliptic solver w/MPI driver for 
Neutron Star simulation) 

Einstein Elvis Mort 

Solver: Write solver modules to 
implement algorithms. Solvers use 
driver layer to implement “idiom for 
parallelism”. (e.g. an elliptic solver 
or hydrodynamics solver) 

Elvis Einstein Elvis 

Driver: Write low-level data 
allocation/placement, 
communication and scheduling to 
implement “idiom for parallelism” 
for a given “dwarf”. (e.g. PUGH) 

Mort Elvis Einstein 



Frameworks vs. Libraries 
(Observation by Koushik Sen: view.eecs.berkeley.edu) 

  A parallel program may be   
composed of parallel         

  and serial        elements 

  Parallel patterns 
with serial plug-ins 

Parallel Dwarf Libraries 
  Dense matrices 
  Sparse matrices 
  Spectral 
  Combinational 
  (Un) Structured Grid 

Parallel Patterns/Frameworks 
  Map Reduce 
  Graph traversal 
  Dynamic programming 
  Backtracking/B&B 
  Graphical models 
  N-Body 
  (Un) Structured Grid 

  Serial code invoking 
parallel libraries 

   Composition 
may be 
recursive 
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Chapter II 

The Cactus Framework 



Cactus 

  Framework for HPC: code development, simulation 
control, visualisation 

  Manage increased complexity with higher level 
abstractions, e.g. for inter-node communication, intra-
node parallelisation 

  Active user community, 10+ years old 
  Supports collaborative development 



Cactus User Community 
  General Relativity 

  LSU(USA),AEI(Germany),UNAM (Mexico), Tuebingen(Germany), Southampton (UK),  
Sissa(Italy), Valencia (Spain), University of Thessaloniki (Greece), MPA  (Germany), 
RIKEN (Japan),  TAT(Denmark), Penn State (USA), University of  Texas at Austin 
(USA), University of Texas at Brwosville (USA),  WashU (USA), University of 
Pittsburg (USA), University of Arizona (USA),  Washburn (USA), UIB (Spain), 
University of Maryland (USA), Monash  (Australia)  

  Astrophysics 
  Zeus-MP MHD ported to Cactus (Mike Norman: NCSA/UCSD) 

  Computational Fluid Dynamics 
  KISTI 
  DLR: (turbine design) 

  Chemistry 
  University of Oklahoma: (Chem reaction vessels) 

  Bioinformatics 
  Chicago 



Cactus Features 
  Scalable Model of Computation 

  Cactus provides ‘idiom’ for parallelism 
–  Idiom for Cactus is parallel boundary exchange for block structured grids 
–  Algorithm developers provide nominally “serial” plug-ins 
–  Algorithm developers are shielded from complexity of parallel implementation 

  Neuron uses similar approach for scalable parallel idiom  
  Build System 

  User does not see makefiles (just provides a list of source files in a given module) 
  “known architectures” used to store accumulated wisdom for multi-platform builds 
  Write once and run everywhere (laptop, desktop, clusters, petaflop HPC) 

  Modular Application Composition System 
  This is a system for composing algorithm and service components together into a 

complex composite application 
  Just provide a list of “modules” and they self-organize according to constraints 

(less tedious than explicit workflow) 
  Enables unit testing for V&V of complex multiphysics applications 

  Language Neutrality 
  Write modules in any language (C, C++, F77, F90, Java, etc…) 
  Automatically generates bindings (also hidden from user) 
  Overcomes age-old religious battles about programming languages 



32 

Cactus Modularity 

IOFlexIO 

FLESH 
(Parameters, Variables, Scheduling) 

IOHDF5 

PUGH 

WaveToyF90 

CartGrid3D 

GrACE 

Boundary 

WaveToyF77 
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Cactus 4 Design Goals 

  Generalization 
  meta-code that can be applied e.g. to any system of PDEs 

–  mainly 3D cartesian finite differencing codes (but changing) 

  Abstraction 
  Identify key concepts that can be abstracted 

–  Evolution skeleton. Reduction operators. I/O. Etc...  

  Encapsulation 
  Protect the developers of thorns from other thorns ... 

  Extension 
  Prepare for new concepts in future thorns 
  Overloading, Inheritance, etc... 

  In some way, make it a little Object Oriented 
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Chapter III 

How does Cactus Work? 



Primer on PDE Solvers on 
Block Structured Grids 



Scalar waves in 3D are solutions of the hyperbolic 
wave equation:  -φ,tt + φ,xx + φ,yy + φ,zz = 0  

Initial value problem: given data for φ and its first 
time derivative at initial time, the wave equation 
says how it evolves with time 

r 
time 

Scalar Wave Model Problem 



Numerical solve by discretising on a grid, using 
explicit  finite differencing (centered, second order) 

φ n+1
i,j,k = 2φ ni,j,k  - φ n-1

i,j,k 

+ Δt2/Δx2(φ ni+1,j,k -2 φ ni,j,k + φ ni-1,j,k ) 

+ Δt2/Δy2(φ ni,j+1,k -2 φ ni,j,k + φ ni,j-1,k )  
+ Δt2/Δz2(φ ni,j,k+1 -2 φ ni,j,k + φ ni,j,k-1 ) 

time 
r 

Numerical Method 



  Finite grid, so need to apply outer boundary conditions 

  Main parameters: 
  grid spacings: Δt, Δx, Δy, Δz, which coords?, which initial data?  

  Simple problem, analytic solutions, but contains many 
features needed for modelling more complex problems 

Numerical Method 



c     =================================== 
       program WaveToy 
c     =================================== 
c     Fortran 77 program for 3D wave equation. 
c     Explicit finite difference method. 
c     =================================== 

c     Global variables in include file 
      include "WaveToy.h" 
      integer i,j,k 

c     SET UP PARAMETERS 
       nx = 30 
      [MORE PARAMETERS] 

c     SET UP COORDINATE SYSTEM AND GRID 
       x_origin = (0.5 - nx/2)*dx 
       y_origin = (0.5 - ny/2)*dy 
       z_origin = (0.5 - nz/2)*dz         

     do I=1,nx 
        do j=1,ny 
           do k=1,nz 
             x(i,j,k) = dx*(i-1) + x_origin 
             y(i,j,k) = dy*(j-1) + y_origin 
             z(i,j,k) = dz*(k-1) + z_origin 
            r(i,j,k) = sqrt(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2) 
          end do 
        end do 
      end do      

c    OPEN OUTPUT FILES 
      open(unit=11,file=“out.xl”) 
      open(unit=12,file=“out.yl”) 
      open(unit=13,file=“out.zl”) 

c    SET UP INITIAL DATA 
      call InitialData     
      call Output 

c    EVOLVING 
      do iteration = 1, nt             
         call Evolve 
         if (mod(iteration,10).eq.0) call Output 
      end do 

      stop 
      end 

Stand Alone Code: Main.f 



Standalone Program 
 Setting up parameters 
 Setting up grid and coordinate system 
 Opening output files 
 Setting up initial data 
 Performing iteration  10 
 Performing iteration  20 
 Performing iteration  30 
 Performing iteration  40 
 Performing iteration  50 
 Performing iteration  60 
 Performing iteration  70 
 Performing iteration  80 
 Performing iteration  90 
 Performing iteration  100 
 Done 



Parallelizing PDE Solvers 
  Presumes worst-case distributed memory model (but could be 

implemented in shared memory as well) 

  Decompose the grid across processors and exchange ghost zone 
information – this exchange can be presented with a standard 
interface, independent of the stencil method. 

•  Standard driver distributed 
with Cactus (PUGH) is for a 
parallel unigrid and uses MPI 
for the communication layer 

•  PUGH can do custom 
processor decomposition and 
static load balancing 
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Berger & Oliger AMR 
  AMR via multiple, uniform rectangular grids w/ 

different resolutions 

  Grids are distinct domains, made to 
‘communicate’ along boundaries, & via 
prolongation (interpolation) & restriction 

  Recursive algorithm, evolve level L=0 (coarsest) 
first, call again for level L+1... 

+ = 

Berger & Oliger, J. Comp. Phys. 53, 1984 



Visualization of AMR 
Data 

AMR: requires complicated boundary updates 
(Motivates need for Chombo and Cactus FW to manage complexity) 



Adaptive Mesh Refinement 



Cactus Architecture 

Configure CST 

Flesh 

Computational 
Toolkit Toolkit Toolkit 

Operating Systems 
AIX NT 

Linux 
Unicos 

Solaris 
HP-UX 

Thorns 

Cactus 

SuperUX Irix 

OSF 

Make 



Framework User/Developer Roles 
Developer Roles Conceptual Model Instantiation 
Application: Assemble 
solver modules to solve 
science problems.  

Neutron Star Simulation: 
Hydrodynamics + GR Solver 
using Adaptive Mesh 
Refinement (AMR) 

BSSN GR Solver + 
MoL integrator + 
Valencia Hydro + 
Carpet AMR Driver + 
Parameter file (params for 
NS) 

Solver: Write solver 
modules to implement 
algorithms. Solvers use 
driver layer to implement 
“idiom for parallelism”.  

Elliptic Solver PETSC Elliptic Solver pkg. 
(in C) 
BAM Elliptic Solver (in C++ & 
F90) 
John Town’s custom BiCG-
Stab implementation (in F77) 

Driver: Write low-level data 
allocation/placement, 
communication and 
scheduling to implement 
“idiom for parallelism” for a 
given “dwarf”.  

Parallel boundary exchange 
idiom for structured grid 
applications 

Carpet AMR Driver 
SAMRAI AMR Driver 
GrACE AMR driver 
PUGH (MPI unigrid driver) 
SHMUGH (SMP unigrid 
driver) 

Configure CST 

Flesh 

Computational 
Toolkit Toolkit Toolkit 

Operating Systems 
AIX NT 

Linux 
Unicos 

Solaris 
HP-UX 

Thorns 

Cac
tus 

SuperUX Irix 

OSF 

Make 



Cactus Components (Glossary) 
  Flesh: The glue that ties everything together 

  Supports composition of modules into applications (targets non-CS-experts) 
  Invokes modules in correct order (baseline scheduling) 
  Implements code build system (get rid of makefiles) 
  Implements parameter file parsing 
  Generates bindings for any language (Fortran, C, C++, Java) 

  Driver: Implements idiom for parallelism 
  Implements “dwarf-specific” composite datatypes 
  Handles data allocation and placement (domain decomposition) 
  Implements communication pattern for “idiom for parallelism” 
  Implements thread-creation and scheduling for parallelism 

  Solver/Module: A component implementing algorithm or other composable 
function 
  Can be written in any language (flesh handles bindings automatically) 
  Implementation of parallelism externalized, so developer writes nominally serial code 

with correct idiom. Parallelism handled by the “driver”. 
  Thorns implementing same functionality derived from same ‘abstract class’ of 

functionality such as “elliptic solver” (can have many implementations of elliptic 
solve. Select at compile time and/or at runtime) 

  Build System: make ‘make’ simpler for scientists 



Cactus Architecture 

Configure CST 

Flesh 

Computational 
Toolkit Toolkit Toolkit 

Operating Systems 
AIX NT 

Linux 
Unicos 

Solaris 
HP-UX 

Thorns 

Cactus 

SuperUX Irix 

OSF 

Make 
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The Flesh 
  Abstract API 

–  evolve the same PDE with unigrid, AMR (MPI or shared memory, etc) without 
having to change any of the application code. 

  Interfaces 
–  set of data structures that a thorn exports to the world (global), to its friends 

(protected) and to nobody (private) and how these are inherited. 
  Implementations 

–  Different thorns may implement e.g. the evolution of the same PDE and we 
select the one we want at runtime. 

  Scheduling 
–  call in a certain order the routines of every thorn and how to handle their 

interdependencies.  
  Parameters 

–  many types of parameters and all of their essential consistency checked 
before running 



Thorn Architecture 

Make  
Information 

Source Code 

Documentation! 

Interface.ccl Parameter Files 
and Testsuites 

Param.ccl 

Schedule.ccl 
Fortran 
Routines 

C++ 
Routines 

C 
Routines 

Thorn 

Configure CST 

Flesh 

Computational 
Toolkit Toolkit Toolkit 

Operating Systems 
AIX NT 

Linux 
Unicos 

Solaris 
HP-UX 

Thorns 

Cac
tus 

SuperUX Irix 

OSF 

Make 
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Interface 

  The concept: contract with the rest of the code 
  Now it is only for the data structures : variables and parameters 
  adding thorn utility routines and their arguments 

  Private 
  The variables that you want the flesh to allocate/communicate but 

no other thorn to see. 

  Public 
  The variables that you want everybody to see (that means that 

everybody can modify them too!) 
  Inheritance 

  Protected 
  Variables that you want only your friends to see!  
  [Watch out for the change of meaning from C++ names] 
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Data Structures 

  Grid Arrays 
  An multidimensional and arbitrarily sized array distributed among 

processors 

  Grid Functions 
  A field distributed on the multidimensional computational grid (a 

Grid Array sized to the grid) 
–  Every point in a grid may hold a different value “f(x,y,z)” 

  Grid Scalars 
  Values common to all the grid points 

  Parameters 
  Values/Keywords that affect the behavior of the code (initialization, 

evolution, output, etc..) 
–  parameter checking, steerable parameters 
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Data Types 

  Cactus data types to provide portability across platforms 

  CCTK_REAL 
  CCTK_REAL4, CCTK_REAL8, CCTK_REAL16 

  CCTK_INT 
  CCTK_INT2, CCTK_INT4, CCTK_INT8 

  CCTK_CHAR 

  CCTK_COMPLEX 
  CCTK_COMPLEX8, CCTK_COMPLEX16, CCTK_COMPLEX32 



WaveToyF77: interface.ccl 
# Interface definition for WaveToy 
# this is much less than CORBA IDL! 

implements: wavetoy 

public: 

cctk_real scalarevolve type = GF          
    timelevels=3 

{ 
  phi 
} "The evolved scalar field" 

  Implements: describes 
what this thorn “does”, 
WaveToyF77 can be 
replaced by any other thorn 
which “does” the same 
thing and has the same 
public interface. 

  Timelevels: finite difference 
method is a 3 time level 
scheme, phi_n, phi, phi_p. 
Time levels are rotated at 
each iteration. 

  Scope: grid variables can 
be public, protected or 
private. 
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Scheduling 
  Thorns schedule  

  when their routines should be executed 
  what memory for Grid Arrays should be enabled 
  which Grid Arrays should be synchronized on exit 

  Basic evolution skeleton idea 
  standard scheduling points INITIAL, EVOL, ANALYSIS 
  fine control: run this routine BEFORE/AFTER that routine 

  Extend/customise with scheduling groups 
  Define own scheduling points MYEVOL 
  Add my routine to this group of routines 
  Run the group WHILE some condition is met 

  Future redesign 
  The scheduler is really a runtime selector of the computation flow. 
  We can add much more power to this concept 



# Schedule definitions for scalarwave 

STORAGE: scalarevolve 

schedule WaveToyF77_Evolution as 
WaveToy_Evolution at EVOL 

{   
   LANG: Fortran   
   SYNC: scalarevolve 
} "Evolution of 3D wave equation” 

IDScalarWave: schedule.ccl 

STARTUP 

INITIAL 

PRESTEP 

EVOL 

POSTSTEP 

ANALYSIS 

OUTPUT 

TERMINATE 

PRESTEP 

POSTSTEP 

ANALYSIS 

OUTPUT 

PRESTEP 
EVOL EVOL 

POSTSTEP 

ANALYSIS 

OUTPUT 



# Parameter definitions 

REAL radius "The radius of the gaussian wave" 
{ 
 0:* :: “Radius must be positive” 
} 0.0 

IDScalarWave: param.ccl 
• Parameters are stored in runtime database that is used to 

• Automate creation of parameter file parsers 
• Enable introspection for support of remote-steering and 
monitoring 



Parameter File 

ActiveThorns = “qft time pugh pughreduce  
 pughslab cartgrid3d ioutil iobasic” 

time::dtfac = 0.1 
pugh::periodic= “yes” 
grid::type = “BySpacing” 
grid::domain = “full” 
grid::dxyz = 1.0 

qft::lambda = 1.0 
qft::smooth = 100 
qft::damp = 0.5 



# Parameter definitions for thorn WaveToyF77 

private: # other options are public or inherit 

KEYWORD bound "Type of boundary condition to use" 
{ 
  "none"         :: "No boundary condition" 
  "flat"          :: "Flat boundary condition" 
  "static"       :: "Static boundary condition" 
  "radiation"  :: "Radiation boundary condition" 
  "robin"      :: "Robin boundary condition" 
  "zero"       :: "Zero boundary condition" 
} "none" 

WaveToyF77: param.ccl 



Build file: make.code.defn 

  Just provide a list of source files required for the build 
  The flesh automatically does dependency analysis 

  Can embed scripting for special handling of compiler flags, 
but usually try to keep it simple (just list of files) 

# Main make.code.defn file for thorn WaveToyC 

# Source files in this directory 
SRCS = WaveToy.c  InitSymBound.c Startup.c 

# Subdirectories containing source files 
SUBDIRS =  



Build file: make.code.defn 

  Just provide a list of source files required for the build 
  The flesh automatically does dependency analysis 
  Flesh automatically generates bindings 
  Can embed scripting for special handling of compiler flags, 

but usually try to keep it simple (just list of files) 

# Main make.code.defn file for thorn WaveToyF77 

# Source files in this directory 
SRCS = WaveToy.f  InitSymBound.f Startup.f 

# Subdirectories containing source files 
SUBDIRS =  



ThornList 
  Just a list of the modules you want compile into your application 

  The modules self-configure using constraints from Schedule.ccl (You don’t 
explicitly wire them together… that would be tedious) 

  Some modules provide duplicate functionality (This simply makes them available 
to you for runtime.  The parameter file actually selects the module) 

# arrangement/thorn                # implements (inherits) [friend] {shares} 
# 
CactusBase/Boundary            # boundary ( ) [ ] { } 
CactusBase/CartGrid3D         # grid (coordbase) [ ] {driver} 
CactusBase/CoordBase         # CoordBase ( ) [ ] { } 
CactusBase/IOASCII               # IOASCII ( ) [ ] {IO} 
CactusBase/IOBasic               # IOBasic (IO) [ ] {IO} 
CactusBase/IOUtil                   # IO ( ) [ ] { } 
CactusBase/Time                    # time ( ) [ ] {cactus} 
CactusPUGH/PUGH                # Driver ( ) [ ] {cactus} 
CactusWave/IDScalarWave    # idscalarwave (wavetoy,grid) [ ] {grid} 
CactusWave/WaveToyF77      # wavetoy (grid) [ ] { } 
CactusWave/WaveToyCXX    # wavetoy (grid) [ ] { } 
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Parallelizing an Application Thorn 

All these calls are overloaded by infrastructure thorns: 
  CCTK_SyncGroup 

–  synchronise ghostzones for a group of grid variables 

  CCTK_Reduce    
–  call any registered reduction operator, e.g. maximum value over the grid 

  CCTK_Interpolate 
–  call any registered interpolation operator 

  CCTK_MyProc 
–  unique processor number within the computation 

  CCTK_nProcs 
–  total number of processors 

  CCTK_Barrier 
–  waits for all processors to reach this point 



Finally an application 

  make myappname  (on any platform!) 
  ./cactus_myappname myoparamfile.par 

  Congratulations, you have a Cactus application! 
------------------------------------------------ 
       10                                   
  1   0101       ************************   
  01  1010 10      The Cactus Code V4.0     
 1010 1101 011      www.cactuscode.org      
  1001 100101    ************************   
    00010101                                
     100011     (c) Copyright The Authors   
      0100      GNU Licensed. No Warranty   
      0101                                  
------------------------------------------------ 
Cactus version: 4.0.b12 
Compile date:   Jun 10 2002 (10:26:04) 
Run date:       Jun 10 2002 (10:42:28) 
Run host:       10:42:28 
Executable:     c:\home\cactus_hello.exe 
Parameter file: HelloWorld.par 
------------------------------------------------ 
Activating thorn Cactus...Success 
Activation requested for  
--->HelloWorld<--- 
Activating thorn HelloWorld...Success 
------------------------------------------------ 
do loop over timesteps 
    iteration = iteration + 1 
    t = t+dt 
    HelloWorld: Print message to screen 
enddo 
------------------------------------------------ 
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Chapter IV 

Once you have a framework, many more 
interesting possibilities emerge 



Enabling Collaborative Development 
  They enable computer scientists and computational scientists to 

play nicely together 
  No more arguments about C++ vs. Fortran 
  Easy unit-testing to reduce finger pointing (are the CS weenies “tainting the 

numerics”) 
  Very cool toys can emerge from this kind of multidisciplinary collaboration 

(domain scientists + computer jocks) 
  Advanced CS Features are trivially accessible by Application 

Scientists 
  Just list the name of the module and it is available 
  Also trivially unit-testable to make sure they don’t change numerics 

  Also enables sharing of physics modules among computational 
scientists 
  The hardest part is agreeing upon physics interfaces 



Parallelism in Cactus Revisited 
  The central idiom for the Cactus model of computation is boundary exchange 

  Cactus is designed around a distributed memory model.   
  Each module (algorithm plug-in) is passed a section of the global grid. 

  The actual parallel driver (implemented in a module)  
  Driver decides how to decompose grid across processors and exchange ghost zone information 
  Each module is presented with a standard interface, independent of the driver 
  Can completely change the driver for shared memory, multicore, message passing without requiring 

any change of the physics modules 

  Standard driver distributed with 
Cactus (PUGH) is for a parallel unigrid 
and uses MPI for the communication 
layer 

  PUGH can do custom processor 
decomposition and static load 
balancing 

  Same idiom also works for AMR and 
unstructured grids!!! (no changes to 
solver code when switching drivers) 
  Carpet (Erik Schnetter’s AMR driver) 
  DAGH/GrACE driver for Cactus 
  SAMRAI driver for Cactus 

t=0 

t=100 

AMR Unigrid 



Large Scale Physics Calculation: 

For accuracy need more resolution than 
memory of one machine can provide 

Dynamic Adaptive Distributed Computation 
(with Argonne/U.Chicago) 

SDSC IBM SP

1024 procs

5x12x17 =1020 


NCSA Origin Array

256+128+128

5x12x(4+2+2) =480 


OC-12 line

(But only 2.5MB/sec)


GigE:100MB/sec

17


12

5


4
 2

12


5


2


This experiment: 
  Einstein Equations (but could be any Cactus application) 

Achieved: 
  First runs: 15% scaling 
  With new techniques: 70-85% scaling, ~ 250GF  



Dynamic Adaptation 

Adapt:


2 ghosts


3 ghosts
 Compress on!


  Automatically adapt to 
bandwidth latency issues 

  Application has NO 
KNOWLEDGE of machines(s) it 
is on, networks, etc 

  Adaptive techniques make NO 
assumptions about network 

  Adaptive MPI unigrid driver 
required NO changes to the 
physics components of the 
application!! (plug-n-play!) 

  Issues: 
  More intellegent adaption 

algorithm   
  Eg if network conditions 

change faster than 
adaption… 



Fault Tolerance 
  Need checkpointing/recovery on steroids, need to cope with 

partial failure 
  Checkpoint is transparent to application (uses introspection) 

 -architecture independent (independent of system HW and SW) 
  Able to change number of active nodes 
  Example: keep log of inter-processor messages, so that a 

lost node can be replaced 
  Contain failure, continue simulation 

Regular checkpointing
 “Cubicle” checkpointing


time
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Nomadic Application Codes 
(Foster, Angulo, Cactus Team…) 

Load 
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3 successive 
contract 
violations 

Running 
At UIUC 

(migration 
time not to scale) 

 Resource 
discovery 

& migration 

Running 
At UC 



Hybrid Communication Models 
  New “multicore” driver required no changes to physics components! 
  Use MPI between nodes, OpenMP within nodes 

  Common address space enables more cache optimisations 
  Integrate with Shoaib Kamil’s generalized auto-tuner to abstract on-

node parallelism and exotic exec models (e.g. Cell or GPUs) 



Grand Picture 
Remote steering 
and monitoring 

from airport 

Origin: NCSA 

Remote Viz in 
St Louis 

T3E: Garching 

Simulations 
launched from 
Cactus Portal Grid enabled 

Cactus runs on 
distributed 
machines 

Remote Viz and 
steering from Berlin 

Viz of data from 
previous simulations in 

SF caf₫ 

DataGrid/DPSS 
Downsampling 

Globus 

http 

HDF5 

IsoSurfaces 



Remote Visualization 

IsoSurfaces 
and Geodesics 

Contour plots 
(download) 

Grid 
Functions
Streaming 

HDF5 

Amira 

Isoview 

LCAVision 

Amira 

LCA Vision 

OpenDX 
OpenDX 



Remote Visualization 

www.cactuscode.org/VizTools 

OpenDX 

IsoView 

gnuplot 

xgraph 

Amira 

LCAVision 

Source
Volume

Visapult 



Remote Steering 

Remote 
Viz data 

Remote 
Viz data 

XML HTTP 

HDF5 

Amira 

Any Viz Client 
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Remote Steering/Visualization Architecture 



Remote Monitoring/Steering:  
Thorn HTTPD and SMS Messaging 

  Thorn which allows simulation 
any to act as its own web 
server 

  Connect to simulation from any 
browser anywhere … 
collaborate 

  Monitor run: parameters, basic 
visualization, ... 

  Change steerable parameters 
  See running example    at 

www.CactusCode.org 
  Get Text Messages from your 

simulation or chat with it on IM!  



Task Farm/Remote Viz/Steer Capabilities 
(integration with Web Portals) 

Big BH  
Sim 
(LBL, NCSA, PSC, …) 

Visapult 
BWC 

Baltimore 

Current TFM Status in portal…




Cactus, Eclipse, Blue Waters 
(NSF Track-1 Supercomputing Project) 

cvs/svn

edit�
compile�
debug


submit

monitor

steer


local


remote


Simulations


Source code

gather

process

display


Performance data


Online databases

Configuration files

Performance data




Application-Level 
Debugging and Profiling 
 Sponsored by NSF SDCI 
 As framework, Cactus has complete overview over 

program and execution schedule 
 Need to debug simulation at level of interacting 

components, in production situations, at scale 
 Grid function declarations have rich semantics -- use this 

for visual debugging 
 Combine profiling information with execution schedule, 

place calliper points automatically 



Cactus/Charm++ 

Also drivers based on 
SAMRAI, PARAMESH




CFD Toolkit: new applications 

Toolkit for both Research 
and Teaching (on-going 

development)


Abstractions for physics, 
discretisation, solvers, and 

computational infrastructure
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Chapter V 

Relationship of Frameworks to  
Patterns  

& 
Languages 



Definitions 
  Parallel Pattern describes idiom for parallelism 

  Enables us to reason about parallelism in a more sensible and 
structured way 

  Enables us to reuse good ideas without being forced to reuse the 
specific code that implements those ideas 

  Parallel Language makes idiom for parallelism a 
fundamental syntactic construct  
  Enables succinct statement of a parallel pattern or algorithm 
  Enables deeper analysis of the expressed algorithm (good for 

debugging and correctness) 

  Framework is a pattern + many other services to support 
large programming teams 
  Implements parallel pattern, but also has build system, database for 

introspection, module composition system 
  Usually expresses parallel pattern through API calls 



Observations on Domain-Specific Frameworks 
  Frameworks and domain-specific languages 

  enforce coding conventions for big software teams 
  Encapsulate a domain-specific “idiom for parallelism” 
  Create familiar semantics for domain experts (more 

productive)  

  Common design principles for frameworks from SIAM 
CSE07 and DARPA Ogden frameworks meeting 
  Give up main(): schedule controlled by framework 
  Stateless: Plug-ins only operate on state passed-in when 

invoked 
  Bounded (or well-understood) side-effects: Plug-ins promise to 

restrict memory touched to that passed to it (same as CILK) 

  By gosh, these are attributes of a functional language 
  But internals of plug-ins are Fortran or C! 



Implementing an Application Framework 
  Converging toward abstract model of computation that is more 

amenable to FPGAs AND multicore 
  It looks a lot like functional languages and dataflow 

  Get rid of main() 
  Must get rid of program explicit schedule  
  Use constraints to express scheduling options (not “program order” and not 

necessarily dataflow) 
  Constraints allow external/replaceable scheduler more freedom to expose 

parallelism that would otherwise be intractable for humans to express 
  Carefully manage side-effects 

  Task only operates on the data it was given when invoked! 
  Don’t need to be free of side-effects, but should be simple and well 

understood 
  Again: assists in scheduling 

  Indirect manipulation of global state by tasks 
  All operations on global state posed as “requests” that may be fullfilled at a 

later time 



Conundrum 
  Frameworks are very limited in scope 

  A good framework targets a specific space of problems (not 
everything in the world) 

  Not general enough: not scalable to deploy frameworks as a 
solution 

  Difficult to optimize parallel constructs along with code 

  Languages can be deployed in a scalable manner 
  Unclear which basic constructs of parallel language are broadly 

applicable 
  Need practical experience to filter good from bad constructs 
  Usually gain this experience using framework to implement “idiom 

for parallelism” (in lieu of pre-existing language construct) 

  We have a chicken-and-egg problem here 
  How do we determine what constructs to put in a language? 



Lessons of C++ 
(should coding conventions precede language constructs?) 

  OO software practices for C did not begin with C++ 
  Programmers were using OO design conventions to write C 

applications (and even assembly code) 
  C++ took most commonly used OO design conventions and turned 

them into language constructs 

  Should design conventions for parallelism precede 
language implementation? 
  Offer constructs first as design patterns (suboptimal performance) 
  Winning patterns get hoisted into language constructs 
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Bonus Chapter 

Conclusions 



Summary of Cactus Capabilities 
  Variety of science domains (highly configurable) 
  Multi-Physics (modular) 
  Tractable programming environment for massive 

concurrency, performance, debugging, reliability 

  Uses patterns, but layers many additional 
services for organizing large programming teams 

  Many abstractions have functional semantics 
(interesting and unexpected observation across 
many frameworks) 

  Good ideas may find their way into languages 
(but need to find the good ideas first) 



More Information 
  The Science of Numerical Relativity 

  http://jean-luc.aei.mpg.de 
  http://dsc.discovery.com/schedule/episode.jsp?episode=23428000 
  http://www.appleswithapples.org/ 

  Cactus Community Code 
  http://www.cct.lsu.edu  
  http://www.cactuscode.org/ 
  http://www.carpetcode.org/ 

  Grid Computing with Cactus 
  http://www.astrogrid.org/ 

  Benchmarking Cactus on the Leading HPC Systems 
  http://crd.lbl.gov/~oliker 
  http://www.nersc.gov/projects/SDSA/reports 
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Chapter IV 

Extra Material 



Performance on Earth Simulator 

P Local 
Size 

ES 
Mflop/s/P %peak 

16 80x80x80 1466 18 
256 80x80x80 1355 17 
512 80x80x80 1346 17 

1456 80x80x80 1342 17 

  ES Performance related to x-dim (vector length)  
  Large test case achieves over 3.8 teraflop on 1456 processors: 

fastest performance to date ! 
  Code 30X faster than Power3 and 13X faster than Power4 
  Excellent scaling on ES using fixed data size per proc (weak scaling) 

P Local 
Size 

ES 
Mflop/s/P %peak 

16 250x64x64 2826 35 
256 250x64x64 2668 33 
512 250x64x64 2650 33 

1456 250x64x64 2657 33 

80x80x80        Power3 achieves   85 Mflop/s (6% of peak) for P=1 
80x80x80        Power4 achieves 199 Mflop/s (4% of peak) for P=1 
128x128x128  Power4 achieves 316 Mflop/s (6% of peak) for P=1 


