
Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Cactus and the Role of
Frameworks in Complex

Multiphysics HPC Applications
John Shalf

LBNL/NERSC

Erik Schnetter, Ed Seidel, Gabrielle Allen
Center for Computation and Technology - LSU
Albert Einstein Institute - Potsdam, Germany

The Story in 5 Chapters

I.  The Science
II.  Application Complexity: Motivation for using frameworks
III.  The Cactus Framework
IV.  Fringe Benefits of Using Frameworks
V.  Relationship of “frameworks” to Patterns and Langauges

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter I

The Science

Numerical Relativity

  Community where Cactus originated; still strong
user group

  ~5 out of the ~9 strongest groups use Cactus,
worldwide

  Currently very active field, many publications/
year, more than $1M in federal grants involving
LSU (current home institution for Cactus)

5

Einstein’s Equations & Gravitational Waves
  Einstein’s General Relativity

  Fundamental theory of Physics (Gravity)
  Among most complex equations of physics

–  Dozens of coupled, nonlinear hyperbolic-elliptic
equations with 1000’s of terms
–  Barely have capability to solve after a century

  Predict black holes, gravitational waves, etc.
  Exciting new field about to be born: Gravitational Wave

Astronomy
  Fundamentally new information about Universe
  What are gravitational waves??: Ripples in spacetime curvature, caused by

matter motion, causing distances to change:

  A last major test of Einstein’s theory: do they exist?
  Eddington: “Gravitational waves propagate at the speed of thought”
  1993 Nobel Prize Committee: Hulse-Taylor Pulsar (indirect evidence)
  20xx Nobel Committee: ??? (For actual detection…)

s(t) h = δs/s ~ 10-22 ! Colliding BH’s and NS’s...

6

Detecting Gravitational Waves
• LIGO, VIRGO (Pisa), GEO600,… $1 Billion Worldwide
• Was Einstein right? 5-10 years, we’ll see!
• We’ll need numerical relativity to:

• Detect them…pattern matching
against numerical templates to
enhance signal/noise ratio

• Understand them…just what
are the waves telling us?

4km

Hanford Washington Site

Gravitational Wave Astronomy
New field, fundamentally new information about the universe

Motivation for Grand Challenge Simulations

EU Network
Astrophysics
  10 EU Institutions,

3 years
  Try to finish these

problems …
  Entire Community

becoming Grid
enabled

Examples of Future of
Science & Engineering
  Require Large Scale Simulations,

beyond reach of any single machine
  Require Large Geo-Distributed

Cross-Disciplinary Collaborations
  Require Grid Technologies, but not

yet using them!
  Both Apps and Grids Dynamic…

NSF Black Hole
Grand Challenge
  8 US Institutions,

5 years
  Towards colliding

black holes

NASA Neutron Star
Grand Challenge
  5 US Institutions
  Towards colliding

neutron stars

90 years of Research on Black Holes
  Finite Difference Evolution of

Einstein’s Equations (ADM-BSSN
method)

  Schwartzchild (1916 solution!)
  Kerr (Spinning, charged, 1963!)
  Misner (head-on collision)

  Good for calibration, but not a likely
event

  16Gigs of Memory for 190^3 Octant
Symmetry in 3D on 512 CPU CM5 in
‘95

  Grazing Collisions & Full In-Spiral
  This is astrophysically relevant!
  No analytic solution
  1.5 TByte 5Tflops for bitant

symmetry on NERSC-3
  3 Tbyte req. for full 3D
  10Tbytes for wave extraction
  Initial Conditions (the next big thing)

11

Axisymmetric Black Hole Simulations

Evolution of Highly Distorted
Black Hole

Collision of two Black Holes
(“Misner Data”)

12

NSF Black Hole Grand Challenge Alliance
  University of Texas (Matzner, Browne)
  NCSA/Illinois/AEI (Seidel, Saylor,
 Smarr, Shapiro, Saied)
  North Carolina (Evans, York)
  Syracuse (G. Fox)
  Cornell (Teukolsky)
  Pittsburgh (Winicour)
  Penn State (Laguna, Finn)

Develop Code
To Solve Gµν =

0

Apparent Horizon Boundary Conditions

Big Splash in Scientific American
(Image By Werner Benger)

15

NASA Neutron Star Grand Challenge

  NCSA/Illinois/AEI (Saylor, Seidel, Swesty, Norman)
  Argonne (Foster)
  Washington U (Suen)
  Livermore (Ashby)
  Stony Brook (Lattimer)

“A Multipurpose Scalable Code for Relativistic Astrophysics”

Develop Code
To Solve Gµν = 8πTµν

Understanding Neutron Star Collisions
(NASA NSNSGC collaboration, 1998)

Rotationally deformed
protoneutron star,
formed in a core
collapse [C. D. Ott; R.
Kähler]

Current Science
Gamma Ray Bursts from Core Collapse Supernova

Computational Challenges
in Gamma Ray Bursts

  Complex physics: Einstein equations,
hydrodynamics, nuclear physics, radiation transport
(neutrinos), magnetic fields, photon transport --
different physics important at different times

  Large scale differences: ~25 m near black hole,
~1000 km overall domain

  Long term evolution, millions of
(inherently sequential) time steps

Gamma Ray Bursts

 Most energetic events
known in universe

 Grand challenge in
astrophysics; likely to be
detected by LIGO in
coming years

 Combines many fields of
physics

 Requires (at least)
petascale computing

Petascale Needs
of Gamma Ray Bursts

 Conservative total estimates [See Ott et al., Mardi Gras
conference, Baton Rouge 2008]:
 Large scale differences: ~25 m near central black hole,
~1000 km overall domain
 3 TByte memory (with 10 levels of AMR)
 300 million time steps
 in total 6 million Pflop (6 Zflop)
 ~70 days at sustained 1 Pflop/s

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter II

Application Complexity
(why use frameworks?)

Application Code Complexity
  Application Complexity has Grown

  Big Science on leading-edge HPC systems is a multi-
disciplinary, multi-institutional, multi-national efforts!
(and we are not just talking about particle
accelerators and Tokamaks)

  Looking more like science on atom-smashers

  Advanced Parallel Languages are
Necessary, but NOT Sufficient!
  Need higher-level organizing constructs for teams of

programmers

Application Code Complexity

  HPC is looking more and more like traditional “big science” experiments.
  QBox: Gordon Bell Paper title page

  Its just like particle physics papers!
  Looks like discovery of the Top Quark!

Community Codes & Frameworks
(hiding complexity using good SW engineering)

  Clearly separate roles and responsibilities of your expert
programmers from that of the domain experts/scientist/
users (productivity layer vs. performance layer)

  Define a social contract between the expert programmers
and the domain scientists

  Enforces and facilitates SW engineering style/discipline to
ensure correctness

  Hides complex domain-specific parallel abstractions from
scientist/users to enable performance (hence, most
effective when applied to community codes)

  Allow scientists/users to code nominally serial plug-ins that
are invoked by a parallel “driver” (either as DAG or
constraint-based scheduler) to enable productivity

Framework User/Developer Roles
Developer Roles Conceptual Model Instantiation
Application: Assemble
solver modules to solve
science problems.

Neutron Star Simulation:
Hydrodynamics + GR Solver
using Adaptive Mesh
Refinement (AMR)

BSSN GR Solver +
MoL integrator +
Valencia Hydro +
Carpet AMR Driver +
Parameter file (params for
NS)

Solver: Write solver
modules to implement
algorithms. Solvers use
driver layer to implement
“idiom for parallelism”.

Elliptic Solver PETSC Elliptic Solver pkg.
(in C)
BAM Elliptic Solver (in C++ &
F90)
John Town’s custom BiCG-
Stab implementation (in F77)

Driver: Write low-level data
allocation/placement,
communication and
scheduling to implement
“idiom for parallelism” for a
given “dwarf”.

Parallel boundary exchange
idiom for structured grid
applications

Carpet AMR Driver
SAMRAI AMR Driver
GrACE AMR driver
PUGH (MPI unigrid driver)
SHMUGH (SMP unigrid
driver)

Framework: Segmenting Developer Roles

Developer Roles Domain
Expertise

CS/Coding
Expertise

Hardware
Expertise

Application: Assemble solver
modules to solve science
problems. (eg. combine hydro+GR
+elliptic solver w/MPI driver for
Neutron Star simulation)

Einstein Elvis Mort

Solver: Write solver modules to
implement algorithms. Solvers use
driver layer to implement “idiom for
parallelism”. (e.g. an elliptic solver
or hydrodynamics solver)

Elvis Einstein Elvis

Driver: Write low-level data
allocation/placement,
communication and scheduling to
implement “idiom for parallelism”
for a given “dwarf”. (e.g. PUGH)

Mort Elvis Einstein

Frameworks vs. Libraries
(Observation by Koushik Sen: view.eecs.berkeley.edu)

  A parallel program may be
composed of parallel

 and serial elements

  Parallel patterns
with serial plug-ins

Parallel Dwarf Libraries
  Dense matrices
  Sparse matrices
  Spectral
  Combinational
  (Un) Structured Grid

Parallel Patterns/Frameworks
  Map Reduce
  Graph traversal
  Dynamic programming
  Backtracking/B&B
  Graphical models
  N-Body
  (Un) Structured Grid

  Serial code invoking
parallel libraries

  Composition
may be
recursive

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter II

The Cactus Framework

Cactus

  Framework for HPC: code development, simulation
control, visualisation

  Manage increased complexity with higher level
abstractions, e.g. for inter-node communication, intra-
node parallelisation

  Active user community, 10+ years old
  Supports collaborative development

Cactus User Community
  General Relativity

  LSU(USA),AEI(Germany),UNAM (Mexico), Tuebingen(Germany), Southampton (UK),
Sissa(Italy), Valencia (Spain), University of Thessaloniki (Greece), MPA (Germany),
RIKEN (Japan), TAT(Denmark), Penn State (USA), University of Texas at Austin
(USA), University of Texas at Brwosville (USA), WashU (USA), University of
Pittsburg (USA), University of Arizona (USA), Washburn (USA), UIB (Spain),
University of Maryland (USA), Monash (Australia)

  Astrophysics
  Zeus-MP MHD ported to Cactus (Mike Norman: NCSA/UCSD)

  Computational Fluid Dynamics
  KISTI
  DLR: (turbine design)

  Chemistry
  University of Oklahoma: (Chem reaction vessels)

  Bioinformatics
  Chicago

Cactus Features
  Scalable Model of Computation

  Cactus provides ‘idiom’ for parallelism
–  Idiom for Cactus is parallel boundary exchange for block structured grids
–  Algorithm developers provide nominally “serial” plug-ins
–  Algorithm developers are shielded from complexity of parallel implementation

  Neuron uses similar approach for scalable parallel idiom
  Build System

  User does not see makefiles (just provides a list of source files in a given module)
  “known architectures” used to store accumulated wisdom for multi-platform builds
  Write once and run everywhere (laptop, desktop, clusters, petaflop HPC)

  Modular Application Composition System
  This is a system for composing algorithm and service components together into a

complex composite application
  Just provide a list of “modules” and they self-organize according to constraints

(less tedious than explicit workflow)
  Enables unit testing for V&V of complex multiphysics applications

  Language Neutrality
  Write modules in any language (C, C++, F77, F90, Java, etc…)
  Automatically generates bindings (also hidden from user)
  Overcomes age-old religious battles about programming languages

32

Cactus Modularity

IOFlexIO

FLESH
(Parameters, Variables, Scheduling)

IOHDF5

PUGH

WaveToyF90

CartGrid3D

GrACE

Boundary

WaveToyF77

33

Cactus 4 Design Goals

  Generalization
  meta-code that can be applied e.g. to any system of PDEs

–  mainly 3D cartesian finite differencing codes (but changing)

  Abstraction
  Identify key concepts that can be abstracted

–  Evolution skeleton. Reduction operators. I/O. Etc...

  Encapsulation
  Protect the developers of thorns from other thorns ...

  Extension
  Prepare for new concepts in future thorns
  Overloading, Inheritance, etc...

  In some way, make it a little Object Oriented

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter III

How does Cactus Work?

Primer on PDE Solvers on
Block Structured Grids

Scalar waves in 3D are solutions of the hyperbolic
wave equation: -φ,tt + φ,xx + φ,yy + φ,zz = 0

Initial value problem: given data for φ and its first
time derivative at initial time, the wave equation
says how it evolves with time

r
time

Scalar Wave Model Problem

Numerical solve by discretising on a grid, using
explicit finite differencing (centered, second order)

φ n+1
i,j,k = 2φ ni,j,k - φ n-1

i,j,k

+ Δt2/Δx2(φ ni+1,j,k -2 φ ni,j,k + φ ni-1,j,k)

+ Δt2/Δy2(φ ni,j+1,k -2 φ ni,j,k + φ ni,j-1,k)
+ Δt2/Δz2(φ ni,j,k+1 -2 φ ni,j,k + φ ni,j,k-1)

time
r

Numerical Method

  Finite grid, so need to apply outer boundary conditions

  Main parameters:
  grid spacings: Δt, Δx, Δy, Δz, which coords?, which initial data?

  Simple problem, analytic solutions, but contains many
features needed for modelling more complex problems

Numerical Method

c ===================================
 program WaveToy
c ===================================
c Fortran 77 program for 3D wave equation.
c Explicit finite difference method.
c ===================================

c Global variables in include file
 include "WaveToy.h"
 integer i,j,k

c SET UP PARAMETERS
 nx = 30
 [MORE PARAMETERS]

c SET UP COORDINATE SYSTEM AND GRID
 x_origin = (0.5 - nx/2)*dx
 y_origin = (0.5 - ny/2)*dy
 z_origin = (0.5 - nz/2)*dz

 do I=1,nx
 do j=1,ny
 do k=1,nz
 x(i,j,k) = dx*(i-1) + x_origin
 y(i,j,k) = dy*(j-1) + y_origin
 z(i,j,k) = dz*(k-1) + z_origin
 r(i,j,k) = sqrt(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2)
 end do
 end do
 end do

c OPEN OUTPUT FILES
 open(unit=11,file=“out.xl”)
 open(unit=12,file=“out.yl”)
 open(unit=13,file=“out.zl”)

c SET UP INITIAL DATA
 call InitialData
 call Output

c EVOLVING
 do iteration = 1, nt
 call Evolve
 if (mod(iteration,10).eq.0) call Output
 end do

 stop
 end

Stand Alone Code: Main.f

Standalone Program
 Setting up parameters
 Setting up grid and coordinate system
 Opening output files
 Setting up initial data
 Performing iteration 10
 Performing iteration 20
 Performing iteration 30
 Performing iteration 40
 Performing iteration 50
 Performing iteration 60
 Performing iteration 70
 Performing iteration 80
 Performing iteration 90
 Performing iteration 100
 Done

Parallelizing PDE Solvers
  Presumes worst-case distributed memory model (but could be

implemented in shared memory as well)

  Decompose the grid across processors and exchange ghost zone
information – this exchange can be presented with a standard
interface, independent of the stencil method.

•  Standard driver distributed
with Cactus (PUGH) is for a
parallel unigrid and uses MPI
for the communication layer

•  PUGH can do custom
processor decomposition and
static load balancing

42

Berger & Oliger AMR
  AMR via multiple, uniform rectangular grids w/

different resolutions

  Grids are distinct domains, made to
‘communicate’ along boundaries, & via
prolongation (interpolation) & restriction

  Recursive algorithm, evolve level L=0 (coarsest)
first, call again for level L+1...

+ =

Berger & Oliger, J. Comp. Phys. 53, 1984

Visualization of AMR
Data

AMR: requires complicated boundary updates
(Motivates need for Chombo and Cactus FW to manage complexity)

Adaptive Mesh Refinement

Cactus Architecture

Configure CST

Flesh

Computational
Toolkit Toolkit Toolkit

Operating Systems
AIX NT

Linux
Unicos

Solaris
HP-UX

Thorns

Cactus

SuperUX Irix

OSF

Make

Framework User/Developer Roles
Developer Roles Conceptual Model Instantiation
Application: Assemble
solver modules to solve
science problems.

Neutron Star Simulation:
Hydrodynamics + GR Solver
using Adaptive Mesh
Refinement (AMR)

BSSN GR Solver +
MoL integrator +
Valencia Hydro +
Carpet AMR Driver +
Parameter file (params for
NS)

Solver: Write solver
modules to implement
algorithms. Solvers use
driver layer to implement
“idiom for parallelism”.

Elliptic Solver PETSC Elliptic Solver pkg.
(in C)
BAM Elliptic Solver (in C++ &
F90)
John Town’s custom BiCG-
Stab implementation (in F77)

Driver: Write low-level data
allocation/placement,
communication and
scheduling to implement
“idiom for parallelism” for a
given “dwarf”.

Parallel boundary exchange
idiom for structured grid
applications

Carpet AMR Driver
SAMRAI AMR Driver
GrACE AMR driver
PUGH (MPI unigrid driver)
SHMUGH (SMP unigrid
driver)

Configure CST

Flesh

Computational
Toolkit Toolkit Toolkit

Operating Systems
AIX NT

Linux
Unicos

Solaris
HP-UX

Thorns

Cac
tus

SuperUX Irix

OSF

Make

Cactus Components (Glossary)
  Flesh: The glue that ties everything together

  Supports composition of modules into applications (targets non-CS-experts)
  Invokes modules in correct order (baseline scheduling)
  Implements code build system (get rid of makefiles)
  Implements parameter file parsing
  Generates bindings for any language (Fortran, C, C++, Java)

  Driver: Implements idiom for parallelism
  Implements “dwarf-specific” composite datatypes
  Handles data allocation and placement (domain decomposition)
  Implements communication pattern for “idiom for parallelism”
  Implements thread-creation and scheduling for parallelism

  Solver/Module: A component implementing algorithm or other composable
function
  Can be written in any language (flesh handles bindings automatically)
  Implementation of parallelism externalized, so developer writes nominally serial code

with correct idiom. Parallelism handled by the “driver”.
  Thorns implementing same functionality derived from same ‘abstract class’ of

functionality such as “elliptic solver” (can have many implementations of elliptic
solve. Select at compile time and/or at runtime)

  Build System: make ‘make’ simpler for scientists

Cactus Architecture

Configure CST

Flesh

Computational
Toolkit Toolkit Toolkit

Operating Systems
AIX NT

Linux
Unicos

Solaris
HP-UX

Thorns

Cactus

SuperUX Irix

OSF

Make

49

The Flesh
  Abstract API

–  evolve the same PDE with unigrid, AMR (MPI or shared memory, etc) without
having to change any of the application code.

  Interfaces
–  set of data structures that a thorn exports to the world (global), to its friends

(protected) and to nobody (private) and how these are inherited.
  Implementations

–  Different thorns may implement e.g. the evolution of the same PDE and we
select the one we want at runtime.

  Scheduling
–  call in a certain order the routines of every thorn and how to handle their

interdependencies.
  Parameters

–  many types of parameters and all of their essential consistency checked
before running

Thorn Architecture

Make
Information

Source Code

Documentation!

Interface.ccl Parameter Files
and Testsuites

Param.ccl

Schedule.ccl
Fortran
Routines

C++
Routines

C
Routines

Thorn

Configure CST

Flesh

Computational
Toolkit Toolkit Toolkit

Operating Systems
AIX NT

Linux
Unicos

Solaris
HP-UX

Thorns

Cac
tus

SuperUX Irix

OSF

Make

51

Interface

  The concept: contract with the rest of the code
  Now it is only for the data structures : variables and parameters
  adding thorn utility routines and their arguments

  Private
  The variables that you want the flesh to allocate/communicate but

no other thorn to see.

  Public
  The variables that you want everybody to see (that means that

everybody can modify them too!)
  Inheritance

  Protected
  Variables that you want only your friends to see!
  [Watch out for the change of meaning from C++ names]

52

Data Structures

  Grid Arrays
  An multidimensional and arbitrarily sized array distributed among

processors

  Grid Functions
  A field distributed on the multidimensional computational grid (a

Grid Array sized to the grid)
–  Every point in a grid may hold a different value “f(x,y,z)”

  Grid Scalars
  Values common to all the grid points

  Parameters
  Values/Keywords that affect the behavior of the code (initialization,

evolution, output, etc..)
–  parameter checking, steerable parameters

53

Data Types

  Cactus data types to provide portability across platforms

  CCTK_REAL
  CCTK_REAL4, CCTK_REAL8, CCTK_REAL16

  CCTK_INT
  CCTK_INT2, CCTK_INT4, CCTK_INT8

  CCTK_CHAR

  CCTK_COMPLEX
  CCTK_COMPLEX8, CCTK_COMPLEX16, CCTK_COMPLEX32

WaveToyF77: interface.ccl
Interface definition for WaveToy
this is much less than CORBA IDL!

implements: wavetoy

public:

cctk_real scalarevolve type = GF
 timelevels=3

{
 phi
} "The evolved scalar field"

  Implements: describes
what this thorn “does”,
WaveToyF77 can be
replaced by any other thorn
which “does” the same
thing and has the same
public interface.

  Timelevels: finite difference
method is a 3 time level
scheme, phi_n, phi, phi_p.
Time levels are rotated at
each iteration.

  Scope: grid variables can
be public, protected or
private.

55

Scheduling
  Thorns schedule

  when their routines should be executed
  what memory for Grid Arrays should be enabled
  which Grid Arrays should be synchronized on exit

  Basic evolution skeleton idea
  standard scheduling points INITIAL, EVOL, ANALYSIS
  fine control: run this routine BEFORE/AFTER that routine

  Extend/customise with scheduling groups
  Define own scheduling points MYEVOL
  Add my routine to this group of routines
  Run the group WHILE some condition is met

  Future redesign
  The scheduler is really a runtime selector of the computation flow.
  We can add much more power to this concept

Schedule definitions for scalarwave

STORAGE: scalarevolve

schedule WaveToyF77_Evolution as
WaveToy_Evolution at EVOL

{
 LANG: Fortran
 SYNC: scalarevolve
} "Evolution of 3D wave equation”

IDScalarWave: schedule.ccl

STARTUP

INITIAL

PRESTEP

EVOL

POSTSTEP

ANALYSIS

OUTPUT

TERMINATE

PRESTEP

POSTSTEP

ANALYSIS

OUTPUT

PRESTEP
EVOL EVOL

POSTSTEP

ANALYSIS

OUTPUT

Parameter definitions

REAL radius "The radius of the gaussian wave"
{
 0:* :: “Radius must be positive”
} 0.0

IDScalarWave: param.ccl
• Parameters are stored in runtime database that is used to

• Automate creation of parameter file parsers
• Enable introspection for support of remote-steering and
monitoring

Parameter File

ActiveThorns = “qft time pugh pughreduce
 pughslab cartgrid3d ioutil iobasic”

time::dtfac = 0.1
pugh::periodic= “yes”
grid::type = “BySpacing”
grid::domain = “full”
grid::dxyz = 1.0

qft::lambda = 1.0
qft::smooth = 100
qft::damp = 0.5

Parameter definitions for thorn WaveToyF77

private: # other options are public or inherit

KEYWORD bound "Type of boundary condition to use"
{
 "none" :: "No boundary condition"
 "flat" :: "Flat boundary condition"
 "static" :: "Static boundary condition"
 "radiation" :: "Radiation boundary condition"
 "robin" :: "Robin boundary condition"
 "zero" :: "Zero boundary condition"
} "none"

WaveToyF77: param.ccl

Build file: make.code.defn

  Just provide a list of source files required for the build
  The flesh automatically does dependency analysis

  Can embed scripting for special handling of compiler flags,
but usually try to keep it simple (just list of files)

Main make.code.defn file for thorn WaveToyC

Source files in this directory
SRCS = WaveToy.c InitSymBound.c Startup.c

Subdirectories containing source files
SUBDIRS =

Build file: make.code.defn

  Just provide a list of source files required for the build
  The flesh automatically does dependency analysis
  Flesh automatically generates bindings
  Can embed scripting for special handling of compiler flags,

but usually try to keep it simple (just list of files)

Main make.code.defn file for thorn WaveToyF77

Source files in this directory
SRCS = WaveToy.f InitSymBound.f Startup.f

Subdirectories containing source files
SUBDIRS =

ThornList
  Just a list of the modules you want compile into your application

  The modules self-configure using constraints from Schedule.ccl (You don’t
explicitly wire them together… that would be tedious)

  Some modules provide duplicate functionality (This simply makes them available
to you for runtime. The parameter file actually selects the module)

arrangement/thorn # implements (inherits) [friend] {shares}

CactusBase/Boundary # boundary () [] { }
CactusBase/CartGrid3D # grid (coordbase) [] {driver}
CactusBase/CoordBase # CoordBase () [] { }
CactusBase/IOASCII # IOASCII () [] {IO}
CactusBase/IOBasic # IOBasic (IO) [] {IO}
CactusBase/IOUtil # IO () [] { }
CactusBase/Time # time () [] {cactus}
CactusPUGH/PUGH # Driver () [] {cactus}
CactusWave/IDScalarWave # idscalarwave (wavetoy,grid) [] {grid}
CactusWave/WaveToyF77 # wavetoy (grid) [] { }
CactusWave/WaveToyCXX # wavetoy (grid) [] { }

63

Parallelizing an Application Thorn

All these calls are overloaded by infrastructure thorns:
  CCTK_SyncGroup

–  synchronise ghostzones for a group of grid variables

  CCTK_Reduce
–  call any registered reduction operator, e.g. maximum value over the grid

  CCTK_Interpolate
–  call any registered interpolation operator

  CCTK_MyProc
–  unique processor number within the computation

  CCTK_nProcs
–  total number of processors

  CCTK_Barrier
–  waits for all processors to reach this point

Finally an application

  make myappname (on any platform!)
  ./cactus_myappname myoparamfile.par

  Congratulations, you have a Cactus application!
--
 10
 1 0101 ************************
 01 1010 10 The Cactus Code V4.0
 1010 1101 011 www.cactuscode.org
 1001 100101 ************************
 00010101
 100011 (c) Copyright The Authors
 0100 GNU Licensed. No Warranty
 0101
--
Cactus version: 4.0.b12
Compile date: Jun 10 2002 (10:26:04)
Run date: Jun 10 2002 (10:42:28)
Run host: 10:42:28
Executable: c:\home\cactus_hello.exe
Parameter file: HelloWorld.par
--
Activating thorn Cactus...Success
Activation requested for
--->HelloWorld<---
Activating thorn HelloWorld...Success
--
do loop over timesteps
 iteration = iteration + 1
 t = t+dt
 HelloWorld: Print message to screen
enddo
--

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter IV

Once you have a framework, many more
interesting possibilities emerge

Enabling Collaborative Development
  They enable computer scientists and computational scientists to

play nicely together
  No more arguments about C++ vs. Fortran
  Easy unit-testing to reduce finger pointing (are the CS weenies “tainting the

numerics”)
  Very cool toys can emerge from this kind of multidisciplinary collaboration

(domain scientists + computer jocks)
  Advanced CS Features are trivially accessible by Application

Scientists
  Just list the name of the module and it is available
  Also trivially unit-testable to make sure they don’t change numerics

  Also enables sharing of physics modules among computational
scientists
  The hardest part is agreeing upon physics interfaces

Parallelism in Cactus Revisited
  The central idiom for the Cactus model of computation is boundary exchange

  Cactus is designed around a distributed memory model.
  Each module (algorithm plug-in) is passed a section of the global grid.

  The actual parallel driver (implemented in a module)
  Driver decides how to decompose grid across processors and exchange ghost zone information
  Each module is presented with a standard interface, independent of the driver
  Can completely change the driver for shared memory, multicore, message passing without requiring

any change of the physics modules

  Standard driver distributed with
Cactus (PUGH) is for a parallel unigrid
and uses MPI for the communication
layer

  PUGH can do custom processor
decomposition and static load
balancing

  Same idiom also works for AMR and
unstructured grids!!! (no changes to
solver code when switching drivers)
  Carpet (Erik Schnetter’s AMR driver)
  DAGH/GrACE driver for Cactus
  SAMRAI driver for Cactus

t=0

t=100

AMR Unigrid

Large Scale Physics Calculation:

For accuracy need more resolution than
memory of one machine can provide

Dynamic Adaptive Distributed Computation
(with Argonne/U.Chicago)

SDSC IBM SP

1024 procs

5x12x17 =1020

NCSA Origin Array

256+128+128

5x12x(4+2+2) =480

OC-12 line

(But only 2.5MB/sec)

GigE:100MB/sec

17

12

5

4
 2

12

5

2

This experiment:
  Einstein Equations (but could be any Cactus application)

Achieved:
  First runs: 15% scaling
  With new techniques: 70-85% scaling, ~ 250GF

Dynamic Adaptation

Adapt:

2 ghosts

3 ghosts
 Compress on!

  Automatically adapt to
bandwidth latency issues

  Application has NO
KNOWLEDGE of machines(s) it
is on, networks, etc

  Adaptive techniques make NO
assumptions about network

  Adaptive MPI unigrid driver
required NO changes to the
physics components of the
application!! (plug-n-play!)

  Issues:
  More intellegent adaption

algorithm
  Eg if network conditions

change faster than
adaption…

Fault Tolerance
  Need checkpointing/recovery on steroids, need to cope with

partial failure
  Checkpoint is transparent to application (uses introspection)

 -architecture independent (independent of system HW and SW)
  Able to change number of active nodes
  Example: keep log of inter-processor messages, so that a

lost node can be replaced
  Contain failure, continue simulation

Regular checkpointing
 “Cubicle” checkpointing

time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Clock Time

Ite
ra

tio
ns

/S
ec

on
d

Nomadic Application Codes
(Foster, Angulo, Cactus Team…)

Load
applied

3 successive
contract
violations

Running
At UIUC

(migration
time not to scale)

 Resource
discovery

& migration

Running
At UC

Hybrid Communication Models
  New “multicore” driver required no changes to physics components!
  Use MPI between nodes, OpenMP within nodes

  Common address space enables more cache optimisations
  Integrate with Shoaib Kamil’s generalized auto-tuner to abstract on-

node parallelism and exotic exec models (e.g. Cell or GPUs)

Grand Picture
Remote steering
and monitoring

from airport

Origin: NCSA

Remote Viz in
St Louis

T3E: Garching

Simulations
launched from
Cactus Portal Grid enabled

Cactus runs on
distributed
machines

Remote Viz and
steering from Berlin

Viz of data from
previous simulations in

SF caf₫

DataGrid/DPSS
Downsampling

Globus

http

HDF5

IsoSurfaces

Remote Visualization

IsoSurfaces
and Geodesics

Contour plots
(download)

Grid
Functions
Streaming

HDF5

Amira

Isoview

LCAVision

Amira

LCA Vision

OpenDX
OpenDX

Remote Visualization

www.cactuscode.org/VizTools

OpenDX

IsoView

gnuplot

xgraph

Amira

LCAVision

Source
Volume

Visapult

Remote Steering

Remote
Viz data

Remote
Viz data

XML HTTP

HDF5

Amira

Any Viz Client

77

Remote Steering/Visualization Architecture

Remote Monitoring/Steering:
Thorn HTTPD and SMS Messaging

  Thorn which allows simulation
any to act as its own web
server

  Connect to simulation from any
browser anywhere …
collaborate

  Monitor run: parameters, basic
visualization, ...

  Change steerable parameters
  See running example at

www.CactusCode.org
  Get Text Messages from your

simulation or chat with it on IM!

Task Farm/Remote Viz/Steer Capabilities
(integration with Web Portals)

Big BH
Sim
(LBL, NCSA, PSC, …)

Visapult
BWC

Baltimore

Current TFM Status in portal…

Cactus, Eclipse, Blue Waters
(NSF Track-1 Supercomputing Project)

cvs/svn

edit�
compile�
debug

submit

monitor

steer

local

remote

Simulations

Source code

gather

process

display

Performance data

Online databases

Configuration files

Performance data

Application-Level
Debugging and Profiling
 Sponsored by NSF SDCI
 As framework, Cactus has complete overview over

program and execution schedule
 Need to debug simulation at level of interacting

components, in production situations, at scale
 Grid function declarations have rich semantics -- use this

for visual debugging
 Combine profiling information with execution schedule,

place calliper points automatically

Cactus/Charm++

Also drivers based on
SAMRAI, PARAMESH

CFD Toolkit: new applications

Toolkit for both Research
and Teaching (on-going

development)

Abstractions for physics,
discretisation, solvers, and

computational infrastructure

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter V

Relationship of Frameworks to
Patterns

&
Languages

Definitions
  Parallel Pattern describes idiom for parallelism

  Enables us to reason about parallelism in a more sensible and
structured way

  Enables us to reuse good ideas without being forced to reuse the
specific code that implements those ideas

  Parallel Language makes idiom for parallelism a
fundamental syntactic construct
  Enables succinct statement of a parallel pattern or algorithm
  Enables deeper analysis of the expressed algorithm (good for

debugging and correctness)

  Framework is a pattern + many other services to support
large programming teams
  Implements parallel pattern, but also has build system, database for

introspection, module composition system
  Usually expresses parallel pattern through API calls

Observations on Domain-Specific Frameworks
  Frameworks and domain-specific languages

  enforce coding conventions for big software teams
  Encapsulate a domain-specific “idiom for parallelism”
  Create familiar semantics for domain experts (more

productive)

  Common design principles for frameworks from SIAM
CSE07 and DARPA Ogden frameworks meeting
  Give up main(): schedule controlled by framework
  Stateless: Plug-ins only operate on state passed-in when

invoked
  Bounded (or well-understood) side-effects: Plug-ins promise to

restrict memory touched to that passed to it (same as CILK)

  By gosh, these are attributes of a functional language
  But internals of plug-ins are Fortran or C!

Implementing an Application Framework
  Converging toward abstract model of computation that is more

amenable to FPGAs AND multicore
  It looks a lot like functional languages and dataflow

  Get rid of main()
  Must get rid of program explicit schedule
  Use constraints to express scheduling options (not “program order” and not

necessarily dataflow)
  Constraints allow external/replaceable scheduler more freedom to expose

parallelism that would otherwise be intractable for humans to express
  Carefully manage side-effects

  Task only operates on the data it was given when invoked!
  Don’t need to be free of side-effects, but should be simple and well

understood
  Again: assists in scheduling

  Indirect manipulation of global state by tasks
  All operations on global state posed as “requests” that may be fullfilled at a

later time

Conundrum
  Frameworks are very limited in scope

  A good framework targets a specific space of problems (not
everything in the world)

  Not general enough: not scalable to deploy frameworks as a
solution

  Difficult to optimize parallel constructs along with code

  Languages can be deployed in a scalable manner
  Unclear which basic constructs of parallel language are broadly

applicable
  Need practical experience to filter good from bad constructs
  Usually gain this experience using framework to implement “idiom

for parallelism” (in lieu of pre-existing language construct)

  We have a chicken-and-egg problem here
  How do we determine what constructs to put in a language?

Lessons of C++
(should coding conventions precede language constructs?)

  OO software practices for C did not begin with C++
  Programmers were using OO design conventions to write C

applications (and even assembly code)
  C++ took most commonly used OO design conventions and turned

them into language constructs

  Should design conventions for parallelism precede
language implementation?
  Offer constructs first as design patterns (suboptimal performance)
  Winning patterns get hoisted into language constructs

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Bonus Chapter

Conclusions

Summary of Cactus Capabilities
  Variety of science domains (highly configurable)
  Multi-Physics (modular)
  Tractable programming environment for massive

concurrency, performance, debugging, reliability

  Uses patterns, but layers many additional
services for organizing large programming teams

  Many abstractions have functional semantics
(interesting and unexpected observation across
many frameworks)

  Good ideas may find their way into languages
(but need to find the good ideas first)

More Information
  The Science of Numerical Relativity

  http://jean-luc.aei.mpg.de
  http://dsc.discovery.com/schedule/episode.jsp?episode=23428000
  http://www.appleswithapples.org/

  Cactus Community Code
  http://www.cct.lsu.edu
  http://www.cactuscode.org/
  http://www.carpetcode.org/

  Grid Computing with Cactus
  http://www.astrogrid.org/

  Benchmarking Cactus on the Leading HPC Systems
  http://crd.lbl.gov/~oliker
  http://www.nersc.gov/projects/SDSA/reports

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter IV

Extra Material

Performance on Earth Simulator

P Local
Size

ES
Mflop/s/P %peak

16 80x80x80 1466 18
256 80x80x80 1355 17
512 80x80x80 1346 17

1456 80x80x80 1342 17

  ES Performance related to x-dim (vector length)
  Large test case achieves over 3.8 teraflop on 1456 processors:

fastest performance to date !
  Code 30X faster than Power3 and 13X faster than Power4
  Excellent scaling on ES using fixed data size per proc (weak scaling)

P Local
Size

ES
Mflop/s/P %peak

16 250x64x64 2826 35
256 250x64x64 2668 33
512 250x64x64 2650 33

1456 250x64x64 2657 33

80x80x80 Power3 achieves 85 Mflop/s (6% of peak) for P=1
80x80x80 Power4 achieves 199 Mflop/s (4% of peak) for P=1
128x128x128 Power4 achieves 316 Mflop/s (6% of peak) for P=1

