
Retro dataflow: Accomplishments
of the Sisal Language Project

Pat Miller1

patmiller@users.sourceforge.net
John Feo2

Tom Deboni3

Current Affiliations: 1 D.E. Shaw Research 2 Microsoft Inc. 3 LBL/NERSC



SIAM PP ’08

Abstract

The Sisal Language Project was a joint effort by Lawrence
Livermore National Laboratory, Colorado State University, and
University of Manchester to develop a high performance
functional programming language for conventional parallel
computer systems.  The main project began in the early '80s and
concluded in 1996.  The project was successful in that many Sisal
programs ran as fast as their Fortran or C equivalent on parallel
systems of the time such as the SGI Challenge, multi-processor
VAXs, and Cray vector computers.  In this talk, we review the
language's syntax and semantics, optimizing compiler, and high-
performance runtime system.  We describe two critical
optimizations: memory pre-allocation and update-in-place.  We
conclude with comparative performance numbers, and give the
availability of reports and source code.



SIAM PP ’08

The birth of Sisal

 Sisal is a descendant of MIT’s VAL
[Akerman/Dennis79] and came to Livermore
Labs via Jim McGraw

 Was a joint project with LLNL, Colorado State
University, University of Manchester, and DEC

 We wanted to write implicitly parallel code in
a high level language since we believed that
you couldn’t trust programmers to create
correct parallel and vector code.



SIAM PP ’08

The birth (continued)

 Needed for novel parallel machines
 Denelcor HEP, Manchester Dataflow Machine, DEC

circus/dumbo, CRAY 2, Sequent Balance, Alliant
FX, Encore Multimax, Warp Systolic Array, etc…

 These machines were hard to program

 The language supported the streaming/vector
style + coarse task model of the Crays and
the fine grained active memory of
experimental dataflow machines



SIAM PP ’08

The Death of Sisal

 The project had several near death
experiences and suffered a steady
funding decline and the loss of
industrial partners

 Funding was cut off in April 1996 (mid-
year)

 Coincided with the new emergence of
distributed memory “killer micros”



SIAM PP ’08

Syntax and Semantics

 Single Assignment
 Side effect free
 Referencial Transparency
 Applicative rather than functional
 Groovy Pascal-like syntax
 Strongly (though implicitly) typed
 Implicit parallelism



SIAM PP ’08

Hello World

define main

type string = array[character];

function main(returns string)
  “hello world!”
end function



SIAM PP ’08

The LET functional form

function f(a,b,c,d : real returns real,real,real)
  let
    mean := (a+b+c+d)/4.0;
    % exp(a,b) means a**b,
    variance := exp(a-main,2) + exp(b-main,2) +
                        exp(c-main,2) + exp(d-main,2);
  in
      mean,variance,sqrt(variance)
  end let
end function



SIAM PP ’08

The IF functional form

if x < 10 then
    x+5,f(y)
elseif x > 20 then
    x,g(y)
else
    x,0
end if



SIAM PP ’08

Loops with carried state
for initial
  i := 0;
  a := initialize(x,y);
  epsilon := 1e-6;
while err(a) < epsilon repeat
  a := evolve(old a);
returns
  value of a
  value of sum g(a)
  array of f(i,a)
end for



SIAM PP ’08

Implicitly parallel loops

for a in x dot b in y
      term := a*b;
   returns value of sum term;
end for

for   x_row in x                          % for all rows of
x
   cross y_col in y_transposed  % all columns of
y
   returns array of dot_product(x_row, y_col)
end for



SIAM PP ’08

99 bottles of beer
% ------------------------------------------------------------
% Produce one stanza of the 99 bottles of beer song. Some care
% is taken to keep it grammatical
% ------------------------------------------------------------
function BottlesOfBeer(i : integer returns array[string])
  let
    s,bottles,preface,n,nextbottles :=
    if i = 1 then
      "1"," bottle","If that bottle","No more"," bottles“
    elseif i = 2 then
      itoa(2)," bottles","If one of those bottles",itoa(1)," bottle“
    else
      itoa(i)," bottles","If one of those bottles",itoa(i-1)," bottles“
    end if;
  in
    array[1: s || bottles || " of beer on the wall", s || bottles || " of beer!",
         preface || " should happen to fall... ", n || nextbottles || " of beer on the wall!", "" ]
  end let
end function 



SIAM PP ’08

Missing bits

 1st class functions
 No strings!
 No complex type
 No power operator (we use “exp”)
 Reductions

 Minat, maxat
 Histograms
 User defined

 Regular n-D arrays



SIAM PP ’08

Ugly bits
 FIBRE I/O
 Extension/Embedding API
 Error value algebra and error handling
 For-initial form is awkward
 Let-in form can be awkward
 Array bounds algebra
 Stream implementations
 No mixed mode arithmetic
 Ugly to use math intrinsics
 Keyword heavy
 Case insensitivity



SIAM PP ’08

The Intermediate Forms

 IF1 (pure dataflow)
 IF2 (dataflow with memory and artificially

enforced ordering)
 Structured type description
 Directed graphs with operations on nodes

and values on edges
 Simple nodes like IFPlus, IFCall, etc..
 Compound nodes like IFSelect, IFForall,

IFLoopA, IFLoopB



SIAM PP ’08

IF1 Types
function main(x,y: integer; A : array[integer]
returns integer,integer)
  x+y*3,A[y]
end function

T 1 1 0    %na=Boolean
T 2 1 1    %na=Character
T 3 1 2    %na=Double
T 4 1 3    %na=Integer
T 5 1 4    %na=Null
T 6 1 5    %na=Real
T 7 1 6    %na=WildBasic
T 8 10
T 9 0 4                      % array[Integer]
T 10 8 9 0
T 11 8 4 10
T 12 8 4 11        % integer,integer,array[integer]
T 13 8 4 0
T 14 8 4 13        % integer,integer
T 15 3 12 14        % integer,integer,array[integer]  integer, integer



SIAM PP ’08

IF1 Function body

X 15 "main" %sl=3 %sf=foo.sis
N 1 152 %sl=4 %sf=foo.sis
E 0 2 1 1 4  %na=y  %mk=V
%sl=4
L 1 2 4 "3"  %mk=V
N 2 105 %sl=5 %sf=foo.sis
E 0 3 2 1 9 %na=a  %mk=V %sl=4
E 0 2 2 2 4          %na=y  %mk=V %sl=4
N 3 141 %sl=4 %sf=foo.sis
E 0 1 3 1 4 %na=x %mk=V %sl=4
E 1 1 3 2 4 %mk=V

E 3 1 0 1 4 %mk=V
E 2 1 0 2 4 %mk=V



SIAM PP ’08

As a dataflow graph…

X Y A

AElement

Plus

Times

function main(x,y: integer; A : array[integer]
returns integer,integer)
  x+y*3,A[y]
end function



SIAM PP ’08

Optimizing compiler

 Developed at Colorado State by David
Cann (thesis) and extended by David
and Pat Miller at Livermore

 Consists of a Frontend to convert to the
intermediate form and then a six-pass
backend to generate executables



SIAM PP ’08

OSC

 if1ld – merge separately compiled .if1 files
 if1opt – architecture independent

optimizations
 if2mem – add if2 buffers
 if2up – update in place analysis
 if2part – parallel (threaded) partitioning and

vectorization
 cgen – Final code generation



SIAM PP ’08

Sisal Runtime

 Wild and woolly days before standards!
 Had to write our own thread-safe

malloc, thread pool, and
synchronization library
 Deallocation is tied to idle workers

 Needed a startup/shutdown to talk with
the FLI (Foreign language interface)



SIAM PP ’08

Optimizations

 Many optimizations are easy in pure
functional code

 The error semantics allow free reordering
 Values are not tied to memory by the

language, only late in the implementation
 Simplifies vectorization, array-of-structs vs struct

of arrays



SIAM PP ’08

CSE

 If two simple nodes have the same opcode
and input edges from the same sources, they
are identical and can be merged.   Period!

PLUS PLUS

TIMES

PLUS

TIMES



SIAM PP ’08

Build-in-place

A

AFill

1

ACat

A || array_fill(1,N,0)

N 0

A

AFillAT

1

ACatAT

N

0 ShiftBuf

MemAlloc

ASize
DefArrayBuf

Plus

ASize



SIAM PP ’08

Update-in-place

A

I

Areplace

A[i,j: 0,0], A[j,i]

J

0

AElement

AElement

I

AElement

AReplace

J

I



Reference counts and copies
A

I

Areplace

J

0

AElement

AElement

I

NoOp

AReplace

J

I

AElement

NoOp

cm=-1

cm=-1

cm=-1

sr=1

pm=3

pm=1
cm=-1

sr=1
pm=1

cm=-1

sr=1

sr=1
cm=-1

W
RO

W
RO

W

W

W



Reference inheritance
A

I

Areplace

J

0

AElement

AElement

I

NoOp

AReplace

J

I

AElement

NoOp

cm=-1

cm=-1

sr=1

pm=2

pm=1
cm=-1

sr=1

cm=-1

sr=1

sr=1
cm=-1

W
RO

W
RO

W

W

Wpm=0



R/W set,node reorder, refcnt elim
A

I

Areplace

J

0

AElement

AElement

I

NoOp

AReplace

J

I

AElement

NoOp

cm=-1

cm=0

sr=1

pm=0

pm=0
cm=0

sr=1
pm=1

cm=-1

sr=1

sr=1
cm=-1

W
RO

W
RO

W

W

W

NO



SIAM PP ’08

Some takeaways

 Late binding of memory and tight integration
of memory allocation with compiler are crucial
to getting high efficiency with implicit parallel
structures
 Compare to boost::shared_ptr<> or expression

templates

 Plenty of information is available to the
compiler

 Need to support legacy languages at least for
setup and and I/O support



SIAM PP ’08

Sisal is alive

  http://sourceforge.net/projects/sisal/
 2,286 downloads



SIAM PP ’08

Maintenance and future work

 SLAg (Sisal Lives AGain)
 Ground up rewrite and modernization
 C-like, single assignment syntax
 Interested in distributed processing

streams and splitting work with a GPU
co-processor

 It’s a hobby – don’t hold your breath 



SIAM PP ’08

Closing thoughts…

 Being right doesn’t mean squat!
 In 1995 I predicted the only thing that could

save Sisal was a multithreaded game platform
or an SMP on everyone’s desktop 

 We learned many painful lessons in squeezing
efficient implementations out of dataflow
code. We published them too!  Remember to
look as far back as the early 1980’s.



SIAM PP ’08

References and info

Ackerman, W.B. and J.B. Dennis. Val – A value oriented algorithmic language.
MIT Technical Report LCS/TR-218, MIT, Cambridge, MA, June 1979

Feo, J.T. and D.C. Cann and Rodney Oldehoeft. A report on the Sisal Language
Project. UCRL-102440. Journal of Parallel and Distributed Computing. 1990.

http://tamanoir.ece.uci.edu/projects/sisal/sisaltutorial

http://www.westnet.com/mirrors/99bottles/

I also have paper copies of all the seminal Sisal papers and
reports.  Most are also available from www.llnl.gov’s TID
(though many are missing)


