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Abstract

The Sisal Language Project was a joint effort by Lawrence
Livermore National Laboratory, Colorado State University, and
University of Manchester to develop a high performance
functional programming language for conventional parallel
computer systems.  The main project began in the early '80s and
concluded in 1996.  The project was successful in that many Sisal
programs ran as fast as their Fortran or C equivalent on parallel
systems of the time such as the SGI Challenge, multi-processor
VAXs, and Cray vector computers.  In this talk, we review the
language's syntax and semantics, optimizing compiler, and high-
performance runtime system.  We describe two critical
optimizations: memory pre-allocation and update-in-place.  We
conclude with comparative performance numbers, and give the
availability of reports and source code.
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The birth of Sisal

 Sisal is a descendant of MIT’s VAL
[Akerman/Dennis79] and came to Livermore
Labs via Jim McGraw

 Was a joint project with LLNL, Colorado State
University, University of Manchester, and DEC

 We wanted to write implicitly parallel code in
a high level language since we believed that
you couldn’t trust programmers to create
correct parallel and vector code.
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The birth (continued)

 Needed for novel parallel machines
 Denelcor HEP, Manchester Dataflow Machine, DEC

circus/dumbo, CRAY 2, Sequent Balance, Alliant
FX, Encore Multimax, Warp Systolic Array, etc…

 These machines were hard to program

 The language supported the streaming/vector
style + coarse task model of the Crays and
the fine grained active memory of
experimental dataflow machines
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The Death of Sisal

 The project had several near death
experiences and suffered a steady
funding decline and the loss of
industrial partners

 Funding was cut off in April 1996 (mid-
year)

 Coincided with the new emergence of
distributed memory “killer micros”
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Syntax and Semantics

 Single Assignment
 Side effect free
 Referencial Transparency
 Applicative rather than functional
 Groovy Pascal-like syntax
 Strongly (though implicitly) typed
 Implicit parallelism
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Hello World

define main

type string = array[character];

function main(returns string)
  “hello world!”
end function
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The LET functional form

function f(a,b,c,d : real returns real,real,real)
  let
    mean := (a+b+c+d)/4.0;
    % exp(a,b) means a**b,
    variance := exp(a-main,2) + exp(b-main,2) +
                        exp(c-main,2) + exp(d-main,2);
  in
      mean,variance,sqrt(variance)
  end let
end function
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The IF functional form

if x < 10 then
    x+5,f(y)
elseif x > 20 then
    x,g(y)
else
    x,0
end if



SIAM PP ’08

Loops with carried state
for initial
  i := 0;
  a := initialize(x,y);
  epsilon := 1e-6;
while err(a) < epsilon repeat
  a := evolve(old a);
returns
  value of a
  value of sum g(a)
  array of f(i,a)
end for
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Implicitly parallel loops

for a in x dot b in y
      term := a*b;
   returns value of sum term;
end for

for   x_row in x                          % for all rows of
x
   cross y_col in y_transposed  % all columns of
y
   returns array of dot_product(x_row, y_col)
end for
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99 bottles of beer
% ------------------------------------------------------------
% Produce one stanza of the 99 bottles of beer song. Some care
% is taken to keep it grammatical
% ------------------------------------------------------------
function BottlesOfBeer(i : integer returns array[string])
  let
    s,bottles,preface,n,nextbottles :=
    if i = 1 then
      "1"," bottle","If that bottle","No more"," bottles“
    elseif i = 2 then
      itoa(2)," bottles","If one of those bottles",itoa(1)," bottle“
    else
      itoa(i)," bottles","If one of those bottles",itoa(i-1)," bottles“
    end if;
  in
    array[1: s || bottles || " of beer on the wall", s || bottles || " of beer!",
         preface || " should happen to fall... ", n || nextbottles || " of beer on the wall!", "" ]
  end let
end function 
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Missing bits

 1st class functions
 No strings!
 No complex type
 No power operator (we use “exp”)
 Reductions

 Minat, maxat
 Histograms
 User defined

 Regular n-D arrays
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Ugly bits
 FIBRE I/O
 Extension/Embedding API
 Error value algebra and error handling
 For-initial form is awkward
 Let-in form can be awkward
 Array bounds algebra
 Stream implementations
 No mixed mode arithmetic
 Ugly to use math intrinsics
 Keyword heavy
 Case insensitivity
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The Intermediate Forms

 IF1 (pure dataflow)
 IF2 (dataflow with memory and artificially

enforced ordering)
 Structured type description
 Directed graphs with operations on nodes

and values on edges
 Simple nodes like IFPlus, IFCall, etc..
 Compound nodes like IFSelect, IFForall,

IFLoopA, IFLoopB
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IF1 Types
function main(x,y: integer; A : array[integer]
returns integer,integer)
  x+y*3,A[y]
end function

T 1 1 0    %na=Boolean
T 2 1 1    %na=Character
T 3 1 2    %na=Double
T 4 1 3    %na=Integer
T 5 1 4    %na=Null
T 6 1 5    %na=Real
T 7 1 6    %na=WildBasic
T 8 10
T 9 0 4                      % array[Integer]
T 10 8 9 0
T 11 8 4 10
T 12 8 4 11        % integer,integer,array[integer]
T 13 8 4 0
T 14 8 4 13        % integer,integer
T 15 3 12 14        % integer,integer,array[integer]  integer, integer
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IF1 Function body

X 15 "main" %sl=3 %sf=foo.sis
N 1 152 %sl=4 %sf=foo.sis
E 0 2 1 1 4  %na=y  %mk=V
%sl=4
L 1 2 4 "3"  %mk=V
N 2 105 %sl=5 %sf=foo.sis
E 0 3 2 1 9 %na=a  %mk=V %sl=4
E 0 2 2 2 4          %na=y  %mk=V %sl=4
N 3 141 %sl=4 %sf=foo.sis
E 0 1 3 1 4 %na=x %mk=V %sl=4
E 1 1 3 2 4 %mk=V

E 3 1 0 1 4 %mk=V
E 2 1 0 2 4 %mk=V
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As a dataflow graph…

X Y A

AElement

Plus

Times

function main(x,y: integer; A : array[integer]
returns integer,integer)
  x+y*3,A[y]
end function
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Optimizing compiler

 Developed at Colorado State by David
Cann (thesis) and extended by David
and Pat Miller at Livermore

 Consists of a Frontend to convert to the
intermediate form and then a six-pass
backend to generate executables
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OSC

 if1ld – merge separately compiled .if1 files
 if1opt – architecture independent

optimizations
 if2mem – add if2 buffers
 if2up – update in place analysis
 if2part – parallel (threaded) partitioning and

vectorization
 cgen – Final code generation
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Sisal Runtime

 Wild and woolly days before standards!
 Had to write our own thread-safe

malloc, thread pool, and
synchronization library
 Deallocation is tied to idle workers

 Needed a startup/shutdown to talk with
the FLI (Foreign language interface)
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Optimizations

 Many optimizations are easy in pure
functional code

 The error semantics allow free reordering
 Values are not tied to memory by the

language, only late in the implementation
 Simplifies vectorization, array-of-structs vs struct

of arrays
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CSE

 If two simple nodes have the same opcode
and input edges from the same sources, they
are identical and can be merged.   Period!

PLUS PLUS

TIMES

PLUS

TIMES
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Build-in-place
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Update-in-place
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Reference counts and copies
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Reference inheritance
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R/W set,node reorder, refcnt elim
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Some takeaways

 Late binding of memory and tight integration
of memory allocation with compiler are crucial
to getting high efficiency with implicit parallel
structures
 Compare to boost::shared_ptr<> or expression

templates

 Plenty of information is available to the
compiler

 Need to support legacy languages at least for
setup and and I/O support
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Sisal is alive

  http://sourceforge.net/projects/sisal/
 2,286 downloads
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Maintenance and future work

 SLAg (Sisal Lives AGain)
 Ground up rewrite and modernization
 C-like, single assignment syntax
 Interested in distributed processing

streams and splitting work with a GPU
co-processor

 It’s a hobby – don’t hold your breath 
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Closing thoughts…

 Being right doesn’t mean squat!
 In 1995 I predicted the only thing that could

save Sisal was a multithreaded game platform
or an SMP on everyone’s desktop 

 We learned many painful lessons in squeezing
efficient implementations out of dataflow
code. We published them too!  Remember to
look as far back as the early 1980’s.
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