Advanced POWER Virtualization

on IBM (@server p5 Servers:
Architecture and Performance Considerations

Detailed description of the POWER5S
architecture

In-depth analysis of Advanced
POWER Virtualization features

~ .
Performance analysis
and application tuning

Ben Gibbs, Balaji Atyam,
Frank Berres, Bruno Blanchard,
Lancelot Castillo, Pedro Goelho,

Nicolas Guerin, Lei Liu,
Cesar Diniz Maciel, Carlos Sosa,
Ravikiran Thirumalai

ibm.com/redbooks Red h OOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Advanced POWER Virtualization on IBM @server
p5 Servers: Architecture and Performance
Considerations

November 2005

SG24-5768-01

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Second Edition (November 2005)

This edition applies to IBM @server p5 servers that include the POWERS5 microprocessor
architecture and the IBM AIX 5L Version 5.3 operating system.

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Notices iX
Trademarks e X
Preface Xi
The specialists who wrote thisredbook xii
Become a publishedauthor XV
Comments WelCome. XV
Chapter 1. Introduction. 1
1.1 Performance tuning redefined. L. 3
1.1.1 Understanding performance 3
1.1.2 Performance considerations 6
Chapter 2. IBM POWERS architecture 9
2.1 Introduction e 10
2.2 Chipdesigno 12
2.3 POWER5 enhancements 13
2.4 POWERS5 instruction pipelines 14
2.4.1 Instructionfetching 15
2.4.2 Branchprediction 16
2.4.3 Instruction decoding and preprocessingt 17
244 Groupdispatch 17
245 Registerrenaming.ttt 18
2.4.6 Instructionexecution. 19
2.5 Caches ... e 21
251 Level2(L2)cache.t 25
252 Level3(L3)cache. 27
2.5.3 Summary of cacheson POWERS. 30
2.5.4 Address translationresources. 30
2.6 Timingfacilities e 31
2.7 Dynamic power management 33
2.8 Processor Utilization Resource Register (PURR) 34
2.9 Large POWERS SMPS oo 36
210 SUMMaAIY . . oo e e e 40
Chapter 3. Simultaneous multithreading 41
3.1 Whatis multithreading?. 42
3.2 POWERS simultaneous multithreading features. 44
3.2.1 Dynamic switching of thread states. 46

© Copyright IBM Corp. 2005. All rights reserved. iii

3.2.2 Snooze and snooze delay. 47

3.3 Controlling priority of threads 49
3.3.1 Dynamic resource balancing (DRB) 49
3.3.2 Adjustable thread priorities 50
3.3.3 Thread priority implementation 52

3.4 Software considerations 55
3.4.1 Simultaneous multithreading aware scheduling 55
3.4.2 Thread prioriteson AIX5LV5.3. 56
3.4.3 Thread prioritieson Linux 58
3.4.4 Cacheeffects 58

3.5 Simultaneous multithreading performance 59
3.5.1 Engineering and scientific applications. 59
3.5.2 Simultaneous multithreading benchmarks 61

3.6 SUMMAIY . . .ot 71

Chapter 4. POWER Hypervisor. 73

4.1 POWER Hypervisor implementation............................. 76
4.1.1 POWER Hypervisorfunctions. 79
4.1.2 Micro-Partitioning extensions 85
4.1.3 POWER Hypervisordesign.t 87

4.2 Performance considerations i 90

Chapter 5. Micro-Partitioning.............. 93

5.1 Partitioning on the IBM eServerp5systems....................... 94

5.2 Micro-Partitioning implementation. 96
5.2.1 Virtual processor dispatching 104
5.2.2 Phantominterrupts 112

5.3 Performance considerations i 115
5.3.1 Micro-Partitioning considerations 116
5.3.2 Locking considerations 121
5.3.3 Memory affinity considerations o 126
5.3.4 Idle partition consideration 127
5.3.5 Application considerations in Micro-Partitioning 128
5.3.6 Micro-Partitioning planning guidelines 133

5.4 SUMMAIY . ..o e 142

Chapter 6. Virtual I/O. 143

6.1 Introduction e 144

6.2 POWER Hypervisor support forvirtual /O 145
6.2.1 Virtual /O infrastructure 147
6.2.2 Typesof connectionso e, 149

6.3 The IBM Virtual /O Server 152
6.3.1 Providing high availability support. 156

6.4 Virtual Serial Adapter (VSA)o 163

iv Advanced POWER Virtualization on IBM @server p5 Servers

6.5 Virtual Ethernet 164

6.5.1 Virtual LAN 164
6.5.2 Virtual Ethernet connections 169
6.5.3 Benefits of virtual Ethernet L. 170
6.5.4 Limitations and considerations 171
6.5.5 POWER Hypervisor switch implementation 171
6.5.6 Performance considerations 174
6.5.7 VLAN throughput at different processor entittements 176
6.5.8 Comparing throughput of VLAN to physical Ethernet........... 178
6.5.9 Comparing CPU utilization 180
6.5.10 Comparing transactionrateandlatency 182
6.5.11 VLANperformancet 183
6.5.12 VLAN implementation guidelines 185
6.6 Shared Ethernet Adapter. i 186
6.6.1 Shared Ethernet Adapter performance. 190
6.6.2 Request/response timeandlatency 193
6.7 Implementation guidelines. 196
6.7.1 Guidelines for Shared Ethernet Adapter sizing. 197
6.7.2 Guidelines for physical Ethernet sizing. 202
6.7.3 Control of threading in the Shared Ethernet Adapter 204
6.8 Virtual SCSI. 205
6.8.1 Clientand serverinteraction............. 209
6.8.2 AIX 5L V5.3 device configuration for virtual SCSI. 210
6.8.3 Interpartition communication. L. 212
6.8.4 Diskconsiderations. i 215
6.8.5 Configuringforredundancy. 217
6.8.6 Performance considerations 220
6.8.7 Sizingavirtual SCSlserver 226
B.9 SUMMANY . . . o 230
Chapter 7. AIX 5L Version 5.3 operating system support............ 233
7.1 Introduction 234
711 ProCeSSOrS . .t e 234
7.1.2 Dynamic re-configuration 239
7.1.3 Existing performance commands enhancement. 239
7.1.4 New performancecommands.c. i, 248
7.1.5 Paging Spacet e 251
7.1.6 Logical Volume Manager (LVM) 252
7.1.7 Virtual local area network (VLAN). 254
7.1.8 EtherChannel 255
7.1.9 Partition Load Manager. i 255
Chapter 8. POWERS system performance 257

Contents v

Vi

8.1 Performance commands.ttt 258

8.1.1 lparstatcommand 258
8.1.2 mpstatcommand. 264
8.1.3 vmstatcommand. 268
8.1.4 iostatcommand. 270
8.1.5 sarcommand 272
8.1.6 topascommand. 275
8.1.7 xmperfcommand 278
8.2 Performance tuningapproach. 283
8.2.1 Global performance analysis. i, 283
8.22 CPUaANalysis. e 289
8.2.3 Memory analysis. 294
8.2.4 Disk /O analysis« 296
8.2.5 Network /O analysis., 304
Chapter 9. Applicationtuning 311
9.1 Performance bottlenecks identification 312
9.1.1 Time commands, time utilities, and time routines 314
9.2 Tuning applications using only the compiler 317
9.2.1 Compiler briefoverview. 317
9.2.2 Mostcommonlyusedflags 321
9.2.3 Compiler directives for performance 327
9.2.4 POWERS compilerfeatures 332
9.3 Profiling applications 336
9.3.1 Hardware performance monitor 336
9.3.2 Profiling utilities 343
9.4 Memory management e 350
9.5 Optimization of critical sectionsinthecode 351
9.5.1 General rules for optimization strategies. 353
9.5.2 Arrayoptimization. 353
9.5.3 Loop optimization 355
9.6 Optimized libraries. 360
9.6.1 MASS Library 361
9.6.2 ESSLIlibrary 368
9.7 Parallel programming generalconcepts 370
Chapter 10. Partition Load Manager 373
10.1 When and how should | use Partition Load Manager? 374
10.1.1 Partition Load Manager and other load-balancing tools 374
10.1.2 When to use Partition Load Manager 376
10.1.3 How to deploy Partition Load Manager. 382
10.2 More about Partition Load Manager installation and setup.......... 383
10.2.1 Overview of Partition Load Manager behavior 383

Advanced POWER Virtualization on IBM @server p5 Servers

10.2.2 Management versus monitoringmodes 385

10.2.3 Configuration fileandtunables 386
10.3 Managing and monitoring with Partition Load Manager 390
10.3.1 Managing multiple partitions 391
10.3.2 Extratips about the xlplmcommand. 392
10.3.3 Examples of Partition Load Manager commands output 393
10.4 Partition Load Manager performance impact 396
10.4.1 Partition Load Manager resource requirements 396
10.4.2 Partition Load Manager impact on managed partitions. 397
Related publications 401
IBM RedbOOKS 401
Other publications e 402
ONliNE rESOUICES . . . ottt e e e e e e e 402
HowtogetIBM Redbooks 403
Help from IBM e e 403
INdeX ... e 405

Contents vii

viii Advanced POWER Virtualization on IBM @server p5 Servers

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in

© Copyright IBM Corp. 2005. All rights reserved. iX

any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

@server® HACMP™ POWER4+™
@server® IBM® POWER5™
ibm.com® Lotus® PTX®
iSeries™ Micro-Partitioning™ Redbooks™
i5/OS™ Perform™ Redbooks (logo)™
pSeries® Power Architecture™ RS/6000®
zSeries® PowerPC Architecture™ Tivoli®

AIX 5L™ PowerPC® TotalStorage®
AIX® POWER™ Tracer™
Domino® POWER2™ WebSphere®
DB2® POWER3™

Electronic Service Agent™ POWER4™

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

X Advanced POWER Virtualization on IBM @server p5 Servers

Preface

This IBM® Redbook provides an insight into the performance considerations of
Advanced POWER™ Virtualization on the IBM System p5 and IBM @server p5
servers. It discusses the major hardware, software, benchmarks, and various
tools that are available.

This book is suitable for professionals who want a better understanding of the
IBM POWER5™ architecture and Micro-Partitioning™ that is supported by the
IBM System p5 and @server p5 servers. It targets clients, sales and marketing
professionals, technical support professionals, and IBM Business Partners.

The Advanced POWER™ Virtualization feature is a combination of hardware and
software that supports and manages the virtual I/O environment on
POWERS5™-based systems. The main technologies are:

» POWERS microprocessor architecture with simultaneous multithreading
support

» Micro-Partitioning™

» Virtual SCSI Server

» Virtual Ethernet

» Shared Ethernet Adapter

» Partition Load Manager

This redbook is intended as an additional source of information that, together
with existing sources referenced throughout this document, enhances your

knowledge of IBM solutions for the UNIX® marketplace. It does not replace the
latest marketing materials and tools.

While the focus in this publication is IBM @server p5 hardware and the AIX®
5L™ operating system, the concepts and methodology can be extended to the
i5/0S™ and Linux® operating systems as well as the IBM System p5 and IBM
@server i5 platform.

A basic understanding of logical partitioning is required.

© Copyright IBM Corp. 2005. All rights reserved. Xi

The specialists who wrote this redbook

This redbook was the result of two separate residencies and was made up of
specialists from around the world working at the International Technical Support
Organization, Austin Center.

Ben Gibbs is a Senior Consulting Engineer with Technonics, Inc.
(http://www.technonics.com) in Austin, Texas. He has more than 20 years of
experience with UNIX-based operating systems and started working with the AIX
operating system in November 1989. His areas of expertise include performance
analysis and tuning, operating system internals, and device driver development
for the AIX and AIX 5L™ operating systems. He was the project leader for this
IBM Redbook.

Dr. Balaji Atyam has been a Senior Software Engineer in the Systems and
Technology Group of IBM since 2000. His responsibilities are porting,
benchmarking, performance tuning, parallel programming, and technical
consulting services to key Independent Software Vendors in the area of High
Performance Computing on IBM @server systems. He received his Ph.D. in
Applied Mathematics from Indian Institute of Technology, Roorkee, India. He was
a Scientist/Engineer for the Indian Space Research Organization (ISRO) prior to
joining IBM.

Frank Berres is a Senior Architect with SerCon GmbH in Germany. SerCon is an
IBM company that is assigned to IBM Business Consulting Services (BCS).
Frank has more than five years of experience in IT consulting and support on
AlX-based systems. He holds a degree in Electrical Engineering from the
University of Applied Sciences in Bingen, Germany.

Bruno Blanchard is a Certified IT Specialist working for IBM France in the IGS
Strategy Design and Authority team in La Gaude. He has been with IBM since
1983, starting as a System Engineer for VM. He started working with AIX in
1988, using AIX 5L on the IBM RT/PC, PS/2, RS/6000®, SP/2, and pSeries®. He
has written many Redbooks™, and is currently working as an Architect in
projects deploying @server cluster 1600 and pSeries servers infrastructures for
server consolidation and on demand environments.

Lancelot Castillo is an IBM Certified Advanced Technical Expert — pSeries and
AIX 5L. He works as a pSeries Product Manager at Questronix Corporation, an
IBM Business Partner in the Philippines, and has more than six years of
experience in AIX and pSeries servers. Castillo holds a Bachelor’s degree in
Electronics and Communications Engineering from Mapua Institute of
Technology. His areas of expertise include AIX performance tuning and sizing,
RS/6000 SP, and HACMP™,

Xii Advanced POWER Virtualization on IBM @server p5 Servers

http://www.technonics.com

Pedro Coelho is an IT Specialist with IBM Global Services in Portugal. He has
five years of experience in AlX, AIX 5L, and Linux in the area of post-sales
support and services. He holds a degree in Computer Science from COCITE,
Lisbon. His areas of expertise include HACMP and performance analysis and
tuning. He is also working with IBM Learning Services teaching beginners and
advanced classes on AIX 5L and Linux.

Nicolas Guerin is an IT Specialist working for IBM France in La Gaude. He has
eight years of experience in the Information Technology field. His areas of
expertise include AlX and AlIX 5L, system performance and tuning, HACMP,
pSeries, SP, ESS, and SAN. He has worked for IBM for 10 years and is an IBM
Certified Advanced Technical Expert - pSeries and AIX 5L. This is his second
redbook.

Lei Liu is a Senior IT Specialist working for IBM China at the Technical Sales
Support Center in Beijing, where she is responsible for large-account support for
telecom clients, including both pre-sale and post-sale technical support. She has
more than 13 years of working experience on UNIX systems. She joined IBM in
1998, and her areas of expertise include AlX and AlX 5L, system performance
analysis and tuning, and HACMP. She is an IBM Certified Advanced Technical
Expert - pSeries and AIX 5L.

Cesar Diniz Maciel is a Certified IT Specialist with the pSeries division in IBM
Brazil. He works in pre-sales technical support for pSeries, AIX 5L, and Linux on
pSeries, and is a Regional Designated Specialist for Latin America for High End
systems and Linux on pSeries. He has worked for IBM since 1996. He has nine
years of experience on AlX, AIX 5L, and pSeries systems and holds a degree in
Electrical Engineering from UFMG, Belo Horizonte.

Dr. Carlos Sosa is a Senior Technical Staff Member in the Systems and
Technology Group of IBM, where he has been a member of the Chemistry and
Life Sciences high-performance effort since 2001. For the past 18 years, he has
focused on scientific applications with emphasis in Life Sciences, parallel
programming, benchmarking, and performance tuning. He received a Ph.D.
degree in Physical Chemistry from Wayne State University and completed his
post-doctoral work at the Pacific Northwest National Laboratory. His area of
interest is future POWER architectures and cellular molecular biology.

Ravikiran Thirumalai is a Software Engineer at IBM India Software Labs. He
works for the IBM Linux Technology Center as a kernel developer for the baseOS
team. His main areas of interest in the kernel are SMP scalability, locking
algorithms, lock-free techniques, and the virtual file system. He has worked in the
IT industry for more than 6 years and holds a Bachelor’'s degree in Electrical and
Electronics engineering from Bangalore University and an MS in Software
Systems from BITS Pilani.

Preface xiii

Thanks to the following people for their contributions to this project:

IBM Austin

Bret Olszewski, Dr. Joel Tendler, Larry Brenner, Luke Browning, Herman D.
Dierks, Octavian F. Herescu, Bruce D. Hurley, Harry Mathis, Sujatha Kashyap,
Bob Kovacz, Kiet H. Lam, Stephen Nasypany, Frank O’Connell, Tony Ramirez,
Sergio Reyes, Jorge D Rodriguez, Luc Smolders, Mysore Srinivas, Suresh
Warrier, Erin Burke

IBM Atlanta
Tommy Todd

IBM Brazil
Claudio Garrido, Leonardo Vidal

IBM Dallas
Hari Reddy

IBM Mount Laurel
David Chisholm

IBM Poughkeepsie
David Wootton

IBM Raleigh
Matthew Cali

IBM Somers
Jim McGaughan

IBM Toronto
Robert Enenkel, Arie Tal

IBM Watson
David Klepacki, James B. Shearer

Groupe Bull France
Jez Wain

Technonics, Inc.
Sandra Lopez-Martin

Xiv Advanced POWER Virtualization on IBM @server p5 Servers

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will team with IBM technical professionals,
IBM Business Partners, and/or clients.

Your efforts will help increase product acceptance and client satisfaction. As a
bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments

about this or other Redbooks in one of the following ways:

» Use the online Contact us review redbook form found at:
http://www.redbooks.ibm.com/

» Send your comments in an e-mail to:
redbook@us . ibm.com

» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 905

11501 Burnet Road

Austin, Texas 78758-3493

Preface Xxv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/contacts.html

xvi Advanced POWER Virtualization on IBM @server p5 Servers

Part 1

Virtualization
technology

In this part, we provide an in-depth look at the technology behind the
virtualization capabilities of the IBM @server p5 systems. Detailed information is
provided about the IBM POWERS microprocessor architecture, the POWER
Hypervisor, simultaneous multithreading, Micro-Partitioning, and virtual I/O.

© Copyright IBM Corp. 2005. All rights reserved. 1

2 Advanced POWER Virtualization on IBM @server p5 Servers

Introduction

This book takes an in-depth look at the performance considerations of the

IBM @server p5 servers, advancing the concepts and terminology provided in
the redbook entitled Advanced POWER Virtualization on IBM eServer p5
Servers: Introduction and Basic Configuration, SG24-7940. If you are not familiar
with the terminology and concepts of virtualization, we strongly suggest that you
read that book before starting the material in this book, as this book assumes
that you are already familiar with the concepts of virtualization.

As a quick review, the following terms are defined here:

Virtualization The pooling of system resources via the POWER
Hypervisor to access processors, memory, and 1/0
devices across logical partitions

POWER Hypervisor Supports partitioning and dynamic resource movement
across multiple operating system environments

Micro-Partitioning Enables you to allocate less than a full physical
processor to a logical partition

Virtual LAN Provides network virtualization capabilities that enable
you to prioritize traffic on shared networks

Virtual I/0 Provides the ability to dedicate I/O adapters and devices
to a virtual server, enabling the on demand allocation
and management of 1/0 devices

© Copyright IBM Corp. 2005. All rights reserved. 1

2

Capacity on Demand Enables inactive processors and memory to be activated
on an as-needed basis

Simultaneous multithreading
Enables applications to increase overall resource
utilization by virtualizing multiple physical CPUs through
the use of multithreading

Why would the information presented in this book be of importance to you?
Some of the reasons are:

Reduce costs by increasing asset utilization.

Re-deploy talent to manage your business, not the infrastructure.
Rapidly provision new servers.

Drive new levels of IT staff productivity.

Simplify server management and operations.

Communicate more securely with virtual Ethernet.

vyVyVYyVvYyYVvYyyYy

The IBM @server p5 family of servers includes powerful new capabilities such
as the partitioning of processors to 1/10th of a processor, sharing processor
resources in a pool to drive up utilization, sharing physical disk storage and
communications adapters between partitions, and taking advantage of
cross-partition workload management, to mention a few.

Upcoming chapters include an in-depth discussion about each component that
makes up the new IBM capabilities available on the POWERS5 family of systems,
such as POWER Hypervisor, simultaneous multithreading, Micro-Partitioning,
virtual LAN, and Virtual I/O.

We hope that by the end of this book you will have a more complete
understanding of virtualization as it applies to the POWERS5 architecture and the
@server p5 systems.

Advanced POWER Virtualization on IBM @server p5 Servers

1.1 Performance tuning redefined

With the advent of this new technology and functionality, our traditional concepts
and methods of system and applications performance tuning must accommodate
the virtual dimension. In addition to defining and explaining these concepts and
methods, this book also covers traditional performance issues as well as
performance as a function of a system environment with virtual capabilities.

1.1.1 Understanding performance

Technological improvements in microprocessors, disks, and networking
equipment have dramatically changed the landscape of server computing. While
those improvements have more often than not reduced the incidence of
performance problems in client environments, they have also increased the
capabilities of systems such that more complex problems may be solved. Thus,
performance tuning has tended to change in nature from simple hardware and
software bottleneck analysis toward evaluation of more complex interactions.
Performance evaluation and tuning of complex systems requires discipline and
exactness. Frequently, the solution to a problem is not obvious. Often the steps
along the journey toward the solution may seem inconclusive or even
counterproductive. But, with a systematic rigor, nearly every bottleneck can be
alleviated in some way. To help the reader achieve the goal of making system
tuning rewarding and beneficial, we have dedicated one chapter to provide you
with tools to help in the effort.

In addition, it is important to note that performance tuning can be subdivided into
system tuning and application tuning. The objectives of these two tuning areas
are very different. System tuning relies on the ability to modify system
parameters in order to provide faster throughput measurements. This throughput
consists of the amount of work performed over a period of time and normally
corresponds to a series of identical or different jobs running simultaneously and
competing for the same system resources. Application tuning looks at the source
code for a particular application and requires tailoring or optimizing the code to a
particular architecture or common architectural features.

An IBM @server p5 system is subjected to various types of loads. The load can
vary widely depending on the number of applications used and the type of
applications being run. Obviously the number of loads and type of applications
will vary widely over the period of the server’'s working life. Consequently,
changes have to be made to the server’s hardware and software setup to
accommodate these changing conditions. Applications require tuning as well.

System administrators often refer to any degradation of service as a bottleneck in
the server system. Bottlenecks must be understood and compensated for if the

Chapter 1. Introduction 3

system administrators are to keep the users satisfied with performance. Similarly,
programmers must identify bottlenecks within the source code of certain
applications that form part of the system load.

System tuning

Within a server there are limited resources that can affect the performance of a
given system. Each of these resources work together hand-in-hand and are
capable of influencing the behavior of one another. If performance modifications
are not carefully administered, the overall effect could be a deterioration of server
performance.

Here we distinguish between three types of resources:
» Logical resources

The resources as seen by the operating system. For example, a central
processing unit (CPU) may be available to the operating system as cpu0, but
it may not be the first CPU installed in the system. The operating system
could be installed in the third partition of the system and using the third
physical CPU in the system as cpu0.

» Virtual resources

The resources that appear to be available for the operating system to use. For
example, virtual storage provides the appearance that there is more memory
available than is actually installed in the system. With the use of paging
space, the operating system no longer has to be limited by the amount of
physical memory installed in the system.

» Physical resources

The actual hardware resources found in the system, such as processors,
memory, disk drives, and network adapters. The efficiency of the operating
system will maximize the hardware performance.

As server performance is distributed throughout each server component and
type of resource, it is essential to identify the most important factors or
bottlenecks that will affect the performance for a particular activity.

Detecting the bottleneck within a server system depends on a range of factors
such as:

» Configuration of the server hardware

Software applications workload

Configuration parameters of the operating system
Network configuration and topology

vYvyy

File servers need fast network adapters and fast disk subsystems. In contrast,
database server environments typically produce high processor and disk

4 Advanced POWER Virtualization on IBM @server p5 Servers

utilization, requiring fast processors or multiple processors and fast disk
subsystems. Both file and database servers require large amounts of memory for
caching by the operating system.

Traditionally there has been a simplified approach to performance tuning: If the
performance bottleneck is the processor, then either a faster processor or more
processors could be installed. An alternative to processor upgrade is to offload
processing requirements by using workload management techniques. If the
bottleneck is memory, then additional memory could be installed. Memory
bottlenecks often result in excessive disk I/O as a result of paging (swapping)
between paging space and memory. If the bottleneck is the disk subsystem, then
either additional disk drives, disk adapters, or both can be installed. In addition, a
specialized high-performance disk subsystem could be used. If the bottleneck is
the network adapter then a faster network interface could be installed. Another
optimization technique that can be employed is to utilize multiple network
adapters in the server increasing throughput onto one or multiple segments.

Before any tuning is actually performed, it is worth understanding the framework
within which performance testing is done. Follow a set of simple guidelines to
assist in any type of performance analysis.

There are many trade-offs related to performance tuning that have to be
considered. In order to chose the best set of options it is vital to ensure that there
is a balance between them. The trade-offs are:

» Cost versus performance. In some situations, the only way performance can
be improved is by using more or faster hardware while keeping in mind, “Does
the additional cost result in a proportional increase in performance?”

» Conflicting performance requirements. When more than one application is
used simultaneously, there may be conflicting performance requirements.

» Speed versus functionality. Here, for example, resources may be increased to
improve a particular section, but serve as an overall detriment to the system.
Using a methodical approach you can obtain improved server performance,
such as by:

— Understanding the factors that can affect server performance, for the
specific server functional requirements and for the characteristics of the
particular system

— Measuring the current performance of the server
— Identifying a performance bottleneck
— Upgrading the component that is causing the bottleneck

Chapter 1. Introduction 5

— Measuring the new performance of the server to check for improvement

Although we cover this material in this book, additional information may be found
in this redbook: AIX 5L Performance Tools Handbook, SG24-6039.

Application tuning

Application tuning (or application optimization) requires careful analysis of the
source code to tailor it to a particular hardware architecture. In other words, it is
the goal of the programmer to make the application aware of the hardware
features that are accessible to the application. For instance, we shall see in the
applications tuning chapter how to optimize do loops to take advantage of the L2
cache on @server p5 architectures.

We shall see that, in general, any tuning that we carry out at the application level
will leverage systems with and without virtual environments. The following
redbooks cover this subject on POWER3™ and POWER4™:

» RS/6000 Scientific and Technical Computing: POWERS3 Introduction and
Tuning Guide, SG24-5155

» The POWER4 Processor Introduction and Tuning Guide, SG24-7041

1.1.2 Performance considerations

The goal of virtualization is to allow the deployment of resources in a flexible
manner. This flexibility enables best use of resources and, when correctly used,
should improve performance and the end-user experience. However,
virtualization alters the way we look at system performance. We still follow the
same rules for identifying existing or potential bottlenecks, but the remedy can be
different and difficult to obtain. Virtualization is a flexible resource model for the
on demand world. The focus here is more on increasing resource utilization and
responding to changing workloads. Resources are dynamically allocated,
including fractional, on an as-needed basis. Capacity on Demand (CoD) enables
the allocation of additional resources as needed, and Workload Manager (WLM)
enables the optimization of resources to respond to changing workloads.

This book follows the model of a system consisting of four major subsystems:
processor complex, memory hierarchy, storage model and network topology.

» Beginning with Chapter 2, “IBM POWERS5 architecture” on page 9, an
in-depth look at the IBM POWERS5 microprocessor architecture is provided.

» Chapter 3, “Simultaneous multithreading” on page 41 takes a detailed look at
the simultaneous multithreading feature of the POWERS5 microprocessor.

Application and system programmers will find the information in chapters 2
and 3 useful to their programming efforts.

6 Advanced POWER Virtualization on IBM @server p5 Servers

» Chapter 4, “POWER Hypervisor” on page 73 is dedicated to the POWER
Hypervisor™ and its role in the system.

» Chapter 5, “Micro-Partitioning” on page 93 provides detailed information
about Micro-Partitioning.

» Chapter 6, “Virtual I/0” on page 143 focuses on virtual input/output, which
includes virtual Ethernet, virtual SCSI, and the Shared Ethernet Adapter.
Part 2 of this book addresses performance tuning and application tuning:

» Chapter 7 looks at the support provided by the AIX 5L Version 5.3 operating
system and the changes to the performance analysis tools.

» Chapter 8 focuses on application tuning with information about compiler
options, profiling, memory management, and optimization techniques. This
chapter will benefit those who are involved in benchmarks and providing
solutions enablement.

» Chapter 9 looks at support provided by the Partition Load Manager and its
implementation into the virtualization model.

Chapter 1. Introduction 7

8 Advanced POWER Virtualization on IBM @server p5 Servers

IBM POWERS architecture

The POWERS5 system is the next generation of POWER processor-based
microprocessors. It builds on the IBM POWER4 architecture, providing new and
improved functional support designed to meet a variety of client needs and
requirements.

This chapter provides an in-depth overview of the POWERS5 design and
discusses various aspects of the functional enhancements that the POWERS5
system is designed to support. The chapter is intended to provide you with a look
at the POWERS microprocessor technology. It includes information about the
instruction pipelines and the L1, L2, and L3 caches.

© Copyright IBM Corp. 2005. All rights reserved. 9

2.1 Introduction

10

The POWERS processor is the latest 64-bit implementation of the PowerPC® AS
architecture (Version 2.02). This dual core processor with simultaneous
multithreading technology is fabricated using silicon-on-insulator (SOI) devices
and copper interconnects. SOI technology is used to reduce the device
capacitance and increase transistor performance. Wire resistance is lower in
copper interconnects and results in reduced delays in wire-dominated chip timing
paths. The chip is implemented using 130 nm lithography with eight metal layers
and a die that measures 389 mm?. The chip is made up of 276 million transistors.

The primary design objectives of POWERS5 technology are:

Maintain binary and structural compatibility with existing POWER4 systems
Enhance and extend symmetric multiprocessor (SMP) scalability

Continue superior performance

Provide additional server flexibility

Deliver power-efficient design

Enhance reliability, availability, and serviceability

vVvyyvyvyYyy

The POWERS5 microprocessor is downward binary compatible with all PowerPC
and PowerPC AS application-level code. The POWERS has been designed for
very high frequency operations with operating frequencies of up to 1.9 GHz.
POWERS consists of a deeply pipelined design with 16 stages for fixed-point
register-to-register operations, 18 stages for most load and store operations (with
L1 data cache hits), and 21 stages for most floating-point operations.

The processor exhibits a speculative superscalar inner core organization with
aggressive branch prediction, out-of-order issues, register renaming, a large
number of instructions in flight, and fast selective flush of incorrect speculative
fetched instructions and results. There has been a specific focus on storage
latency management where the core can issue out-of-order load operations with
support for up to eight outstanding L1 data cache line misses. There is
hardware-initiated or software-initiated instruction prefetching from the L2, L3,
and memory along with hardware-initiated data stream prefetching, and software
instruction prefetching based on branch prediction hints.

The POWERS5 architecture is an enhancement over the POWER4 architecture,
but it maintains binary and structural compatibility. The identical pipeline
structure enables complier optimizations targeted for POWER4 to work equally
well on POWERS5-based systems.

Each POWERS5 processor core is designed to support both simultaneous
multithreading and single-threaded modes. Software (an operating system using
POWER Hypervisor calls) can switch the processor from simultaneous
multithreading mode to single-threaded mode. Chapter 3, “Simultaneous

Advanced POWER Virtualization on IBM @server p5 Servers

multithreading” on page 41 offers detailed information about simultaneous
multithreading.

Figure 2-1 shows the layout of the POWERS processor.

EIEE piEE)
exmp Em

Figure 2-1 POWERS5 processor chip

FXU - Fixed-Point (Integer) Unit FPU - Floating-Point Unit

ISU - Instruction Sequencing Unit IDU - Instruction Decoding Unit
LSU - Load Store Unit IFU - Instruction Fetch Unit

L2 - Level 2 Cache L3 - Level 3 Cache Controller

MC - Memory Controller

Chapter 2. IBM POWERS5 architecture 11

2.2 Chip design

Two identical processor cores are found in a single POWERS chip. Figure 2-2
shows the high-level layout of a POWERS5 processor, including the L3 cache and
memory. Because of the dual-core design and support for simultaneous
multithreading (two hardware threads per core), a single POWERS5 chip appears
as a four-way microprocessor system to the operating system.

POWER5
Processor Processor
Core Core
L1 L1 L1 L1
I-Cache D-Cache I-Cache D-Cache
32B 32B "88 v
1.9 MB L2 Cache
Y | ! }
‘ L3 Dir/Control ‘ Fabric Controller
] i vhet § v 8
Memory Controller
/

A

36MB L3 Cache

Memory

Figure 2-2 High-level structure of POWER5

Simultaneous multithreading is a hardware multithreading1 technology that can
greatly improve the utilization of the processor’s hardware resources, resulting in
better system performance. Superscalar processors can issue multiple
instructions in a single cycle from a single code path (hardware thread), but
processors using simultaneous multithreading can issue multiple instructions
from multiple code paths (hardware threads) in a single cycle. POWERS5 provides
for two hardware threads per processor core. Hence, multiple instructions from

1Theterr’ninologymultithrecm’ingusedherereferstothehardwareexec:utionc>fthreadsprovidedona
processor core as used in the computer architecture community. It is not same as the software use of
the term.

12 Advanced POWER Virtualization on IBM @server p5 Servers

both the hardware threads can be issued in a single processor cycle on the

POWERS.

2.3 POWER5 enhancements

Table 2-1 shows a comparison between the POWER4 architecture and the
POWERS architecture. Most of the enhancements were made to accommodate
simultaneous multithreading support in the POWERS5 processors. (See

Chapter 3, “Simultaneous multithreading” on page 41.)

Table 2-1 Differences between POWER4 and POWER5

Unit

POWER4

POWERS

Instruction Fetch Unit (IFU)

Direct-mapped 64 KB
Level 1 Instruction Cache

Two-way 64 KB Level 1
Instruction Cache

4-entry direct mapped
prefetch buffer

Split, 2-entry per thread
prefetch buffer

16-entry Branch
Information Queue (BIQ)

Split, 8-entry per thread
BIQ

Branch prediction control

Replicated branch
prediction control

Link stack

Replicated link stack

Instruction Decode Unit
(IDU)

8-entry Instruction Fetch
Buffer (IFB)

6-entry IFB per thread

Instruction Issue Unit (ISU)

20-entry FIFO Gilobal
Completion Table (GCT)

20-entry linked list GCT

80 General Purpose
Registers (GPR), 72
Floating-point Registers
(FPR) mapper

120 GPR, 120 FPR
mapper

32-entry Condition
Register (CR) mapper

40-entry CR mapper

24-entry Fixed-point
Exception Register (XER)
mapper

32-entry XER mapper

20-entry Floating-point
Issue Queue (FPQ)

24-entry packed FPQ

Fixed-point Unit (FXU)

80-entry GPR

120-entry GPR

Chapter 2. IBM POWERS architecture

13

Unit

POWER4

POWERS5

Floating-point Unit (FPU)

72-entry FPR

120-entry FPR

Load/Store Unit (LSU)

32 K, two-way
set-associative Data
Cache

32 K, four-way
set-associative Data
Cache

128-entry two-way
set-associative Effective to
Real Address Translation
(ERAT)

128-entry fully associative
ERAT

64-entry Segment
Lookaside Buffer (SLB)

Replicated 64-entry SLB
per thread

32-entry Load Reorder
Queue (LRQ)

16-entry real and 16-entry
virtual LRQ per thread

32-entry Store Reorder
Queue (SRQ)

16-entry real and 16-entry
virtual SRQ per thread

8-entry Load Miss Queue
(LMQ)

8-entry LMQ with thread
control

One set of Special
Purpose Registers (SPR)

Replicated Special
Purpose Registers (SPRs)
with thread ID

L2

1.45 MB on chip

1.9 MB on chip

L3

16 MB Cache

36 MB, directory, controller
on-chip

The POWERS architecture provides for two threads of execution in parallel. To do
this, some of the processor resources had to be replicated. For example, the

16-entry Branch Information Queue (BIQ) in POWER4 has been split into two
8-entry queues, one per each thread.

2.4 POWERS instruction pipelines

The POWERS5 instruction pipeline can be subdivided into a master pipeline and
several different execution pipelines. Figure 2-3 on page 16 depicts the POWER5
instruction master pipeline. Each box in the diagram represents a pipeline stage.
The POWERS pipeline structure is very similar to the POWER4 pipeline
structure. Even the pipeline latencies including penalties for mispredicted
branches and load-to-use latencies for L1 data cache hits remain the same. This

14 Advanced POWER Virtualization on IBM @server p5 Servers

design lets the compiler optimizations designed for POWER4 to work equally well
on POWERS.

The master pipeline presents speculative in-order instructions to the mapping,
sequencing and dispatch functions, and ensures an orderly completion of the
real execution path. The master pipeline (in-order processing) throws away any
potential speculative results associated with mispredicted branches. The
execution pipelines allow out-of-order issuing of speculative and non-speculative
instructions. The execution unit pipelines progress independently from the
master pipeline and each other.

The POWERS5 processor consists of the following instruction pipeline features:
» Deeply pipelined design

— 16 stages of execution for most fixed-point (integer) register-to-register
operations. (IF to CP in Figure 2-3 on page 16)

— 18 stages for most load and store operations
— 21 stages for most floating-point operations
» Out of order issue of up to 8 instructions into 8 execution pipelines
— Two load or store instruction pipelines
— Two fixed-point instruction pipelines
— Two floating-point instruction pipelines
— One branch instruction pipeline
— One condition register operation instruction pipeline

2.4.1 Instruction fetching

In simultaneous multithreading, the POWERS core uses two separate Instruction
Fetch Address Registers (IFAR) to store the program counter for the two threads
from the same program or different programs. Instructions are fetched every
alternate cycle for each hardware thread (see IF - instruction fetch stage in
Figure 2-3 on page 16). In single-threaded mode, instructions are fetched from
the active thread every cycle, and the program counter corresponding to that
hardware thread is used. The POWERS5 core can fetch an eight-word (32-byte)
aligned block of eight instructions per cycle. Keep in mind that all instructions in
POWER and PowerPC are 32 bits (one word). The two threads share the
instruction cache and the instruction address translation facility (L1 I-cache and
I-ERAT). POWERS also provides a four-entry instruction prefetch queue above
the I-cache for hardware initiated prefetching. The first two entries of the
instruction prefetch queue are dedicated for thread 0 and the remaining two
entries for thread 1 regardless of whether the core is running in simultaneous
multithreading or single-threaded mode.

Chapter 2. IBM POWERS5 architecture 15

In-order Fetch, Decode and Dispatch

Out-of-order Execution

In-order

Completion
Branch redirection |
|
I
Branch/Condition Register Instructions
| TSHRFH] (W6]
: Load/Store Instructions
| [TSS]-{RF £ 1 oC W6 {1
| L
| Fixedpoint Instructions f 1|
! Group formation and I
! instruction decode . . . |
1 Floating-point Instructions |
|
. I
! I
! I
| |
| |
| |
| |
I Interrupts and flushes |
Figure 2-3 POWERS instruction pipeline

IF - Instruction Fetch IC - Instruction Cache Access

BP - Branch Prediction IFB - Instruction Fetch Buffers

D0-D3 - Decode Stages GXF - Group Transfer

GD - Group Dispatch MAP - Register Mapping

ISS - Instruction Issue RF - Register File Access

EX - Execution EA - Effective Address Generation

DC - Data Cache Access FMT - Data Formatting

WB - Write Back to Register FP1 - Floating-point Alignment and Multiply

FP2 - Floating-point Multiply FP3 - Floating-point Add

FP4 - Floating-point Add FP5 - Floating-point Normalize Result

FP6 - Floating-point Round Result XMT - Finish and Transmit

CP - Group Completion

2.4.2 Branch prediction

The eight fetched instructions are scanned for branch instructions each cycle (BP
stage in Figure 2-3). If branch instructions are found, the branch direction is
predicted using three Branch History Tables (BHT). The tables are shared by the
two threads, and two of the tables use bimodal and path-correlated branch
prediction mechanisms to predict branches. The third table is used as a selector
designed to predict which of these prediction mechanisms is more likely to
predict the right instruction path. The BP stage can predict all of the branches at
the same time in the fetched instruction group. If the fetched instructions contain

16 Advanced POWER Virtualization on IBM @server p5 Servers

multiple branches, the core logic has the capability to track up to eight
outstanding branches per thread in simultaneous multithreading and 16
outstanding branches in single-threaded mode. The core logic also predicts the
target of a taken branch in the current cycle’s eight instruction group. The target
address of most branches is calculated from the instruction’s address plus an
offset as described by the Power Architecture™ and PowerPC Architecture™.
For predicting targets of subroutine returns, the core logic uses a per-thread,
eight-entry Link Stack (return stack). For predicting targets of the bcctr (branch
conditional to address in the Count Register) instruction, a 32-entry target cache
shared by both the threads is used. If a branch is taken, the core logic loads the
program counter with the target address of the branch. If the branch is not
predicted as taken, the address of the next sequential instruction (current
instruction address + 4) is loaded into the program counter.

2.4.3 Instruction decoding and preprocessing

Instructions in the predicted path from BP stage are placed in the per-thread
Instruction Fetch Buffers (IFBs). This happens in the DO stage (see Figure 2-3
on page 16). The core has two 6-entry IFBs, one for each thread. Each IFB entry
can hold four instructions. Up to eight instructions can be placed in one of the two
IFBs every cycle. Up to five instructions can be taken out from either of the two
IFBs every cycle. Based on the thread priorities, instructions from one of the IFBs
are selected, split into internal instructions in some cases (instruction cracking),
and an instruction group is formed. This corresponds to the D1 to D3 stages.

Because instructions are later executed out of order, it is necessary to remember
the program order of all instructions in flight. Instruction groups are formed to
minimize the logic for tracking large numbers of instructions in flight. Groups of
these instructions are tracked instead. Care is taken during group formation so
that internal instructions that resulted from the cracking of an instruction do not
end up in different groups. All instructions in a group belong to the same thread
and are decoded in parallel. Each group can have a maximum of five instructions.

2.4.4 Group dispatch

The process of moving the instructions belonging to a group formed in the DO to
D3 stages into the issue queues is known as group dispatch (GD). Before a group
can be dispatched, the processor must ensure that resources required by the
instructions in the group are available:

» Each instruction in the group needs an available entry in an appropriate issue
queue.

» Each load instruction and store instruction needs an entry in the load reorder
queue and store reorder queue respectively to be able to detect out-of-order
execution hazards.

Chapter 2. IBM POWERS5 architecture 17

» Each dispatched group needs an available entry in the Global Completion
Table (GCT). The GCT is used to track the groups of five instructions formed
in the DO-D3 stage. The core logic allocates GCT entries in program order for
each thread.

When all of the necessary resources are available for the group, the group is
dispatched (GD stage). Note in Figure 2-3 on page 16 that the instruction flow
from the IF stage to the GD stage happens in program order.

2.4.5 Register renaming

18

To facilitate out-of-order and parallel execution of instructions in a group, the
architected registers (the ones specified in the instruction) are renamed by
utilizing a large physical register file provided in the core. Each register that is
renamed must have a corresponding physical register. The Rename Mapper
serves this purpose, and renaming takes place in the MAP stage of the
instruction pipeline. Example 2-1 shows a code example where register
renaming is needed in this parallel execution environment.

Example 2-1 Register renaming example

mulw r4, r5, r8 ; Multiply contents of GPR 5 to GPR8, result in GPR4
addi r5, r6, r7 ; Add contents of GPR6 and GPR7, result in GPR5
Twzx r7, rl, r9 ; Load 32-bit word at address determined by adding

; contents of GPR1 and GPR9 into GPR7

In this code example, the three instructions can execute in parallel. Referring to
Figure 2-3 on page 16, the mulw and addi instructions would be issued to the
fixed-point instruction pipelines (two fixed-point pipelines in each core) and the
Twzx instruction would be issued to the load/store pipeline. If GPR5 was not
remapped in the addi instruction during execution, it could change the source
operand for the mulw instruction if the mulw instruction would stall for some
reason. Rename registers are necessary for other situations in a parallel
execution (superscalar) environment such as supporting precise interrupts.
However, these discussions are beyond the scope of this book.

Table 2-2 on page 19 summarizes the rename resources that are available to the
POWERS core. For example, the compiler has 32 GPRs that are available for
integer operations in the program. The POWERS5 core has a total of 120 registers
for renaming. With simultaneous multithreading, both threads can dynamically
share the physical register files (rename resources). Instruction-level parallelism
exploited for each thread is limited by the physical registers available for each
thread. Certain workloads such as scientific applications exhibit high instruction-
level parallelism. To exploit instruction-level parallelism of such applications, the

Advanced POWER Virtualization on IBM @server p5 Servers

POWERS makes all of the physical registers available to a single thread in
single-threaded mode, enabling higher-instruction level parallelism.

Table 2-2 Rename resources in the POWERS5 core

Resource type

Available to each thread

Physically in the core

GPRs 32 (369 120
FPRs 32 120
XER 4 fields® 32
CTR 2 16
LR 2 16
CR 8 (9°) 4-bit fields 40
FPSCR 1 20

a. The POWERS5 architecture uses four extra scratch registers known as eGPRs
and one additional 4-bit CR field known as eCR for instruction cracking and group-
ing. These are not the architected registers and are not available for the program-

ming environment.

b. The XER has four mappable fields and one non-mappable field per thread.
c. Eight CR fields plus one non-architected eCR field for instruction cracking and

grouping.

2.4.6 Instruction execution

After the MAP stage, instructions enter the issue queues shared by the two
threads. These issue queues feed the execution pipelines.

Each POWERS5 processor core contains:

» Two fixed-point (integer) execution pipelines®

— Both capable of basic arithmetic, logical, and shifting operations

— Both capable of multiplies

— One capable of divides and the other capable of Special Purpose Register

(SPR) operations

» Two 6-stage load/store execution pipelines

» Two 9-stage floating-point execution pipeline (6-stage execution)

— Both capable of the full set of floating-point instructions

— All data formats supported in hardware including IEEE 754

2 Figure 2-3 on page 16 does not illustrate the number of execution units. See Figure 2-4 on page 21

instead.

Chapter 2. IBM POWERS5 architecture 19

» One branch execution pipeline
» One condition register logical pipeline

The following instruction issue queues are built into the POWERS core:

» Combined, two 18-entry issue queues to feed the fixed-point and load/store
execution pipelines

» Two 12-entry issue queues to feed the floating-point execution pipelines
» One 12-entry issue queue for branch execution pipeline
» One 10-entry issue queue for condition register logical execution pipeline

In summary, each POWERS5 processor core has eight execution units, each of
which can issue instructions out of order, with bias toward the oldest instructions
first. Each execution unit can issue an instruction each cycle and complete an
instruction every cycle. Keep in mind that the total latency of an instruction
depends on the number and nature of each pipeline stage of execution.

Instructions in the issue queue become eligible for issue when all of the input
operands for that instruction become available. The issue logic selects an eligible
instruction from the issue queue and issues it (ISS stage). While in simultaneous
multithreading mode, the issue logic does not differentiate between instructions
from the two threads. Therefore, instructions from either of the threads can be
issued at any given time, simultaneous to the execution units, thus making the
core truly simultaneous multi-threaded. Upon issue of an instruction, the source
operand registers for that instruction are read (RF stage), executed on the proper
execution unit (EX stage), and results written back to the target register (WB
stage). In each load/store unit (LSU), an adder is used to compute the effective
address to read from (load) or write to (store) in the EA stage, and the data cache
is subsequently accessed in the DC stage. For load instructions, when data is
returned from the data cache, a formatter selects the correct bytes from the
cache line (FMT stage) and writes them to the register (WB stage).

When all of the instructions in a group have executed without generating an
exception and the group is the oldest of a given thread, the group is completed
(CP stage). Completion is when the results are moved from the temporary
rename registers into the registers that are specified in the program. The
processor core can complete two groups per cycle, one from each thread. The
GCT entry allocated to the group during the GD stage is deallocated when the
group is committed. Each POWERS5 processor core has a 20-entry GCT shared
by the two threads. Figure 2-4 on page 21 provides some additional detail.

20 Advanced POWER Virtualization on IBM @server p5 Servers

- — Cynamic
| Branch pradiction J instruction
1 1 r f salaction
I Shared

Shared

[z [ey —=t
Anemm“b"“ MO0 |0 2 [0, o=
o] LD [IITD) | | OTTTD 50 IID)
Instrtlj:)cltbn d:coda—-: - —— . — * co‘:\";:gon qsut:u";
ispetc
LT O | T eem
L T (L %1
Sharad- Read
register sharad- shared
mappars registar files register files

[shared by two threads [] Thraad O resowrces [0 Thised 1 rescurcas |

Figure 2-4 POWERS instruction and data flow

2.5 Caches

The POWERS microprocessor contains up to three levels of cache hierarchy. The
level 1 (L1) cache employs a Harvard cache organization in which instructions
are separate from the data. The L1 instruction cache is 64 KB and the L1 data
cache is 32 KB in size. The L1 caches are private to each processor core. The
cache line size for both caches is 128 bytes. In simultaneous multithreading, the
caches are shared by the two hardware threads running in the core.

Both processor cores in a chip share a 1.9 MB unified level 2 (L2) cache. The
processor chip houses a level 3 (L3) cache controller that provides for an L3
cache directory on the chip. However, the L3 cache itself is on a separate
Merged Logic DRAM (MLD) cache chip. The L3 is a 36 MB victim cache of the L2
cache. The L3 cache is shared by the two processor cores in the POWERS5 chip.
Needless to say, the L2 and L3 caches are shared by all of the hardware threads
of both processor cores on the chip. Table 2-3 on page 30 lists the cache
characteristics of the POWERDS processor architecture.

L1 instruction cache

The 64 KB L1 instruction cache is two-way set associative cache for instructions
of programs running in the core. This cache uses a least recently used (LRU)
replacement policy and is indexed using 15 bits of the effective address, as
shown in Figure 2-5 on page 24. The 15 bits consist of a 7-bit byte offset and an
8-bit set number. Two-way set associative refers to the fact that there are two
address comparators per each set. For any address in memory, the item being

Chapter 2. IBM POWERS5 architecture 21

22

referenced has a predetermined set membership in the cache. Instructions are
not fetched on an individual basis from memory as this would be very inefficient.
An instruction cache line is fetched from memory. The size of a cache line in the
instruction cache is 128 bytes (32 instructions) and is aligned on a 128-byte
boundary. Therefore, as shown in Figure 2-5 on page 24, the right-most seven
bits (bits 25:31) of the effective address represent the byte offset within the cache
block. Based on bits 17 to 24 of the effective address, the line that comes from
memory is placed into one of the two ways for the specified set number based on
the LRU replacement policy.

When instructions are fetched from the cache, the address of the requested
instruction is compared to the addresses in each of the two ways at the specified
set number. If the address matches one of the ways, then it is considered to be a
cache hit and the requested instructions are returned to the fetch unit. If a cache
miss occurs, the instructions have to be obtained from one of the other memories
in the hierarchy.

For both the instruction cache and the data cache the bus width to the L2 cache
is 256 bits (32 bytes). Therefore it takes a minimum of four “beats” or cycles to
transfer the 128-byte cache line. Each 32-byte beat is referred to as a sector.

When a cache miss occurs for instruction fetch, instructions will be returned from
the L2 cache if they are present there; otherwise they will come from L3 or
system memory. When the instructions arrive, they will take a bypass path so that
the instructions will be sent to the fetch unit as quickly as possible. A state
machine is used when the bypass path is being used and writes whatever
sectors that have arrived into the prefetch buffer. If the instructions are arriving
from the L2, then all the sectors will be written. If the data is not from the L2, then
it will arrive at a later time and, after the last sector arrives, the state machine will
be initiated again to write all of the sectors into the instruction cache.

The instruction cache is single ported, enabling either a read or write operation to
occur. Writes to the instruction cache occur in a cycle when the instruction cache
cannot be read. The state machine uses a pattern of fetching to try to reduce the
impact of these cycles. For example, instead of writing on four consecutive
cycles, the state machine spreads the writes out such that each thread does not
miss consecutive fetch opportunities. (Each thread is allocated every other cycle
of the instruction cache so that if a write occurs on cycle n it will not occur on
cycle n+2). Because the instruction cache fetch unit can fetch more instructions
then it can execute, the performance impact of these writes is very small.

L1 data cache

The 32 KB L1 data cache is a four-way set associative cache for data used by
programs running in the core. This cache uses a least-recently used (LRU)
replacement policy and is indexed using 13 bits of the effective address as shown

Advanced POWER Virtualization on IBM @server p5 Servers

in Figure 2-5 on page 24. The 13 bits consist of a 7-bit byte offset and a 6-bit set
number. Four-way set associative refers to the fact that there are four address
comparators per each set. For any address in memory, the item being referenced
has a predetermined set membership in the cache. Data is not typically fetched
on an individual basis from memory as this would be very inefficient. Instead, a
data cache line is fetched from memory. The size of a data cache line is identical
to an instruction cache line of 128 bytes and is aligned on a 128-byte boundary.
Therefore, as shown in Figure 2-5 on page 24, the rightmost seven bits (bits 25
to 31) of the effective address represent the byte offset within the cache block.
Based on bits 19 to 24 of the effective address, the line that arrives from memory
is placed into one of the four ways for the specified set number based on the LRU
replacement policy.

When data is loaded from or stored into the cache, the address of the data item
is compared to the addresses in each of the four ways at the specified set
number. If the address matches one of the ways, then it is considered to be a
cache hit and the data is either returned from (load operation) or written to (store
operation) the data cache. If a cache miss occurs, the data will have to be
obtained from one of the other memories in the hierarchy.

The data cache is a write-through cache and therefore never holds modified
data. When a store occurs to an existing L1 data cache line, the L1 data cache
line is updated as well as a write to the L2 cache using an independent 8-byte
(64-bit) data bus.

The L1 data cache provides two read ports and one write port to the core. On a
cache miss, data is returned on the L2 cache interface in four 32-byte beats. Like
instruction cache misses, the L2 always returns the “critical sector” (the sector
containing the specific data item address that referenced the cache line) in the
first beat, and the load miss queue (LMQ) forwards these load requests into the
pipeline as quickly as possible. This is called critical data forwarding (CDF). As
each 32-byte beat is received it is written to the cache. When all four 32-byte
beats are received, the data cache directory is updated.

Chapter 2. IBM POWERS architecture 23

L1 instruction cache

The L1 instruction cache is 64 KB in size and is

two way set-associative.

Two way set-associative means there are two

cache lines managed per set.

Number of set in the cache can be determined

by:

64KB / (128 bytes per block* 2 ways) = 256

Effective address determines location in cache.

16 17 24 25 31

8-bit set number

L1 data cache

v
7-bit byte offset

The L1 data cache is 32 KB in size and is four

way set-associative.

Four way set-associative means there are four

cache lines managed per set.

Number of set in the cache can be determined

by:

32KB / (128 bytes per block* 4 ways) = 64

Effective address determines location in cache.

18 19 24 25 31

6-bit set number

v
7-bit byte offset

Set
Set
Set
Set
Set
Set

OB W N = O

Set 252
Set 253
Set 254
Set 255

Way 0

Way 1

cache line

cache line

128 bytes

128 bytes

Way 0 Way 1

Way 2 Way 3

Set

Set

Set

Set

Set

OB W N = O

Set

Set 60

Set 61

Set 62

Set 63 | 128B 128B

128B 128B

Figure 2-5 L1 caches

24

Advanced POWER Virtualization on IBM @server p5 Servers

2.5.1 Level 2 (L2) cache

The L2 is a unified cache (contains both instructions and data) shared by both
cores on the POWERS chip. In addition, it maintains full hardware memory
coherency within the system and can supply modified data to the cores on other
POWERS processors and I/O devices. Logically, the L2 is an in-line cache. Unlike
the L1 data cache, which is write-through, it is a copy-back (store-in) cache. A
copy-back cache will not propagate changes to the next levels in the memory
hierarchy such as L3 and system memory. By doing this, bus traffic is kept to a
minimum and avoids bottlenecks due to memory contention. The L2 cache will
respond to other processors and I/O devices requesting any modified data that it
currently has.

The L2 cache is fully inclusive of the L1 instruction and data caches located in
the two processor cores on one POWERS5 chip.

The L2 is a total of 1.9 MB and is physically partitioned into three symmetrical
slices with each slice holding 640 KB of instructions or data. As shown in

Figure 2-7 on page 26, each slice is comprised of 512 associative sets. Each set
contains ten 128-byte cache lines. Each of the slices has a separate L2 cache
controller. Either processor core of the chip can independently access each L2
controller. The correct slice is determined by a hashing algorithm involving bits
36 to 55 of the physical address, as shown in Figure 2-6 on page 26.

When the slice has been determined, the indexing of the cache by the L2
controller is performed using the address bits as shown in Figure 2-6 on page 26.
Using the address of either the requested instruction or data, bits 57 through 63
are used to represent the byte offset within the cache line. Address bits 48
through 56 are used to select the congruence class. A physical tag comparison
(that is, real address bits 14 through 47) is used to determine if the desired cache
line is resident within one of the 10 ways for that congruence class.

Each slice has a castout/intervention/push bus (16 bytes wide) to the fabric
controller and operates at half the core frequency. Error Correction Control
(ECC) provides single-bit error recovery. To aid performance, eight 64-byte-wide
store queues are provided per slice supporting simultaneous multithreading. To
minimize bus contention, store gathering is also supported. Store gathering is a
performance enhancement that is used when storing to non-cachable memory
areas such as memory-mapped I/0O. When stores are to contiguous memory, the
individual stores by the program are gathered into one bus operation, instead of
a complete bus transaction for each individual store.

Chapter 2. IBM POWERS architecture 25

47 48 56 57 63

Instruction or CC Selection Line Offset
Data Address

9 bits 7 bits
2% = 512 27 = 128
number of set bytes per
cache line

Figure 2-6 Cache indexing bits

0 <—— Associativity — 9

_ - -07 1288 _
SLICEA SLICEB SLIEEC 4 |1 T et il il
640 KB
wn of
+ . .
e instructions
o~ and data
) per slice
\‘\\\ w‘— - -L
~511] e

Figure 2-7 L2 cache organization

26 Advanced POWER Virtualization on IBM @server p5 Servers

2.5.2 Level 3 (L3) cache

The L3 cache is a unified 36 MB cache accessed by both cores on the POWER5
processor chip. It maintains full memory coherency with the system and can
supply intervention data to cores on other POWERS5 processor chips. The L3 is a
victim cache and is not inclusive of the L2. This means that the same cache line
will never reside in both caches simultaneously and a valid, modified cache line
cast out from the L2 due to being least-recently used is written into the L3 cache
associated by its set number.

This cache is implemented off-chip as a separate Merged Logic DRAM (MLD)
cache chip. However, the L3 cache directory and control is on the POWERS5
processor chip itself. Having the L3 directory on the processor chip itself helps
the processor check the directory after an L2 miss without experiencing off-chip
delays. Figure 2-8 shows a high-level diagram of this design.

L2 Slice A L2 Slice B L2 Slice C
POWER5 CHIP Read & Write Busses Read & Write Busses Read & Write Busses
Y A Ab |
L3 Cache Controller A | i L3 Cache Controller B | : L3 Cache Controller C | i
(I I [
12 MB o 12 MB 1 12 MB I
Directory : I Directory : I Directory : |
| | |
(I . [
Command & Tag Done ! | Command & Tag Done ! | Command & Tag Done ! 1
Address Bus Bus ! | | Address Bus Bus : | Address Bus Bus |
T | T |
| ‘ | I | L | ! : ‘ | I
; ' LYy ; : LYy ! ' LYy
[I Fabric Bus Controller (FBC) | !
| | |
! ' Read Bus Write Bus I
t t t
1 1 X 1
vy vy 1A v L3
. Cache [— Address
L3 MLD Cache Chip | Data
- - Control

Figure 2-8 L3 cache high-level design

The cache is split into three identical 12 MB slices on the cache chip. The same
hashing algorithm for selecting the L2 slices is used to select the L3 slices for a
given physical address. A slice is 12-way set-associative. There are 4096 sets
that are two-way sectored (which means that the directory manages two
128-byte cache lines per entry). Each of the 12 MB slices can be accessed
concurrently. Figure 2-9 on page 28 depicts the L3 cache organization
graphically.

Chapter 2. IBM POWERS architecture

27

0 11
— b
SLICE A SLICE B SLIEE C I L ' '
EEEE 12 MB N
o1l of Ll
b S U instructions N
S T and data e
S per slice AR
_ ! I 1 [1 ' ' 1 .k |
~ ¥ e e e [N
\4995 0 ' ' ' | | | v LT
L3 is two-way sectored contains two consecutive 128B cache lines per entry J

Figure 2-9 L3 cache organization

Unlike in the POWER4 microprocessors, the L3 cache is on the processor side
and not on the memory side of the fabric. This is depicted in Figure 2-10 on
page 29. This design lets the POWERS5 satisfy L2 cache misses more efficiently
with hits on the off-chip cache, thus avoiding traffic on the interchip fabric.
References to data not on the L2 cause the system to check the L3 cache before
sending requests onto the interchip fabric. The L3 operates as a back door with
separate 128-bit (16-byte) data busses for reads and writes that operate at
one-half the processor speed. Because of higher transistor density of the
POWERS5 fabrication technology, the memory controller has now been moved
onto the chip, eliminating the need for a separate memory controller chip as in
POWER4 systems. These architectural changes to the POWERS5 processor have
the significant benefits of reducing latency to the L3 and main memory as well as
the number of chips necessary to build a system. The result is a higher level of
SMP scaling. Initial POWERS5 systems support 64 physical processors.

28 Advanced POWER Virtualization on IBM @server p5 Servers

POWER4 Systems

POWERS5 Systems

L3
Cache

Core Core Core Core
0 1 0 1
L2 Cache L2 Cache
» Fab Cntrl |« » Fab Cntrl e—»
) i
| y
L3 Cache L3 Cache
\ |
i y
Mem Cntrl Mem Cntrl
Memory Memory
Core Core Core Core
0 1 0 1
»| L2 Cache L2 Cache |-
» Fab Cntrl |« > Fab Cntrl e—»
Mem Cntrl Mem Cntrl
A
Memory Memory

Figure 2-10 Comparison between POWER4 and POWERS5

Chapter 2. IBM POWERS architecture

29

2.5.3 Summary of caches on POWER5
Table 2-3 Cache characteristics of the POWERS5 processor

Cache L1 L1 L2 L3
characteristics instruction data cache cache cache
cache
Contents Instructions Data only Instructions Instructions
only and data and data
Size 64 KB 32 KB 1.9 MB 36 MB
Associativity two-way Four-way 10-way 12-way
Replacement LRU LRU LRU LRU
Policy
Line size 128 B 128 B 128 B 256 B
Indexed by Effective Effective Physical Physical
address address address address
Tags Physical Physical Physical Physical
address address address address
Inclusivity N/A N/A Inclusive of L1 | Not inclusive
instruction of L2 cache
and data (victim cache
caches of L2)
Hardware Yes Yes Yes (separate | Yes (separate
Coherency snoop ports) snoop ports)
Store policy N/A Write-through | Copy-back Copy-back
Noallocateon | Allocate on
store miss store miss

2.5.4 Address translation resources

The POWERS chip supports translation from a 64-bit effective address (EA) to a
65-bit virtual address (VA) and then to a 50-bit real address (RA). The processor
architecture specifies a Translation Lookaside Buffer (TLB) and a Segment
Lookaside Buffer (SLB) to translate the effective address used by software to a
real address (physical address) used by the hardware. Each processor core
contains a unified, 1024 entry, four-way set associative TLB. The TLB is a cache
of recently accessed page table entries that describe the pages of memory.

There are two effective-to-real address translation (ERATSs) caches. They are
called the I-ERAT (for instruction address translation) and the D-ERAT (for data
address translation).

30 Advanced POWER Virtualization on IBM @server p5 Servers

The I-ERAT is a 128-entry, two-way set associative translation cache that uses a
FIFO-based replacement algorithm. In this algorithm, one bit is kept per
congruence class and is used to indicate which of the two entries was loaded
first. As the name implies, the first entry loaded is the first entry targeted for
replacement when a new entry has to be loaded into that congruence class.

Each entry in the I-ERAT provides translation for a 4 KB block of storage. In the
event that a particular section of storage is actually mapped by a large page TLB
entry (16 MB), each referenced 4 KB block of that large page will occupy an entry
in the I-ERAT (that is, large page translation is not directly supported in the
[-ERAT).

The D-ERAT is a 128-entry, fully associative translation cache that uses a binary
LRU replacement algorithm. As with the I-ERAT, the D-ERAT provides address
translations for 4 KB and 16 MB pages of storage.

2.6 Timing facilities

The Time Base, Decrementer, and the POWER Hypervisor Decrementer provide
timing functions for the system. The mftb instruction is used to read the Time
Base; the mtspr and mfspr instructions are used to write the Time Base and
Decrementers and to read the Decrementers.

Time Base (TB) The Time Base provides a long-period counter driven at
1/8 the processor clock frequency.

Decrementer (DEC) The Decrementer, a counter that is updated at the same
rate as the Time Base, provides a means of signaling an
interrupt after a specified amount of time has elapsed
unless the Decrementer is altered by software in the
interim, or the Time Base update frequency changes.

POWER Hypervisor Decrementer
The POWER Hypervisor Decrementer (HDEC) provides a
means for the POWER Hypervisor to manage timing
functions independently of the Decrementer, which is
managed by virtual partitions. Similar to the Decrementer,
the HDEC is a counter that is updated at the same rate as
the Time Base, and it provides a means of signaling an
interrupt after a specified amount of time has elapsed.
Software must have POWER Hypervisor privilege to
update the HDEC.

Chapter 2. IBM POWERS architecture 31

Time Base

The Time Base (TB in Figure 2-11) is a 64-bit register and contains a 64-bit
unsigned integer that is incremented by one every eight processor clock cycles,
as shown in Figure 2-11. Each increment adds 1 to the low-order bit (bit 63). The
Time Base increments until its value becomes OxFFFF_FFFF_FFFF_FFFF (284 -
1). At the next increment, its value becomes 0x0000_0000_0000_0000. There is
no interrupt or other indication when this occurs.

TBU TBL

Where TBU is the upper 32-bits of the 64-bit Time Base
and TBL is the lower 32-bits of the 64-bit Time Base.

Figure 2-11 Time Base register

If we consider the IBM @server p5 570 model with 1.65 GHz processors, we
can determine the time base, as shown in Example 2-2.

Example 2-2 Calculating the Time Base period

2°4 x 8 10

mP= —— =8.94 x 10" seconds or approx. 2,836 years
1.65 GHz

Decrementer

The Decrementer (DEC) is a 32-bit decrementing counter that provides a
mechanism for causing a Decrementer interrupt after a programmable delay. The
contents of the Decrementer are treated as a signed integer. The Decrementer is
driven by the same frequency as the Time Base. The period of the Decrementer
depends on the driving frequency, but if the same values are used as given
above for the Time Base and if the Time Base update frequency is constant, the
period would be as shown in Example 2-3.

Example 2-3 Calculating the Decrementer period

2 x 8
pp= — = 20.82 seconds
1.65 GHz

Whenever bit 0 (most significant bit) of the Decrementer changes from 0 to 1, an
interrupt request is signaled. If multiple Decrementer interrupt requests are
received before the first can be reported, only one interrupt is reported. The

32 Advanced POWER Virtualization on IBM @server p5 Servers

occurrence of a Decrementer interrupt cancels the request. If the Decrementer is
altered by software and the contents of bit 0 are changed from 0 to 1, an interrupt
request is signaled.

POWER Hypervisor Decrementer

The POWER Hypervisor Decrementer (HDEC) is a 32-bit decrementing counter
and POWER Hypervisor resource that provides a mechanism for causing a
POWER Hypervisor decrementer interrupt after a programmable delay. The
contents of the Decrementer are treated as a signed integer.

The HDEC is driven by the same frequency as the Time Base. The period of the
HDEC will depend on the driving frequency, but if the same values are used as
given above for the Time Base and if the Time Base update frequency is
constant, the period would be as shown in Example 2-4.

Example 2-4 Calculating the POWER Hypervisor decrementer

2% x 8
MDEC =—— = 20.82 seconds
1.65 GHz

2.7 Dynamic power management

Chip power is a very important and limiting factor in modern processor designs.
A nice side benefit of complementary metal oxide semiconductor (CMOS)
technology is that if the logic is not clocking, there is no switching of the gates,
and if there is no switching, there is negligible power consumption. To reduce
power consumption, POWERS5 chips use a fine-grained dynamic clock-gating
mechanism to gate off clocks to a local clock buffer, if the dynamic power
management logic knows that the set of latches driven by that clock buffer will not
be used in the next cycle. For example, if the floating-point registers will not be
read on the next cycle, the dynamic power management logic detects it and turns
off the clocks to the read ports of the floating-point registers. A minimum amount
of logic implements the clock gating function. Special care has been taken to
ensure clock gating logic does not cause performance loss or create a critical
timing path for the chip.

While in simultaneous multithreading mode, the number of instructions executed
per cycle goes up, thus increasing the chip’s total power consumption. In addition
to power consumption, leakage of power has become a performance limiter.
POWERS uses transistors with low threshold voltage only in critical paths such
as floating-point register read ports. Figure 2-12 on page 34 shows photographs
taken with thermal sensitive cameras on prototype POWERS5 chips, with and

Chapter 2. IBM POWERS architecture 33

without dynamic power management, and single-threaded versus simultaneous
multithreading. From the picture, it is evident that dynamic power management
reduces power consumption below the standard single-threaded level without
power management enabled.

POWERS5 also provides for the software environment to control low-power
modes. When the thread priority is set to low priority, the POWERS5 dispatches
instructions every 32 cycles, thus saving power. Thread priorities are discussed
in 3.3.2, “Adjustable thread priorities” on page 50.

Single-
Threaded
Mode

Simultaneous
multithreading
Mode

Without Dynamic Power Management With Dynamic Power Management

34

Figure 2-12 POWERS photos using thermal-sensitive camera

2.8 Processor Utilization Resource Register (PURR)

Previously, a local timer tick (10 ms in AIX 5L, 1 ms in Linux with HZ=1000) was
charged to the current running process that was preempted by the timer
interrupt. If the process was executing code in the kernel via a system call, the
entire tick was charged to the process’s system time. If the process was

Advanced POWER Virtualization on IBM @server p5 Servers

executing application code, the entire tick was charged to the process’s user
time. Otherwise, if the current running process was the operating system’s idle
process, the tick was charged in a separate variable. UNIX commands such as
jostat and vmstat show these as %usr, %sys, and %idle. Through the outputs, it
was possible to determine the utilization of the processor. The problem with this
method is that the process receiving the tick most likely has not run for the entire
timer period and, unfortunately, was executing when the timer expired. The issue
becomes more complicated using simultaneous multithreading as threads from
perhaps two different processes share the physical processor resources.

To address these issues and to provide more accurate details of processor
utilization, the POWERS5 architecture introduces a Processor Utilization
Resource Register. This is a special-purpose register that can be read or written
by the POWER Hypervisor but is read-only by the operating system (supervisor
mode). There are two registers, one for each hardware thread. As with the
timebase register, it increments by one every eight processor clock cycles when
the processor is in single-threaded mode. When the processor is in simultaneous
multithreading mode, the thread that dispatches a group of instructions in a cycle
will increment the counter by 1/8 in that cycle. In no group dispatch occurs in a
given cycle, both threads increment their PURR by 1/16. Over a period of time,
the sum of the two PURR registers when running in simultaneous multithreading
mode should be very close but not greater than the number of timebase ticks.

AIX 5L Version 5.3 uses the PURR for process accounting. Instead of charging
the entire 10 ms clock tick to the interrupted process as before, processes are
charged based on the PURR delta for the hardware thread since the last interval,
which is an approximation of the computing resource that the thread actually
received. This makes for a more accurate accounting of processor time in the
simultaneous multithreading environment.

For example, in simultaneous multithreading mode, the operating system sees
the two hardware threads as two separate processors, and dispatches two
separate tasks (processes), one on each logical processor. If the old method of
charging the current running thread a tick every 10 ms, each logical processor
reports a utilization of 100%, representing the portion of time that the logical
processor was busy. Using the PURR method, each logical processor reports a
utilization of 50%, representing the proportion of physical processor resources
that it used, assuming equal distribution of physical processor resources to both
the hardware threads.

Chapter 2. IBM POWERS architecture 35

2.9 Large POWERS5 SMPs

Somewhat like the POWER4, the POWERS uses Dual Chip Modules (DCMs)®
and Multi-Chip Modules (MCMSs) as the basic building blocks for low-/mid-range
and high-end servers respectively.

Figure 2-13 depicts a POWERS5 DCM, and an actual POWERS5 DCM is shown in
Figure 2-14 on page 37. The chips in POWERS are designed to support multiple
system configurations ranging from a low-end uniprocessor up through a 64-way
(with MCMs).

Dual Chip Module

—
4=
=
(=]
(=]
1=
(7]
=

Enhanced Distributed Switch

MCM - MCM GX Bus
Chip - Chip

Figure 2-13 POWERS5 Dual Chip Module (DCM)

3 DCM has one POWERS5 chip and one L3 MLD cache chip, hence the name dual chip module. The
DCM has only one POWERS5 chip with two cores.

36 Advanced POWER Virtualization on IBM @server p5 Servers

Figure 2-14 Actual DCM

As with the POWER4, POWERS5 exploits the enhanced distributed switch for
interconnects. All chip interconnects operate at half the processor frequency and
scale with processor frequency.

Figure 2-15 on page 38 depicts the logical view of a POWERS5 MCM. MCMs are
used as basic building blocks on high-end SMPs. MCMs have four POWERS5
chips and four L3 cache chips each. Each MCM is a eight-way building block.
Figure 2-16 on page 38 shows an actual picture of a POWER5 MCM.

Chapter 2. IBM POWERS5 architecture 37

38

MCM to MCM MCM to MCM
Book to Book Book to Book
}\:\ [ex Eus | | ox Eus | - %

o — Mem Mem || ————

- c [|P||P P1IP | ct -—

L3 L3
M L3 Dir Shared L2 Shared L2 Dir >| L3 M
E Chip-Chip Communication Chip-Chip Communication E
R L3 Chip-Chip Communication Chip-Chip Communication L3 R
Y L3 L3 Y
Dir Shared L2 Shared L2 Dir .

-

-1 Mem Mem Al
—||cn [[P]|P PI]P | cw -
4 | exBus | | exBus | AN
MCM to MCM ‘ MCM to MCM
Book to Book Book to Book
RIO-2
High Performance Switch
InfinIBand

Figure 2-15 Logical view of the POWER5 multi-chip module

Figure 2-16 POWERS5 multi-chip module

Advanced POWER Virtualization on IBM @server p5 Servers

Two POWERS MCMs can be tightly coupled to form a book, as shown in

Figure 2-17. These books are interconnected again to form larger SMPs, up to
64-way. The MCMs and books can be interconnected to form eight-way, 16-way,
32-way, 48-way, and 64-way SMPs with one, two, four, six, and eight MCMs

respectively.
Book
it ¥ t t
MCM
L3 = L3 = L3 = L3 =
POWERS5 POWERS5 POWERS5 POWERS5
™ = - = =]
L—’ -¢ > -¢ > -% = -
POWERS5 _’POWER5 _’POWERS _’POWERS
L3 - L3 - L3 - L3 -
it i it e
110 110 110 110

Figure 2-17 16-way POWERS5 building block

PEYTOGIEE OPREY O OPRNY

hhdd dhdhd hedd kb

Figure 2-18 64-way POWER5 SMP interconnection

Chapter 2. IBM POWERS5 architecture 39

2.10 Summary

POWERS5 processor—based systems provide excellent flexibility and performance.
Many of the features that enable flexibility and performance challenge existing
notions of how systems look and feel. IBM has already invested in ensuring that
software can exploit the increased performance levels POWER5 systems will be
offering, and is continuing in its pursuit to produce system-level enhancements to
provide even greater performance increases over time.

40 Advanced POWER Virtualization on IBM @server p5 Servers

Simultaneous
multithreading

A very-high-frequency processor can spend more than half of its execution time
waiting for cache and TLB misses. Given the trend for advances in processor
cycle time and performance to increase faster than DRAM performance, it is
expected that memory access delays will make up an increasing proportion of
processor cycles per instruction. This is often referred to as the memory wall.
One technique for tolerating memory latency that has been known for several
years is multithreading. There are several different forms of multithreading. A
traditional form called fine grain multithreading keeps N threads, or states, in the
processor and interleaves the threads on a cycle-by-cycle basis. This eliminates
all pipeline dependencies if N is large enough that instructions from the same
thread are separated by a sufficient number of cycles in the execution pipelines.

The form of multithreading implemented in the POWERS5 architecture is called
simultaneous multithreading and is a hardware design enhancement that
enables two separate instruction streams (threads) to execute simultaneously on
the processor. It combines the multiple instruction-issue capabilities of
superscalar processors with the latency-addressing capabilities of
multithreading.

© Copyright IBM Corp. 2005. All rights reserved. 41

3.1 What is multithreading?

In general, the evolution of multithreading can be broadly divided into:

Single threading

Coarse grain threading

Fine grain threading
Simultaneous multithreading

vyvyyy

Figure 3-1 provides an overview of these four types of multithreading. Each box
in the diagram represents an execution stage in the respective instruction
pipeline. The acronyms provided on the left of each block represent the
fixed-point execution (FX) units, the load store (LS) units, the float-point (FP)
units, the branch execution (BRX) units, and the condition register logical
execution unit (CRL).

Pxo L]I Fxo L 11101
] Imimimiml | e Il C]I E
tso ML I I o I C 11 ICIE]
s L1010 Ry S I I | O Y
FPo [I IC]] L I o s
Rl 1 L I T 0] L I o [e
R IEECICIC /] sRx[|EM [LI IE 1]
crRu[]I cRe[][I JECOCI
Processor Cycles Processor Cycles

Fine Grain Threading Simultaneous Multi-threading

exo IO CTER 1] o Il ICTECICIC] M
pa LA C]] 2 S N o |
so Il 1L I I ICIED Lso L 11 1L 1
1 LI)11 st EC I E 1010
Fro [1] 0 Il] Fro [I 1010 10]
gl el [Fee [I CIEEC 1010
srx[| N[1 1EC1E sRx | MM [100 0 &
L1 I s O S0 I o |
Processor Cycles Processor Cycles
Il Thread 0 Executing [Thread 1 Executing [No Thread Executing

Figure 3-1 multithreading techniques

In single-threaded mode, we see a thread executing two instructions per cycle.
Note that in the single-threaded mode, just two execution units (FX0 and
load/store unit 0 (LS0)) are utilized in the first cycle (vertical column). In this
mode, execution unit utilization is dependent on instruction-level parallelism

42 Advanced POWER Virtualization on IBM @server p5 Servers

produced by the compiler or assembly language programmer to take advantage
of the eight instruction pipelines (FX0 - CRL) in this superscalar processor.

The IBM STAR series of processors utilized in RS/6000 Model S85 servers used
a hardware multithreading technique called course grain threading that, when
enabled, enabled multiple threads to run in parallel. In coarse grain threading,
one thread known as the active thread executes on the processor while the other
threads are dormant. If the active thread experiences a long latency event such
as a cache miss, the processor places the active thread into the dormant state
and switches to one of the other dormant threads waiting on the processor. For
such threading mechanisms to work efficiently, the latency of switching from one
thread to the other must be shorter than the latency of the event (servicing of a
cache miss) that caused the switch. For example in Figure 3-1 on page 42, a
branch instruction (subroutine call) executed in the BRX unit causes an
instruction cache miss. While the instructions are being fetched from memory,
another thread that was dormant is allowed to execute and its instructions start in
the FP1 and CRL execution units. However, as processor pipelines become more
complex, efficiency of thread switching is diminishes.

Fine-grain threading is a hardware multithreading technique in which threads
take turns every processor clock cycle executing their instructions. While fine
grain threaded processors tolerate long latency operations better and utilize the
execution units better, all instruction pipelines may not be utilized. Therefore,
similar to single threaded processors, efficiency of fine grained threaded
processors is also limited by the instruction level parallelism.

In a simultaneous multi-threaded processor, the processor fetches instructions
from more than one thread. Since instructions from any of the threads can be
fetched by the processor in a given cycle, the processor is no longer limited by
the instruction level parallelism of the individual threads. What differentiates this
implementation is its ability to schedule instructions for execution from all threads
concurrently. With simultaneous multithreading, the system dynamically adjusts
to the environment, enabling instructions to execute from each thread if possible,
and allowing instructions from one thread to utilize all of the execution units if the
other thread encounters a long latency event. For instance, when one of the
threads has a cache miss, the second thread can continue to execute.

More information about simultaneous multithreading may be found in the
following references:

» Simultaneous Multi-threading: Maximizing On-Chip Parallelism, 22nd
International Symposium on Computer Architecture

» Exploiting Choice: Instruction Fetch and Issue on an Implementable
Simultaneous Multithreading Processor, 23rd Annual International
Symposium on Computer Architecture

Chapter 3. Simultaneous multithreading 43

3.2 POWERS simultaneous multithreading features

44

The POWERS5 simultaneous multithreading implementation is a natural extension
to the eight instruction pipeline superscalar POWER4 design. When in
simultaneous multithreading mode, instructions from either thread can use the
eight instruction pipelines in a given clock cycle. By duplicating portions of logic
in the instruction pipeline and increasing the capacity of the register rename pool,
the POWERS5 processor can execute two instruction streams, or threads,
concurrently. The POWERS5 also features dynamic resource balancing (DRB)
and adjustable thread priorities for efficient utilization of the resources shared by
both threads. Through hardware and software thread prioritization, greater
utilization of the hardware resources can be realized without an impact to
application performance. Figure 3-2 on page 45 illustrates the increased
processor resource utilization using simultaneous multithreading in POWERS
compared with POWER4. Notice the increased utilization of the instruction
pipelines, shown by the shaded boxes. Processor utilization can also be seen in
Figure 2-12 on page 34, which shows the thermal image comparison.

Note: Each POWERS5 processor core appears to the operating system as a
two-way symmetric multiprocessor (SMP).

Each hardware thread is supported as a separate logical processor by AIX 5L
V5.3. So, a dedicated partition that is created with one physical processor is
configured by AIX 5L V5.3 as a logical two-way by default. This is independent of
the partition type, so a shared partition with two virtual processors is configured
by AIX 5L V5.3 as a logical four-way by default. When simultaneous
multithreading is disabled, at least half of the logical processors will be offline.

Characteristics of the POWERS5 simultaneous multithreading implementation are
as follows:

» Eight priority levels for each thread that can be raised or lowered by the
POWER Hypervisor, operating system, or application

» Processor resources optimized for best simultaneous multithreading
performance, providing the ability to reduce priority of a thread that is
consuming maximum resources or hold decode of a thread with long latency
events

» Dynamic feedback of shared resources, enabling balanced thread execution
» Software-controlled thread priority
» Dynamic thread switching capabilities

Advanced POWER Virtualization on IBM @server p5 Servers

IBM has estimated the performance benefit of simultaneous multithreading at
30% for commercial transaction processing workloads. Read more about this at:

http://www.ibm.com/servers/eserver/pseries/hardware/system_perf.html

POWER4
(Single-threaded)
Fxo B 1O IC I
NI [|
tso [JL JC I IC 1] I
SaEl Iml |m mim
FPo [I JC IC 1]
Rl 1 L IC I
BRx[1L 1 11]
cRoL OO
>
Processor Cycles
POWERS5
(Simultaneous Multi-threaded)
rxo I CJECIC]E
e JECIC JERC]IC 1
tso A JC] E]E .
ts1 [1 0 I I]
rro [ICIC]I
e I TENEEC IO
sRx[EE 1 IEMCICIC]
cre[JTEA I]
o

Processor Cycles

Single-threaded Processor

Memory Wait Idle Cycles
N Bl BN .

>

Processor Cycles

Legend
Il ThreadO Active

1 No Thread Active
3 Thread1 Active

Multi-threaded Processor
Fewer Memory Wait Idle Cycles

-I-I-I-;I

Processor Cycles

Figure 3-2 Single-threaded versus simultaneous multithreading

In simultaneous multithreading mode, the POWERS5 processor uses two
separate instruction fetch address registers (IFARs) to store the program
counters for the two threads. Instruction fetches (IF stage) alternate between the
two threads. Up to eight instructions can be fetched from the instruction cache
(IC stage) and placed into one of the two instruction fetch buffers every cycle. Up
to five instructions can be taken out of the instruction fetch buffer per cycle for
execution. The two threads share the instruction cache and the instruction
translation facility. In a given cycle, all fetched instructions are unique for each

thread.

Important: Not all applications benefit from simultaneous multithreading.

Not all applications benefit from simultaneous multithreading. Having two threads
executing on the same processor will not increase the performance of

Chapter 3. Simultaneous multithreading

45

http://www.ibm.com/servers/eserver/pseries/hardware/system_perf.html

applications with execution-unit-limited performance or applications that
consume all of the processor's memory bandwidth. For this reason, the
POWERS5 supports single-threaded execution mode. In this mode, the POWER5
gives all physical resources to the active thread, enabling it to achieve higher
performance than a POWER4 system at equivalent frequencies. In
single-threaded mode, the POWERS5 uses only one instruction fetch address
register and fetches instructions for one thread every cycle.

3.2.1 Dynamic switching of thread states

The POWERS5 processor provides for the software to dynamically switch from
simultaneous multithreading mode to single-threaded mode and vice versa.
There are instances when this could be useful, such as real-time applications
where guaranteed latency is more important than overall throughput, or scientific
applications that are limited by execution resources (for example, when sharing
of execution resources will prove counterproductive).

There may also be instances when there are not enough processes ready-to-run
on all available hardware threads. For example, in simultaneous multithreading
mode, one hardware thread of execution is the operating system’s idle process
and the other hardware thread is application code. Because the hardware thread
of the idle process also needs to map registers from the rename register pool,
there may be a performance impact for a task when it is run in simultaneous
multithreading mode compared to when it is run in single-threaded mode. In
single-threaded mode and as designed, the operating system’s idle process
would not execute until there were no other processes in the ready-to-run state.

When the POWERS5 processor is operating in single-threaded mode, the inactive
thread will be in one of two possible states, dormant or null, as shown in

Figure 3-3 on page 47. From a hardware perspective, the only difference
between these states is whether the thread awakens on an external or
decrementer interrupt.

46 Advanced POWER Virtualization on IBM @server p5 Servers

hardware
or software
initiated

software
initiated

software
initiated

DORMANT

Figure 3-3 POWERS thread states

When the POWERS processor is powered on, each core is brought up in
single-threaded mode with thread 0 active, and thread 1 is dormant by default. To
define these three states:

Active state Thread is active and running as seen by software and
hardware. Hardware maintains the architected state of the
thread.

Dormant state Thread is inactive in hardware but active in software

(processor structures are maintained by software). The
POWERS processor does not make any distinction
between dormant and null and behaves the same way.

Null state The hardware thread is inactive in hardware and inactive
in software. This is true single-threaded mode.

As an example, we previously noted that to the AIX 5L V5.3 and Linux operating
systems, each POWERS5 processor core appears as a two-way (two logical
processors) system. In the null state, only one logical processor would exist. In the
dormant state, two logical processors would exist to the operating system, but only
one physical hardware thread (Thread 0) would be used. The second hardware
thread would have to be activated in order to use the second logical processor.

3.2.2 Snooze and snooze delay

In the dormant state, the architected register state is not maintained in the
hardware, but the software maintains knowledge of the logical processor, such as
per-processor data. (The term software refers to either the operating system or
the POWER Hypervisor.) The processor is set up so that the dormant thread can
return to the active state by a decrementer or external interrupt.

Chapter 3. Simultaneous multithreading 47

48

The process of putting an active thread into a dormant state is known as
snoozing. If there are not enough tasks available to run on both hardware
threads, the operating system’s idle process will be selected to run on the
available hardware thread. It is better for the operating system to snooze the idle
process’ thread and switch to single-threaded mode. Doing so enables all of the
processor resources to be available to the task doing meaningful work.

To snooze a thread, the operating system will invoke the H_CEDE POWER
Hypervisor call (refer to Table 4-1 on page 81). The thread then goes to the
dormant state. A snoozed thread is brought alive when a decrementer, external
interrupt, or an H_PROD POWER Hypervisor call is received. When other tasks
become ready to run, the processor transitions from single-threaded mode to
simultaneous multithreading mode through any of the means mentioned earlier.
This involves the snoozed thread coming to life at the system reset interrupt
vector for the thread and having the POWER Hypervisor restore the operating
system state, and then returning from the original H_CEDE POWER Hypervisor
call made by the thread to snooze. This means several thousand cycles of thread
startup latency.

Therefore, it does not make sense to snooze a thread as soon as the idle
condition is detected. There could be another thread in the ready-to-run state in
the run queue by the time the snooze occurs, resulting in wasted cycles due to
the thread start-up latency. It is good for performance if the operating system
waits for a small amount of time for work to come in before snoozing a thread.
This short idle spinning time is known as simultaneous multithreading snooze
delay. An operating system can optionally make this delay tunable.

Both AIX 5L and Linux incorporate changes to snooze an idle thread. They also
provide snooze delay tunables.

When the system is set to operate in single-threaded mode, by use of the smtct1
AIX 5L command, the inactive thread is put into the null state, and the operating
system is unaware of the hardware thread’s existence. No system resources are
allocated to the second hardware thread. This mode is advantageous if all the
system’s executing tasks perform better in single-threaded mode.

The AIX 5L V5.3 smtct1 command, which controls enabling and disabling of
simultaneous multithreading mode, provides privileged users and applications
with a means to enable or disable simultaneous multithreading for all processors
in a partition either immediately or on a subsequent boot of the system.

The two flags associated with smtct1 are -m and -w; they are defined as follows:
-m off Sets simultaneous multithreading mode to disabled

-m on Sets simultaneous multithreading mode to enabled

Advanced POWER Virtualization on IBM @server p5 Servers

-w boot Makes the simultaneous multithreading mode change effective on
the next and subsequent reboots

-w now Makes the mode change effective immediately, but will not persist
across reboot

The smtct1 command does not rebuild the boot image. To change the default
simultaneous multithreading mode of AIX 5L and Linux, the boshoot command
must be used to rebuild the boot image. The boot image in AIX 5L V5.3 and
Linux has been extended to include an indicator that controls the default
simultaneous multithreading mode.

3.3 Controlling priority of threads

Because the POWERS processor core is capable of fetching instructions from
two separate instruction paths, contention arises between the two threads for the
processor’s resources. There are also times when the code executing in the
processor is not doing any meaningful work, such as running the operating
system’s idle process. There is also the case where one thread is currently
holding a lock and another thread wants the lock. If a spin-lock is implemented,
the thread that holds the lock would be forced to contend with the thread asking
for the lock, delaying the release of the lock. In addition, critical sections of code
in the operating system or real-time applications must be able to execute with
some guaranteed latency. To address these issues, the POWERS processor
provides:

» Dynamic resource balancing (DRB)
» Adjustable thread priorities

In this section, we discuss each of these two features of controlling threads in the
simultaneous multithreading environment.

3.3.1 Dynamic resource balancing (DRB)

The purpose of this resource is to ensure smooth flow of both threads through
the processor. If either of the two hardware threads start dominating the
processor resources and depriving the other thread, the DRB logic throttles down
the dominating thread so that the other thread can flow smoothly without stalling.
For example, if one thread experiences multiple L2 cache misses for loading of
data, the dependant load instructions can block in the issue queue slots,
preventing the other thread from dispatching instructions. (Refer to the processor
pipeline discussion in 2.4, “POWERS instruction pipelines” on page 14.) To
prevent such stalls, the DRB logic monitors the miss queues, and if a particular
thread reaches a threshold for L2 cache misses, it throttles that thread down so
that the other thread can progress smoothly. Similarly, one thread could start

Chapter 3. Simultaneous multithreading 49

using too many Global Completion Table (GCT) entries, preventing the other
thread from dispatching instructions. DRB logic then detects this condition and
throttles down the thread dominating the GCT.

Important: DRB is done at the processor level and is not tunable by software.

POWERS5 DRB can throttle down a thread in three different ways, with the choice
of the throttling mechanism depending on the situation:

1. Reducing the thread’s priority.

This is used in situations in which a thread has used more than a
predetermined number of GCT entries.

2. Holding the thread from decoding instructions until resource congestion is
cleared.

This applies to when the number of L2 misses incurred by a thread reaches a
threshold.

3. Flushing all of the dominating thread’s instructions waiting for dispatch and
holding the thread’s decoding unit until congestion clears.

This is used if a long latency instruction such as memory ordering instructions
(for example, sync) causes dominating of the issue queues.

Studies have shown that higher performance is realized when resources are
balanced across the threads using DRB.

3.3.2 Adjustable thread priorities

The DRB logic is built into the hardware to ensure balanced resource utilization
by the threads. However, there are instances when software knows that a
process running on a hardware thread might not be doing any computational
work, such as spinning for a lock or executing the operating system’s idle
process. The operating system might also want to quickly dispatch a process,
such as a process holding a critical spinlock, and needs to elevate its priority. For
better utilization of processor resources under such scenarios, the POWER5
features adjustable thread priorities, where software can specify whether the
hardware thread running the process can have more or fewer execution
resources.

The POWERS5 supports the eight levels of thread priorities (0-7) shown in

Table 3-1 on page 51. The thread priority is independent of the AIX 5L and Linux
thread priorities. Each thread has a 64-bit thread status register (TSR)
associated with it.

50 Advanced POWER Virtualization on IBM @server p5 Servers

Table 3-1 POWERS5 thread priority levels

Thread Priority level Privilege level for software | Equivalent nop
priority level to set this priority? instruction

0 Thread shut-off | POWER Hypervisor Mode® -

1 Very low Supervisor Mode or 31,31,31

2 Low User/Supervisor Mode or 1,1,1

3 Medium low User/Supervisor Mode or 6,6,6

4 Normal User/Supervisor Mode or 2,2,2

5 Medium high Supervisor Mode or 5,5,5

6 High Supervisor Mode or 3,3,3

7 Extra high POWER Hypervisor Mode or 7,7,7

a. Certain fields in a thread control register (TCR) affect the privilege level. This
column assumes recommended setting and setups, which is usually the case with
well-behaved software.

b. The POWER Hypervisor is the highest privilege level followed by supervisor
(usually the O/S) and user applications.

Important: The thread priorities mentioned here are independent of the

operating system’s concept of thread priority.

The POWERS processor supports three processor states:

»

»

>

POWER Hypervisor mode: All thread priority values can be set.

Supervisor mode (AIX 5L or Linux kernel code): Only priority levels one
through six can be set.

User mode (application programs): Restricted to levels two through four.

By default, threads execute at normal priority in both kernel mode and user
mode.

The priority level can be set in two ways. The thread in the correct mode can
execute an mtspr instruction to set the three-bit priority field in the thread status
register to the desired thread priority. The second method uses the equivalent
no-operation (nop) instruction. In the POWER and PowerPC architectures, there

is no actual nop instruction. However, if the or instruction is executed with the two

source registers and the destination register being the same register, it is
considered a nop. The POWERS5 architecture takes it one step further by
providing the ability to control thread priority. Which GPR is used with the or

Chapter 3. Simultaneous multithreading

instruction affects the priority of the thread. The last column in Table 3-1 on
page 51 shows the equivalent nop instructions that set the thread priority.

Thread priority adjustment can be performed in C/C++ code with the use of the
#pragma compiler directives. Example 3-1 shows how an application programmer
can adjust priorities of the application. Keep in mind that the three priorities
shown in the code example are the only priorities available to applications
running in user mode. The other priorities are reserved for kernel code
(supervisor mode) or the POWER Hypervisor.

Example 3-1 C/C++ code example of setting thread priorities

void smt_low_priority(void); /* The three priorities available to */
void smt_mediumlow priority(void); /* application programs (user mode) */
void smt_normal_priority(void);

#pragma mc_func smt_low_priority { "7c210b78" } /* or rl, rl, rl1 */
#pragma mc_func smt_medium_priority{ "7cc63378" } /* or r6, r6, r6 */
#pragma mc_func smt_normal_priority{ "7c421378" } /* or r2, r2, r2 */
int main(int argc, char **argv)

{

smt_Tow_priority();

smt_normal_priority();

}

3.3.3 Thread priority implementation

When the priority of thread execution is manipulated by software, the effect is to
throttle the execution of the lower priority threads. This is done by holding the
instructions of the thread in their instruction fetch buffers. As described in 3.3.1,
“Dynamic resource balancing (DRB)” on page 49, the lower priority thread is kept
from entering the decode stage of the pipeline, thus yielding the decode
resources to the higher priority thread.

Most applications will not be concerned with manipulating their priority. However,
there may be instances where the application programmer might want to use the
priority adjustment for synchronization. For example, your application is either
multi-threaded or multi-tasking. Each thread or task processes its own data, but
the application as a whole cannot proceed until all threads or tasks are complete.
As each thread or task finishes its part of the work, it can lower its priority to
enable the others to catch up.

52 Advanced POWER Virtualization on IBM @server p5 Servers

Table 3-2 shows the effect of thread priority on obtaining execution time in the
instruction pipeline. If both threads have a priority of 0, the processor is
essentially stopped and an I/O or decrementer interrupt will be required to
resume execution. If thread 0 has the priority of 0 and thread 1 has a priority of 1
(very low priority), then a group of up to five instructions is started every 32
processor clock cycles for thread 1. Having a priority of 1 is really intended for the
operating system’s idle process and locking mechanism. If one thread holds a
lock and the other thread wants the lock, you want the thread that holds the lock
to use the processor resources and not have to share cycles with the thread that
keeps asking whether the lock is available yet (spin lock). There are other
scenarios for using priority manipulation, but the discussion of these scenarios is
beyond the scope of this book.

Table 3-2 Effect of thread priorities on decode slot usage

Thread 0 Thread 1 Decode slots status
priority (X) | priority (Y)
0 0 Both Thread 0 and Thread 1 are stopped.
0 1 Thread 1 begins decoding up to five instructions every 32

processor cycles for power savings. Thread 0 is stopped.

0 >1 Thread 1 uses all processor resources and will be
fetching and executing instructions every clock cycle.

1 1 Every 64 cycles, each thread will start up to five
instructions for power saving.

1 >1 Thread 1 gets all of the execution resources and thread 0
gets any leftover resources. Thread 1 should have the
performance similar to single-threaded mode.

>1 >1 How many cycles each thread gets before yielding to the
other is determined by the equation 1/(2** (x-y+1))

When both threads have a priority greater than 1, the following equation is used:

1
2(I)(—Y+1)
For example, if thread 0 has a priority of 4 and thread 1 has a priority of 2, then
thread 1 gets 1/(2(4 -2+ 1)) = 1/8 cycles or one processor cycle out of every
eight. Thread 0 gets the other seven cycles.

Figure 3-4 on page 54 depicts the effects of thread priorities on instructions
executed per cycle. The x-axis labels with comma separators represent actual
thread priority pairs. For example, 7,0 implies that thread 0 has a priority of 7 and

Chapter 3. Simultaneous multithreading 53

54

thread 1 has been stopped. The humbers without comma separators represent
the value of (X - Y) where X is the priority of thread 0 and Y is the priority of
thread 1. A value of 5 on the x-axis indicates either (7,2) or (6,1) for X and Y.

Single-threaded mode

W Thread 1
@ Thread O

Instructions/cycle

70 5 3 1 0 -1 3

S5 0,7 1,1

y

Power saving mode

Figure 3-4 Effect of adjusting thread priorities

Advanced POWER Virtualization on IBM @server p5 Servers

3.4 Software considerations

The goal of simultaneous multithreading is to increase overall throughput of the
system by executing two threads that when run individually on the processor in

single-threaded mode may not utilize the processor execution resources to the

desired level. Simultaneous multithreading performance depends on the type of
application; however, for most cases some general rules can be introduced:

» Simultaneous multithreading does not speed up individual threads of
execution, but overall throughput should improve.

» If applications care about real-time responses rather than overall system
performance, they are better off running in single-threaded mode.

» For workloads that are limited by the processor execution resources, such as
technical workloads that exhibit high instruction level parallelism and
consume large amount of rename resources such as floating-point registers
(FPRs), simultaneous multithreading will not help much.

Important: The POWERS5 provides facilities for the operating system to
dynamically switch simultaneous multithreading on and off for applications
and workloads that might benefit from simultaneous multithreading.

In general, based on previous work, the following rules can be summarized for
application performance on simultaneous multithreading environments:

» Applications found in commercial environments showed higher simultaneous
multithreading gain than scientific applications.

» Experiments on different workloads have shown varying degrees of
simultaneous multithreading gain ranging from -11% to 43%. On average,
most of the workloads showed a positive gain running in simultaneous
multithreading mode.

Applications that showed a negative simultaneous multithreading gain may be
attributed to L2 cache thrashing and increased local latency under
simultaneous multithreading.

3.4.1 Simultaneous multithreading aware scheduling

A multi-processor kernel can run on a POWERS5 simultaneous multithreading
enabled system without modifications, since the kernel will see the two hardware
threads as two separate logical processors. For example, on an IBM @server p5
system with two physical processors (four hardware threads) and two
ready-to-run processes, the scheduler could schedule the processes to run on
the two hardware threads of the same processor core, resulting in the other
processor core being idle. If the operating system is not simultaneous

Chapter 3. Simultaneous multithreading 55

multithreading aware, there would be no way for the scheduler to distinguish
between threads on the same processor or different processors. Obviously, this
does not lead to efficient utilization of system processing capacity. Given this
background, the most obvious optimization for simultaneous multithreading is to
make sure that work is distributed to all of the primary threads (thread 0) before
work is dispatched to secondary threads (thread 1). Secondary threads can be
snoozed or put at very low priorities if they are idle. The AIX Version 5L V5.3 and
Linux 2.6 kernel are simultaneous multithreading aware.

Note: Both AIX 5L V5.3 and the Linux 2.6 kernel are simultaneous
multithreading aware.

Another optimization is to consider the two threads of a core as one affinity

(AIX 5L V5.3) or scheduling (Linux) domain, so that the domain reflects sharing
of resources such as the translation look-aside buffer (TLB) used to map virtual
addresses to real addresses, between the two hardware threads. It might be
beneficial for software threads of the same process to run in the same domain so
that the shared processor caches (L1, TLB, and so on.) are effectively utilized by
the software. It also makes sense to maintain the affinity of software tasks to
domains where they ran earlier, so that they get a warmer cache.

The bindprocessor command has been enhanced in AlIX 5L V5.3 to accept
command line options to display all primary threads or all secondary threads.
This is to help applications that use binding to bind to one physical processor.

These two optimization techniques are meant to illustrate that simultaneous
multithreading awareness helps the operating system perform better. As both the
AIX 5L and Linux operating systems evolve, more optimization techniques can
be expected.

3.4.2 Thread priorities on AIX 5L V5.3

AIX 5L V5.3 does not lower the priority of the idle thread if simultaneous
multithreading is enabled. It searches for work in its own run queue and other run
queues for threads with normal priorities. This ensures that any information
about available work is current and can be acted on with least latency. If no work
is available and if the snooze delay is not over, it will spin in a loop for a tunable
number of times in a very low priority loop (for power savings only), checking for
work only on its own run queue. After that it returns to top of the idle process and
repeats the search for work until snooze delay expires.

Normally, AIX maintains both hardware threads at the same priority but will boost
or lower thread priorities in a few key places to optimize performance, and lowers
thread priorities when the thread is doing non-productive work such as spinning

56 Advanced POWER Virtualization on IBM @server p5 Servers

in the idle process or on a kernel lock. When a thread is holding a critical kernel
lock, AIX boosts the thread’s priority. These priority adjustments are made only
with code executing in kernel mode (device drivers, system calls, and so on.).

AlX has tunable options (such as the schedo command) to enable the boosting of
priority for hot locks to medium-high (5) priority. There is code in the first level
interrupt handlers to reset the priority back to normal (4) priority, so the priority
boost for hot locks does not boost interrupt handlers and exception handlers.
There is a tunable to enable the priority boost to be preserved across the
interrupts and to be kept until the job gets dispatched, but that is not the default.

Dedicated partition implementation

For instances where the processor is dedicated to a partition, simultaneous
multithreading is enabled, and if there are no ready-to-run tasks, the idle process
is started and invokes the POWER Hypervisor's H_CEDE call. AIX will set the
priority of the idle process to low (2) and wait for the simultaneous multithreading
shooze delay to decrement to zero.

If kernel code is waiting for a spinlock, AlX changes the waiting thread’s priority to
low (2). Therefore the spinning thread yields processor resources to the thread
holding the lock. Using the formula mentioned in 3.3.3, “Thread priority
implementation” on page 52, this would result in the idle thread getting one cycle
compared to eight cycles for the thread that holds the lock, assuming normal
priority for the thread that holds the lock.

Micro-Partitioning implementation

For instances where the processor is used in a Micro-Partitioning environment
and a wait on a spinlock occurs, a wait for a tunable spin delay occurs after
setting the priority to low (2). After the spin delay, the POWER Hypervisor’s
H_CONFER call is made only if the task is running with interrupts disabled,
perhaps to serialize with interrupt service routines. Since it has interrupts
disabled, we cannot dispatch another job (or thread) from the run queue on the
processor. The H_CONFER is used to release the hardware thread. If the
second hardware thread were also to H_CONFER later on, then the whole
processor is freed up and POWER Hypervisor can redispatch the physical
processor on another partition. Note that this is a requirement because the
hardware threads are bound and must run in the same partition. If the task is
running with interrupts enabled, the task is placed onto the sleep queue and the
dispatcher is called to dispatch another task. The POWER Hypervisor will control
priority management and redispatch the physical processor if the other hardware
thread also cedes or confers.

Chapter 3. Simultaneous multithreading 57

3.4.3 Thread priorities on Linux

The Linux 2.6 kernel for POWER lowers the thread priority for the idle process.
For dedicated LPARs, the priority of the idle process is set to low and then waits
for the snooze delay period before snoozing the idle thread by means of the
POWER Hypervisor's H_CEDE call. For Linux instances in a Micro-Partitioning
environment, Linux always invokes H_CEDE for the idle process.

The Linux kernel also lowers the priority of a thread spinning for a lock to be
released. The priority of the waiting thread is set to low (2) and, assuming the other
hardware thread in the core has a normal (4) priority, like AIX 5L V.53 the waiting
thread will get one processor clock cycle to every eight cycles of the other thread.

3.4.4 Cache effects

58

With simultaneous multithreading, thread-level parallelism is used to compensate
for low instruction level parallelism by having two possibly different tasks share
the same processor core and caches. This means there could be more
associativity misses in the caches. (See 2.5, “Caches” on page 21.) To
compensate for this, POWERS5 has increased POWER4'’s associativity of the L1
instruction cache from direct-mapped (one-way) to two-way set associative, and
increased the data cache from two-way to four-way set associative.

The L2 cache on POWERS is now a 1.9 MB, 10-way set associative cache,
compared to the 1.5 MB eight-way set associative L2 cache on POWER4.

The L3 on the POWERS5 is 36 MB 12-way set-associative cache compared to the
32 MB eight-way set-associative on POWER4. The L3 cache on the POWERS5 is
now a victim cache of L2, unlike an inline cache in POWER4. On POWERS5, the
L3 cache runs at half the processor speed, compared to one-third the processor
speed on POWERA4. The L3 cache being a victim cache of L2, it behaves like a
large (albeit a bit slower) L2 extension. These processor enhancements help
offset the cache effects due to simultaneous multithreading, resulting in overall
improved application performance.

Advanced POWER Virtualization on IBM @server p5 Servers

3.5 Simultaneous multithreading performance

Performance measurements for various standard industrial benchmarks were
made with AIX 5L V5.3 on four-way @server p5 570 POWERS5 systems to
validate gains from simultaneous multithreading. The measurements were made
with simultaneous multithreading enabled and disabled.

Figure 3-5 illustrates simultaneous multithreading gains for various workloads for
a four-way 1.65 GHz p5 570 POWERS5 system. As the chart shows, throughput
improvement varies from 10% to 50% depending on the workload.

SMT GAINS

SPECint_rate
SPECfp_rate
SPECjbb
SPECsfs
TPC-C
SDET"
NETPERF

W 4 way

0 10 20 30 40 Lo 60

Percentage Gain

Figure 3-5 Simultaneous multithreading gains for various workloads

3.5.1 Engineering and scientific applications

In this section, we present a series of examples that involve applications in the
area of High Performance Computing (HPC). These applications correspond to
the Life Sciences and Computer Aided Engineering (CAE) industry:

» Gaussian03

Gaussian (Gaussian03, Rev.C.01, Gaussian Inc., Wallingford, CT) is a
connected series of programs that can be used for performing a variety of
electronic structure calculations; molecular mechanics, semi-empirical, ab
initio, and density functional theory.

Chapter 3. Simultaneous multithreading 59

» Assisted Model Building with Energy Refinement (AMBER)

AMBER is a flexible suite of programs for performing molecular mechanics
and molecular dynamics calculations based on force fields. AMBER is the
primary program used for molecular dynamics simulations and is the only
program considered in our current study. The version used for our tests
correspond to AMBERY7 for IBM systems, and the test that was selected to
run AMBER is the Joint AMBER-CHARMM (JAC) benchmark.

» Basic Local Alignment Search Tool (BLAST)

BLAST is a set of similarity search programs designed to explore all of the
available sequence databases regardless of whether the query is protein or
nucleic acid. The BLAST programs have been designed for speed, with a
minimal sacrifice of sensitivity to distant sequence relationships. The scores
assigned in a BLAST search have a well-defined statistical interpretation,
making real matches easier to distinguish from random background hits.
BLAST uses a heuristic algorithm that seeks local (as opposed to global)
alignments and is therefore able to detect relationships among sequences
that share only isolated regions of similarity.

» FLUENT

FLUENT V6.1.22 (FLUENT, Inc.) is a leading computational fluid dynamics
(CFD) application program for modeling fluid flow and heat transfer in
complex geometries. FLUENT provides complete mesh flexibility, solving flow
problems with unstructured meshes that can be generated about complex
geometries with relative ease. CFD applications allow for high parallelization.

Although all of these applications are in the same area of High Performance
Computing, the algorithms that are utilized to carry out their simulations are not
necessarily the same. This provides a good test for the performance of
simultaneous multithreading under different conditions or workloads.

60 Advanced POWER Virtualization on IBM @server p5 Servers

3.5.2 Simultaneous multithreading benchmarks

We ran two sets of test cases for each of these applications: one set for
single-threaded mode and one set for simultaneous multithreading.

The system used to conduct these tests was an IBM @server p5 570
(9117-570) with four 1.65 GHz processors and 16 GB of memory. The operating
system was AIX 5L V5.3. Fortran xIf 9.1 and the xIc 7.0 compilers were installed.

Although this is a benchmarks section, we hope it can also provide basic
information for sizing and capacity planning for this type of application. The
objective of capacity planning is to provide an estimate of future systems
resource requirements based on the present knowledge of the system utilization.

An extensive discussion of sizing and capacity planning independent from
scientific applications can be found in the redbook IBM @server pSeries Sizing
and Capacity Planning, SG24-7071.

Gaussian03 benchmark tests

The first benchmark test corresponds to Gaussian03. For both single-threaded
and simultaneous multithreading modes, we ran our test case 1-way (sequential),
and two-way, four-way, and eight-way (parallel). In other words, within the
Gaussian notation we ran with nproc using one, two, four, and eight processors.
It is important to note that the system only had four physical processors.

These benchmarks are important because they show that there is almost no
difference running single-threaded versus simultaneous multithreading when
utilizing parallel jobs with the total number of physical processors or less. We
also show that parallel jobs running two times the number of physical processors,
when running on simultaneous multithreading mode, still show additional
scalability; that does not happen when running in single-threaded mode.

Figure 3-6 on page 62 illustrates the performance of Gaussian03 using multiple
processors under single-threaded and simultaneous multithreading modes. In
this figure we can identify three trends:

» The first trend corresponds to the performance when running with one and
two processors. In this case we see that when running Gaussian03 under any
of these two modes, the performance is basically identical (less than 1%
difference).

» The second trend may be observed when running with four processors. In this
case we see that when running in single-threaded mode there is a slight
advantage in performance as there is no sharing of processor resources with
another hardware thread. The percentage difference is approximately 4%.

Chapter 3. Simultaneous multithreading 61

» The last trend may be seen when requesting a run with eight processors.
Clearly, this case is requesting more than the physical number of processors
available on this machine. However, in simultaneous multithreading mode
(abbreviated as SMT in the following figures), the two hardware threads
appear as two logical processors. Because of the more efficient use of the
processor, we see more than a 40% improvement in performance when
compared to running in single-threaded mode.

700

600 OST |
W SMT

500 -
400 -

300
200 -

Elapsed Time in Seconds

100 A

0
1-way 2-way 4-way 8-way

Number of Processors

Figure 3-6 Gaussian03 benchmarks

62 Advanced POWER Virtualization on IBM @server p5 Servers

Next we look at a performance comparison of the two modes, single-threaded
and simultaneous multithreading, in a series of throughput benchmarks. We ran
the throughput benchmarks by carrying out a single calculation on a standalone
system; this was the only process running. We refer to this scenario as a single
job. When the job was done, we simultaneously submitted two jobs, three jobs,
and on to eight simultaneous jobs. Figure 3-7 shows the performance of
Gaussian03 with a series of throughput benchmarks using single-threaded and
simultaneous multithreading modes.

As in the first set of tests, we can identify two trends. The first trend corresponds
to the throughput benchmarks consisted of one, two, and three simultaneous
jobs, where there is basically no difference in performance (less than 1%)
between single-threaded and simultaneous multithreading.

The second trend begins when the number of processors is the same as the
number of jobs submitted. In our case where there is four physical processors,
we start seeing the benefit of the simultaneous multithreading mode. Clearly the
simultaneous multithreading mode outperforms the single-threaded mode. As the
number of simultaneous jobs is increased the effect becomes more dramatic.

1400
3 1200 @sT
5 mSMT
8 1000 -
()
£ 800 -
Q
E 600 |
|—
8 400 |
&
0 200 -

07_ I I I
1 2 3 4 5 6 7 8
Number of Simultaneous Jobs

Figure 3-7 Throughput comparison of Gaussian03 tests

Chapter 3. Simultaneous multithreading 63

The difference between single-threaded and simultaneous multithreading can be
seen in Figure 3-8. This figure clearly shows that from one to three simultaneous
jobs, there is not much difference between single-threaded and simultaneous
multithreading. However, from four to eight simultaneous jobs, the advantage of
simultaneous multithreading is clear.

The difference that we see in the case of five jobs running simultaneously,
compared to four and six simultaneous jobs, might be caused by the operating
system running daemons and kernel processes in the background; therefore for
a certain period of time they both were competing for resources. Explicitly
binding to processor may alleviate this behavior.

20
cbcl’_)15 —— ST
g% - SMT
52107
gm
Q.GE, 5
E3
wng 0
E . 1 2 3 4 5 6 7 8
Number of Simultaneous Jobs

Figure 3-8 Performance advantage of the simultaneous multithreading

64 Advanced POWER Virtualization on IBM @server p5 Servers

AMBER7 benchmark tests

The second application that we tested was AMBERY. Figure 3-9 shows results
similar to the case of the Gaussian03 benchmark tests. Again we observe
exactly the same three trends. For the first trend, we see that there is no
difference between single-threaded mode and simultaneous multithreading
mode. For the second trend, the performance improvement in single-threaded
mode again is only about 4%. Finally, as in the case of Gaussian03, we see a
large performance improvement using simultaneous multithreading when
running with eight logical processors. The gain is of the order of 25%.

600

500 @sT
mSMT

400

300 -

200

100

Elapsed Time in Seconds

0
1-way 2-way 4-way 8-way

Number of Processors

Figure 3-9 AMBER? benchmark test comparison

Chapter 3. Simultaneous multithreading 65

Using the same procedure as with the Gaussian03 tests, we ran throughput
benchmarks with one, two, four, and eight processors running simultaneous
copies of the Joint AMBER-CHARMM benchmark input. The results presented in
Figure 3-10 are similar to the results discussed for Gaussian03.

Perhaps the largest qualitative difference between this case and Gaussian03 is
for four simultaneous jobs. AMBER7 does not seem to be taking as much
advantage of simultaneous multithreading as Gaussian did in this case.

1600
ST

1400
1200 mOMTY

1000 -
800 -
600 -
400
200 -

o0 H

Elapsed Time in Seconds

1 2 3 4 5 6 7 8

Number of Simultaneous Jobs

Figure 3-10 AMBERY7 results for simultaneous jobs

66 Advanced POWER Virtualization on IBM @server p5 Servers

In Figure 3-11, AMBERY takes advantage of simultaneous multithreading as a
function of the number of simultaneous jobs running on the machine. From one
to four simultaneous jobs, we see AMBERY7 taking slight advantage of
simultaneous multithreading.

However, as the number of simultaneous jobs increases, so does the advantage
of using simultaneous multithreading. We see that in this case, when running
seven simultaneous jobs, the improvement when compared to single-threaded is
as high as 25%. The behavior of the case with eight simultaneous jobs may be
explained as operating system noise.

N
()]

a

ST
H __: SMT /

N
o
|
|

—

o 01 O O,

SMT percentage
improvement over ST

1.2 3 4 5 6 7 8

1
(&)]

Number of Simultaneous Jobs

Figure 3-11 AMBERY?7 simultaneous multithreading improvement

Chapter 3. Simultaneous multithreading 67

BLAST benchmark tests

Figure 3-12 shows the results of the BLAST benchmark tests, with the same
trends as for Gaussian03 and AMBER7. However, it appears that BLAST tends
to favor simultaneous multithreading more that the other two applications. In the
two-way test, unlike the other two benchmark tests, simultaneous multithreading
has about a 2% advantage. Trend one is the same, except that for the two-way
run, BLAST favors the simultaneous multithreading by about 2%.

700

ST
mSMT

(o]

A O

= DN

Elapsed Time in Seconds
w
o o o (@] o o
o o o o o o o
| | | | | |

1-way 2-way 4-way 8-way

Number of Processors

Figure 3-12 BLAST benchmark test comparison

Figure 3-13 on page 69 summarizes the results for BLAST. BLAST is different
from the other two applications, Gaussian03 and AMBER?7, which are
floating-point intensive applications, while BLAST relies on pattern matching.

Again, BLAST shows behavior similar to the two previous applications. For cases
with one to four jobs running simultaneously, little use is made of simultaneous
multithreading. However, as soon as the number of jobs exceeds the number of
physical processors, the advantage of simultaneous multithreading is clear.

68 Advanced POWER Virtualization on IBM @server p5 Servers

1400
1200

ST

1000 -
800 -
600 -
400 -

Elapsed Time in Seconds

200

1 2 3 4 5 6 7 8

mSMT

Number of Simultaneous Jobs

Figure 3-13 BLAST results for simultaneous jobs

A more dramatic difference showing the benefit of simultaneous multithreading
can be seen in Figure 3-14. We see that in the case where we have doubled the

number of jobs compared to the number of physical processors, simultaneous
multithreading shows a performance improvement over single-threaded by as

much as 16% difference.

18
16
m",‘, 14 + ——ST s
29 121 & sMT o
‘E o 10 /
Q = 8
° 5
2 E 6
= S 4
=92 9
0N o
E 0-
211 2 3 5 6 7 8
-4
Number of Simultaneous Jobs

Figure 3-14 BLAST simultaneous multithreading improvement

Chapter 3. Simultaneous multithreading

69

70

FLUENT benchmark tests

The purpose of these tests was to determine whether the FLUENT application
would benefit from simultaneous multithreading. The measure of performance
used in this experiment is FLUENT rating, which is the number of FLUENT jobs
that can be completed in a 24-hour time period. Higher values of FLUENT rating
indicate better performance.

The application is submitted requesting one-way (sequential), and two-way and
four-way (parallel) when the system is configured in single-threaded mode. To
ensure that each thread is running on a different physical or logical processor, we
use the bindprocessor command. When the system was configured in
simultaneous multithreading mode, the single parallel job is submitted using one,
two, four, and eight processes. In the experiments where simultaneous
multithreading was used, one processor was assigned to two processes of the
parallel job. When the parallel job contained one process, complete resources of
a processor were assigned to the process under both single-threaded and
simultaneous multithreading.

Table 3-3 shows the results of running a single parallel job on the single-threaded
and simultaneous multithreading configurations. When the parallel job contains
one process, the results for both single-threaded and simultaneous
multithreading are almost identical, indicating that running in simultaneous
multithreading mode does not affect performance. The performance of
single-threaded and simultaneous multithreading is compared for a given number
of physical processors. The number processes in the parallel job is equal to the
number of physical processors in single-threaded and it is double the number of
physical processors in simultaneous multithreading mode. Based on the results,
running in simultaneous multithreading mode gives a 33% boost in performance
using one physical processor. When the system is fully loaded, the improvement
is slightly less at 23%. This improvement resulted in super-linear speed-up when
the single process run is used to compute the speed-up.

Table 3-3 Performance of parallel FLUENT test case

Single-thread mode Simultaneous multi-thread mode
Physical Processes FLUENT Speedup | Processes FLUENT Speedup Simultaneous
CPUs Rating Rating multithreading

jobs/day jobs/day Vs

(A) (B) single-threaded

(B)/(A)

1 1 166.6 1.0

1 1 166.8 1.0 2 221.4 1.3 1.33

2 2 334.3 2.0 4 415.4 25 1.24

4 4 625.0 3.8 8 768.2 4.6 1.23

Advanced POWER Virtualization on IBM @server p5 Servers

In order to evaluate the performance of single-threaded and simultaneous
multithreading features on a throughput benchmark, a set of several serial jobs
was submitted simultaneously and the FLUENT rating for each job was
measured. The total throughput was computed by multiplying the number of
processes by the average throughput for the set of jobs. In simultaneous
multithreading mode, three sets of jobs were used. These sets contained one,
two, and four jobs, respectively. Each job in each of these sets was assigned to a
processor. For the simultaneous multithreading configuration, four sets of jobs
were submitted. These four sets contained one, two, four, and eight jobs. One
processor was used for the jobs in each these sets.

Table 3-4 shows the results of running several serial jobs on the single-threaded
and simultaneous multithreading configurations. The performance of
single-threaded and simultaneous multithreading is compared for a given number
of physical processors. The number of jobs in the parallel run is equal to the
number of physical processors in single-threaded mode, and it is double the
number of physical processors in simultaneous multithreading mode. Based on
the results, simultaneous multithreading mode gives a 35% boost in performance
for a single physical processor.

Table 3-4 Throughput performance of serial FLUENT for test case: FL5M3

Single-thread mode Simultaneous multi-thread mode
Jobs CPUs FLUENT Total Jobs CPUs | FLUENT Total SMT vs
Rating FLUENT Rating FLUENT single-threa
for Rating for Rating ded (D)*(E)/
single for all Single for all (A)*(B)
job (B) jobs job (E) jobs
(A)*(B) (D)*(B)
1 1 166.6 166.6
1 1 166.8 166.8 2 1 112.2 224.4 1.35
2 2 167.3 334.6 4 2 109.7 436.0 1.31
4 4 163.6 654.4 8 4 108.5 871.2 1.33

3.6 Summary

We have tried to illustrate a series of scenarios where scientific applications can
take full advantage of simultaneous multithreading. We included the throughput
benchmarks in order to replicate the workloads that a supercomputing center
might experience on a day-to-day basis. These throughput benchmarks were
carried out by running multiple copies of a single application. Of course, if the
input is identical, all of the particular jobs will be competing for the same
resources. However, in order to provide a more balanced representation of a real

Chapter 3. Simultaneous multithreading 71

workload, we combined the three applications into one throughput benchmark.
Figure 3-15 summarizes the results from this benchmark.

With this benchmark we are trying to measure which mode will provide the best
throughput results. However, prior to discussing the results, it is important to
define how we ran this benchmark. Here the amount of time that the benchmarks
were going to run was predefined based on how long the individual runs take.
Given that constraint, our threshold of 90 minutes was arbitrary. We wrote a
script that would submit Gaussian03, AMBER7, and BLAST jobs simultaneously.
When the script reached 90 minutes, all jobs were stopped and the total number
of completed jobs in this period was used as the measurement of performance.

For these types of benchmarks, we see that the simultaneous multithreading
benefit is clear. We see performance improvements from 20% to almost 60%
difference when compared to single-threaded. The largest improvement
corresponds to AMBERY7 with almost 60% in comparison with single-threaded.

Will using simultaneous multithreading benefit your environment? There is no
straightforward answer to that question and it depends on the application or
applications in the system. Later in this book, we describe the performance tools
that can assist you in determining whether simultaneous multithreading is
desirable.

Number of Jobs
Completed

SMT

Gaussian03
AMBER7

BLAST

Figure 3-15 Benchmark comparison of Gaussian03, AMBER?7, and BLAST

72 Advanced POWER Virtualization on IBM @server p5 Servers

POWER Hypervisor

The technology behind the virtualization of the IBM @server p5 systems is
provided by a piece of firmware known as the POWER Hypervisor, which resides
in flash memory. This firmware performs the initialization and configuration of the
POWERS5 processor, as well as the virtualization support required to run up to
254 partitions concurrently on the IBM @server p5 servers.

The POWER Hypervisor supports many advanced functions when compared to
the previous version found in POWER4 processor—based systems. This includes
sharing of processors, virtual I/0, and high-speed communications among
partitions using a virtual LAN, and it enables multiple operating systems to run on
the single system. Currently, the AIX 5L, Linux, and i5/OS™ operating systems
are supported, as shown in Figure 4-1 on page 74.

With support for dynamic resource movement across multiple environments,
clients can move processors, memory, and 1/0O between partitions on the system
as workloads are moved between the partitions.

© Copyright IBM Corp. 2005. All rights reserved. 73

74

| 1l

[

AIX Linux i5/0S S"a’ser
Partitions Partitions Partitions Partition
| Virtual Ethernet | | Virtual Storage
POWER Hypervisor
Processor Memory 110 Virtual
_*Resources Resources Resources TTY
cpti [cru] [|[crul[crul | |[MEM] [MEM] | |[MEM][MEM] éA I0A
cpul[cru] ||[cpul[cru] | [[MEM][MEM] | | [MEM|[MEM] | |[10A |[10A
[MEMm] [mEm 10A |[10a] | | Service
rocessor
cpu] [cPu CUOD_||[mem] [mem [10A || 10A
Active Active
Pool Pool Active
Hardware

Figure 4-1 Virtualization technologies implemented on POWERS5 servers

The POWER Hypervisor is the underlying control mechanism that resides below

the operating systems but above the hardware layer (Figure 4-2). It owns all
system resources and creates partitions by allocating and sharing them.

OpenFirmware
RTAS

Programs
Linux

OpenFirmware
RTAS

Figure 4-2 IBM eServer p5 system layers

Advanced POWER Virtualization on IBM @server p5 Servers

The layers above the POWER Hypervisor are different for each supported
operating system. For the AIX 5L and Linux operating systems, the layers above
the POWER Hypervisor are similar but the contents are characterized by each
operating system. The layers of code supporting AIX 5L and Linux consist of
system firmware and Run-Time Abstraction Services (RTAS).

System firmware is composed of low-level firmware (code) that performs server
unique input/output (1/0) configurations and the Open Firmware that contains the
boot-time drivers, boot manager, and the device drivers required to initialize the
PCI adapters and attached devices. RTAS consists of code that supplies
platform-dependent accesses and can be called from the operating system.
These calls are passed to the POWER Hypervisor that handles all I/O interrupts.

The distinction between RTAS and Open Firmware is important. Open Firmware
and RTAS are both platform-specific firmware and both are tailored by the
platform developer to manipulate the specific platform hardware. RTAS
encapsulates some of the machine-dependent operations of the IBM @server
p5 systems into a machine-independent package. The operating system can call
RTAS to do things such as start and stop processors in an SMP configuration,
display status indicators (such as LEDs), and read/write NVRAM without having
to know the intricate details of how the low-level functions are implemented on
particular platforms. Open Firmware, on the other hand, does not have not be
present when the operating system is running. Open Firmware is defined by the
IEEE 1275 standard and is a specification for machine-independent BIOS that is
capable of probing and initializing devices that have IEEE-1275 compliant Forth
code in their ROMs. The device tree produced by Open Firmware can then be
passed to the operating system when control is passed to the operating system
during boot. Read more about the IEEE 1275 Open Firmware standard at:

http://www.openfirmware.org

For i5/0S, Technology Independent Machine Interface (TIMI) and the layers
above the POWER Hypervisor are still in place. System Licensed Internal Code
(SLIC), however, is changed and enabled for interfacing with the POWER
Hypervisor. The POWER Hypervisor code is based on the iSeries™ Partition
Licensed Internal Code (PLIC) code that is enhanced for use with the

IBM @server i5 hardware. The PLIC is now part of the POWER Hypervisor.

Attention: The POWER Hypervisor is mandatory on all POWER5
processor-based systems. This includes any single-LPAR system.

Chapter 4. POWER Hypervisor 75

http://www.openfirmware.org

4.1 POWER Hypervisor implementation

The POWER4 processor introduced support for logical partitioning with a new
privileged processor state called POWER Hypervisor mode. It is accessed using
POWER Hypervisor calls, which are generated by the operating system’s kernel
running in a partition. POWER Hypervisor mode allows for a secure mode of
operation that is required for various system functions where logical partition
integrity and security are required. The POWER Hypervisor validates that the
partition has ownership of the resources it is attempting to access, such as
processor, memory, and I/O, then completes the function. This mechanism
allows for complete isolation of partition resources.

In the POWERS5 processor, further design enhancements are introduced that
enable the sharing of processors by multiple partitions. The POWER Hypervisor
Decrementer (HDEC) is a new hardware facility in the POWERS5 design that is
programmed to provide the POWER Hypervisor with a timed interrupt
independent of partition activity. The HDEC is described in “POWER Hypervisor
Decrementer” on page 33. HDEC interrupts are routed directly to the POWER
Hypervisor, and use only POWER Hypervisor resources to capture state
information from the partition. The HDEC is used for fine-grained dispatching of
multiple partitions on shared processors. It also provides a means for the
POWER Hypervisor to dispatch physical processor resources for its own
execution.

The POWERS5 processor supports special machine instructions and are
exclusively used by the POWER Hypervisor. If an operating system instance in a
partition requires access to hardware, it first invokes the POWER Hypervisor by
using POWER Hypervisor calls. The POWER Hypervisor allows privileged
access to the operating system for dedicated hardware facilities and includes
protection for those facilities in the processor and memory locations.

The primary POWER Hypervisor calls used by the operating system in the
dispatch of a virtual processor are:

H_CEDE Used when a virtual processor or thread becomes idle,
enabling the POWER Hypervisor to dispatch other work.

H_CONFER Used to grant the remaining cycles in a dispatch interval
to another virtual processor in the partition. It may be
used when one virtual processor cannot make forward
progress because it is waiting on an event to complete on
another virtual processor, such as a lock miss.

H_PROD Used to activate a virtual processor that has ceded or
conferred processor cycles.

76 Advanced POWER Virtualization on IBM @server p5 Servers

A virtual processor will always be in one of four logical states. These states are:

Runnable Ready to run, waiting for dispatch

Running Currently dispatched on a physical processor

Not-runnable Has ceded or conferred its cycles

Expired Consumed its full entitled cycles for the current dispatch
window

Architecturally, the POWER Hypervisor, a component of global firmware, owns
the partitioning model and the resource abstractions that are required to support
that model. Each partition is presented with the resource abstraction for its
partition and other required information through the Open Firmware device tree,
which is created by firmware and copied into the partition before the operating
system is started. In this way, operating systems receive resource abstractions.
They also participate in the partitioning model by making POWER Hypervisor
calls at key points in their execution as defined by the model.

The introduction of shared processors did not fundamentally change this model.
New virtual processor objects and POWER Hypervisor calls have been added to
support shared processor partitions. Actually, the existing physical processor
objects have just been refined to not include physical characteristics of the
processor, because there is not a fixed relationship between a virtual processor
and the physical processor that actualizes it. These new POWER Hypervisor
calls are intended to support the scheduling heuristic for minimizing idle time.

The POWER Hypervisor is entered by the way of three interrupts:
» System reset interrupt

A non-maskable, asynchronous interrupt that is caused by a command for
soft reset invoked from the service processor. The POWER Hypervisor code
saves all processor state by saving the contents of the processor’s registers
(multiplexing the use of this resource with the operating system). The
processor’s stack and data are found by processing the Processor
Identification Register (PIR). The PIR is a read-only register. During power-on
reset, it is set to a unique value for each processor in a multi-processor
system.

» Machine Check Interrupt

The following causes of machine check interrupts are precise and
synchronous with the instruction that caused the operation that encountered
the error:

— The detection of a parity error in the L1 data cache, the data
effective-to-real (D_ERAT), the translation lookaside buffer, or the segment
lookaside buffer during the execution of a load or store instruction. If the

Chapter 4. POWER Hypervisor 77

interrupt is caused by a soft error, executing the appropriate sequence of
instructions in the Machine Check Handler program will clear the error
condition without causing any loss of state.

— The detection of an uncorrectable error-correcting code (ECC) error in the
L2 cache when a Load instruction is executed.

— The detection of an uncorrectable ECC error in the L2 cache while the
Page Table is being searched in the process of translating an address.

— The detection of corrupt data that is being returned to satisfy a Load
instruction for which the effective address specified a location in caching
inhibited memory.

The POWER Hypervisor code saves all processor state by saving the
contents of the processor’s registers (multiplexing the use of this resource
with the operating system). The processor’s stack and data are found by
processing the Processor Identification Register (PIR).

The POWER Hypervisor investigates the cause of the machine check. The
cause may be either a recoverable event on the current processor or one of
the other processors in the logical partition. Also the POWER Hypervisor
must determine whether the machine check has corrupted its own internal
state (by looking at the footprints, if any, that were left in the per processor
data area of the errant processor.

» System (Hypervisor) call interrupt

The POWER Hypervisor call interrupt is a special variety of the sc (system
call) instruction. The parameters to a POWER Hypervisor call are passed in
registers using the PowerPC Application Binary Interface (ABI) definitions.
This ABI specifies an interface for compiled application programs to system
software. A copy of the ABI specification can be found at:

http://www.linuxbase.org/spec/ELF/ppc64

In contrast to the PowerPC ABI, passing parameters by reference are avoided
in POWER Hypervisor calls. This minimizes the address translation problem
that parameters passed by reference would cause because address
translation is disabled automatically when interrupts are invoked. Input
parameters may be indexes. Output parameters may be passed in the
registers and require special in-line assembler code on the part of the caller.
The first parameter in the POWER Hypervisor call function table to POWER
Hypervisor call is the function token. The assignment of function token is
designed such that a single mask operation can be used to validate the value
to be within the range of a reasonable-size branch table. Entries within the
branch table can handle unimplemented code points. Some of the POWER
Hypervisor calls indicate whether the system is in LPAR mode and which
ones are available. The Open Firmware property is provided in the /rtas node
of the partition’s device tree. The property is present if the system is in LPAR

78 Advanced POWER Virtualization on IBM @server p5 Servers

http://www.linuxbase.org/spec/ELF/ppc64

mode while its value specifies which function sets are implemented by a given
implementation. If the system implements any POWER Hypervisor call of a
function set, it implements the entire function set. Additionally, certain values
of the Open Firmware property indicate that the system supports a given
architecture extension to a standard POWER Hypervisor call.

The POWER Hypervisor routines are optimized for execution speed. In some
rare cases, locks will have to be taken, and short wait loops will be required due
to specific hardware designs. However, if a needed resource is truly busy, or
processing is required by an agent, the POWER Hypervisor returns to the caller,
either to have the function retried or continued later.

4.1.1 POWER Hypervisor functions

The POWER Hypervisor provides the following functions. Table 4-1 on page 81
shows the list of POWER Hypervisor calls.

Attention: This information is not intended to be a programming reference
and these calls may change in future levels of firmware. However, these
definitions may provide a better understanding of the mechanics within the
POWER Hypervisor.

» Page frame table

The page frame table describes the pages of memory. The access functions
to the page frame table carefully update a Page Table Entry (PTE) with at
least 64-bit store operations because an invalid update sequence could result
in machine check. The POWER Hypervisor protects the system from a
checkstop condition (a condition where the processor becomes architecturally
frozen) by allocating bits associated with PTE locks and reserved by the
operating system to indicate that the PTE is in use.

For logical addressing, an additional level of virtual addresses translation is
managed by the POWER Hypervisor. The operating system is not allowed to
use the physical address for its memory; this includes main storage,
memory-mapped I/O (MMIO) space, and NVRAM. The operating system
sees main storage as regions of contiguous logical memory. Each logical
region is mapped by the POWER Hypervisor into a corresponding block of
contiguous physical memory on a specific node. All regions on a specific
system are the same size, though different systems with different amounts of
memory may have different region sizes because they are the amount of
memory allocation to partitions. That is, partitions are granted memory in
region-size chunks, and if a partition’s operating system gives up memory, it is
in units of a full region.

Chapter 4. POWER Hypervisor 79

» Translation control entry

Translation control entry (TCE) access is provided by a POWER Hypervisor
call and take as a parameter, the Logical /0 Bus Number (LIOBN), which is
the logical bus number value derived from the property that is associated with
the particular I/0O adapter. TCE is responsible for the I/O address to memory
address translation in order to perform direct memory access (DMA) transfers
between memory and PCI adapters. The TCE tables are allocated in the
physical memory.

» Debugger support

Debugger support provides the capability for the real mode debugger to be
able to get to its serial port and beyond the real mode limit register without
turning on virtual address translation.

» Virtual Terminal support

The POWER Hypervisor provides console access to every logical partition
without a physical device assigned. The console emulates a v¢320 terminal
that can be used to access the partition system using the Hardware
Management Console (HMC). A partition’s device tree that contains one or
more nodes notifies that is has been assigned to one or more virtual terminal
(vterm) client adapters. The unit address of the node is used by the partition
to map the virtual device (or devices) to the operating system’s corresponding
logical representations and notify the partition that the virtual adapter is a
vterm client adapter. The node’s interrupts property specifies the interrupt
source number that has been assigned to the client vterm 1/0 adapter for
receive data.

» Dump support

This enables the operating system to dump POWER Hypervisor data areas in
support of field problem diagnostics. The dump function set contains the
POWER Hypervisor call H_HYPERVISOR_DATA. This call is enabled or disabled
(default disabled) via the Hardware Management Console.

» Memory Migration Support

The Memory Migration Support POWER Hypervisor call was provided to
assist the operating system in the memory migration process. It is the
responsibility of the operating system not to change the DMA mappings
referenced by the translation buffer. Failure of the operating system to
serialize relative to the logical bus numbers may result in DMA data corruption
within the caller’s partition.

» Performance Monitor Support

The performance registers will be saved when a virtual processor yields or is
preempted. They will be restored when the state of the virtual processor is
restored on the hardware. A bit in one of the performance monitor registers

80 Advanced POWER Virtualization on IBM @server p5 Servers

enables the partition to specify whether the performance monitor registers
count when a POWER Hypervisor call (except yield) is made. When a virtual
processor yields or is preempted, the performance monitor registers will not
count, enabling a partition to query the POWER Hypervisor for appropriate
information regarding POWER Hypervisor code and data addresses.

Table 4-1 POWER Hypervisor calls

Hypervisor call

Definition

H_REGISTER_VPA

Provides a data area registered with the Hypervisor
by the operating system for each virtual processor.
The VPA is the control area that holds information
used by the POWER Hypervisor and the OS in
cooperation with each other.

H_CEDE

Has the virtual processor, which has no useful work to
do, enter a wait state, ceding its processor capacity to
other virtual processors until some useful work
appears, signaled either through an interrupt or an
H_PROD call.

H_CONFER

Enables a virtual processor to give its cycles to one or
all other virtual processors in its partition.

H_PROD

Makes the specific virtual processor runnable.

H_ENTER

Adds an entry into the page frame table. PTE high and
low order bytes of the page table contain the new
entry.

H_PUT_TCE

Provides mapping of a single 4096-byte page into the
specified TCE.

H_READ

Returns the contents of a specific PTE into GPR4 and
GPRS.

H_REMOVE

Invalidates an entry in the page table.

H_BULK_REMOVE

Invalidates up to four entries in the page frame table.

H_GET_PPP

Returns the partition’s performance parameters.

H_SET_PPP

Enables the partition to modify its entitled processor
capacity percentage and variable processor capacity
weight within limits.

H_CLEAR_MODE

Clears the modified bit in the specific PTE. The
second double word of the old PTE is returned in
GPRA4.

Chapter 4. POWER Hypervisor 81

82

Hypervisor call

Definition

H_CLEAR_REF Clears the reference bit in the specific PTE from the
partition’s node page frame table.

H_PROTECT Sets the page protects bits in the specific PTE.

H_EOI Incorporates the interrupt reset function when
specifying an interrupt source number associated with
an interpartition logical I/O adapter.

H_IPI Generates an interprocessor interrupt.

H_CPPR Sets the processor’s current interrupt priority.

H_MIGRATE_DMA

This call is extended to serialize the sending of a
logical LAN message to allow for migration of TCE
mapped DMA pages.

H_PUT_RTCE Maps the number of contiguous TCEs in an RTCE to
the same number of contiguous 1/0 adapter TCEs.

H_PAGE_INIT Initializes pages in real mode either to zero or to the
copied contents of another page.

H_GET_TCE This standard call is used to manage the interpartition

logical LAN adapters’s I/O translations.

H_COPY_RDMA

Copies data from an RTCE table mapped buffer in
one partition to an RTCE table mapped buffer in
another partition, with the length of the transfer being
specified by the transfer length parameter in the call.

H_SEND_CRQ

Sends one 16-byte message to the partner partition’s
registered Command / Response Queue (CRQ). The
CRQ facility provides ordered delivery of messages
between authorized partitions.

H_SEND_LOGICAL_LAN

Sends a logical LAN message.

H_ADD_LOGICAL_LAN_BUF

Adds receive buffers to the logical LAN receive buffer
pool.

H_PIC Returns the summation of the physical processor
pool’s idle cycles.
H_XIRR This call is extended to report the source number

associated with virtual interrupts from an interpartition
logical LAN I/O adapter.

Advanced POWER Virtualization on IBM @server p5 Servers

Hypervisor call

Definition

H_POLL_PENDING

Provides the operating system with the ability to
perform background administrative functions and the
implementation with indication of pending work so
that it may more intelligently manage the use of
hardware resources.

H_PURR?

This call is a new resource provided for
Micro-Partitioning and simultaneous multithreading. It
provides an actual count of ticks that the shared
resource has used on a per virtual processor or per
thread basis. In the case of Micro-Partitioning, the
virtual processor’s Processor Utilization Resource
Register begins incrementing when the virtual
processor is dispatched onto a physical processor.
Therefore, comparisons of elapsed PURR with
elapsed Time_Base provides an indication of how
much of the physical processor a virtual processor is
getting. The PURR will also count Hypervisor calls
made by the partition.

a. See “Processor Utilization Resource Register (PURR)” on page 34.

Monitoring POWER Hypervisor calls
In AIX 5L Version 5.3, the 1parstat command using the -h and -H flags displays
Hypervisor statistical data about many POWER Hypervisor calls, including cede,
confer, and prod. Using the -h flag adds summary POWER Hypervisor statistics
to the default 1parstat output. The following shows an example of this command,
collecting statistics for one five-second interval.

Example 4-1 Iparstat -h command

lparstat -h 51

System configuration: type=Dedicated mode=Capped smt=0n 1cpu=4 mem=3808

suser %sys %wait

99.8

61.2 2440007

Using the -H flag displays detailed POWER Hypervisor information, including

statistics for many POWER Hypervisor call functions. The output in Example 4-2
on page 84 shows the following for each of these POWER Hypervisor calls:

Number of calls
Total Time Spent

Number of POWER Hypervisor calls made
Percentage of total time spent for this type of call

Chapter 4. POWER Hypervisor

83

84

Hypervisor Time Spent Percentage of POWER Hypervisor time spent for this
type of call

Average Call Time
Maximum Call Time

Example 4-2 Iparstat -H command

Average call time for this type of call in nanoseconds

Maximum call time for this type of call in nanoseconds

lparstat -H 5 1

System configuration: type=Dedicated mode=Capped smt=0n 1cpu=4 mem=3808

Hypervisor
Call

remove
read
nclear_mod
page_init
clear_ref
protect
put_tce
xirr

eoi

ipi

cppr

asr

others
enter

cede
migrate_dma
put_rtce
confer

prod

get_ppp
set_ppp
purr

pic
bulk_remove
send_crq
copy_rdma
get_tce

send_Tlogical_lan
add_Togicl_lan_buf

Number of
Calls

1223600

O O OO OO P OO HFPF OOOUINOODODOMMWMO OO WwWOoOoOo

%Total Time

Spent

(=]
OO O OO OO ODODODODODOOHOOODODODODODODODOOOOO
OO OO OO OO ODOOOOODUTOOODODODODODOOOOOOO

Detailed information on Hypervisor Calls

%Hypervisor

Time Spent

—_
o

OO O OO OO ODODODODODODODODODODODODODODODODODOOOOO

O OO OO OO ODODOODODODODOODOODODODODODODOOOOOO

Avg Call
Time(ns)

Max Call
Time(ns)

714
193
0
2212

Advanced POWER Virtualization on IBM @server p5 Servers

4.1.2 Micro-Partitioning extensions

A new virtual processor is dispatched on a physical processor when one of the
following conditions happens:

» The physical processor is idle and a virtual processor was made ready to run
(interrupt or process).

» The old virtual processor exhausted its time slice (HDEC interrupt).
» The old virtual processor ceded or conferred its cycles.

When one of these conditions occurs, the POWER Hypervisor, by default,
records all the virtual processor architected state including the Time Base and
Decrementer values and sets the POWER Hypervisor timer services to wake the
virtual processor per the setting of the decrementer. The virtual processor’s
Processor Utilization Resource Register (PURR) value for this dispatch is
computed. The Virtual Processor Area (VPA) dispatch count is incremented
(such that the result is odd). Then the POWER Hypervisor selects a new virtual
processor to dispatch on the physical processor using an implementation-
dependent algorithm having the following characteristics given in priority order:

1. The virtual processor is “ready to run” (has not ceded or conferred its cycles
or exhausted its time slice).

2. Ready-to-run virtual processors are dispatched prior to waiting in excess of
their maximum specified latency.

3. Of the non-latency critical virtual processors ready to run, select the virtual
processor that is most likely to have its working set in the physical processor’s
cache or for other reasons will run most efficiently on the physical processor.

If no virtual processor is ready to run at this time, start accumulating the Pool Idle
Count (PIC) of the total number of idle processor cycles in the physical processor
pool.

Virtual 1/0

Virtual input/output (1/0) support is one of the advanced features of the new
POWER Hypervisor. Virtual I/0 provides a given partition with the appearance of
I/O adapters that do not necessarily have direct correspondence with a physical
adapter. Virtual I/O is covered in detail in Chapter 6, “Virtual I/0” on page 143.

Memory considerations
POWERS processors use memory to temporarily hold information. Memory
requirements for partitions depend on partition configuration, I/O resources

assigned, and applications used. Memory can be assigned in increments of
16 MB.

Chapter 4. POWER Hypervisor 85

Depending on the overall memory in your system and the maximum memory
values you choose for each partition, the server firmware must have enough
memory to perform logical partition tasks. Each partition has a Hardware Page
Table (HPT); its size is based on an HPT ratio and determined by the maximum
memory values you establish for each partition. The HPT ratio is 1/64.

When selecting the maximum memory values for each partition, consider the
following:

» Maximum values affect the HPT size for each partition.
» The logical memory map size of each partition.

When you create a logical partition on your managed system, the managed
system reserved an amount of memory to manage the logical partition. Some of
this physical partition is used for POWER Hypervisor page table translation
support. The current memory available for partition usage as displayed by the
HMC is the amount of memory that is available to the logical partitions on the
managed system (Figure 4-3). This is the amount of active memory on your
managed system minus the estimated memory needed by the managed system
to manage the logical partitions defined on your system. Therefore, the amount
in this field decreases for each additional logical partition you create.

Specify desired, minimum and macximum amounts of memory for this profile using &
combinztion of the gigabyte and megabyte fields below.

Inztalled memary (MED; 4096

Current memoty available for partition usage (ME) . 3524

Minimum mermory Dezired memary Mazziraum mermory

[4ee| || 02es| | 048
[128 2 we | | | 1254 ve | | 125 4 3

7 = Back Mext = Finish Cancel

Help

Figure 4-3 Current memory available for partition usage using HMC

When you assess changing performance conditions across system reboots, it is
important to know that memory allocations might change based on the
availability of the underlying resources. Memory is allocated by the system
across the system. Applications in partitions cannot determine where memory
has been physically allocated.

86 Advanced POWER Virtualization on IBM @server p5 Servers

4.1.3 POWER Hypervisor design

The POWER Hypervisor is primarily responsible for affinity in a Micro-Partitioning
system. The physical processors in the shared processor pool are grouped within
natural hardware boundaries, such that all processors within the pool have the
same affinity characteristics and the partition is guaranteed to only execute on
that pool of processors, barring events such as a processor being GUARD’ed off
due to predictive failures, and possibly replaced with a spare processor from
another affinity domain. See Figure 5-12 on page 119 for the relationship
between virtual and physical processors.

The POWER Hypervisor will continue to provide affinity domain information in the
device tree for processors, which are actually virtual processors in a
Micro-Partitioning configuration. The side effect of Micro-Partitioning might be
limits to the depth of hierarchy of affinity domain information that can be
provided—that is, instead of going down to the physical processor it might stop at
the lowest common layer of all processors in the shared pool. The POWER
Hypervisor attempts to maintain physical processor affinity when dispatching
virtual processors. It will always try first to dispatch the virtual processor on the
same physical processor as it last ran on, and depending on resource utilization
will broaden its search out to the other processor on the POWERS5 chip, then to
another chip on the same MCM, then to a chip on another MCM.

Save and restore registers

The POWER Hypervisor will save the following registers when a state is saved
for a virtual processor: GPRs, FPRs, CR, XER, LR, CTR, ACCR, SPRGO,
SPRG1, SPRG2, SPRG3, ASR, SLB state, DAR, DEC, DSISR, SRRO0, SRR1,
PMCs, MMCRO/1/A, SDAR, DABR and SDR1.

Preemption of a virtual processor

The POWER Hypervisor is responsible for time slicing and managing the
dispatching of the partitions across the physical processors. One of the features
of the POWER4+™ and POWERS5 that makes this possible is the POWER
Hypervisor Decrementer (HDEC). This is a clock interrupt source utilized by the
POWER Hypervisor to preempt a dispatched partition and regain control of the
physical processors. This interrupt occurs even if external interrupts are disabled
and cannot be masked by the partition. The POWER Hypervisor utilizes this
HDEC to drive its partition dispatcher, so in reality, the POWER Hypervisor is
managing the execution of multiple partition images across the same physical
resources, just as an operating system manages the execution of multiple
processes / threads within its partition instance.

The POWER4+ processor does not have support for the POWER Hypervisor
decrementer. The SRRO and SRR1 registers are used to present an HDEC

Chapter 4. POWER Hypervisor 87

interrupt to the processor. To avoid loss of partition state, a pending HDEC
interrupt will be held off for N (programmable hardware value) cycles if
MSR[RI]=0. The number of cycles (N) has to be large enough to enable a
partition to safely execute instructions until SRRO and SRR1 are saved and
indicated by the setting of MSR[RI]=1. If not, taking the HDEC interrupt would
result in the corresponding loss of state because these registers are updated
when an interrupt or exception occurs.

Note: For those not familiar with the POWER and PowerPC architecture, at
the time of an exception or interrupt, SRRO is loaded with either the address of
the instruction that caused the exception, or the address of the instruction that
would have been dispatched had the interrupt not occurred. SRR1 contains
the Machine State Register (MSR) contents at the time of the exception or
interrupt. For example, the thread being preempted may have been in user
mode (MSR[PR]=1). For the interrupt to be serviced, the processor must be in
supervisory (system) mode and this bit has to be cleared (0). If interrupts are
not masked or held off, then the processor automatically saves off the current
MSR into SRR1 and produces a new MSR value with appropriate bit settings,
which is placed into the MSR. Therefore, if these registers are not saved,
recovery may be impossible. The MSR[RI] bit is not affected by exceptions or
interrupts and can be used by the operating system to indicate recovery.

This places the requirement on the operating system to use the MSRIRI] bit to
avoid fatal failures that could occur because of POWER Hypervisor preemption
of a virtual processor.

A POWERS5-based server provides complete HDEC support that enables
preemption with an unsaved SRRO and SRR1.

The POWER Hypervisor issues a sync instruction on the processor when it
preempts a virtual processor. This ensures that a storage access sequence (in
particular, a Memory Mapped I/O sequence) by the preempted virtual processor
is seen by the devices on the system in the order it was intended. The POWER
Hypervisor will also do the equivalent of a dummy stwex instruction to cancel a
reservation that may be held by the yielding or preempted virtual processor.

Cache invalidations

The segment lookaside buffer (SLB) that was saved when the virtual processor
yielded or was preempted is restored on each dispatch of a virtual processor.
There is one SLB per thread (two per processor core). Information derived from
the SLB may also be cached in the instruction, possibly with Data Effective to
Real Address Translation (D_ERAT), along with information from the translation
lookaside buffer (TLB).

88 Advanced POWER Virtualization on IBM @server p5 Servers

The TLB of a processor is invalidated every time the partition ID of a virtual
processor switched in on a processor is different from the partition ID of the
virtual processor that last ran on it. The POWER4 family of processors provides
an instruction to flush the TLB of a processor, avoiding the need for a broadcast
of TLB invalidations.

Since the number of partitions exceeds the number of hardware partition IDs,
shared processor partitions may share a hardware partition ID. This can lead to
false invalidations of TLB entries. Since the TLB is flushed in many instances on
a dispatch of a virtual processor dispatch, the false invalidations are not a
concern.

When a partition is IPLed (rebooted) in the shared pool, all processors in the pool
flush their instruction cache prior to switching in a virtual processor from the
partition being IPLed.

POWER Hypervisor dispatching algorithm

Each shared pool has its own instantiation of the POWER Hypervisor dispatcher.
The POWER Hypervisor uses the POWERS5 HDEC, which is programmed to
generate an interrupt every 10 ms (1/100 second), as a timing mechanism for
controlling the dispatch of physical processors to system partitions. Each virtual
processor is guaranteed to get its entitled share of processor cycles during each
10 ms dispatch window. Each shared processor patrtition is configured with a
specific processor entitlement, based on a quantity of processing units, which is
referred to as the partition’s entitled capacity. The entitled capacity, along with a
defined number of virtual processors, defines the physical processor resource
that will be allotted to the partition. If a partition does not use its allocation of
cycles in a scheduling window, it will lose the unused cycles. The minimum
allocation of resource is 1 ms per processor; the POWER Hypervisor calculates
number of ms using the capacity entittement and the number of virtual
processors for each shared pool. When a capped shared processor has received
its capacity entitlement within a dispatch interval, it becomes not-runnable. An
uncapped partition may get more than its allocation of cycles in a scheduling
window. Virtual processors are time-sliced through the use of the Hypervisor
Decrementer much like the operating system time slices threads. The POWER
Hypervisor HDEC and time base will be used by the POWER Hypervisor
dispatcher for virtual processor accounting.

The physical processor resource in a shared pool may become overcommitted
(with respect to uncapped partitions). A suitable variation of the Time Function
History Scheduling (TFHS) algorithm will be used for making dispatch decisions
when the pool is overcommitted. The algorithm requires some notion of priority
when making scheduling decisions.

Chapter 4. POWER Hypervisor 89

4.2 Performance considerations

The POWER Hypervisor uses some system processor and memory resources (a
small percentage). These resources are associated with virtual memory
management (VMM), the POWER Hypervisor dispatcher, virtual processor data
structures (including save areas for virtual processor), and for queuing of
interrupts. The impact on performance should be minor for most workloads, but
the impact increases with extensive amounts of page-mapping activity.
Partitioning may actually help performance in some cases for applications that do
not scale well on large SMP systems by enforcing strong separation between
workloads running in the separate partitions.

Other areas where performance can be affected by the POWER Hypervisor are:

» Increasing path length

Dispatching of virtual processors (saving and restoring state)
TLB flush when a virtual processor is dispatched

Increased misses in a shared processor’s caches

vYvyy

Dispatching and interrupt latencies

Virtual processors have dispatch latency, because they are scheduled. When a
virtual processor is made runnable, it is placed on a run queue by the POWER
Hypervisor, where it sits until it is dispatched. The time between these two events
is referred to as dispatch latency.

The dispatch latency of a virtual processor is a function of the partition
entittement and the number of virtual processors that are online in the partition.
Entitlement is equally divided among these online virtual processors, so the
number of online virtual processors affects the length of each virtual processor’s
dispatch. The smaller the dispatch cycle, the greater the dispatch latency.

Timers also have latency issues. The POWERS5 Decrementer is virtualized by the
POWER Hypervisor at the virtual processor level, so that timers will interrupt the
initiating virtual processor at the designated time. If a virtual processor is not
running, then the timer interrupt has to be queued with the virtual processor, as it
is delivered in the context of the running virtual processor.

External interrupts have latency issues as well. External interrupts are routed
directly to a partition. When the operating system makes the accept pending
interrupt POWER Hypervisor call, the POWER Hypervisor, if necessary,
dispatches a virtual processor of the target partition to process the interrupt. The
POWER Hypervisor provides a mechanism for queuing up external interrupts
that is also associated with virtual processors. Whenever this queuing
mechanism is used, latencies are introduced.

90 Advanced POWER Virtualization on IBM @server p5 Servers

These latency issues are not expected to cause functional problems, but they
may present performance problems for real-time applications. To quantify
matters, the worst case virtual processor dispatch latency is 18 ms, since the
minimum dispatch cycle that is supported at the virtual processor level is 1 ms.
This figure is based on the POWER Hypervisor dispatch wheel. It can be
visualized by imagining that a virtual processor is scheduled in the first and last
portions of two 10-ms intervals. In general, if these latencies are too great, then
clients may increase entitiement, minimize the number of online virtual
processors without reducing entitlement, or use dedicated processor partitions.

The output of 1parstat with the -h flag displays the percentage spent in POWER
Hypervisor (%hypv) and the number of POWER Hypervisor calls. Note from the
example output shown in Example 4-3 that the %hypv is around 61% on this idle
system. As was shown in Example 4-2 on page 84, this is the result of the
H_CEDE call being made to place the virtual processor into a wait state because
there is no meaningful work to do after servicing interrupts, and so on.

Example 4-3 Iparstat -h output

lparstat -h 1 16
System configuration: type=Dedicated mode=Capped smt=0n 1cpu=4 mem=3808

suser %sys %wait %idle %hypv hcalls

0.1 0.6 0.0 99.4 61.2 2439926
0.0 0.0 0.0 100.0 60.8 2442449
0.0 0.0 0.0 100.0 61.2 2442355
0.0 0.0 0.0 100.0 61.6 2439577
0.0 0.0 0.0 100.0 60.8 2442471
0.0 0.2 0.0 99.8 61.7 2436181
0.0 0.0 0.0 100.0 61.2 2443133
0.0 0.1 0.0 99.9 61.2 2448492
0.0 0.0 0.0 100.0 61.2 2447438
0.0 0.0 0.0 100.0 61.2 2446917
#

To provide input to the capacity planning and quality of service tools, the POWER
Hypervisor reports certain statistics to an operating system. These include the
number of virtual processors that are online, minimum processor capacity that
the operating system can expect (the operating system may cede any unused
capacity back to the system), the maximum processor capacity that the partition
will grant to the operating system, the portion of spare capacity (up to the
maximum) that the operating system will be granted, variable capacity weight,
and the latency to a dispatch via a POWER Hypervisor call. The output of the
1parstat command with the -i flag, shown in Example 4-4 on page 92, will report
the logical partition related information.

Chapter 4. POWER Hypervisor 91

92

Example 4-4 Iparstat -i output

lparstat -i

Node Name

Partition Name

Partition Number

Type

Mode

Entitled Capacity
Partition Group-ID
Shared Pool ID

Online Virtual CPUs
Maximum Virtual CPUs
Minimum Virtual CPUs
Online Memory

Maximum Memory

Minimum Memory

Variable Capacity Weight
Minimum Capacity

Maximum Capacity
Capacity Increment
Maximum Dispatch Latency
Maximum Physical CPUs in system
Active Physical CPUs in system
Active CPUs in Pool
Unallocated Capacity
Physical CPU Percentage
Unallocated Weight

#

: aix_Ipar0l

: AIX 5L Version 5.3 Gold
1

: Dedicated-SMT

: Capped

: 2.00

. 32769

= NN

: 3808 MB
: 4096 MB
: 128 MB

=N =
o O O
o O o

NN

: 100.00%

Advanced POWER Virtualization on IBM @server p5 Servers

Micro-Partitioning

In this chapter we discuss the detailed implementation for Micro-Partitioning,
which is one of the key features provided in the IBM @server p5 systems.
The following topics are included:

Partitioning on POWERS5

Micro-Partitioning implementation

v

v

» Performance considerations

v

Configuration guidelines

© Copyright IBM Corp. 2005. All rights reserved.

93

5.1 Partitioning on the IBM eServer p5 systems

With technology inspired by IBM zSeries® heritage, logical partitioning (LPAR)
appeared on IBM @server pSeries POWER4 processor-based systems
supporting AIX 5L Version 5.1 in 2001. Logical partitioning of a system allows
more than one operating system to reside on the same platform simultaneously
without interfering with each other. With POWER4 technology, the smallest
granularity of partitioning was the assignment of one processor to a partition. All
partitions were considered dedicated, where an entire processor is dedicated to
the partition and not allowed to be shared among other partitions. This means a
32-way IBM @server pSeries 690 can host up to 32 independent partitions for
running a combination of AIX 5L and Linux.

Continuing the evolution of partitioning technology, the IBM @server p5 systems
extends its capabilities by further improving the flexibility of LPARs. There are two
types of partitions in the IBM @server p5 systems, and both types of partitions
can coexist in the same system at any given time.

» Dedicated processor partitions
» Shared processor partitions or micro-partitions

In addition to sharing the processor, the IBM @server p5 systems provide
sharing of devices through virtual I/O, virtual terminals, and virtual Ethernet.
These topics will be covered later in this book.

Dedicated processor partitions

A dedicated processor partition, like the partitions used on servers based on the
POWER4 processor—based servers, cannot share the processor with other
partitions. These processors are owned by the partition where they are running.
The amount of processing capacity on the partition is limited by the total
processing capacity of the processors configured in that partition, and it cannot
go over this capacity (unless you add more processors inside the partition using
a dynamic LPAR operation). By default, a powered-off logical partition using
dedicated processors will have its processors available for use by other partitions
in the system.

Micro-Partitioning

Shared processor partitions or Micro—Partitioning1 provides the ability to share
processors among other partitions in the system. This allows a system to perform
more efficiently than would be required with dedicated processor partitions.

' Some publications refer to this technology as shared processor partitions, but the terms
micro-partitions and Micro-Partitioning in used this book.

94 Advanced POWER Virtualization on IBM @server p5 Servers

Micro-Partitioning is the mapping of virtual processors to physical processors.
The virtual processors are assigned to the partitions, not physical ones. With the
assistance of the POWER Hypervisor, an entitlement or percentage of processor
usage is granted to the shared partitions. The minimum processor entitlement is
1/10 of a processor for a partition. By dividing up processor usage in this manner,
a system can have multiple partitions sharing the same physical processor, and
dividing the processing capacity among themselves, as shown in Figure 5-1.

B RSERS
o) (o)
AIX 5.2 AIX53 | Linux26 | x| x| 5| 3
<|<|5|5
2 CPUs 4 CPUs 4 CPUs
6 CPUs

POWER Hypervisor

Figure 5-1 System with dedicated and shared partitions

With fractional processor allocations, more partitions can be created on a given
platform, which enables clients to maximize the number of workloads that can be
supported on a server simultaneously. Micro-Partitioning enables both optimized
use of processing capacity while preserving the isolation between applications
provided by separate operating system images.

There are several scenarios where the use of Micro-Partitioning can bring
advantages such as optimal resource utilization, rapid deployment of new
servers and application isolation:

Server consolidation Consolidating small systems onto a large and robust
server brings advantages in management and
performance, usually together with reduced total cost
of ownership. Micro-Partitioning enables the
consolidation from small and large systems without the
burden of dedicating very powerful processors to a
small partition. You can divide the processing power

Chapter 5. Micro-Partitioning 95

between several partitions with the adequate
processing capacity for each one.

Server provisioning With Micro-Partitioning and virtual I/O, a new partition
can be deployed rapidly, to accommodate unplanned
demands, or to be used as a test environment.

Virtual server farms In environments where applications scale with the
addition of new servers, the ability to create several
partitions sharing processing resources is very useful
and contributes to better use of processing resources
by the applications deployed on the server farm.

5.2 Micro-Partitioning implementation

Micro-Partitioning enables several operating system images to share the physical
processor resources in a time-sliced manner. From an operating system
perspective, a virtual processor is indistinguishable from a physical processor.
The key benefit of implementing partitioning in the POWER Hypervisor firmware
and POWERS5 chip architecture is to provide a transparent interface to the
operating system.

Optionally, for increased resource flexibility, the operating system can be
enhanced to exploit Micro-Partitioning. For instance, an operating system may
voluntarily relinquish processor cycles to the Hypervisor when they are not
needed. AIX 5L V5.3 is the first version of AIX 5L to support Micro-Partitioning.
SUSE LINUX Enterprise Server 9 for POWER systems and Red Hat Enterprise
Linux AS 3 for POWER Update 3 also include such optimizations.

The virtualization of physical processors on POWERS5-based servers requires a
new partitioning model because it is fundamentally different from the partitioning
model used on POWER4-based servers. Several new terminologies and
concepts are introduced in Micro-Partitioning.

Layers of Processor Abstraction

The following terminology represents the three types of processors used in
Micro-Partitioning:

Logical Processor A hardware thread; an operating system view of a
managed processor unit. In the AIX 5L V5.3 operating
system, each hardware thread appears as a unique
processor (for example, bindprocessor -q). The number
of logical processors will be double the number of virtual
processors with simultaneous multithreading enabled.
Both hardware threads on one virtual processor must be

96 Advanced POWER Virtualization on IBM @server p5 Servers

in the same partition at the same time. Currently, 128
logical processors per partition is the maximum.

Virtual Processor Defines the way that a partition’s entittement may be
spread over physical processor. The virtual processor is
the unit of POWER Hypervisor dispatch and the
granularity of processor dynamic reconfiguration.
Currently, the maximum number of virtual processors is
64 per partition.

Physical Processor The actual physical hardware resource. Currently, the
maximum number of physical processors in the POWER5
systems is 64. This definition is the number of unique
processor cores, not the number of processor chips (each
of which contains two processing cores).

Virtual processors

Virtual processors are the whole number of concurrent operations that the
operating system can use. The processing power that is available to the
operating system on the partition can be conceptualized as being spread equally
across these virtual processors.

In Micro-Partitioning, the partitions are defined using the Hardware Maintenance
Console (HMC). When you create a partition, you have to choose between a
shared processor partition and a dedicated processor partition. You cannot mix
shared processors and dedicated processors in one partition. Using the HMC
menu shown in Figure 5-2 on page 98, selecting the optimal number of virtual
processors depends on the workload in the partition.

To enable sharing of physical processors in Micro-Partitioning, you have to
configure these additional options:

» Minimum, desired, and maximum processing units of capacity
» The processing sharing mode, either capped or uncapped
» Minimum, desired, and maximum virtual processors

Chapter 5. Micro-Partitioning 97

Sharing modes
You must specify a processing sharing mode for this partition profile.

) Capped

The processor usade never excerds the assigned
[rocessing capacity.

® Uncapped Weight : 128

Frocessing capacity may be exceeded when the
shared processar pool has spare processing
power,

Virtual processors

The default vitual processor settings have been filled in for youw. You may change
the default settings helow.

Minitmum processing units required for each virtual processor: (010

Desired number of virtual processaors ¢ 1
Minimurm nurmber of virtual processors 1
Maximurm number of virtual processors : 10

OK Cancel Help 7

Figure 5-2 HMC console for virtual processor management

You also can use the Advanced tab in your partitions profile to change the default
configuration and to assign more virtual processors. At the time of publication,
the maximum number of virtual processors per partition is 64.

Processing capacity is specified in terms of processing units. Processing units
can be configured in fractions of 1/100 of a processor. The minimum capacity of
1/10 of a processor is specified as 0.1 processing units. To assign a processing
capacity representing 50% of a processor, 0.50 processing units are specified on
the HMC.

98 Advanced POWER Virtualization on IBM @server p5 Servers

On a system with two processors, a maximum of 2.0 processing units can be
assigned to a partition. After a partition is activated, processing capacity is
usually referred to as capacity entitlement or entitled capacity. Figure 5-3 shows
a graphical view of the definitions of processor capacity.

Minimum Requirement
0.1 Processing Units

0.5 Processing Units

0.4 Processing Units

Processing Capacity
1 Physical Processor
1.0 Processing Units

Figure 5-3 Processing units of capacity

By default, the number of processing units that you specify is rounded up to the

minimum number of virtual processors needed to satisfy the assigned number of
processing units. The default settings maintain a balance of virtual processors to
processor units. For example:

» If you specify 0.50 processing units, one virtual processor will be assigned.
» If you specify 2.25 processing units, three virtual processors will be assigned.

A logical partition will have at least as many virtual processors as its assigned
processing capacity. By making the number of virtual processors too small, you
limit the processing capacity of an uncapped partition. If you have a partition with
0.50 processing units and one virtual processor, the partition cannot exceed 1.00
processing units because it can run only one job at a time, which cannot exceed
1.00 processing units. However, if the same partition with 0.50 processing units
was assigned two virtual processors and processing resources were available,
the partition could use an additional 1.50 processing units.

Figure 5-4 on page 100 shows the relationship between two partitions using a
shared processor pool of a single physical CPU. One partition has two virtual
processors and the other a single one. The figure also shows how the capacity
entitlement is evenly divided over the number of virtual processors.

Chapter 5. Micro-Partitioning 99

LPAR 1 Capacity Entitlement 50 LPAR 2 Capacity Entitlement 40
Virtual Virtual Virtual
Processor 1 Processor 2 Processor 1
25|25
25)[25] p

0.5 Processing Units

0.4 Processing Units

1 Physical Processor
1.0 Processing Units

Figure 5-4 Distribution of capacity entitlement on virtual processors

When a partition is started, preference is given to the desired value, but this value
cannot always be used because there may not be enough unassigned capacity
in the system. In that case, a different value is chosen, which must be greater
than or equal to the minimum capacity attribute. The value that is chosen
represents a commitment of capacity that is reserved for the partition. This
capacity cannot be used to start another shared partition; otherwise, capacity
could be overcommitted.

The entitled processor capacity is distributed to the partitions in the sequence in
which the partitions are started. For example, consider a shared pool that has 2.0
processing units available. Partitions 1, 2, and 3 are activated in sequence:

» Partition 1 activated
Min. = 1.0, max = 2.0, desired = 1.5
Allocated capacity entitlement: 1.5

» Partition 2 activated
Min. = 1.0, max = 2.0, desired = 1.0
Partition 2 cannot be activated because the minimum capacity is not met.

» Partition 3 activated
Min. = 0.1, max = 1.0, desired = 0.8
Allocated capacity entitlement: 0.5

The maximum value is used only as an upper limit for dynamic operations.

100 Advanced POWER Virtualization on IBM @server p5 Servers

Capped and uncapped mode

In the configuration of Micro-Partitioning, two types are available, capped and
uncapped. The difference is in defining the ability of a partition to use extra
capacity available in the system. If a processor donates unused cycles back to
the shared pool, or if the system has idle capacity (because there is not enough
workload running), the extra cycles may be used by other partitions, depending
on their type and configuration.

Capped mode The processing capacity never exceeds the assigned
processing capacity.

Uncapped mode The processing capacity may be exceeded when the
shared processing pool has available resources.

A capped partition is defined with a hard maximum limit of processing capacity.
That means that it cannot go over its defined maximum capacity in any situation,
unless you change the configuration for that partition (either by modifying the
partition profile or by executing a dynamic LPAR operation). Even if the system is
otherwise idle, the capped partition cannot exceed its entitled capacity.

With an uncapped partition, you must specify the uncapped weight of that
partition. If multiple uncapped logical partitions require idle processing units, the
managed system distributes idle processing units to the logical partitions in
proportion to each logical partition's uncapped weight. The higher the uncapped
weight of a logical partition, the more processing units the logical partition gets.

Figure 5-5 on page 102 shows the usage of a capped partition of the shared
processor pool. Partitions using the capped mode are not able to assign more
processing capacity from the shared processor pool than the capacity
entitlement will allow.

Chapter 5. Micro-Partitioning 101

Pool Idle Capacity Available

~Maximum Processor. Capacity

Processor
Capacity
Utilization

Entitled Processor Capacity

_/ Ceded Capacity
Minimum.Processor.Capacity. /—\

~_ /

Utilized Capacity

Time

Figure 5-5 Capped shared processor partitions

Figure 5-6 on page 103 shows the usage of the shared processor pool by an
uncapped partition. The uncapped partition can assign idle processing capacity if
it needs more than the entitled capacity.

In general, the value of the minimum, desired, and maximum virtual processor
attributes should parallel those of the minimum, desired, and maximum capacity
attributes in some fashion. A special allowance should be made for uncapped
partitions, as they are allowed to consume more than their entitlement.

If the partition is uncapped, then the administrator may want to define the desired
and maximum virtual processor attributes x% above the corresponding
entitlement attributes. The exact percentage is installation-specific, but 25% to
50% is a reasonable number.

102 Advanced POWER Virtualization on IBM @server p5 Servers

Pool Idle Capacity Available

Maximum Processor Capacity

Processor
Capacity

Utilization =
Ceded Capacity

Minimum Processor Capacity.

Utilized Capacity

Time

Figure 5-6 Uncapped shared processor partition

Table 5-1 shows several reasonable settings for number of virtual processors,
processing units, and the capped and uncapped mode.

Table 5-1 Reasonable settings for shared processor partitions

Min Desired Max VPs | Min PU° [Desired Max. PU | Capped
VPs? VPs PU

1 2 4 0.1 2.0 4.0 Y

1 3or4 6or8 0.1 2.0 4.0 N

2 2 6 2.0 2.0 6.0 Y

2 3or4 8or10 2.0 2.0 6.0 N

a - Virtual processors, b - Processing units

Operating systems and applications running in shared partitions need not be
aware that they are sharing processors. However, overall system performance

can be significantly improved by minor operating system changes. AIX 5L V5.3
provides support for optimizing overall system performance of shared processor
partitions.

Chapter 5. Micro-Partitioning 103

Weight for uncapped partitions

You can determine how the POWER Hypervisor should distribute the extra
cycles between different uncapped partitions. When configuring an uncapped
partition on the HMC, you are presented with an option to set the variable
capacity weight. It is a number between 0 and 255 that represents the relative
share of extra capacity that the partition is eligible to receive. For any uncapped
partition, its eligible share is calculated by dividing its own variable capacity
weight by the sum of the variable capacity weights for all uncapped partitions.

The default uncapped weight for uncapped logical partitions is /28. A partition's
share is computed by dividing its variable capacity weight by the sum of the
variable capacity weights for all uncapped partitions. Setting the uncapped
weight to 0 will result in the logical partition being treated as capped. A logical
partition with an uncapped weight of 0 cannot use more processing units than
those that are committed to the logical partition.

5.2.1 Virtual processor dispatching

There are four logical states that a virtual processor could be in:
Running Currently dispatched onto a physical processor.

Runnable Currently not running, but ready to run. The queue of
runnable virtual processors represents a first-in, first out
(FIFO) queue for selecting the next virtual processor to be
dispatched to a physical processor.

Not-runnable The state of a virtual processor that has released its
cycles either by calling H_CEDE or H_CONFER POWER
Hypervisor calls. In the cede case, either an interrupt or
an H_PROD call from another virtual processor makes
this virtual processor runnable again. In the confer case, a
H_PROD call or a dispatch cycle granted to the conferred
targets will make the virtual processor runnable again.

Entitlement expired The state of all virtual processors that have received full
entitlement for the current dispatch window.

The POWER Hypervisor schedules virtual processors from a set of physical
processors that is called the pool. There are up to three pools of physical
processors on a system: one is for dedicated processor partitions, one is for
shared processor pool, and the other is for unallocated processors.

Each partition is presented with the resource abstraction for its partition and
other required information through the Open Firmware device tree. The device
tree is created by firmware and copied into the partition before the operating
system is started. Operating systems receive resource abstractions and

104 Advanced POWER Virtualization on IBM @server p5 Servers

participate in the partitioning model by making POWER Hypervisor calls at key
points in their execution as defined by the model.

For Micro-Partitioning, the POWER Hypervisor schedules virtual processors from
a set of physical processors in the shared processor pool. By definition, these
processors are not associated with dedicated partitions.

In Micro-Partitioning there is no fixed relationship between virtual processors and
physical processors. The POWER Hypervisor can use any physical processor in
the shared processor pool when it schedules a virtual processor. By default, it
attempts to use the same physical processor that was last used by the partition,
but this cannot always be guaranteed. The POWER Hypervisor uses the concept
of a home node for virtual processors, enabling it to select the best available
physical processor from a processor affinity perspective for the virtual processor
that is to be scheduled.

Processor affinity As an application runs, the instruction cache fills with the
instructions and the data cache fills with the data
associated with the application. If the application is
momentarily preempted by another higher priority task
that only executes for a short period of time, the caches
may still have instructions and data related to the
application that was preempted when it is redispatched,
and it would be optimal for that application to be
dispatched back onto that processor.

Affinity is actively managed by the POWER Hypervisor because each partition
has a completely different context. Currently, there is one shared processor pool,
so all virtual processors are implicitly associated with the same pool.

Operating systems use their virtual processors by being dispatched in time-sliced
manner onto physical processors under the control of the POWER Hypervisor,
much like the operating system time slices software threads.

The POWER Hypervisor utilizes the HDEC register to drive its partition
dispatcher. HDEC is a clock interrupt source utilized by the POWER Hypervisor
to preempt a dispatched partition and regain control of the physical processor.
For the details of HDEC, refer to “POWER Hypervisor Decrementer” on page 33.

Dispatch wheel

The POWER Hypervisor uses the architectural metaphor of a dispatch wheel
with a fixed timeslice of 10 milliseconds (1/100 seconds) to guarantee that each
virtual processor receives its share of the entitlement in a timely fashion. This
means that the entitled processing unit of each partition is distributed to one or
more virtual processors, which will then be dispatched onto physical processors
in a time-slice manner during every 10 ms dispatch wheel. The time that each

Chapter 5. Micro-Partitioning 105

virtual processor gets dispatched depends on the number of virtual processors
and the entitled processing capacity that has been assigned to that partition from
HMC by the system administrator. When a partition is completely busy, the
partition entitlement is evenly distributed among its online virtual processors.

The POWER Hypervisor manages a dispatch wheel for each physical processor
in the shared pool. Figure 5-7 illustrates the assignment of virtual processors to a
physical processor.

Virtual
Processor 0
(.25 units)

Virtual) Virtual
Processor 3 D'Sﬂ%tCh Wheel Processor 1
(.40 units) (10 msec) (.25 units)

Virtual
Processor 2
(.10 units)

Dispatched

Physical
Processor
(1.0 units)

Figure 5-7 Dispatch wheel

Initially, if the available physical processor entitlement in the whole system meets
the requirement defined for the partition, the partition will be started and the
POWER Hypervisor will begin to dispatch the required virtual processors to each
physical processor evenly. For every subsequent time slice, the POWER
Hypervisor does not guarantee that all virtual processors will be dispatched in

106 Advanced POWER Virtualization on IBM @server p5 Servers

the same order, nor does it guarantee that the virtual processors in a given
partition are dispatched together. However, it does ensure that every partition
gets its entitlement if needed.

The dispatch wheel works the same way when simultaneous multithreading is
enabled for a processor or group of processors. The two logical processors
(hardware threads) are dispatched together whenever the POWER Hypervisor
schedules the virtual processor to run. The amount of time that each virtual
processor runs is split between the two logical processors.

Figure 5-8 shows a diagram for a case when simultaneous multithreading is
enabled.

Virtual Processor 0

Logical
Processor 1
Logical
Processor 0

Virtual Processor 3 Virtual Processor 3

Logical
Processor 1

Logical
Processor 1

Dispatch Wheel

Logical (10 msec) Logical
Processor 0 Processor 0

Virtual Processor 2

Logical
Processor 1
Logical
Processor 0

Dispatched

Physical Processor 0

Thread 1
PURR 1

Figure 5-8 Dispatch wheel when simultaneous multithreading is enabled

Chapter 5. Micro-Partitioning 107

Processor affinity policy

The POWER Hypervisor attempts to dispatch work in a way that maximizes
processor affinity. When the POWER Hypervisor is dispatching a virtual
processor, it first attempts to use the same physical processor this virtual
processor was previously dispatched on. Otherwise, it will be dispatched to the
first available processor in the following order, same chip, same multi-chip
module (MCM), or same node. When a physical processor becomes idle, the
POWER Hypervisor will look for a virtual processor that requires processing time.
Priority will be given to virtual processors in this order:

1. Virtual processors that have an affinity for that processor
2. Virtual processors with no affinity to a real processor
3. Virtual processors that are uncapped

In IBM AIX 5L V5.3, the mpstat command using the -d flag displays detailed
affinity and migration statistics for AIX 5L threads and dispatching statistics for
logical processors (Example 5-1).

Example 5-1 The mpstat -d command

mpstat -d
System configuration: Tcpu=4 ent=0.5

cpu cs ics bound rq push S3pull S3grd SOrd Slrd S2rd S3rd S4rd S5rd ilcs vlcs
0 68598 38824 0 0 0 0 0 95.6 0.0 0.0 4.4 0.0 0.0 174110 237393
1 291 244 0 0 0 0 0 90.9 7.4 0.0 1.7 0.0 0.0 1092 237759
2 54514 30174 1 1 0 0 0 94.0 0.1 0.0 6.0 0.0 0.0 2756 71779
3 751 624 0 0 0 0 0 91.3 2.9 0.0 5.8 0.0 0.0 1192 72971
ALL 124154 69866 1 1 0 0 0 94.8 0.1 0.0 5.1 0.0 0.0 89575 309951

The POWER Hypervisor dispatch affinity domains are defined as follows, and
statistics for virtual processor dispatch across these domains is given by the
mpstat command.

cpu Logical CPU (processor) number.
cs The number of context switches.
ics The number of involuntary context switches; typically caused by the

thread’s time slice expiring.
bound Total number of threads bound to a particular processor.
rq The number of threads on the run queue.

push The number of thread migrations to other processors due to starvation
load balancing.

S3pull Number of thread migrations outside the S3rd affinity domain due to
idle stealing.

S3grd Number of dispatches from the global run queue outside the S3rd
affinity domain.

108 Advanced POWER Virtualization on IBM @server p5 Servers

Sord The process redispatch occurs within the same logical processor. This
happens in the case of simultaneous multithreading enabled systems.

S1rd The process redispatch occurs within the same physical processor,
among different logical processors. This involves sharing of the L1, L2,
and L3 cache.

S2rd The process redispatch occurs within the same processor chip, but
among different physical processors. This involves sharing of the L2
and L3 cache.

S3rd The process redispatch occurs within the same MCM module, but
among different processor chips.

S4rd The process redispatch occurs within the same central processing
complex (CPC) plane, but among different MCM modules. This
involves access to the main memory or L3-to-L3 transfer.

S5rd The process redispatch occurs outside of the CPC plane.
ilcs Total number of involuntary logical CPU context switches.
vics Total number of voluntary logical CPU context switches.

As previously stated, the POWER Hypervisor always tries first to dispatch the
virtual processor onto the same physical processor that it last ran on and,
depending on resource utilization, will broaden its search out to the other
processor on the POWERS5 chip, then to another chip on the same MCM, then to
a chip on another MCM.

Operating system support

In general, operating systems and applications do not have to be aware that they
are sharing processors in a Micro-Partitioning environment. However, overall
system performance can be improved significantly by minor operating system
changes. The main issue here is that the POWER Hypervisor cannot distinguish
between the operating system doing useful work such as numerical
computations and non-useful work such as spinning while waiting for a lock to be
released. The result is that the operating system may waste much of its
entitlement doing nothing of value.

AIX 5L V5.3 provides support for optimizing overall system performance of
Micro-Partitioning. These optimizations are built around the idea that an
operating system can provide hints to the POWER Hypervisor about scheduling.
For example, an operating system can signal to the POWER Hypervisor when it
is no longer able to schedule work and yield the remaining time slice. This results
in better utilization of the physical processors in the shared processor pool.

The dispatch mechanism may utilize POWER Hypervisor calls to communicate
between the operating system and the POWER Hypervisor. The major three

Chapter 5. Micro-Partitioning 109

POWER Hypervisor calls used by operating systems are H_CEDE, H_CONFER,
and H_PROD. For the definition of POWER Hypervisor calls, refer to Table 4-1
on page 81.

When the operating system detects an inability to utilize processor cycles, it may
cede or confer its cycles back to the POWER Hypervisor, enabling it to schedule
another virtual processor for the remainder of the dispatch cycle. Reasons for a
cede or confer may include the operating system entering its idle task or an
application entering a spin loop to wait for a resource to free. There is no concept
of credit for cycles that are ceded or conferred. Entitled cycles not used during a
dispatch interval are lost.

A virtual processor that has ceded cycles back to the POWER Hypervisor can be
reactivated using a H_PROD POWER Hypervisor call. If the operating system
running on another virtual processor within the logical partition detects that work
is available for one of its idle processors, it can use H_PROD to signal the
POWER Hypervisor to make the virtual processor runnable again. Once
dispatched, this virtual processor would resume execution at the return from the
H_CEDE POWER Hypervisor call.

Dispatching example

Table 5-2 shows an example configuration that will be used to illustrate
dispatching of virtual processors. In this Micro-Partitioning example, three logical
partitions share two physical processors, and all partitions are capped.

Table 5-2 Micro-Partitioning definition:

LPAR Capacity Virtual Capped or
entitlement processors uncapped?

1 0.8 2 capped

2 0.2 1 capped

3 0.6 3 capped

Figure 5-9 on page 111 shows each of these partitions running during two

POWER Hypervisor dispatch windows.

Advanced POWER Virtualization on IBM @server p5 Servers

Physical
Processor 0

Physical
Processor 1

| [I [T T T 1 | [[1 |
LPAR 1| LPAR 3| LPAR 1 LPAR3| LPAR1
Vi1 | w2 | vP1 IDLE VP 0 VP 1 IDLE
[[| | [| | | [|
[| | | [| | | | |
LPAR2| LPAR1 |LPAR3|LPAR3|LPAR3| LPAR1 [LPARS|LPAR2
VPO VP 0 VPO | VP1 | VP2 VP 1 VP1 | VPO
| [1 | | | [| |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hypervisor dispatch interval pass 1 (msec) | Hypervisor dispatch interval pass 2 (msec) |

Figure 5-9 Dispatching processors in Micro-Partitioning

Logical partition 1 (LPAR1) is defined with an entitlement capacity of 0.8
processing units and two virtual processors (VPO and VP1). This means that the
partition is entitled to 80% of physical processor capacity from the shared
processor pool for each 10 ms dispatch window. The figure shows that the
workload is evenly distributed (40% each) between the two physical processors.
Note that it is possible for a virtual processor (for example, VP1) to be dispatched
more than once during a dispatch interval. The figure shows LPAR1 with VP1
running for two cycles on physical processor 0; LPAR3 with VPO running for the
next two cycles; then LPAR1 is redispatched. This may happen if the operating
system confers (H_CONFER) cycles and then is reactivated by the POWER
Hypervisor call, H_PROD.

Logical partition 2 (LPAR2) is configured with one virtual processor (VP0) and a
capacity of 0.2 processing units, entitling it to use 20% of the physical processor
resources during each dispatch interval. In this example, the virtual processor
dispatched during the two dispatch wheels is assigned to the same physical
processor according to the affinity policy.

Logical partition 3 (LPARS3) is configured with three virtual processors (VPO, VP1,
and VP2) and has an entitled capacity of 0.6 processing units. Each virtual
processor receives 20% of a physical processor in each dispatch interval, but in
the case of VPO and VP2, the physical processor they run on is changed in the
two dispatch intervals. The POWER Hypervisor does attempt to maintain
physical processor affinity when dispatching virtual processors. As described
previously, dispatch logic will always attempt to dispatch the virtual processor
onto the same physical processor it last ran on. Depending on resource
utilization, it will broaden its search out to the other processor on the POWERS5
chip, then to another chip on the same MCM, then to a chip on another MCM.

Chapter 5. Micro-Partitioning 111

Tracing virtual processor dispatch

The dispatching of virtual processors by the POWER Hypervisor does not involve
the operating system running in the partition. The operating system cannot
directly monitor the rate or characteristics of context switching from the POWER
Hypervisor. However, there is a communication area that is shared between the
POWER Hypervisor and each virtual processor in a partition so that an operating
system such as AIX 5L V5.3 can implement tracing of the virtual processor
context switching.

The trace facility in AIX 5L V5.3 supports the trace hook value of 419. This trace
hook represents the information that is available about context switching.
Example 5-2 shows how a system administrator or systems programmer can
trace virtual processor dispatching.

Example 5-2 Tracing virtual processor dispatching

trace -aj 419

trcstop

trcrpt

ID PROCESS NAME CPU PID TID I SYSTEM CALL ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT

419 -229498- 3 229498 876731 0.020218416 5.926309 cpu preemption data Preempted vProcIndex=0005

rtrdelta=0000 enqdelta=17321 exdelta=202DC

start wait=2D33E3B52A87 end wait=2D33E3CE5F7B
SRR0=000000000017B770
SRR1=8000000000009032

419 -229498- 2 229498 819359 0.020325289 0.101956 cpu preemption data Preempted vProcIndex=0004

rtrdelta=0000 enqdelta=1732A3 exdelta=202DB
start wait=2D33E3B529FC end wait=2D33E3CE5F7A
SRR0=000000000017B74C
SRR1=8000000000009032

The time when a virtual processor is removed from a physical processor is
encoded in the trace hook as well as in the start wait field. The time that the
virtual processor is redispatched is encoded as the end wait field. We can see
the statistics from the following sequence of an AIX trace.

Some measure of virtual processor to physical processor affinity is possible as
well. The trace hook shows an index to the physical processor (vProcIndex field).
The index is fixed over time, and not necessarily an indicator of the physical
processor number of the system. If a virtual processor number is dispatched to
the same vProcIndex as the previous dispatch, affinity is maintained.

5.2.2 Phantom interrupts

In order to speed the processing of I/O interrupts, the delivery of interrupts to
physical processors can happen without direct execution of the POWER
Hypervisor. Rather, interrupts are delivered by the hardware directly to a physical
processor running a partition’s virtual processor. In the event an interrupt is
delivered to a virtual processor for a partition that does not own the hardware, the

112 Advanced POWER Virtualization on IBM @server p5 Servers

interrupt is ignored by the currently executing partition and is queued by the
POWER Hypervisor for servicing by the correct partition. An interrupt that is
mistakenly delivered to an incorrect partition is termed a phantom interrupt.

Figure 5-10 shows the interrupt servicing logic and can be described as follows.
If the processor is idle (running in POWER Hypervisor mode), then the POWER
Hypervisor handles the interrupt and identifies the correct partition to make ready
to run. The interrupt is queued to be delivered when a virtual processor for the
correct partition runs. If the physical processor is running a virtual processor for a
partition, the virtual processor receives the 1/O interrupt. The operating system
running on the virtual processor calls the POWER Hypervisor (via the H_XIRR
call) to determine the interrupt source. If the interrupt source is not for this
partition, the interrupt is queued in the POWER Hypervisor for delivery to the
correct partition. If the interrupt source is for this partition, the correct device
driver is invoked.

Device delivers interrupt
to physical processor

v

Deliver the interrupt to
a running partition

No——

Physical processor idle?

\ 4
Operating System
determines the source

via H_XIRR call

Interrupt is queued
by Hypervisor

Destined for this
partition?

Y

Hypervisor identifies the
partition owning I/O interrupt
and makes It runnable Yes

v

Invoke Device Driver

Y

Partition runs v

T Interrupt finished

Figure 5-10 Interrupt servicing in POWERS5 systems

Chapter 5. Micro-Partitioning 113

For dedicated processor partitions, phantom interrupts are extremely rare, as the
I/O hardware can be relatively certain of which physical processors a partition is
running on. In Micro-Partitioning, phantom interrupts happen with statistical
likelihood. The latency for interrupt servicing can become extended, due to
nuances of partition dispatch. But normally interrupt latency will have an upper
limit of the duration of the dispatch wheel (10 ms).

Under normal and even heavy I/O load, the performance degradation of handling
phantom interrupts is very low. That is because the CPU cost to process a
phantom interrupt is small. In order to understand the rate of phantom interrupts,
we allow extraction of their rates by the AIX 5L command mpstat. In

Example 5-3, the ph field shows the number of phantom interrupts for each
logical processor.

Example 5-3 mpstat command

(Tocalhost:) # mpstat -i 1 100

System configuration: lcpu=8 ent=1.0

Cpu mpcs mpcr dev soft dec ph

0 0 1 1939 47 183 2735
1 0 1 1946 1 83 2225
2 0 1 1815 1 100 2912
3 0 1 1870 1 89 1510
4 0 1 2000 11 102 3096
5 0 1 1951 1 100 1715
6 0 1 2093 1 112 1942
7 7 0 2101 0 100 2527
ALL 7 7 15715 63 869 18662
0 0 1 1767 49 148 4131
1 0 1 1809 1 100 1843
2 0 1 1951 1 101 4062
3 0 1 1974 1 85 2602
4 0 1 1918 11 101 2264
5 0 1 1868 1 101 3492
6 0 1 1980 1 110 5461
7 7 0 1971 0 100 1841
ALL 7 7 15238 65 846 25696

You can trace phantom interrupts in AIX 5L V5.3 using the trace command with
trace hook values of 492 and 47F. In Example 5-4 on page 115, the tracing of
hook values 100 and 200 are included to show when the interrupt occurs and
when the preempted process (in this case, wait) resumes.

114 Advanced POWER Virtualization on IBM @server p5 Servers

Example 5-4 AIX 5L trace for phantom interrupt

trace -aj 100,200,492,47F

trcstop

trcrpt

ID PROCESS CPU PID ELAPSED SEC DELTA MS APPL SYSCALL KERNEL INTERRUPT

100 wait 0 8197 0.340638 0.337172 I/0 INTERRUPT iar=2C514 cpuid=00

492 wait 0 8197 1 0.340638 0.337173 h_call:start H_XIRR iar=3B6B100
pl=1857D50 p2=234E70 p3=9C6B508A638

492 wait 0 8197 1 0.340642 0.337177 h_call:end H_XIRR iar=3B6B100 rc=0000

47F wait 0 8197 1 0.340642 0.337177 phantom interrupt cpuid=00

200 wait 0 8197 1 0.340643 0.337178 resume wait iar=2C514 cpuid=00

5.3 Performance considerations

Micro-Partitioning adds a layer of abstraction by the creation of virtual
processors. This virtualization promotes greater flexibility and increased
processor utilization. However, in some cases, improper system configuration
utilizing Micro-Partitioning can negatively affect performance. The intention of
this book is to assist system administrators with avoiding those pitfalls.

The impact on performance can be positive or negative and may be defined or
measured in a number of different ways:

» A decrease in maximum throughput for a fixed entitlement due to workloads in
other partitions. The impact can be measured in partitions with high CPU
utilization levels.

» A change in processing time used by a partition to complete a fixed task due
to workloads in other partitions. This impact may be measured at any
utilization level.

» A change in processing time for a software thread or process to complete a
fixed task due to workloads in other partitions. This impact may be measured
at any utilization level.

With Micro-Partitioning, the impact on performance tends to be isolated to each
partition. In other words, there is no unmeasured partition or time unaccounted
for that reflects the impact on performance. Rather, the impact on performance
appears as changing amounts of CPU time to complete work. The changing
amounts can be either positive or negative. Better processor utilization through
load balancing, efficient programs and Micro-Partitioning aware operating
systems can has a positive impact. However, high CPU utilization by all active
partitions can be negative. In most cases, the impact on performance only occurs
when multiple partitions are running on the system. There is very little
performance impact when running a single partition by itself.

Chapter 5. Micro-Partitioning 115

Note: The impact on performance when implementing Micro-Partitioning can
be both positive and negative.

For example, in a test using Network File System (NFS), throughput was
measured on four dedicated processor partitions, each with one physical
processor. The result was compared to a Micro-Partitioning environment
implementing four partitions with 1.0 entitlement per partition, each essentially
running on its own physical processor. The throughput in each partition was the
same in both cases. Processor usage was about 2% higher in the case of
Micro-Partitioning.

5.3.1 Micro-Partitioning considerations

In Chapter 3, “Simultaneous multithreading” on page 41, simultaneous
multithreading was defined by the POWERS5 architecture as having two hardware
threads of execution occurring simultaneously. These hardware threads could be
from independent programs or programs that are multi-threaded. Each hardware
thread is considered a unique processor by the operating system. Except for the
few differences mentioned here, the behavior of simultaneous multithreading is
independent of whether the partition is configured with dedicated processors or
Micro-Partitioning.

The purpose of simultaneous multithreading is to increase the number of
instructions that can execute in a unit to time through the microprocessor. Each
thread uses microprocessor resources such as registers to execute instructions.
Under almost all circumstances, there are sufficient resources to have more
throughput with two threads executing than with a single thread executing.
However, the simultaneous execution of two threads results in the sharing of
some microprocessor resources. This implies that the time to execute a fixed
number of instructions by a single thread may increase when two threads are
active in the processor core. However, over that same measured interval, the
total instructions executed by both threads normally will be greater than those
that could be executed by a single thread. If a partition is executing a
low-to-medium CPU utilization, there may not be enough software threads or
software processes to keep all of the hardware threads busy. In this case, it is
beneficial to be able to apply all of the microprocessor resources to a single
thread.

Note: AIX 5L V5.3 classifies the two hardware threads as primary and
secondary. Dispatch preference is given to the primary thread.

AIX 5L V5.3 classifies the two threads on a microprocessor as a primary thread
and a secondary thread. In a partition with simultaneous multithreading enabled,

116 Advanced POWER Virtualization on IBM @server p5 Servers

threads of a process are dispatched to the primary hardware threads before the
secondary threads. This helps to optimize performance for single- threaded
applications running on a microprocessor. Because the secondary threads do
not get work to execute, they go into a snooze state and the primary thread runs
at almost single-thread performance.

In dedicated processor partitions, the POWER Hypervisor can dynamically
transition the processor from simultaneous multithreading to single-threaded
when requested by the operating system. When a single hardware thread
running on a processor becomes idle, the processor is changed to
single-threaded mode, and the running thread benefits from single-threaded
performance. When the other thread is runnable again, the processor returns to
simultaneous multithreading mode and runs both threads.

Micro-Partitioning does not support automatic changing between simultaneous
multithreading and single-threaded; this is controlled by the smtct1 command. In
Micro-Partitioning, if a hardware thread becomes idle, it spins in an idle loop at
low priority. This enables the other running thread to get a large part of the
processing capacity to itself.

Effect of simultaneous multithreading on processor usage

For a processor to cede its idle cycles to the POWER Hypervisor in the case of
Micro-Partitioning, both hardware threads must be idle. If one thread is idle while
the other is running, some idle capacity remains in the partition and cannot be
given back to the POWER Hypervisor. This effect is noted by comparing the CPU
utilization of the partition versus the fraction of its entitlement used.

The behavior is more perceptible when CPU usage within a partition is between
40% and 70% of processing capacity. You can observe this effect by looking at
the difference between partition entitiement utilization (processing capacity
consumed by the partition) and partition processor utilization (processing
capacity consumed by the threads in the partition). The AIX 5L command vmstat
shows this information in the ec and pc columns. Figure 5-11 on page 118
illustrates this effect as observed when running a Java™-based application
server with WebSphere® and DB2®.

Chapter 5. Micro-Partitioning 117

118

100

90
80 ¢ A
¢ /
70 / cPU
O
60 ——
50 > / Entitlement
<&
40 ‘/ Difference

20 J
K/

10

Percentage

-
N

3 4 5 6
Workload units

Figure 5-11 Effects of simultaneous multithreading

As partition utilization increases, this effect decreases because the hardware
threads get more work to be done so the idle time for each thread decreases.
Obviously, this effect is not present in partitions running in single-threaded mode.

Micro-Partitioning effects on caching

On POWERS systems, the two processor cores on the same chip share the L2
and L3 caches. A system running with dedicated partitions and with each core
assigned to a different partition, the caches are still shared. This results in the
two cores competing for cache capacity. Naturally, each core can access only the
cache lines correspondent to its memory addresses. But, the competition for
cache capacity has direct impact on the performance each microprocessor can
achieve.

In Micro-Partitioning, the same situation can occur, with the additional factor that
during a given interval a physical processor may have executed code from
several different partitions. When a virtual processor is dispatched onto a
physical processor, all of the memory addresses are relative to the partition the
virtual processor is assigned. Cache usage becomes dependent on the memory
access behavior of different applications running on different partitions. The
competition for shared caches is a significant factor in Micro-Partitioning
performance, as the cache hit ratios for a measured partition may change over
time as other partitions run at varying levels of activity.

Advanced POWER Virtualization on IBM @server p5 Servers

The POWER Hypervisor is responsible for maintaining affinity between virtual
and physical resources in Micro-Partitioning. When dispatching a virtual
processor onto a physical processor, the POWER Hypervisor tries to redispatch
a virtual processor to the same physical processor that it ran on previously. This
attempts to maximize cache affinity and reduce the need for reloading data from
main memory.

Nevertheless, in Micro-Partitioning there is the potential of having several
partitions sharing a processor, resulting in several different memory contexts.
Moreover, because of dispatching requirements, a physical processor may not be
available when a virtual processor makes the transition from not-runnable to
runnable. When a virtual processor is ready to run, the POWER Hypervisor
checks whether the physical processor that ran this virtual processor for the last
time is idle. If it is busy, then it starts looking in increasing levels of affinity scope
for an idle processor (other cores on same chip, other processors within same
MCM, and any other processor in the system) until one is found. If no processor
is available, the virtual processor is queued onto the runnable queue. Figure 5-12
depicts the flow of actions described.

Check last
physical processor
used to run this VP

.| Run the VP on the
| physical processor

4

Run on the other
core of the same
chip

Is it an MCM-
based system?

BYP VP placed in run
runnable

> queue

{dle CPUs on Run in first idle
processor on the
3 ?
MCM? MCM

Run in the first idle
processor found

Figure 5-12 Affinity between virtual and physical processors

Chapter 5. Micro-Partitioning 119

Even if the virtual processor is dispatched on the same physical processor from
its last run, data in cache may have been replaced by previous virtual processors
dispatched in the same physical processor.

The amount of leftover cache context depends on the amount of data read from
other applications running on the same processor and the ratio of virtual
processors to physical processors. If an application running on a virtual
processor is memory intensive, data in the caches belonging to other virtual
processors is replaced. The caches are reloaded when other virtual processors
are later dispatched. Therefore, an application whose performance depends on
cache efficiency will be affected when running in a micro-partition along with
other partitions that do intensive memory access.

Number of virtual processors

When the number of virtual processors is much larger than the number of
physical processors on the system, the time slice given to each virtual processor
on the physical processors tends to gets smaller. One way to calculate the size of
the virtual processor time slice is to divide the partition entitiement by the number
of virtual processors. Increasing the number of virtual processors increases the
probability that a cache line will be flushed for a virtual processor that is not
running, and thus reduces the physical processor’s cache efficiency.

When virtual processor capacity is small, the impact on performance of reading
data from memory is significantly high, due to the fact that the time to fetch data
from memory is constant and the time slice is small for small capacity
entittements. Therefore, the impact is more significant in virtual processors with
small capacity.

Keep in mind the purpose of a cache is to hold data that is referenced frequently.
If applications running on the system are processing data by reading it, modifying
it, and then writing it back to memory, the virtual processor time slice effects
mentioned above would be no different than dedicated processor partitions.

The performance impact of increasing cache miss rates in the partition due to
competition with other partitions depends on the size of the partition, the number
of virtual processors, the nature of the other partitions, and the #ype of
application.

A worst-case scenario is where one partition uses the caches moderately and
another partition uses the caches extensively. Both partitions run on the same
processor. For example, application A, which is composed of small but numerous
tasks, fits well in the cache by itself. Application B uses memory heavily for
reading and writing large blocks of data. In all cases, each partition has two
virtual processors, each with 0.1 processor capacity. The partition running
application A is uncapped, and the partitions running application B are capped.

120 Advanced POWER Virtualization on IBM @server p5 Servers

Figure 5-13 shows the results of three test cases.

[case1
] case 2
[case3

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Relative performance

Figure 5-13 Measurements of cache effects in different partitions

Case 1 shows the throughput for application A running without any other
partitions active, and serves as a reference point. Case 2 shows the throughput
when application A runs in one partition, and one other partition runs application
B. Even with the effects of application B reducing caching efficiency, application
A runs well, with slightly more than a 5% penalty for sharing the same physical
processor with application B. Case 3 shows the throughput for application A
while seven other partitions run benchmark B. Due to seven partitions and 14
virtual processors running memory-intensive workloads, we can see that caching
efficiency drops to around 76%. This example was an extreme case where the
workloads were selected so that the effect on cache usage would have the most
impact on performance. Most applications that will run on these systems,
including commercial and technical workloads, should observe a smaller impact
in performance.

In addition to the changes in maximum throughput achieved by a partition for a
fixed entitlement, changes in the CPU time to perform a task will occur. For
example, consider a case where a partition requires 100 CPU seconds to
complete a database sort when it runs on a processor while the other partitions
on the system are relatively idle. When the exact same sort is run again at a time
when a number of other partitions are active, the resulting CPU time is 130
seconds. It is important to understand this phenomenon in environments where
billing for CPU usage is performed.

5.3.2 Locking considerations

Most operating systems and sophisticated applications use spin locks to serialize
read/write access to shared memory. The effectiveness of spin locks is based on
the idea that the locks are not held for long periods of time. In Micro-Partitioning,
it is possible for a virtual processor holding a lock to be undispatched for several

Chapter 5. Micro-Partitioning 121

milliseconds. This increases the likelihood of lock contention when a partition is
spread over several virtual processors.

For example, in AIX 5L V5.3, kernel locks that run with interrupts disabled benefit
from special handling in Micro-Partitioning. They are handled differently from
locks that run with interrupts enabled, since having interrupts disabled prohibits
the undispatching of the blocked software thread and running another.

Consider the case where a virtual processor owning the lock is not running (for
example, it used up the entitled time slice), and there is another virtual processor
that needs the same lock to run on the system concurrently. Without optimization,
a blocked virtual processor will spin waiting until the lock is released by the
owner. To effectively solve this situation without spending unnecessary cycles,
the virtual processor waiting for the lock uses the POWER Hypervisor call
H_CONFER to give its cycles to the virtual processor owning the lock. The
POWER Hypervisor dispatches the lock owner to continue processing and
eventually release the lock. Note that in a simultaneous multithreading enabled
partition, this mechanism is relatively less effective. If there is heavy locking,
running a partition in single-threaded mode may reduce the impact.

Lock contention can be monitored with the AIX 5L trace facility. Example 5-5
shows a case where a thread on virtual processor 0 attempts to acquire a lock.
When it determines that there is lock contention with another thread, it confers its
processor cycles. After the lock is released, it acquires the lock.

1. Thread on virtual processor 0 attempts to acquire a lock.

Example 5-5 AIX 5L trace of lock contention - step 1

ID PROCESS NAME CPU PID TID I SYSTEM CALL ELAPSED_SEC DELTA_MSEC ~ APPL SYSCALL KERNEL INTERRUPT
112 -229498- 0 229498 1294461 0.033375354 0.000376 Tock: dmiss Tock
addr=F1000600234F0100 Tock
status=B7060000000000
requested_mode=LOCK_SWRITE
eturn addr=3CCF1EC
name=00000000.00000000

2. After identifying lock contention with another thread, the lock becomes a spin
lock.

Example 5-6 AIX 5L trace of lock contention - step 2

112 -229498- 0 229498 700529 0.033376227 0.000019 krlock: cpuid=00 addr=F100060004006B80 action=spin

122 Advanced POWER Virtualization on IBM @server p5 Servers

3. Instead of actively spinning, it confers its cycles to CPU 2, which is ahead of it
in the lock queue.

Example 5-7 AIX 5L trace of lock contention - step 3

112 -229498- 0 229498 700529 0.033382946 0.000019 krlock: cpuid=00 addr=F100060004006B80 action=confer (target cpuid=0002)

4. The POWER Hypervisor runs to confer cycles and dispatches the thread on
CPU 2.

Example 5-8 AIX 5L trace of lock contention - step 4

492 -229498- 0 229498 700529 0.033383307 0.000014 h_call: start H_CONFER iar=17A8F0 p1=0002 p2=52904FF p3=2D33E3F7FA44
419 -229498- 2 229498 819359 0.033598712 0.215405 cpu preemption data Preempted vProcIndex=0004
rtrdelta=0000 enqdelta=4471D exdelta=A66B
start wait=2D33E3F3B790 end wait=2D33E3F8A518
SRR0=000000000017B770
SRR1=8000000000009032

5. Virtual CPU 2, which was waiting on the lock, acquires it. After it is no longer
needed, it is handed off to the thread on CPU 3, which also was waiting for it.

Example 5-9 AIX 5L trace of lock contention - step 5

112 -229498- 2 229498 819359 0.033599436 0.000724 krlock: cpuid=02 addr=F100060004006B80 action=acquire

112 -229498- 2 229498 819359 0.033600580 0.001144 Tock: dlock Tock addr=F1000600234F0100 Tock status=B70800000C809F
requested_mode=LOCK_SWRITE return addr=3CCF1EC
name=00000000.00000000

112 -229498- 2 229498 819359 0.033601444 0.000864 krlock: cpuid=02 addr=F100060004006B80
action=handoff (target cpuid=0003)
419 -229498- 3 229498 876731 0.033602912 0.001468 cpu preemption data Preempted vProcIndex=0005

rtrdelta=0000 enqdelta=446AF exdelta=A670

start wait=2D33E3F3B7FE end wait=2D33E3F8A51D
SRR0=000000000017B74C SRR1=8000000000009032

6. Virtual CPUs 2 and 3 continue processing.

Example 5-10 AIX 5L trace of lock contention - step 6

254 -229498- 2 229498 819359 0.033603515 0.000603 MBUF m_copydata mbuf=F100061008250C00 offset=0 1en=26
cpaddr=F100061001480000

254 -229498- 3 229498 819359 0.033604287 0.000763 MBUF return from m_copydata

254 -229498- 2 229498 819359 0.033604697 0.000410 MBUF m_copydata mbuf=F100061008250C00 offset=26 len=8
cpaddr=F10006100148001A

254 -229498- 2 229498 819359 0.033605015 0.000318 MBUF return from m_copydata

7. On the next pass of the POWER Hypervisor dispatch wheel, virtual CPU 0 is
dispatched to run again. Note that approximately 7 ms have passed.

Example 5-11 AIX 5L trace of lock contention - step 7

419 -229498- 0 229498 700529 0.040380275 .069589 cpu preemption data Unblocked vProcIndex=0007
rtrdelta=AA7D enqdelta=12875A exdelta=2E448
start wait=2D33E3F7FC15 end wait=2D33E40E1234
SRR0=00000000001EB274 SRR1=8000000000009032

492 -229498- 0 229498 700529 0.040381096 0.000821 h_call: end H_CONFER iar=17A8F0 rc=0000

Chapter 5. Micro-Partitioning 123

8. The thread running on virtual CPU 3 hands off the lock to the thread running
on CPU 0, which resumes and acquires the lock.

Example 5-12 AIX 5L trace of lock contention - step 8

112 -229498- 3 229498 819359 0.033601444 0.000864 krlock: cpuid=03 addr=F100060004006B80
action=handoff (target cpuid=0000)
419 -229498- 0 229498 819359 0.040382945 0.001207 cpu preemption data Unblocked vProcIndex=0006

rtrdelta=AA2E enqdelta=12882B exdelta=2E447
start wait=2D33E3F7FB93 end wait=2D33E40E1233
SRR0=00000000001EB274 SRR1=8000000000009032
112 -229498- 0 229498 819359 0.040381738 0.000642 krlock: cpuid=00 addr=F100060004006B80 action=acquire
112 -229498- 0 229498 819539 0.040381882 0.000144 Tock: dlock Tock addr=F1000600234F0100 Tock
status=B70800000AB071 requested_mode=LOCK_SWRITE
return addr=3CCF1EC name=00000000.00000000

Since lock contention is statistical, reducing the number of virtual processors in a
partition will usually decrease lock contention just as increasing the number of
virtual processors in a partition usually increases lock contention. Environments
that have responsiveness issues without full utilization of entitled capacity should
be evaluated for possible lock contention issues. AIX 5L kernel lock contention
can be analyzed with the use of the curt tool.

There are two types of virtual processor context switches, voluntary and
involuntary. Context switches initiated by H_CEDE, H_CONFER, and H_PROD
POWER Hypervisor calls are voluntary context switches, while timeslice-related
context switches are involuntary. The number of voluntary and involuntary
context switches can be extracted from the output fields vics and ilcs by the
AIX 5L command mpstat.

The number of virtual processor context switches is important because it is one
measure of POWER Hypervisor activity. In some cases it is best to minimize the
number of virtual processors in each partition, if there are many partitions
activated. On the other hand, if more virtual processors are needed to satisfy
peak load conditions and the capacity requirements vary greatly over time, it may
be best to take virtual processors offline when they are not needed. In such a
situation, the Partition Load Manager may be used to automate this process as a
function of load. The detailed explanation of Partition Load Manager is discussed
in Chapter 10, “Partition Load Manager” on page 373.

The context switch statistics and the number of POWER Hypervisor calls can
also be extracted from AIX 5L high-level commands such as 1parstat and
mpstat. The detailed explanation for the commands is discussed in 8.1,
“Performance commands” on page 258. Example 5-13 on page 125 illustrates
1parstat, which shows the name of the POWER Hypervisor call and its elapsed
execution time.

124 Advanced POWER Virtualization on IBM @server p5 Servers

Example 5-13 Iparstat command

lparstat -H 11
System configuration: type=Shared mode=Uncapped smt=0n Tcpu=4 mem=256 ent=0.20

Detailed information on Hypervisor Calls

Hypervisor Number of %Total Time %Hypervisor Avg Call Max Call

Call Calls Spent Time Spent Time(ns) Time(ns)
remove 0 0.0 0.0 1 709
read 0 0.0 0.0 1 376
nclear_mod 0 0.0 0.0 1 0
page_init 4 0.0 0.1 655 1951
clear_ref 0 0.0 0.0 1 0
protect 0 0.0 0.0 1 0
put_tce 0 0.0 0.0 1 1671
xirr 6 0.0 0.1 638 1077
eoi 6 0.0 0.1 447 690
ipi 0 0.0 0.0 1 0
cppr 6 0.0 0.1 265 400
asr 0 0.0 0.0 1 0
others 0 0.0 0.0 1 0
enter 4 0.0 0.0 272 763
cede 357 1.3 98.4 7106 641022
migrate_dma 0 0.0 0.0 1 0
put_rtce 0 0.0 0.0 1 0
confer 0 0.0 0.0 1 0
prod 55 0.0 0.8 391 1168
get_ppp 1 0.0 0.1 1738 2482
set_ppp 0 0.0 0.0 1 0
purr 0 0.0 0.0 1 0
pic 1 0.0 0.0 260 656
buTk_remove 0 0.0 0.0 1 0
send_crq 0 0.0 0.0 1 2395
copy_rdma 0 0.0 0.0 1 0
get_tce 0 0.0 0.0 1 0
send_logical_lan 1 0.0 0.1 2685 4602
add_Togicl_Tan_buf 6 0.0 0.2 686 859

From an operating system point of view, there are software context switches to
make a different thread execute. The AIX 5L and Linux command vmstat can be
used to check context switches at the operating system level.

The example shown in Figure 5-14 on page 126 represents the relative
performance of various configurations when executing an NFS benchmark. It
shows both the SMP scaling effect and the performance considerations when

Chapter 5. Micro-Partitioning 125

running several virtual processors. When the configuration changes from a
four-way dedicated processor partition to four 1-way dedicated processor
partitions, aggregate throughput is increased by a small margin. This is due to
both decreased data movement between processors and locking.

11

B 4.way SMP (4 CPUs)

0 4 partitions dedicated (1 CPU each)
¥ 4 micro-partitions (2 CPUs each)

B 2 micro-partitions (4 CPUs each)

B 4 micro-partitions (4 CPUs each)

09 ——

Relative performance

0.7

Figure 5-14 The effect of multiple virtual processors in overall performance

With Micro-Partitioning, four partitions with two virtual processors each see a
reduction in performance compared to four dedicated processor partitions.
Micro-Partitioning using two partitions with four virtual processors was tested and
it was found that using four virtual processors increases the lock contention.

Finally, we have four partitions, each with four virtual processors. This case has
the lowest performance, due to increasing cache interference and locking
requirements. As we increase the number of virtual processors, the relative
performance is more affected because of the SMP scaling inside the partition
and cache interference due to dispatching the multiple virtual processors in the
system.

Note: It is recommended that you have as few virtual processors configured
as possible for each partition. It is better to have few virtual processors with
higher capacity than a large number of virtual processors each with a small
amount of processing power. If it is necessary for expanding the partition to
handle more workload, you can add more virtual processors by executing a
dynamic LPAR operation.

5.3.3 Memory affinity considerations

In the POWERS5 processor-based servers, memory is attached to processor
modules and it has the same access characteristics for any processor within the
module. This does not differ from POWER4 processor—based servers. Memory
and processors that are connected directly are said to fall within a single affinity
domain. A processor can access memory attached to its local memory domain

126 Advanced POWER Virtualization on IBM @server p5 Servers

faster (that is, lower latency) than it can access memory attached to other
memory domains. AIX 5L V5.3 has optional support for organizing its memory
management strategies around these affinity domains.

With memory affinity support enabled, AlX 5L attempts to satisfy page faults from
the memory closest to the processor that generated the page fault. This is of
benefit to the application because it is now accessing memory that is local to the
MCM rather than memory scattered among different affinity domains. This is true
for dedicated processor partitions. When using Micro-Partitioning, however,
virtual processors may be dispatched on different physical processors during the
time a partition is running. As a result, there is no way to implement affinity
domains, so memory affinity has no meaning in Micro-Partitioning. Memory is
allocated to partitions in a round-robin way, and this tends to reduce processor
utilization due to variation in memory allocation.

Important: Applications that benefit from memory affinity should not be
implemented in Micro-Partitioning environments.

5.3.4 Idle partition consideration

In Micro-Partitioning, the POWER Hypervisor manages virtual processor
dispatching between different partitions so that each partition gets the deserved
processing entitlement. In the case of partitions running in the system in the idle
state (no work being done), the unused processing cycles may be conferred to
other partitions by the POWER Hypervisor, leading to more efficient usage of the
CPU resources. There are some activities that consume processor resources
even when the partition is idle. System activity such as interrupts and daemons
polling for events are some examples of activities that use processing resources.
Because of these activities, an idle partition still presents some load to the
physical processor. Moreover, the POWER Hypervisor also needs some
processing resources to manage these idle partitions and the virtual processors
running on them. Normally, a system is not expected to have a large number of
idle virtual processors. If there are many, you should analyze whether they are
really needed for the work that has to be done. AIX 5L V5.3 implements some
timer-management functions to minimize resource utilization by the idle
partitions. Performance affected by idle partition management should be
minimal. Figure 5-15 on page 128 shows the impact of adding idle partitions to a
system running a workload in one uncapped partition.

Chapter 5. Micro-Partitioning 127

1 uncapped

1 uncapped + 1 idle

1 uncapped + 7 idle

80 85 90 95 100
Relative performance

Figure 5-15 Uncapped partition performance example

Because idle partitions are not doing any productive work, to further reduce the
performance impact associated with having idle partitions in the system, AIX 5L
V5.3 introduces the idea of slow ticks. This is an operation mode for idle
processors with a reduced timer tick rate. In AIX 5L, a clock interrupt has always
occurred every 10 ms (1/100 of a second). This is still the case for busy
partitions. For idle partitions, the period of the clock interrupt is changed
dynamically to 1/10 of a second. Slow ticks are enabled in partitions running
independently as a function of load average on each processor of a system. Note
that daemons that run periodically for polling activities, or applications that
present similar behavior, can prevent the change to slow ticks; because there are
threads running periodically, the partition is not technically idle.

5.3.5 Application considerations in Micro-Partitioning

Applications do not have to be aware of Micro-Partitioning because it is
completely transparent from the application perspective. However, there are
some considerations that should guide a decision about which applications are
suitable for Micro-Partitioning and which are not.

Applications with response time requirements

The Micro-Partitioning environment is dynamic, especially when capped and
uncapped partitions are running on the same system.

As stated in 5.2.1, “Virtual processor dispatching” on page 104, the POWER
Hypervisor attempts to dispatch all virtual processors in an interval of 10
milliseconds. It does not guarantee, however, that the elapsed time between one
dispatch and the next one is fixed. Virtual processors can therefore be
dispatched any time between immediately (smallest latency) and 18 ms (largest

128 Advanced POWER Virtualization on IBM @server p5 Servers

latency) after the last dispatch, based on the virtual processor configured
capacity and the number of virtual processors in the shared pool. Figure 5-16
illustrates the case for the smallest capacity (10% of a physical processor),
where the time slice is 1 millisecond.

Dispatch Interval 1 Interrupt Dispatch Interval 2
Largest | pO p0
latency
Smallest p1 | p1
latency
Timems)1 2 3 4 5 6 7 8 9 1011 12 13 14 1516 17 18 19 20

Figure 5-16 Dispatch latencies for virtual processors

Applications that have strong response time requirements for transactions also
may not be good candidates for Micro-Partitioning. You can configure the
processing capacity inside a partition by tuning for the optimal number of virtual
processors, depending on the specific needs for the partition. If an application
depends on the individual processing capacity of a processor to run efficiently, it
will probably have higher response times when running on a partition with
smaller (but more) virtual processors. In order to meet quality of service
requirements, care must be taken when configuring the system to support
response time critical workloads. For planning purposes, if you decide to run
applications that must have predictable response times, or applications that have
transactions whose individual performance is a performance factor, you should
consider configuring the partition with extra capacity (perhaps 2-5% CPU per
partition), in order to compensate for these effects.

Applications in Micro-Partitioning environments, like those running in dedicated
processor partitions, see their response times as a function of the CPU
utilization. In Micro-Partitioning, if an application is run and the CPU utilization
within the partition becomes very high, response time will suffer. The problem is
magnified for small virtual processors, since each virtual processor is logically a
slower CPU. In laboratory tests, it is frequently difficult to drive small virtual
processor partitions to high utilizations on heavy CPU transactions with
acceptable quality of service. Applications without strong quality of service
requirements are good candidates for small-scale Micro-Partitioning.

Applications with polling behavior

Applications that perform polling may or may not be good candidates for
Micro-Partitioning. Because they need to periodically poll to detect whether the
resource is available or condition is satisfied, they spend cycles that otherwise

Chapter 5. Micro-Partitioning 129

130

would be available for other partitions (because they are not actually doing work).
If the application needs to periodically wake up a thread to do the polling, that
means that a virtual processor must be dispatched to run that thread, and spend
physical processor cycles, even if it is not producing work. This behavior is the
same regardless of the application being run on a partitioned server or not. What
might make a differences that in Micro-Partitioning spare cycles can be conferred
to other partitions with the help of the POWER Hypervisor.

Applications with low average utilization and high peaks
Applications where average usage of processor resources is low with peaks of
usage during a short period of time are good candidates for Micro-Partitioning.
More than one application can share the processor resources and run with the
required performance, exploiting the benefits of sharing otherwise unused
resources. Applications that perform online transaction processing (OLTP)
generally fit into this category because they are based on user input, and may
vary throughout the day depending on user activity. Usually there are distinct but
independent peaks of utilization and an average use significantly lower than the
peaks. Examples of such applications are mail servers, Web-based applications,
and directory servers.

Figure 5-17 shows the user distribution for a system on a real client scenario. You
can clearly identify the peak times.

700

600 +

500 T

400

300 +

Number of Users

200 +

0 —t—t——t—t—— "+ttt
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Time Of Day

Figure 5-17 User distribution on an application server

Advanced POWER Virtualization on IBM @server p5 Servers

For OLTP applications, the processor usage usually follows a similar distribution,
as shown on Figure 5-18 for the same system.

100

2 | 1|

00:00 02:00 04:00 06:.00 08:00 10:00 1:00 #:00 16:.00 18:00 20:00 22:00 00:00
Time Of Day

Figure 5-18 Processor utilization by the application server

The same behavior can be seen on mail servers. An analysis of a Lotus®
Domino® server rendered a similar shape for number of users and processor
usage.

If you have several workloads that have peak activity at different times, you can
have each one running on a separate partition, and all partitions sharing the
same physical processors. By adjusting each partition entitlement and the
partition mode (capped or uncapped), you can run the system at a higher
average utilization while fulfilling the processing requirements for each
application.

Figure 5-19 on page 132 illustrates a typical scenario in which different
applications are running in a Micro-Partitioning environment, with different peak
times, and a mixed of capped and uncapped partitions. The system is running
with four physical processors, virtualized into 20 virtual processors distributed
between five partitions. Three partitions run OLTP types of applications, and two
partitions run batch processing.

Chapter 5. Micro-Partitioning 131

[Eject[[Ezase [Kewind [Feck [Flay |[flower![Faster

Partition 1 (OLTP)
0.5 entitlement

L i Bl Uncapped (weigth 10)
B | Partition 2 (OLTR)
0.5 entitlement
G i A Uncapped (weigth 20)

200 1

Bz | Partition 3 (OLTP)
1.5 entitlement

" | Capped

S =

lg@;;ﬁ%% Partition 4 (Batch)
0.5 entitlement
Uncapped (weigth 1)

7

B

EEEEEEEEEE

LU LEMENT Partition 5 (Batch)
B 1.0 entitlement

{0-20
0 1w e 1 W W] Uncapped (weigth 2)

Figure 5-19 Processor utilization between five partitions

From this chart, we can see that partitions 1 and 2 have peak utilization at
different times. Therefore, there is no need to duplicate the amount of resources
to satisfy both partitions at peak processing. Partition 3 is capped and at a low
utilization, so it remains constant during the time, and cedes the extra cycles not
needed to other partition. Partitions 4 and 5 also benefit from the shared
resources, receiving extra cycles whenever there are idle processors. And
because of the nature of the applications (online and batch), the partition weight
is a key factor to allocate the extra cycles to the uncapped partitions.

CPU-intensive applications

If an application uses most of its entitled processing capacity during its execution,
it may not be suitable to run in a Micro-Partitioning environment. Because the
requirements for the application are high and constant during execution, a
dedicated processor partition is a better choice for this application. In a dedicated
processor partition it will receive the processing capacity it needs, and it is less
susceptible to interference from other workloads running in the system.

However, if the partition’s entitled processing capacity does not own most of the
physical processor’s capacity, it will be beneficial to run these applications in an
uncapped partition as they have the ability to use the extra cycles that may be
available eventually. In this case, the application can execute more work on a
system that would otherwise be idle. That would be the case when running online
applications in a system during daytime and batch applications at night.

Typical applications in this scenario are decision support systems (DSS) and
high-performance computing applications.

132 Advanced POWER Virtualization on IBM @server p5 Servers

5.3.6 Micro-Partitioning planning guidelines

When planning for Micro-Partitioning, it is important to identify the application
requirements and behavior in order to correctly size the partitions and maximize
the system performance.

Planning for future applications is often a case where estimates are the only
information available. In these cases, Micro-Partitioning can help, since partitions
can be adjusted for required capacities in a very flexible way. On the other hand,
an estimate can always be larger than the actual requirements, or smaller.
Because of this, you must always consider having reserve capacity to
accommodate unexpected resource requirements.

When the application environment is already in production or test, the task of
planning for Micro-Partitioning becomes more direct. You can measure the
resource utilization by the application on the running system and use this as a
base for Micro-Partitioning performance requirements. Based on the detailed
information you measure, you can plan the Micro-Partitioning environment to
make the most effective use of the physical resources.

When planning for Micro-Partitioning, there are three main strategies for defining
configurations:

Idle Resource Reallocation
A careful analysis of application resource usage and
peak processing requirements, in order to deploy
applications and substantially increase system
utilization. You should run most of the partitions in
uncapped mode.

Harvested Capacity The definition of partitions that have quality of service
requirements, and allowing other partitions to run on the
system with the resources eventually idle. You may have
some partitions running uncapped when you use this
approach so that they can use available resources in the
system.

Guaranteed Capacity A basic definition, based on the sum of capacities from
all servers being migrated, or based on sizing estimates
using any published performance unit. In general, the
partitions are running in capped mode when using this
strategy.

Each strategy applies to different situations, depending on the amount of
information you have for planning.

Chapter 5. Micro-Partitioning 133

134

Idle Resource Reallocation

This is the strategy where you make the most efficient use of the processing
capacity in the system. It is also the strategy that requires the most accurate
planning and detailed knowledge about the applications behavior.

Idle Resource Reallocation involves an accurate knowledge of resource
utilization over time by applications, in order to share resources and deliver
quality of service. Instead of planning by summing up the peak utilization for each
application, you plan a processing capacity sufficient for the sum of the usage of
each application at all times. When one application does not consume resources
up to the peak, these resources are reallocated to other applications that peak at
that moment. Under normal circumstances, all partitions have their requirements
fulfilled. If a few partitions consume resources up to the peak, the system still
fulfills all partition requirements. However, if most or all of the application peaks
at the same time in an unplanned manner, then the system is overcommitted and
partitions will have performance constraints.

With adequate planning, a system can be configured with applications that do not
overlap their peaks in processing, and therefore never overcommit the system.
Total system usage will be high, and quality of service will be maintained, with
maximum efficiency in resource usage.

Figure 5-20 on page 135 shows the processor usage (in percent over time) for
three different applications during the same period. From the charts you can see
that the peaks in processing for each application are not at the same time.

Advanced POWER Virtualization on IBM @server p5 Servers

ApplicationA

100

80

" A /\
O ApplicationA
40 1

20

0

172 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ApplicationB

70
60 1
50 1
40 1

ApplicationB
30 | OApp
20 A
10 1

12 3 4 5 6 7 8 9 10 1 122 13 14 15 16

Application C

60

40 - \
30 1 mApplication C

20

1 3 5 7 9 1 13 15

Figure 5-20 Resource utilization for three different applications

For clarity, the core of this example is simplicity. We hypothetically consider that
for each of these applications, each percentage of resources is equivalent to 0.1
rPerf.

We can therefore show the peak utilization for each partition and the sum of the
peaks, as well as the smaller server model that would be required to host these

Chapter 5. Micro-Partitioning 135

applications in a dedicated server or dedicated partition environment (Table 5-3
on page 136):

Table 5-3 Peak utilization per partition

Application | Peak Capacity Smallest server
processing (%) | requirement in rPerf | required

A 77 7.7 p5-510, 2 proc, 1500 MHz
B 65 6.5 p5-510, 2 proc, 1500 MHz
C 55 55 p5-510, 2 proc, 1500 MHz
TOTAL 197 19.7 p5-570, 6 proc, 1500 MHz

(2 spare CoD)

The workload of these three applications could be fulfilled by three 2-way
standalone servers, or one 8-way server with three dedicated partitions (two
processors each) and two inactive processors.

If we consolidate these applications on a server with Micro-Partitioning, we can

benefit from their behavior and size a system with less capacity than the sum of
all peaks. First, we need to sum the usage for the three applications, at a given

time.

Figure 5-21 shows the result of this sum, and we can see that the maximum peak
processing for the sum is 96 percent (using the same consideration that for each
application the ratio is 0.1 rPerf for each 1 percent of utilization). We therefore
reach a requirement of 9.6 rPerf for all three applications.

100

90
80 -
70 A
60 1 @ Application C
50 + OApplication B
40 @ Application A
30
20 -
10 4
0 T T T T T T T T T T T

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 5-21 Application resource utilization example

136 Advanced POWER Virtualization on IBM @server p5 Servers

By adding a 20 percent contingency to accommodate several factors such as
uncertainties in the exact time of workload peaks, and system effects due to
Micro-partitioning, we calculate to a requirement of 11.52 rPerf. This is about half
of the capacity that we would need if we sized for peak capacity of each
application independently (and also including the contingency).

This workload can be satisfied with one 4-way p5-550 at 1500 MHz, with three
active processors and one inactive (Cod) processor, when compared to the
deployment on dedicated partitions or servers that would have required six
processors.

As previously discussed, this is the most efficient strategy for consolidating
running systems using Micro-Partitioning. It is important to note that all partitions
must be uncapped, so they can receive the resources needed for peak
processing. Also, if for some reason the peaks in processing change, the
partition entitlements must be recalculated and a new planning effort should be
made. Otherwise, partitions may not be able to get the resources they need, and
application performance will not be as optimal as it could be.

Harvested capacity

When you have a mix of partitions that have a response time requirement (such
as OLTP applications) and partitions that do not have response time
requirements (such as batch applications or test partitions), and you have some
knowledge of the applications behavior, Micro-Partitioning is designed to run the
workloads without providing capacity for the peak processing of each partition.
You can provide capacity for the partitions that have the response time
requirements, up to peak capacity. Because they do not normally run at peak
processing, the extra resources can be used by the partitions that do not have
response time requirements. For these partitions, instead of specifying a peak
capacity, you define a minimum capacity for them to run and let them run
uncapped, using the resources available from the other partitions.

In the case you run both production, test, and development partitions on the
same server, you can, for example, configure a DB server and application server
partitions so they have their processing requirements guaranteed. The
development and test partitions can be configured as uncapped partitions and
use any available resources on the system.

Another recommended application of this strategy is the case of a server farm
running an application that receives load from load balancers. Normally the load
is balanced among the servers executing the application. In case one server
receives more workload than others, it can use more resources from the
processor pool, then return to normal behavior when the extra workload finishes.

Chapter 5. Micro-Partitioning 137

Guaranteed capacity

This is the simplest algorithm of capacity planning for Micro-Partitioning. When
you are planning a system for new applications, typically no performance data is
available about the resource utilization by the applications. Therefore, you should
rely on application sizing and performance requirements estimates to size the
partitions, and add extra capacity as a contingency for when the application
needs more than initially planned.

This is also the case where you have the applications running, but cannot identify
capacity utilization behavior (because of either insufficient metrics or random
behavior).

For these situations, the simplest approach is to size a system based on the
required capacities, up to the peak capacity, and add additional capacity for
contingency. This method offers the smallest risk and is fairly simple to estimate.
Moreover, since the system was planned based on the peak requirements for
each application, you do not need a substantial effort in performance
management, since there is installed capacity for all of the application
performance requirements.

The drawback of this strategy is that it does not optimize resource usage based
on application behavior, so a large fraction of the processing resources may be
unused during hours of less activity, and if also when applications present
complementary processing requirements (one application has a peak and the
other has a valley).

An application of this strategy can be a server consolidation environment in an
outsourcing contract, where each client pays for a guaranteed capacity, and
there is not a possibility for over-commitment of resources. Another case is the
consolidation of many applications with very small workloads, requiring less than
one physical POWERS processor. Take note that the entry server p5-510 at
1.65 GHz with only one processor has approximately the same processing power
as a 12-way 7017-S7A that was considered the top high end enterprise class
server less than ten years ago. Hence, many applications exist that only need a
fraction of one POWERS processor. Using guaranteed capacity algorithms for
consolidating several of these applications on one processor using
Micro-Partitioning technology is far more efficient than dedicating even the
slowest available processor to each of these applications.

Consider the example of a three-tiered ERP system. Based on the functional
requirements from the client, a sizing tool generates an estimate for system
requirements based on peak requirements for each component of the solution.

A typical ERP solution is based on several servers running different functions; a
database server, one or more application servers, one development system, and

138 Advanced POWER Virtualization on IBM @server p5 Servers

one test system. A hypothetical example of a new system installation would be
similar to the requirements listed in Table 5-4.

Note: rPerf is an estimate of relative commercial processing performance

between IBM @server p5 systems. It is derived from an IBM analytical model
that uses characteristics from IBM internal workloads and industry transaction
processing and Web processing benchmarks. The rPerf model is not meant to
represent any specific public benchmark result. It is used here as an indication
of the required performance in IBM systems for this specific scenario.

Table 5-4 An example of an ERP system requirements

Function Estimated capacity in rPerf | Estimated plus
contingency in rPerf

DB Server 4.0 4.4

Application Server 1 3.3 3.7

Application Server 2 3.3 3.7

Development 1.8 2.0

Test 1.3 15

Total 13.7 15.3

If we were to use separate systems for each function, we would use five systems,

with an adequate capacity to provide system usage within the performance

requirements (Table 5-5).

Table 5-5 Implementation with separate servers

Function Capacity Server Capacity
requirement in rPerf provided in

rPerf

DB Server 4.4 p5-510, 1 proc, 1650 MHz | 5.24

App Server1 | 3.7 p5-510, 1 proc, 1650 MHz | 5.24

App Server2 | 3.7 p5-510, 1 proc, 1650 MHz | 5.24

Development | 2.0 p5-510, 1 proc, 1500 MHz | 3.25

Test 1.5 p5-510, 1 proc, 1500 MHz | 3.25

Total 15.3 5 servers, 5 processors 22.22

Chapter 5. Micro-Partitioning

139

The amount of rPerf required for the application is 15.3. The amount of rPerf
configured into the systems is 22.22 due to physical constraints. (The number of
processors must be an integer number.) Although extra capacity is being
configured, it cannot be allocated wherever it is needed because these systems
are separate. The DB server application, for example, can request extra
processing power equivalent to 0.84 rPerf, while the Test partition can get an
extra 1.75 rPerf.

If we use a more sophisticated approach by configuring a dedicated server, we
will have more flexibility in moving extra resources among partitions, but still need
to provide extra capacity that can be utilized. Table 5-6 shows the same example
using dedicated processor partitioning with a 1.65 GHz server.

Table 5-6 Dedicated processor partitioning with 1.65 GHz mid-range server

Function Required Server Capacity
capacity in provided
rPerf in rPerf

DB Server 4.4 p5-510, 1 proc, 1650 MHz 4.6

App Server 1 3.7 p5-510, 1 proc, 1650 MHz 4.6

App Server 2 3.7 p5-510, 1 proc, 1650 MHz 4.6

Development 2.0 p5-510, 1 proc, 1650 MHz 4.6

Test 1.5 p5-510, 1 proc, 1650 MHz 4.6

Total 15.3 1 servers, 5 activated 1650 MHz 23.0

processors, 3 offline Cod processors Activated
37.22 total
available

Of the servers available at the time of writing, an 8-way p5-570 server matches
the requirements. By ordering some of the processors as CoD features, it is
possible to activate only five of the processors to satisfy the workload.

Again in this case, the provided processing power is more than needed (7.7
rPerf), but this extra processing power cannot be freely reused where it is
required. For example, the needs of the DB server can only request an extra 0.2
rPerf equivalent, while the test partition can request up to 3.1 rPerf. When using
CoD, it is possible to satisfy the DB extra resource needs by activating one of the
CoD processors.

When using a server with Micro-Partitioning, you can accommodate the different
functions with more effective utilization. A single IBM @server p5 550 can
deliver up to 19.66 rPerf with four POWERS5 processors running at 1.65 GHz.

140 Advanced POWER Virtualization on IBM @server p5 Servers

Since the behavior of each system is not known, so to accommodate the
requirements of a single system using Micro-Partitioning, we sum the peak
performance requirements for each function, and apply a 20 percent sizing
contingency. This contingency accommodates several factors, including the fact
that rPerf is only an approximate indicator of performance between systems,
uncertainties in workload peaks, and system effects due to Micro-partitioning
technology.

For this workload, we would have the configuration as provided in Table 5-7 using
a 4-way p5-550 server.

Table 5-7 .Implementation with Micro-Partitioning

Function Requested | Capacity using % of physical
capacity in | Micro-Partitioningtechnology | processor
rPerf with a 20% contingency requirement

DB Server 4.4 5.28 1.07

App Server1 | 3.7 4.44 0.90

App Server2 | 3.7 4.44 0.90

Development | 2.0 2.4 0.49

Test 1.5 1.8 0.37

Total 15.3 18.36 3.73

The extra resources on the machine can then be allocated to any of the partitions
whenever they require capacity. Moreover, when a partition is not using its total
capacity, the remainder of its entitlement is automatically available in the shared
processing pool. Also, when the applications are running, resource allocation can
be fine-tuned and allocated according to the partition needs.

This example shows that even when using the guaranteed capacity sizing
algorithm, and taking a 20 percent contingency for the solution using
Micro-Partitioning technology over the dedicated server solutions,
micro-partitioning allows replacing five servers, each with one processor, with
one 4-way server.

Sizing partitions for a virtualized environment is not fundamentally different than
sizing for dedicated systems. The ultimate efficiency of sizing depends heavily on
the knowledge of the workload, degree of risk assumed in sizing, and the
expected attention to capacity monitoring. Idle resource reallocation provides the
most optimized environment. However, it requires good knowledge of the
workload and likely the closest monitoring of system capacity. Harvested
capacity allows very high system utilizations, if workloads with relaxed response
time requirements can exploit otherwise idle cycles. Guaranteed capacity, while

Chapter 5. Micro-Partitioning 141

the least effective at maximizing the overall hardware utilization, works extremely
well for very small partitions. Guaranteed capacity also generally requires the
least attention to capacity monitoring, as there are no consequences of
workloads peaking concurrently.

5.4 Summary

There are some performance considerations to take into account when
implementing Micro-Partitioning technology. AIX 5L V5.3 and, to a lesser extent,
Linux do a good job of sharing the computing resources across the workloads
they are running. With Workload Manager or Partition Load Manager, it is
possible to make sure that an organization’s priorities are respected when there
is a conflict. Because of the overhead of scheduling virtual processors, there
should be an objective of keeping the number of partitions to a minimum.

Important: To maximize performance, keep the number of partitions to a
minimum.

If organizational policies do not require separate partitions, you must ask, “What
are the technical and performance reasons for creating a new partition, rather
than adding a new workload to an existing one and providing it with the same
amount of additional resources?” A consolidation project should have higher
objectives than replacing n-machines by n-partitions.

Some good reasons for using Micro-Partitioning technology include:

» Tuning the operating system for a given application; for example, 32-bit or
64-bit kernel, large pages, threaded Ethernet adapters, Linux or AIX 5L.

» A Network Install Manager (NIM) server, which must always be at the latest
level of AlX to be installed. The partition can be activated when required;
otherwise its resources can be made available to the shared pool.

» Ad hoc partition creation for an on-off occasion, demo, trial software, training,
and so on.

» Containing an unpredictable or runaway application that prevents it from
affecting other applications, although this can also be achieved with WLM.

» Provide application isolation for security or organizational reasons; for
example, you may want a firewall application to be isolated from your Web
servers. Isolating development, test, and training activities from production.

Careful planning should be done to satisfy application resource requirements.
This enables the system to be utilized efficiently with satisfactory performance
from the application point of view.

142 Advanced POWER Virtualization on IBM @server p5 Servers

Virtual I/0

This chapter provides an introduction to virtual input/output (1/O), as well as a
close look at how the POWER Hypervisor handles transactions between the
partitions. This chapter also addresses performance aspects for each of the
components of the virtual I/O system. With respect to virtual I/O, the components
covered in this chapter are:

»

>

>

>

>

POWER Hypervisor
Virtual Serial Adapter
Virtual Ethernet

Shared Ethernet Adapter
Virtual SCSI

The virtual I/O product documentation can be found at:

Using the Virtual I/O Server

http://publib.boulder.ibm.com/infocenter/eserver/vir3s/index.jsp?lang=en

© Copyright IBM Corp. 2005. All rights reserved. 143

http://publib.boulder.ibm.com/infocenter/eserver/v1r3s/index.jsp?lang=en

6.1 Introduction

Virtual 1/0 provides the capability for a single I/0 adapter to be used by multiple
logical partitions on the same server, enabling consolidation of 1/0 resources and
minimizing the number of required I/O adapters. The driving forces behind virtual
I/O are:

» The advanced technological capabilities of today’s hardware and operating
systems such as POWERS5 and IBM AIX 5L Version 5.3.

» The value proposition enabling on demand computing and server
consolidation. Virtual I/O also provides a more economic 1/0O model by using
physical resources more efficiently through sharing.

As we write this, the virtualization features of the POWERS platform support up
to 254 partitions, while the server hardware provides only up to 160 I/O slots per
machine. With each partition typically requiring one 1/O slot for disk attachment
and another one for network attachment, this puts a constraint on the number of
partitions. To overcome these physical limitations, 1/O resources have to be
shared. Virtual SCSI provides the means to do this for SCSI storage devices.

Furthermore, virtual I/O enables attachment of previously unsupported storage
solutions. As long as the Virtual I/O Server supports the attachment of a storage
resource, any client partition can access this storage by using virtual SCSI
adapters.

For example, if there is no native support for EMC storage devices on Linux,
running Linux in a logical partition of a POWERS5 server makes this possible. A
Linux client partition can access the EMC storage through a virtual SCSI adapter.
Requests from the virtual adapters are mapped to the physical resources in the
Virtual /0O Server. Therefore, driver support for the physical resources is needed
only in the Virtual I/O Server.

Typically, a small operating system instance needs at least one slot for a Network
Interface Connector (NIC) and one slot for a disk adapter (SCSI, Fibre Channel,
and so on), but more robust configurations often consist of two redundant NIC
adapters and two disk adapters.

Virtual I/O devices are intended as a complement to physical I/O adapters (also
known as dedicated or local I/O devices). A partition can have any combination
of local and virtual I/O adapters.

Supported levels

Although IBM @server p5 servers support AIX 5L Version 5.2, it is not possible
to run an AIX 5L V5.2 partition with Micro-Partitioning, virtual SCSI, virtual

144 Advanced POWER Virtualization on IBM @server p5 Servers

Ethernet, or shared ethernet adapters. However, a mixed environment between
AIX 5L V5.2 and AIX 5L V5.3 partitions on @server p5 servers is supported.

Figure 6-1 shows a sample configuration with mixed operating systems and
mixed AlIX 5L versions. The first five partitions are using dedicated processors.
The AIX 5L V5.2 partition cannot join the virtual I/O paths, but it provides all
known LPAR and dynamic LPAR features. It has to be configured with dedicated
I/O adapters. The AIX 5L V5.3 partitions using shared processors likewise may
use dedicated storage and dedicated networking.

2CPUs 1CPU 1CPU 2CPUs 2CPUs
I/O Server i5/0S Linux AlX 5.2 AIX 5.3
D | [
255k
Virtual Virtual
Disks Ethernet

POWER Hypervisor

Physical I/O Physical /O
Storage Net Net Storage

T o> B

Figure 6-1 Mixed operating system environment

6.2 POWER Hypervisor support for virtual I/0

As Figure 6-1 illustrates, the POWER Hypervisor provides the interconnection for
the partitions. To use the functionalities of virtual I/O, a partition uses a virtual
adapter. The POWER Hypervisor provides the partition with a view of an adapter
that has the appearance of an 1/0 adapter, which may or may not correspond to a
physical I/0 adapter. The POWER Hypervisor provides two classifications of
virtual adapters:

» Hypervisor simulated class. This classification of virtual adapter, shown in
Figure 6-2 on page 146, is where the POWER Hypervisor simulates an 1/0
adapter. This class is used in virtual Ethernet support (see 6.5, “Virtual

Chapter 6. Virtual /O 145

Ethernet” on page 164). This technique provides reliable and fast
communication between partitions using network protocols.

Simulated Class

LPAR LPAR
n n

POWER Hypervisor

A — Virtual adapter

Figure 6-2 POWER Hypervisor simulated class

» Partition managed class. In this class, shown in Figure 6-3 on page 147, a
server partition provides the services of one of its physical I/0 adapters to
client partition. A server partition provides support to handle I/O requests from
the client partition and perform those requests on one or more of its devices,
targeting the client partition’s direct memory access (DMA) buffer areas using
LRDMA facilities. (See “Logical Remote Direct Memory Access (LRDMA)” on
page 150.) It then passes I/O responses back to the client partition. This
classification of virtual adapter is used by virtual SCSI as described in 6.8,
“Virtual SCSI” on page 205.

146 Advanced POWER Virtualization on IBM @server p5 Servers

Partition Managed Class

LPAR LPAR
-
A A

POWER Hypervisor

A — Virtual adapter
B — Physical adapter
C — Remote DMA

Figure 6-3 POWER Hypervisor partition managed class

6.2.1 Virtual I/0O infrastructure

The virtual I/O infrastructure is a complex subject, and it is not the purpose of this
book to address it extensively. We briefly present some of the components that
are relevant to understanding the performance issues.

The Open Firmware device tree

The virtual I/O adapters and associated inter-partition communication paths are
defined using the HMC during the creation of the partition’s profile.

When a partition is booted, it receives from the POWER Hypervisor the definition
of all of its available hardware resources as device nodes in what is called the
partition Open Firmware device tree.

Depending on the specific virtual device, their device tree node may be found as
a child of / (the root node) or in the virtual I/O subtree.

Chapter 6. Virtual /O 147

In addition to the virtual I/0 devices, the Open Firmware device tree also
contains the definition of the virtual host bridge and the virtual interrupt source
controller. These definitions enable the partition to communicate with the virtual
devices in the same way that it communicates with physical devices.

Each virtual device node in the Open Firmware device tree contains the
properties defined in Table 6-1.

Table 6-1 Required attributes of the /vdevice node

Property name Req? Definition

name Yes Standard property name per IEEE 1275
specifying the virtual device name; the value shall
be “vdevice”

device_type Yes Standard property name per IEEE 1275
specifying the virtual device type; the value shall
be “vdevice”

model No Property not present

compatible Yes Standard property name per IEEE 1275

specifying the virtual device programming
models; the value shall include “IBM,vdevice”

used-by-rtas No Property not present

ibm,loc-code No Location code

reg No Property not present

#size-cells Yes Standard property name per IEEE 1275; the

value shall be 0. No child of this node takes space
in the address map as seen by the owning
partition.

#address-cells Yes Standard property name per IEEE 1275; the
value shall be 1.

#interrupt-cells Yes Standard property name per IEEE 1275; value
shall be 2. The first cell contains the interrupt# as
will appear in the XIRR and is used as input to
interrupt RTAS calls. The second cell contains the
value 0, indicating a positive edge sense.

interrupt-map-mask No Property not present.

interrupt-ranges Yes Standard property name that defines the interrupt
number(s) and range(s) handled by this unit.

interrupt map No Property not present

148 Advanced POWER Virtualization on IBM @server p5 Servers

Property name Req? Definition

interrupt-controller Yes The /vdevice node appears to contain an interrupt
controller.

ranges No Used by virtual adapters.

ibm,drc-indexes for DR | For Dynamic Reconfiguration (DR). Refers to
the DR slots: the number provided is the
maximum number of slots that can be configured.
This is limited by, among other things, the RTCE
tables allocated by the POWER Hypervisor.

ibm,drc-power-domains | for DR | Value of -1 to indicate that no power manipulation
is possible or needed.

ibm,drc-types for DR | Value of “SLOT"— any virtual IOA can fit into any
virtual slot.

ibm,drc-names for DR The virtual location code.

6.2.2 Types of connections

The virtual 1/O infrastructure provides several primitives that are used to build
connections between partitions for various purposes. These primitives include:

» A Command/Response Queue (CRQ) facility that provides a pipe between
partitions. A partition can enqueue a command to the target partition’s CRQ
for processing by that partition. The partition can set up the CRQ to receive
an interrupt when an entry is placed in the queue.

» An extended Translation Control Entry (TCE) table called the Remote TCE
(RTCE) table, which enables a partition to provide windows to its memory for
other partitions to use, while maintaining addressing and access control to its

memory.

» Remote DMA services that enable a server partition to transfer data to
another partition’s memory via the RTCE windows. This enables a device
driver in a server partition to efficiently transfer data to and from another
partition. This is key to sharing a virtual I/O adapter in the server partition.

The Command/Response Queue

The CRQ facility provides a communications pipeline for ordered delivery of
messages between authorized partitions. The facility is reliable in the sense that
the messages are delivered in sequence. The sender is notified if the transport
facility in the POWER Hypervisor able to deliver the message or was unable to
provide the data associated with the message, or if the target partition either fails

Chapter 6. Virtual /O 149

or deregisters its half of the transport connection. Optionally, the CRQ owner may
choose to be notified via an interrupt when a message is added to their queue.

The CRQ facility does not police the contents of the payload portions (after the
one-byte header) of messages that are exchanged between the communicating
partitions. The architecture does provide means (via the Format Byte) for self-
describing messages so that the definitions of the content and protocol between
the partitions may evolve over time without change to the CRQ architecture or its
implementation.

Remote Translation Control Entry (RTCE)

The TCE and RTCE tables are used to translate direct memory access (DMA)
operations and provide protection against improper operations.

The RTCE table is analogous to the TCE table for dedicated I/O, and Table 6-2
shows a comparison. The RTCE table has more information in it provided by the
POWER Hypervisor. This enables the POWER Hypervisor to create links to the
TCEs on the partition that owns the device. An entry in the RTCE table is never
accessed directly by the operating system; only though POWER Hypervisor calls
as described 4.1.1, “POWER Hypervisor functions” on page 79.

Table 6-2 TCE and RTCE comparison

TCE (Translation Control Entry) RTCE (Remote TCE)

In POWER4 processor-based pSeries In POWERS5 processor-based pSeries
servers servers

Translation table for logical to dedicated Needed for Remote DMA

1/0 bus addresses

Managed by the POWER Hypervisor Managed by the POWER Hypervisor

Addressed by the operating system Never addressed directly by the operating
system. Addressed only through POWER
Hypervisor calls.

Logical Remote Direct Memory Access (LRDMA)
The virtual 1/0 infrastructure can take advantage of different types of Direct

Memory Access (DMA). The virtual SCSI feature only uses Logical Remote
Direct Memory Access (LRDMA).

LRDMA enables an I/O server to securely target memory pages within an 1/0

client for virtual 1/0 operations. The I/O server uses the POWER Hypervisor call
of the Logical Remote DMA facility to manage the movement of commands and
data associated with the client requests. The server driver may use this service if

150 Advanced POWER Virtualization on IBM @server p5 Servers

it has a connection established via a Command/Response Queue. Virtual SCSI

defines two modes of LRDMA:

Copy RDMA The 1/O devices target DMA buffers in the 1/0
server's memory. After the DMA transfer
completes, the POWER Hypervisor copies the data
between the DMA buffers and the client’'s memory.

Redirected RDMA This mode allows for an 1/O device to securely
perform DMA transfers directly into the client
partition’s memory.

Example 6-4 shows how data is transferred using redirected RDMA.

Virtual SCSI I/O Server
Client
Data
Buffer
Virtual Virtual Physical
SCSI SCSI Adapter
Initiator Target Driver
- | | | |
ol
% Control
A

POWER Hypervisor

PCIl Adapter

Figure 6-4 Logical Remote Direct Memory Access (LRDMA)

Redirected RDMA provides better overall system performance because the data
is transferred to and from the data buffer by the DMA controller on the adapter
card. This performance degradation by using copy RDMA may be offset if the I/O
server’'s DMA buffer is being used as cache for multiple virtual I/O operations.

Chapter 6. Virtual I/O 151

6.3 The IBM Virtual 1/0 Server

The IBM Virtual I/0O Server is the link between the virtual resources and physical
resources. It is a specialized partition that owns the physical I/O resources, and
is supported only on POWERS processor—based servers. This server runs in a
special partition that cannot be used for execution of application code.

It mainly provides two functions:

» Serves virtual SCSI devices to client partitions
» Provides a Shared Ethernet Adapter for VLANs

Installation of the Virtual I/O Server partition is performed from a special mksysh
CD-ROM that is provided to clients who order the Advanced POWER
Virtualization feature, at an additional charge1. This is dedicated software only for
the Virtual I/O Server operations, so the Virtual I/O Server software is supported
only in Virtual I/O Server partitions.

You can install the Virtual I/O Server from CD or using NIM on Linux (NIMoL)
from the Hardware Maintenance Console (HMC).

The Virtual 1/0 Server supports the following operating systems as Virtual 1/0
clients:

IBM AIX 5L V5.3

SUSE LINUX Enterprise Server 9 for POWER

Red Hat Enterprise Linux AS 3 for POWER, update 3
Red Hat Enterprise Linux AS 4 for POWER

v

vyy

The 1/O Server operating system is hidden to simplify transitions to further
versions. No specific operating system skills are required for administration of the
I/O Server.

Performance considerations for the Virtual I/O Server are addressed in “Virtual
I/O Server performance results” on page 191.

Command line interface

The Virtual 1/0 Server provides a restricted scriptable command line interface
(CLI). All aspects of Virtual I/O Server administration are accomplished through
the CLI, including:

» Device management (physical, virtual, LVM)
Network configuration

Software installation and update

Security

vvyy

! Included with @server p5-590 and @server p5-595.

152 Advanced POWER Virtualization on IBM @server p5 Servers

» User management
» Installation of OEM software
» Maintenance tasks

For the initial logon to the Virtual I/0O Server, use the user ID padmin, which is the
prime administrator. When logging on, you are prompted for a new password, so
there is no default password to remember.

Upon logging on to the I/O server, you will be placed into a restricted Korn shell.
The restricted Korn shell works the same way as a regular Korn shell with some
restrictions. Specifically, users cannot do the following:

» Change the current working directory.
» Set the value of the SHELL, ENV, or PATH variables.

» Specify the path name of the command that contains a redirect output of a
command with a >, >|, <>, or >>.

As a result of these restrictions, you cannot execute commands that are not
accessible to your PATH. In addition, these restrictions prevent you from directly
sending the output of the command to a file, requiring you to pipe the output to
the tee command instead.

The Virtual I/0 Server CLI supports two execution modes: fraditional and
interactive.

The traditional mode is for single command execution. In this mode, you execute
one command at a time from the shell prompt. For example, to list all virtual
devices, enter the following:

#ioscli 1sdev -virtual
To reduce the amount of typing required in traditional shell level mode, an alias
has been created for each subcommand. With the aliases set, you are not

required to type the iosc1i command. For example, to list all devices of type
adapter, you can enter the following:

#1sdev -type adapter

You can type help for an overview of the supported commands, as shown in
Example 6-1 on page 154.

Chapter 6. Virtual /O 153

Example 6-1 Commands available in Virtual I/O Server environment

$ help

Install Commands Physical Volume Commands Security Commands
updateios Ispv 1sgcl
1ssw migratepv cleargcl
ioslevel 1sfailedlogin
remote_management Logical Volume Command
oem_setup_env 1slv UserID Commands
oem_platform_level mk1v mkuser
license extendlv rmuser

rmlvcopy Tsuser

LAN Commands rmlv passwd
mktcpip mk1vcopy chuser
hostname
cfglnagg
netstat Volume Group Commands Maintenance Commands
entstat 1svg chlang
cfgnamesrv mkvg diagmenu
traceroute chvg shutdown
ping extendvg fsck
optimizenet reducevg backupios
Isnetsvc mirrorios savevgstruct

unmirrorios restorevgstruct

Device Commands activatevg starttrace
mkvdev deactivatevg stoptrace
1sdev importvg cattracerpt
1smap exportvg bootlist
chdev syncvg shap
rmdev startsysdump
cfgdev topas
mkpath mount
chpath unmount
1spath showmount
rmpath startnetsvc
errlog stopnetsvc

In interactive mode, the user is presented with the iosc1i command prompt by

executing the iosc1i command without any subcommands or arguments. From
this point on, iosc1i commands are executed one after the other without having
to retype ioscli. For example, to enter interactive mode, type:

#ioscli

When in interactive mode, to list all virtual devices, enter:

#1sdev -virtual

154 Advanced POWER Virtualization on IBM @server p5 Servers

External commands, such as grep or sed, cannot be executed from the
interactive mode command prompt. You must first exit interactive mode by
entering quit or exit. A measurement of virtual I/O in conjunction with the
Shared Ethernet Adapter functionality is discussed in 6.6, “Shared Ethernet
Adapter” on page 186.

Limitations and considerations

The Virtual I/0O Server software is dedicated software only for the Virtual I/O
Server operations, and there is no possibility of running other applications in the
Virtual I/0O Server partition.

There is no option to get the Virtual I/O Server partition pre-installed on new
systems. As this is written, the pre-install manufacturing process does not allow
the Virtual I/O Server partition to be pre-installed.

Other limitations can occur because of resource shortages. The Virtual 1/0
Server should be properly configured with enough resources. The most
important are the processor resources. If a Virtual I/O Server has to host a lot of
resources to other partitions, you must ensure that enough processor power is
available. In case of high load or high traffic across virtual Ethernet adapters and
virtual disks, partitions can observe delays in accessing resources.

Logical volume limitation

The Virtual I/0 Server software enables you to define up to 1024 logical volumes
per volume group, but the actual number you can define depends on the total
amount of physical storage defined for that volume group and the size of the
logical volumes you configure.

Table 6-3 shows the limitations for logical storage management.

Table 6-3 Limitations for logical storage management

Category Limit

Volume group 4,096 per system

Physical volume 1,024 per volume group
Physical partition 2,097,152 per volume group
Logical volume 4,096 per volume group
Logical partition Based on physical partitions

Chapter 6. Virtual /O 155

6.3.1 Providing high availability support

When we talk about providing high availability for the Virtual I/O Server we are
talking about incorporating the 1/O resources (physical and virtual) on the Virtual
I/O Server as well as the client partitions into a configuration that is designed to
eliminate single points of failure.

The Virtual 1/0 Server is a single point of failure. In case of a crash of the Virtual
I/O Server, the client partitions will see 1/O errors and not be able to access the
adapters and devices that are hosted by the Virtual I/O Server.

However, redundancy can be built into the configuration of the physical and
virtual I/O resources at several stages.

Since the Virtual 1/0 Server is a customized AIX 5L OS-based appliance,
redundancy for physical devices attached to the Virtual I/O Server can be
provided by using capabilities such as LVM mirroring, Multipath I/O, and
EtherChannel.

Note: When activating the EtherChannel you may see some Unsupported
joctl in device driver errors if you are using virtual Ethernets in your Link
Aggregation. These errors can be ignored.

Figure 6-5 on page 157 shows a single Virtual /O Server configuration with disk
and network attachment. The disks are mirrored through LVM. The two physical
network adapters are configured as a Link Aggregation in Network Interface
Backup (NIB) mode.

While this kind of configuration protects you from the failure of one of the physical
components, such as a disk or network adapter, it will still cause the client
partition to lose access to its devices if the Virtual I/O Server fails.

The Virtual I/0O Server itself can be made redundant by running a second
instance of it in another partition. When running two instances of the Virtual I1/0
Server, you can use LVM mirroring, Multipath 1/O, Link Aggregation, or Multipath
routing with dead gateway detection in the client partition to provide highly
available access to virtual resources hosted in separate Virtual I/O Server
partitions. Many configurations are possible; they depend on the available
hardware resources as well as your requirements.

156 Advanced POWER Virtualization on IBM @server p5 Servers

Client Partition

vSCSlI Virtual Ethernet
[] Physical Resources Client Adapter Adapter
[] Virtual Resources
I/O Server
vSCSI Virtual Ethernet
Server Adapter Adapter
LVM EtherChannel
Physical Physical Physical Physical
SCSI Adapter SCSI Adapter Network Adapter Network Adapter

External
Network

Physical Physical
Disk Disk

Figure 6-5 Single Virtual I/O Server configuration

Network interface backup
Figure 6-6 on page 158 shows a configuration using network interface backup.

The client partition has two virtual Ethernet adapters. Each adapter is assigned
to a different VLAN (using the PVID). Each Virtual I/O Server is configured with a
Shared Ethernet Adapter that bridges traffic between the virtual Ethernet and the
external network. Both Shared Ethernet Adapters should be able to connect to
the same set of hosts in the external network.

Each of the Shared Ethernet Adapters is assigned to a different VLAN (using
PVID). By using two VLANSs, network traffic is separated so that each virtual
Ethernet adapter in the client partition seems to be connected to a different
Virtual I/0O Server.

The two virtual Ethernet adapters in the client partition are configured as an
EtherChannel using Network Interface Backup. The Link Aggregation is
configured with a primary adapter and a backup, and the operation mode is left
as the default standard mode. Additionally, the EtherChannel is configured with
an Internet Address to Ping. This address will be pinged periodically by the

Chapter 6. Virtual /O 157

EtherChannel to determine whether connectivity to the external network exists.
Typically a router that should be always available is used as the ping target.

Client Partition
EtherChannel
Virtual Ethernet Adapter1 = Primary
Virtual Ethernet Adapter 2 = Backup
Virtual Ethernet Virtual Ethernet
. Adapter 1 Adapter 2
[Physical Resources PVID 1 PVID 2
[] Virtual Resources
] Q
Shared Ethemet Adapter | 1/O $erver 1 I/O Server 2 spared Ethemet Adapter
PVID 1 : PVID 2
Virtual Ethernet Virtual Ethernet
Adapter | Adapter
Physical Ethernet Physical Ethernet
Adapter i Adapter
Network Network
Switch External Switch
Network

Figure 6-6 Virtual I/O Server configuration with network interface backup

Even though a Link Aggregation with more than one primary virtual Ethernet
adapter is not supported, a single virtual Ethernet adapter Link Aggregation is
possible because a single adapter configured as an EtherChannel in standard
mode does not require switch support from the POWER Hypervisor.

The IP address of the client partition is configured on the network interface of the
EtherChannel. If the primary adapter fails, the EtherChannel will automatically
switch to the backup adapter. The IP address of the client server partition that is
configured on the EtherChannel network interface will remain available.

Restriction: When using the EtherChannel with two adapters as in this
example and configuring one adapter as backup, no aggregation resulting in
higher bandwidth will be provided. No network traffic will go through the
backup adapter unless there is failure of the primary adapter.

Also note that gratuitous ARP has to be supported by the network in order for
adapter failover to work.

158 Advanced POWER Virtualization on IBM @server p5 Servers

This configuration protects your network interface adapter against:
» Failure of one physical network adapter in one Virtual I/O Server partition
» Failure of one Virtual I/0O Server partition

» Failure of one network switch (if adapters are connected to different switches
as shown in this example)

The physical Ethernet adapters shown in Figure 6-6 on page 158 are connected
to the network switches on untagged ports. The Virtual I/O Server partition strips
VLAN tags from packets before delivering them to the switches. The network
switches see the MAC addresses on the virtual Ethernet adapters in the client
partition, but will not see the VLAN tags. The Virtual I/O Server partition
propagates broadcast packets from the switches to the virtual Ethernet adapters
in the client partition.

If a Virtual 1/0O Server (or some network component) fails, the Ethernet network
will see the client partition’s IP address suddenly hop from one switch and MAC
address to another. Such behavior will be handled acceptably if both of the
following are true:

» The network supports Gratuitous ARP.

» The network switches are configured such that both ports (one on each
switch) can contact the same set of hosts in the rest of the network.

It is recommended that the client partition be configured to detect network
unreachability by specifying in the Network Interface Backup configuration an IP
address (or host name) of a router to which connectivity should always be
available.

For more details about configuring Link Aggregation (EtherChannel) see AIX
System Management Guide: Communications and Networks, which is available
with the product documentation.

Multipath routing and dead gateway detection

Figure 6-7 on page 160 shows a configuration using multipath routing and dead
gateway detection.

The client partition has two virtual Ethernet adapters. Each adapter is assigned
to a different VLAN (using the PVID). Each Virtual I/O Server is configured with a
Shared Ethernet Adapter that bridges traffic between the virtual Ethernet and the
external network. Each of the Shared Ethernet Adapters is assigned to a different
VLAN (using PVID).

Chapter 6. Virtual /O 159

By using two VLANS, network traffic is separated so that each virtual Ethernet
adapter in the client partition seems to be connected to a different Virtual I/O

Server.
Client Partition
Multipath Routing with
Dead Gateway Detection
Default Route to 9.3.5.10 via 9.3.5.12
Default Route to 9.3.5.20 via 9.3.5.22
Virtual Ethernet Virtual Ethernet
Adapter Adapter
[Physical Resources 9.3.5.12/PVID 1 9.3.5.22/PVID 2
[virtual Resources
R & .
Shared Ethernet Adapter - 1/O Server 1 I/O Server 2 snareq Ethemet Adapter
9.3.5.11/PVID 1 9.3.5.21/PVID 2
Virtual Ethernet Virtual Ethernet
Adapter Adapter
I B I B
Physical Ethernet Physical Ethernet
Adapter Adapter
Gateway Gateway
9.3.5.10 External 9.3.5.20
Network

Figure 6-7 Configuration with multipath routing and dead gateway detection

In the client partition, two default routes with dead gateway detection are defined:
One route is going to gateway 9.3.5.10 using virtual Ethernet adapter with
address 9.3.5.12; the second default route is going to gateway 9.3.5.20 using the
virtual Ethernet adapter with address 9.3.5.22.

In case of a failure of the primary route, access to the external network is
provided through the second route. AIX 5L detects route failures and adjusts the
cost of the route accordingly.

Restriction: It is important to note that multipath routing and dead gateway
detection do not make an IP address highly available. In the case of failure of
one path, dead gateway detection will route traffic through an alternate path.
The network adapters and their IP addresses remain unchanged. Therefore,
when using multipath routing and dead gateway detection, only your access to
the network will become redundant, but not the IP addresses.

160 Advanced POWER Virtualization on IBM @server p5 Servers

This configuration protects your access to the external network against failure of:

» One physical network adapter in one Virtual I/O Server partition
» One Virtual I/O Server partition
» One gateway

LVM mirroring

Figure 6-8 shows a Virtual I/O Server configuration using LVM mirroring on the
client partition. The client partition is LVM mirroring its logical volumes using the
two virtual SCSI client adapters. Each of these adapters is assigned to a
separate Virtual I/O Server partition.

The two physical disks are each attached to a separate Virtual I/O Server
partition and made available to the client partition through a virtual SCSI server
adapter.

Client Partition
LVM
vSCSl vSCSI
[Physical Resources Client Adapter Client Adapter
[Virtual Resources
I/O Server I/O Server
vSCsl vSCsl
Server Adapter Server Adapter
Physical Physical
SCSI Adapter SCSI Adapter

Physical Physical
Disk Disk

Figure 6-8 Virtual I/O Server configuration with LVM mirroring

Chapter 6. Virtual I/O0 161

Restriction: At we write this book, LVM mirroring using virtual SCSI works
only when the logical volume on the Virtual I/O Server is configured with the
following settings:

» Mirror Write Consistency turned off

Bad Block Relocation turned off

No striping

Logical volume must not span several physical volumes

vvyy

This configuration protects a virtual disk in a client partition against failure of:

» One physical disk
» One physical adapter
» One Virtual I/O Server partition

Multipath I/0

Figure 6-9 on page 163 shows a configuration using Multipath 1/0O to access an
ESS disk. The client partition sees two paths to the physical disk through MPIO.
Each path is using a different virtual SCSI adapter to access the disk. Each of

these virtual SCSI adapters is backed by a separate Virtual I/O Server partition.

Note: This type of configuration works only when the physical disk is assigned
as a whole to the client partition. You cannot split up the physical disk into
logical volumes at the Virtual I/O Server level.

This configuration protects a virtual disk in a client partition against failure of:
» One physical FC adapter in one Virtual I/O Server partition
» One Virtual I/O Server partition

Depending on your SAN topology, each physical adapter could be connected to a
separate SAN switch to provide redundancy. At the physical disk level, the ESS
provides redundancy because it uses RAID technology internally.

162 Advanced POWER Virtualization on IBM @server p5 Servers

Client Partition

MPIO

vSCSI vSCSI
[Physical Resources Client Adapter Client Adapter

[Virtual Resources

I/O Server 1| | /O Server 2
vSCSI vSCSI
Server Adapter Server Adapter
Physical Physical
SCSI Adapter SCSI Adapter
SAN Switch

Figure 6-9 Virtual I/O Server configuration with MPIO

6.4 Virtual Serial Adapter (VSA)

The POWER Hypervisor supports three types of virtual I/O devices:

» Virtual LAN (VLAN; see 6.5, “Virtual Ethernet” on page 164)
» Virtual SCSI (VSCSI; see 6.8, “Virtual SCSI” on page 205)
» Virtual Serial Adapter (VSA).

The VSA can only be used for providing a virtual console to the partitions. This
console is visible to the end user in the HMC display.

The virtual serial port cannot be used for any other purpose. For example, it
cannot be used for HACMP heartbeat monitoring.

There are no specific performance considerations to address regarding the VSA.

Chapter 6. Virtual /O 163

6.5 Virtual Ethernet

Virtual Ethernet enables inter-partition communication without the need for
physical network adapters assigned to each partition. Virtual Ethernet enables
the administrator to define in-memory point-to-point connections between
partitions. These connections exhibit characteristics similar to physical
high-bandwidth Ethernet connections and support multiple protocols (IPv4, IPv6,
ICMP). Virtual Ethernet requires an @server p5 system with either AIX 5L V5.3
or the appropriate level of Linux and an HMC to define the virtual Ethernet
devices. Virtual Ethernet does not require the purchase of any additional features
or software such as the Advanced POWER Virtualization feature.

6.5.1 Virtual LAN

This section discusses the concepts of Virtual LAN (VLAN) technology with
specific reference to its implementation within AIX 5L V5.3.

Virtual LAN overview

Virtual LAN is a technology used for establishing virtual network segments on top
of physical switch devices. If configured appropriately, a VLAN definition can
straddle multiple switches.

In every partition, virtual and dedicated network devices can be used
simultaneously for communication. Figure 6-10 shows adapters of a partition that
has one virtual Ethernet adapter (ent0) and two real adapters (ent1 and ent2).
Up to 256 adapters (sum of virtual and real) are supported per LPAR.

1sdev -Cc adapter

ent0 Available Virtual I/0 Ethernet Adapter (1-Tan)

entl Available 01-08 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
ent2 Available 01-09 2-Port 10/100/1000 Base-TX PCI-X Adapter (14108902)
vsa0 Available LPAR Virtual Serial Adapter

vscsiO Available Virtual SCSI Client Adapter

Figure 6-10 Virtual and local adapters on one partition

Typically, a VLAN is a broadcast domain that enables all nodes in the VLAN to
communicate with each other without any L3 routing or inter-VLAN bridging. In
Figure 6-11 on page 165, two VLANs (VLAN 1 and 2) are defined on three
switches (Switch A, B, and C). Although nodes C-1 and C-2 are physically
connected to the same switch C, traffic between two nodes can be blocked. To
enable communication between VLAN 1 and 2, L3 routing or inter-VLAN bridging
should be established between them; typically this is provided by an L3 device.

164 Advanced POWER Virtualization on IBM @server p5 Servers

Switch B

Switch A

P i e

>
=
J

X,

I
T
5
\} VWAV — -y

|
\
|
¢

Figure 6-11 Example of a VLAN

The use of VLAN provides increased LAN security and flexible network
deployment over traditional network devices.

AIX 5L V5.3 VLAN support
Some of the technologies for implementing VLANSs include:

Port-based VLAN
Layer 2 VLAN
Policy-based VLAN
IEEE 802.1Q VLAN

vyvyyy

VLAN support in AIX 5L V5.3 is based on the IEEE 802.1Q VLAN
implementation. The IEEE 802.1Q VLAN is achieved by adding a VLAN ID tag to
an Ethernet frame. The Ethernet switches restrict the frames to ports that are

Chapter 6. Virtual /O 165

166

authorized to receive frames with that VLAN ID. Switches also restrict broadcasts
to the logical network by ensuring that a broadcast packet is delivered to all ports
that are configured to receive frames with the VLAN ID that the broadcast frame
was tagged with.

A port on a VLAN-capable switch has a default PVID (Port VLAN ID) that
indicates the default VLAN the port belongs to. The switch adds the PVID tag to
untagged packets that are received by that port. In addition to a PVID, a port may
belong to additional VLANs and have those VLAN IDs assigned to it that indicate
the additional VLANSs that the port belongs to.

A port will only accept untagged packets or packets with a VLAN ID (PVID or
additional VIDs) tag of the VLANs the port belongs to. A port configured in the
untagged mode is only allowed to have a PVID and will receive untagged packets
or packets tagged with the PVID. The untagged port feature helps systems that
do not understand VLAN tagging communicate with other systems using
standard Ethernet.

Each VLAN ID is associated with a separate Ethernet interface to the upper
layers (for example, IP) and creates unique logical Ethernet adapter instances
per VLAN (for example, ent1 or ent2).

You can configure multiple VLAN logical devices on a single system. Each VLAN
logical device constitutes an additional Ethernet adapter instance. These logical
devices can be used to configure the same Ethernet IP interfaces as are used
with physical Ethernet adapters.

VLAN communication by example

This section discusses how VLAN communication between partitions and with
external networks works in more detail, using the sample configuration in
Figure 6-12 on page 167. The configuration uses four client partitions (Partition 1
through Partition 4) and one Virtual I1/0O Server partition. Each of the client
partitions is defined with one virtual Ethernet adapter. The Virtual I/O Server
partition has a Shared Ethernet Adapter that bridges traffic to the external
network. The Shared Ethernet Adapter is discussed in more detail in 6.6,
“Shared Ethernet Adapter” on page 186.

Advanced POWER Virtualization on IBM @server p5 Servers

/0 Server Partition 1 Partition 2 Partition 3 Partition 4
T———— o ot
: Shared Ethernet Adapter en0 VLAN 10 en0 en0 VLAN 10 enl
Entt ent; eniE)
ent0 PVID 1 ent0 ent0
PVID 1 PVID 2
VLAN 10
VLAN 10 PVID1 VLAN 10 PVID 2
i i
i i
i]
i i
i | VLAN10 :
1 ! i
I ' 1
R S VRS S|
VLAN 1 VLAN 2

Network External
Switch Network

Figure 6-12 VLAN configuration

Interpartition communication

Partition 2 and Partition 4 are using only the PVID. This means that:

» Only packets for the VLAN specified as PVID are received.

» Packets that are sent have a VLAN tag added for the VLAN specified as PVID
by the virtual Ethernet adapter.

In addition to the PVID, the virtual Ethernet adapters in Partition 1 and Partition 3
are also configured for VLAN 10 using specific network interface (en1) create
through smitty vlan. This means that:

» Packets sent through network interfaces en1 are added a tag for VLAN 10 by
the network interface in AIX 5L V5.3.

» Only packets for VLAN 10 are received by the network interfaces en1.
» Packets sent through en0 are automatically tagged for the VLAN specified as
PVID.

Only packets for the VLAN specified as PVID are received by the network
interfaces en0.Table 6-4 on page 168 lists which client partitions can
communicate with each other through what network interfaces.

Chapter 6. Virtual /O 167

168

Table 6-4 Interpartition VLAN communication

VLAN

Partition / network interface

1

Partition 1 / en0
Partition 2 / en0

Partition 3 / en0
Partition 4 / en0

10

Partition 1/ en1
Partition 3/ en1

Communication with external networks

The Shared Ethernet Adapter is configured with PVID 1 and VLAN 10. This
means that untagged packets that are received by the Shared Ethernet Adapter
are tagged for VLAN 1. Handling of outgoing traffic depends on the VLAN tag of
the outgoing packets.

» Packets tagged with the VLAN that matches the PVID of the Shared Ethernet
Adapter are untagged before being sent out to the external network.

» Packets tagged with a VLAN other than the PVID of the Shared Ethernet
Adapter are sent out with the VLAN tag unmodified.

In our example, Partition 1 and Partition 2 have access to the external network
through network interface en0 using VLAN 1. Since these packets are using the
PVID, the Shared Ethernet Adapter will remove the VLAN tags before sending
the packets to the external network.

Partition 1 and Partition 3 have access to the external network using network
interface en1 and VLAN 10. These packets are sent out by the Shared Ethernet
Adapter with the VLAN tag. Therefore, only VLAN-capable destination devices
will be able to receive the packets. Table 6-5 lists this relationship.

Table 6-5 VLAN communication to external network

VLAN

Partition / Network interface

1

Partition 1 / en0
Partition 2 / en0

10

Partition 1 / en1
Partition 3/ en1

Advanced POWER Virtualization on IBM @server p5 Servers

6.5.2 Virtual Ethernet connections

Virtual Ethernet connections supported in POWERS processor—based systems
use VLAN technology to ensure that the partitions can access only data directed
to them. The POWER Hypervisor provides a virtual Ethernet switch function
based on the IEEE 802.1Q VLAN standard that enables partition communication
within the same server. The connections are based on an implementation
internal to the Hypervisor that moves data between partitions. This section
describes the various elements of a virtual Ethernet and implications relevant to
different types of workloads. Figure 6-13 is an example of an inter-partition

VLAN.
Hosting AlIX AlX Linux
Partition
Packet Virtual Virtual Virtual
Forwarder Ethgmet Ethgrnet Etht_arnet
Driver Driver Driver
Hypervisor
Network Adapters

R K

\4 \4 \4

Figure 6-13 logical view of an inter-partition VLAN

Virtual Ethernet concepts

Partitions that communicate through a virtual Ethernet channel must have an
additional in-memory channel. This requires the creation of an in-memory
channel between partitions on the HMC. The kernel creates a virtual device for
each memory channel indicated by the firmware. The AIX 5L V5.3 configuration
manager creates the device special files. A unique MAC address is also
generated when the virtual Ethernet device is created. A prefix value can be
assigned for the system so that the generated MAC addresses in a system

Chapter 6. Virtual /O 169

consist of a common system prefix plus an algorithmically generated unique part
per adapter.

The virtual Ethernet can also be used as a bootable device to enable such tasks
as operating system installations to be performed using NIM.

MTU Sizes

The virtual Ethernet adapter supports, as Gigabit (Gb) Ethernet, Standard
MTU-Sizes of 1500 bytes and Jumbo frames with 9000 bytes. Additionally to
physical Ethernet, the MTU-Size of 65280 bytes is also supported in virtual
Ethernet. So, the MTU of 65280 bytes can be only used inside a virtual Ethernet.

IPv6 Support

Virtual Ethernet supports multiple protocols, such as IPv4 and IPv6.

6.5.3 Benefits of virtual Ethernet

Due to the number of possible partitions on many systems being greater than the
number of I/O slots, virtual Ethernet is a convenient and cost-saving option to
enable partitions within a single system to communicate with one another
through a VLAN. The VLAN creates logical Ethernet connections between one or
more partitions and is designed to help prevent a failed or malfunctioning
operating system from being able to affect the communication between two
functioning operating systems. The virtual Ethernet connections may also be
bridged to an external network to permit partitions without physical network
adapters to communicate outside of the server.

The transmission speed of virtual Ethernet is in the range of 1 Gb to 3 Gb per
second, depending on the transmission (MTU) size. A partition can support up to
256 virtual Ethernet adapters with each virtual Ethernet capable of being
associated with up to 21 VLANs (20 VID and 1 PVID).

A virtual Ethernet adapter appears to the operating system in the same way as a
physical adapter. It also can be configured in the same manner. While the MAC
address of physical Ethernet is coded on the (hardware) adapter, the MAC
address of the virtual adapter is generated by the HMC.

170 Advanced POWER Virtualization on IBM @server p5 Servers

6.5.4 Limitations and considerations

Consider the following limitations when implementing a virtual Ethernet:
» A maximum of up to 256 virtual Ethernet adapters are permitted per partition.

» Virtual Ethernet can be used in both shared and dedicated processor
partitions if the partition is running AIX 5L V5.3 or Linux with the 2.6 kernel or
a kernel that supports virtualization.

» A mixture of virtual Ethernet connections, real network adapters, or both are
permitted within a partition.

» Virtual Ethernet requires a POWERS5 processor-based system and an HMC
to define the virtual Ethernet adapters.

» Virtual Ethernet can connect only partitions within a single system.

» Virtual Ethernet connections from AIX 5L or Linux partitions to an i5/0S
partition may work; however, when this book was being written these
capabilities were unsupported.

» Virtual Ethernet uses the system processors for all communication functions
instead of offloading the load to processors on network adapter cards, so an
increase in system processor load is generated by the use of virtual Ethernet.

6.5.5 POWER Hypervisor switch implementation

The POWER Hypervisor switch is consistent with IEEE 802.1 Q. It works on
OSil-Layer 2 and supports up to 4096 networks (4096 VLAN IDs).

When a message arrives at a Logical LAN switch port from a Logical LAN
adapter, the POWER Hypervisor caches the message’s source MAC address to
use as a filter for future messages to the adapter. The POWER Hypervisor then
processes the message differently depending on whether the port is configured
for IEEE VLAN headers. If the port is configured for VLAN headers, the VLAN
header is checked against the port’s allowable VLAN list. If the message
specified VLAN is not in the port’s configuration, the message is dropped. After
the message passes the VLAN header check, it passes onto destination MAC
address processing.

If the port is not configured for VLAN headers, the POWER Hypervisor inserts a
two-byte VLAN header (based on the port’s configured VLAN number) into the
message. Next, the destination MAC address is processed by searching the
table of cached MAC addresses.

If a match for the MAC address is not found and if no trunk adapter is defined for
the specified VLAN number, the message is dropped; otherwise, if a match for
the MAC address is not found and if a trunk adapter is defined for the specified

Chapter 6. Virtual I/0 171

172

VLAN number, the message is passed on to the trunk adapter. If a MAC address
match is found, then the associated switch port’s configured, allowable VLAN
number table is scanned for a match to the VLAN number contained in the
message’s VLAN header. If a match is not found, the message is dropped.

Next, the VLAN header configuration of the destination switch port is checked. If
the port is configured for VLAN headers, the message is delivered to the
destination Logical LAN adapters, including any inserted VLAN header. If the
port is configured for no VLAN headers, the VLAN header is removed before
being delivered to the destination Logical LAN adapter.

Figure 6-14 on page 173 shows a graphical representation of the behavior of the
virtual Ethernet when processing packets.

Advanced POWER Virtualization on IBM @server p5 Servers

‘ Virtual Ethernet Adapter

!

‘ VLAN Switch Port

!

‘ Hypervisor Caches Source MAC ‘

IEEE
VLAN
Header?

Insert VLAN
Header

Check VLAN Header

e

Port
Allowed?

Dest.
MAC in
Table?

Trunk
Adapter
Defined?

Configure N
Associated
Switch Port

Matches
VLAN

In Table?

Pass to

Deliver Trunk Adapter

Drop
Packet

Figure 6-14 Flow chart of virtual Ethernet

Chapter 6. Virtual 1/0

173

6.5.6 Performance considerations

This section presents several experiments that were performed on an
@server p5 server to measure the influence of some parameters that a system
administrator can set.

General comments about measurements

The operating system that ran on all partitions was AIX 5L V5.3. The results of
the measurements could vary if they would be repeated at a later time with
updates to the operating system and firmware.

The platform that was used for these tests was a four-way 1.65 GHz IBM
@server p5 570.

Unless otherwise mentioned, the VLAN connections were set up between two
partitions, each configured with one dedicated processor. Simultaneous
multithreading was enabled.

The virtual Ethernet and physical Ethernet adapters were tested with their default
interface specific network options (as defined in the no command) and Object
Data Manager (ODM) settings. Specifically, these were:

Virtual Ethernet For MTU 1500, tcp_sendspace=131072,
tcp_recvspace=65536

For MTU 9000, tcp_sendspace=262144,
tcp_recvspace=131072, rfc1323=1

For MTU 65394, tcp_sendspace=262144,
tcp_recvspace=131072, rfc1323=1

Physical Ethernet Gigabit Ethernet

For MTU 1500, tcp_sendspace=131072,
tcp_recvspace=65536

For MTU 9000, tcp_sendspace=262144,
tcp_recvspace=131072, rfc1323=1

The adapter defaults were used, which include
large_send (also known as TCP segmentation off load),
TCP checksum off load, and interrupt coalescing. The
ODM attributes were: large_send=1, chksum_offload=1
and intr_rate=10000.

Description of the performance tests and tools

To measure the VLAN performance, the benchmark used was netperf. This
benchmark can be used to measure various aspects of networking performance.
Currently, it focuses on bulk data transfer (streaming) and request/response

174 Advanced POWER Virtualization on IBM @server p5 Servers

performance using either Transmission Control Protocol (TCP) or User Datagram
Protocol (UDP), with the Berkeley Sockets interface.

This benchmark is now part of the public domain and can be found at:

http://www.netperf.org/netperf/NetperfPage.html

IBM has developed a derivative version that is more tightly integrated with the
capabilities of the AIX 5L V5.3 operating system. All measurements described in
this book use the IBM-modified version of netperf.

The experiment results presented later use both operational modes of netperf:
streaming mode, called TCP_STREAM, and transactional request/response
mode. called TCP_RR.

TCP_STREAM This benchmark performs the data streaming test between the
local system and the remote system. TCP_STREAM is used in
simplex and duplex mode. In simplex mode, one side sends
and the other end receives data; in duplex mode, both ends
send and receive at the same time. So the amount of data that
is transported via the media will increase. The TCP_STREAM
benchmark can be performed with a different data chunk size.
The results presented here are for an application that sends
data chunks between 16 KB and 64 KB to the communication
sockets (which then split them into IP packets depending on
the MTU size).

TCP_RR netperf request/response performance is quoted as
transactions per second for a given request and response site.
A transaction is defined as the exchange of a single request
and a single response. From a transaction rate, one can infer
round-trip average latency. The TCP_RR benchmarks are
done with one and 20 sessions. Unlike the one-session test,
the 20-session test shows how the response time and latency
is growing with more load.

In each mode, four programs called sessions are used. These sessions send
traffic over the connection to simulate a real workload with multiple IP sessions
flowing through the same adapter.

Overview of the following benchmark measurements

The first measurement shows how throughput is growing by adding more
entitlements to a virtual processor, then a test compares parameters such as
processor utilization, transaction rate, and latency in both physical and virtual
networks. The last set of measurements shows the difference in performance of
the VLAN using single-threaded and simultaneous multithreading modes.

Chapter 6. Virtual /O 175

http://www.netperf.org/netperf/NetperfPage.html

6.5.7 VLAN throughput at different processor entitlements

This purpose of this test is to see what throughput might be expected in a VLAN.
Because the throughput varies with processor entitlements and MTU size, these
parameters are variable in the measurement.

Figure 6-15 Processor entitlements and MTU sizes

Both LPARs have one VLAN adapter, and there are multiple sessions running
between adapters. The benchmark used for this test is netperf TCP_STREAM.

LPAR1, with varied processor entitlements, is sending a simplex stream. LPAR2,
with two dedicated processors, receives it.

The goal of the test was to measure the performance of LPAR1, so resources for
LPAR 2 are oversized using two dedicated processors, so there is no bottleneck
on the receiving side that would affect the measurement. This enables the
throughput of the VLAN interface of LPAR1 to be effectively measured as a
function of the CPU entitlement of LPAR1.

Figure 6-16 on page 177, Figure 6-17 on page 177, and Figure 6-18 on

page 178 show the results of the performance measurements that were taken
using varying processor entitlements and MTU sizes of 1500, 9000, and 65394
bytes.

176 Advanced POWER Virtualization on IBM @server p5 Servers

Throughput
[Mb/s]

1400+
1200+
1000+
800
600
400
200+
0-

Throughput, MTU size=1500

0.1 0.3 0.5 0.8 1
CPU entitlements

Figure 6-16 Throughput versus CPU entitlements, MTU size=1500

Throughput
[Mb/s]

5000

Throughput, MTU size=9000

0.1 0.3 0.5 0.8 1

CPU entitlements

Figure 6-17 Throughput versus CPU entitlements, MTU size=9000

Chapter 6. Virtual /0

177

Throughput, MTU size=65394

10000

8000

6000

4000+

2000

0.1 0.3 0.5 0.8 1

CPU entitlements

Figure 6-18 Throughput versus CPU entitlements, MTU size=65394

VLAN performance

The throughput of the VLAN scales nearly linear with the allocated processor
entitlements. Throughput with MTU=9000 is more than three times the rate with
MTU=1500, and the throughput with MTU=65394 is more than seven times the
rate with MTU=1500. This is due to improved efficiency of sending larger packets
with one call up or down the TCP/IP protocol stack.

6.5.8 Comparing throughput of VLAN to physical Ethernet

In the next set of tests, a performance comparison of the VLAN and the physical
Ethernet adapter was made. Both LPARs are assigned one dedicated POWERS5
processor, and ran in simultaneous multithreading mode.

Figure 6-19 on page 179 and Figure 6-20 on page 179 show the two different
types of connections between the LPARs and VLAN through the POWER
Hypervisor and physical Ethernet using a 1 Gb/s Ethernet switch.

The benchmark TCP_STREAM was running in simplex and duplex mode at
different MTU sizes on both setups, measuring throughput and processor
utilization.

178 Advanced POWER Virtualization on IBM @server p5 Servers

Hypervisor

Figure 6-19 VLAN performance configuration

"R Hypervisor

Figure 6-20 Physical Ethernet configuration

Chapter 6. Virtual /O 179

VLAN and physical Ethernet performance

Figure 6-21 shows how throughput varies with different values of MTU size in
simplex and duplex modes. (The physical Ethernet adapter does not support an
MTU size of 65394.)

Throughput, TCP_STREAM
Throughput
[Mb/s]
10000+
8000+
6000+
mVLAN
4000+ 00 Gb Ethernet
2000+
0,
MTU 1500 1500 9000 9000 65394 65394
Simpl./Dupl. S D S D S D

Figure 6-21 VLAN and physical Ethernet using TCP_STREAM

The VLAN adapter has a higher raw throughput at all MTU sizes. With an MTU
size of 9000 bytes, the throughput difference is very large (four to five times)
because the physical Ethernet adapter is running at wire speed (989 Mbit/s user
payload), but the VLAN can run much faster because it is limited only by CPU
and memory-to-memory transfer speeds.

6.5.9 Comparing CPU utilization

These measurements use the same configurations as shown in Figure 6-19 on
page 179 and Figure 6-20 on page 179, and with the same TCP_STREAM
workload. CPU utilization is shown for different MTU sizes, in both simplex and
duplex mode, in Figure 6-22 on page 181 and Figure 6-23 on page 181.

180 Advanced POWER Virtualization on IBM @server p5 Servers

CPU utilization with TCP_STREAM, simplex mode

CPU
utilization
[%cpu/Gb]

MTU

70+
60+
50
40
30
20
10

Send/Receive

S

mVLAN

0 Gb Ethernet

0
1500 1500 9000 9000 65394 65394
S

R

Figure 6-22 CPU utilization with TCP_STREAM, simplex mode

CPU utilization with TCP_STREAM, duplex mode

CPU
utilization
[%cpu/Gb]

MTU

60
50
40|
30,
20
10

04

150

Send/Receive S

1500 9000 9000 65394 65394

R

S

R

Il VLAN
O Gb Ethernet

S

R

Figure 6-23 CPU utilization with TCP_STREAM, duplex mode

Chapter 6. Virtual /0

181

VLAN and physical Ethernet performance

As expected, the CPU utilization of the VLAN is higher than the throughput of
physical Ethernet. As with most adapter cards, the physical Ethernet adapter has
a processor on it to perform the memory transfers of the packets to and from the
adapter card. The VLAN requires the POWER Hypervisor to do the memory
transfers, resulting in higher CPU utilization. To compare CPU utilization, the
results are normalized to 1 Gb throughput for both the VLAN and physical
Ethernet. In addition, another difference in CPU utilization between the virtual
Ethernet and the physical Ethernet adapter when using MTU 1500 is the effect of
having the attributes large_send and checksum_offload enabled on the physical
adapter. These two features reduce the CPU utilization for physical Ethernet, but
they are not available on virtual Ethernet.

6.5.10 Comparing transaction rate and latency

182

These measurements were obtained using the configurations shown in

Figure 6-19 on page 179 and Figure 6-20 on page 179. The TCP_RR workload
was used to get a value for number of transactions and latency. TCP_RR is used
with two different parameters for the number of sessions (1 and 20), which is a
measure for different workloads.

The results are presented in two charts. Figure 6-24 shows the transaction rate
for MTU size of 1500 and 9000 and for 1 and 20 sessions. Figure 6-25 on
page 183 shows the latency for the same parameters.

Transactions/sec, TCP_RR, duplex mode

Transaction
rate [1/s]

80000+

60000

40000 W VLAN
O Gb Ethernet

20000+

MTU 1500 1500 9000 9000
Sessions 1 20 1 20

Figure 6-24 Transaction rate at different MTU sizes and 1 and 20 sessions

Advanced POWER Virtualization on IBM @server p5 Servers

Latency, TCP_RR, duplex mode

Latency [us]
300+

250+
200+

150 mVLAN
1001 0 Gb Ethernet

50

0 |
MTU 1500 1500 9000 9000
Sessions 1 20 1 20

Figure 6-25 Latency at different MTU sizes and 1 and 20 sessions

VLAN and physical Ethernet performance

The virtual Ethernet has lower latency for light workloads than the physical
Ethernet adapter. This is because the Ethernet adapter has interrupt coalescing
enabled by default (ODM attribute intr_rate=10000). This adds latency to the
adapter’s single session test, but it helps reduce CPU utilization for higher
transaction rate workloads (such as the 20-session test), which is why the
throughput is similar at 20 sessions. The latency can be reduced by disabling
interrupt coalescing (set the adapters intr_rate=0). The virtual Ethernet does not
support any method of interrupt coalescing.

The physical Ethernet has lower latency in heavy workloads because interrupt
coalescing is enabled by default on the adapter.

6.5.11 VLAN performance

This purpose of this test was to show the performance gain of running the
processor in simultaneous multithreading mode. The configuration was the same
as shown in Figure 6-19 on page 179. For this comparison, both TCP_STREAM
and TCP_RR workloads are used.

Figure 6-21 on page 180 showed the results of VLAN throughput. The following
charts show the percent gain in throughput when comparing simultaneous
multithreading to single-threaded mode. Figure 6-26 on page 184 has results for
TCP_STREAM, and Figure 6-27 on page 185 illustrates the results for TCP_RR.

Chapter 6. Virtual /O 183

Performance gain with SMT and TCP_STREAM

70+

60

50+

Gain [%] 40-
301

20+

10

MTU 1500 1500 9000 9000 65394 65394
Simplex/Duplex S D S D S D

Figure 6-26 Performance gain with simultaneous multithreading, TCP_STREAM

The VLAN benefits from simultaneous multithreading because it is not limited by
media speed and takes advantage of the extra available processor cycles.

The reason for negative scaling in Figure 6-27 on page 185 when simultaneous
multithreading is enabled is that at very small workloads (which is the case when
there is only one TCP_RR session), running in single-threaded mode is more
efficient. With simultaneous multithreading enabled, the system disables the
second thread when the load on the system is light but checks periodically to
determine whether it needs to reactivate it. This checking, disabling, and
enabling of the second thread tends to affect the latency of the TCP_RR
transactions, thus reducing throughput.

184 Advanced POWER Virtualization on IBM @server p5 Servers

Performance gain of SMT vs. ST for TCP_RR

70-
60-
50-
40-
30-
20-
101
0 -
_10,

MTU -zofm

TCP_RRSessions 1 20 1 20

Gain [%]

Figure 6-27 Performance gain with simultaneous multithreading, TCP_RR

6.5.12 VLAN implementation guidelines

Because there is little experience with VLANs before now, we offer some
guidelines for designing VLANS.

Important: The following recommendations have no guarantee for enhancing
performance; they are merely provided as suggestions.

1. Know your environment and the network traffic.
2. Choose the MTU size as high as it makes sense for network traffic in the VLAN.

3. Use an MTU size of 65394 if you expect a large amount of data to be copied
in your VLAN.

4. Keep the tcp_pmtu_discover attribute set to its default value (active discovery).

5. If the VLAN is to be bridged to a Shared Ethernet Adapter for access to an
external network, set the MTU size of the VLAN in the client partition to the
value used for the definition of the Shared Ethernet Adapter on the Virtual I/O
Server partition.

6. Do not turn off simultaneous multithreading unless the applications demand it.

7. The VLAN throughput scales linearly with processor entitlements, so there is
no need to dedicate processors to partitions because of VLAN performance.

Chapter 6. Virtual /O 185

6.6 Shared Ethernet Adapter

186

A Virtual 1/0 Server partition is not required for implementing a VLAN. Virtual
Ethernet adapters can communicate with each other via the POWER Hypervisor
without the functionality of the Virtual I/O Server.

Bridging from the VLAN to the physical LAN can be accomplished in two ways:

» Routing
» Shared Ethernet Adapter

By enabling the AIX 5L V5.3 routing capabilities (ipforwarding network option),
one partition with a physical Ethernet adapter connected to an external network
can act as a router. Figure 6-28 shows a sample configuration. In this type of
configuration the partition that routes the traffic to the external work does not
necessarily have to be the Virtual I/O Server as in the pictured example. It could
be any partition with a connection to the outside world. The client partitions
would have their default route set to the partition that routes traffic to the external
network.

Hosting LPAR LPAR LPAR Hosting LPAR LPAR LPAR
LPAR LPAR
[3111 || [31n00]| [8aaa1]| [31112 [a1 || [ar1a0]| [40a01]| [41112
1.1.1.100
Hypervisor Hypervisor
Tetwork Adapters Tetwork Adapters

*

IP Router *

*
&
IP Subnet 1.1.1.x > — IP Subnet 2.1.1.x
2111

Server Server

Figure 6-28 Connection to external network using AIX 5L V5.3 routing

Using a Shared Ethernet Adapter, you can connect internal and external VLANs
using one physical adapter. The Shared Ethernet Adapter hosted in the Virtual
I/O Server partition acts as an OSI Layer 2 switch between the internal and
external network.

Advanced POWER Virtualization on IBM @server p5 Servers

Figure 6-29 shows the Shared Ethernet Adapter being used as a bridge between
the virtual Ethernet and physical Ethernet.

Client
Partition

Client Virtual I/O Server
P artition Partition

Shared
Ethernet
Adapter

Virtual
Ethernet
Adapter

Virtual Virtual Physical
Ethernet Ethernet Ethernet
Adapter Adapter Adapter

ER Hypervisor

Physical

Figure 6-29 Shared Ethernet Adapter configuration

The bridge interconnects the logical and physical LAN segments at the network
interface layer level and forwards frames between them. The bridge performs the
function of a MAC relay (OSI Layer 2), and is independent of any higher layer

protocol. Figure 6-30 on page 188 is a close-up view of the Virtual I/O Server
partition.

Chapter 6. Virtual /O 187

Virtual I1/O Server Partition

OSI Layer 2 Bridge (Shared Ethernet Adapter)

Device Driver Device Driver Device Driver

Virtual Adapter Virtual Adapter Physical Adapter

- To external
To client partitions Ethernet network

Figure 6-30 Sharing a (physical) Ethernet adapter on OSI layers

The bridge is transparent to the Internet Protocol (IP) layer. For example, when
an IP host sends an |IP datagram to another host on a network connected by a
bridge, it sends the datagram directly to the host. The datagram “crosses” the
bridge without the sending IP host being aware of it.

The Virtual I/O Server partition offers broadcast and multicast support. Address
Resolution Protocol (ARP) and Neighbor Discovery Protocol (NDP) also work
across the Shared Ethernet Adapter.

The Virtual 1/0 server does not reserve bandwidth on the physical adapter for
any of the VLAN clients that send data to the external network. Therefore, if one
client partition of the Virtual I/O Server sends data, it can take advantage of the
full bandwidth of the adapter, assuming that the other client partitions do not
send or receive data over the network adapter at the same time.
The following steps enable this connectivity:
1. Define the virtual Ethernet adapter on the I/O Server.

This is to be done on the HMC.
2. Define the virtual Ethernet adapters on the AIX 5L V5.3 or Linux partitions.

This definition is done on the HMC and is not a Virtual 1/0O Server function. It
creates virtual Ethernet adapters that can be used like any other Ethernet

188 Advanced POWER Virtualization on IBM @server p5 Servers

adapter. Different virtual networks can be separated using
IEEE802.1Q-compatible VLAN features of the virtual Ethernet adapters.

3. Define the Shared Ethernet Adapter in the Virtual I/O Server partition.

The 1/O Server acts as a bridge and forwards the IP packages using the
virtual Ethernet connections to the AIX 5L V5.3 or Linux partitions.

The implementation of virtual Ethernet adapters on an IBM @server p5 system
within Linux is assigned one IEEE VLAN-aware virtual Ethernet switch in the
system. All partitions talking on the Ethernet are peers. Up to 4,096 separate
IEEE VLANSs can be defined. Each partition can have up to 65,533 virtual
Ethernet adapters connected to the virtual switch. Each adapter can be
connected to 21 IEEE VLANs (20 VID and 1 PVID).

The enablement and setup of a virtual Ethernet does not require any special
hardware or software. After a specific virtual Ethernet is enabled for a partition, a
network device named ethXX is created in the partition. The user can then set up
TCP/IP configuration appropriately to communicate with other partitions. For
information about network TCP/IP setup and configuration tools, see your

AIX 5L V5.3 or Linux distribution documentation.

To define the Shared Ethernet Adapter (SEA) in the Virtual I/O Server partition,
use the mkvdev command. The syntax is:

mkvdev -sea TargetDevice -vadapter VirtualEthernetAdapter ...
-default DefaultVirtualEthernetAdapter
-defaultid SEADefaultPVID [-attr Attributes=Value ...]

Using the example in Figure 6-31 on page 190, the target devices are the
physical adapters (for example, ent0 and ent1). The virtual devices are ent2,
ent3, and ent4, and the default ID is the default PVID associated with the default
virtual Ethernet adapter.

Important: To set up the Shared Ethernet Adapter, all involved virtual and
physical Ethernet interfaces have to be unconfigured (down or detached).

The following commands are required to set up the Shared Ethernet Adapter for
this example:

$ mkvdev —sea ent0 —vadapter ent2 —default ent2 —defaultid 1
$ mkvdev —sea entl —vadapter ent3 ent4 —default ent3 —defaultid 2

Chapter 6. Virtual /O 189

VID100.PVID1 | £t (Physical) |« s Ent2 (Vitual) |-/D100.PVID1
Ent3 (Virtual) | D200, PVID 2

VID 200,300 PVID 2 ,
Ent1 (Physical) D 300, PVID 3
Entd (Virtual) | 2900 FVID S

Figure 6-31 Example of Shared Ethernet Adapter bridging

In the second example, the physical Ethernet adapter is ent1l. With the mkvdev
command, we map the virtual Ethernet adapter ent3 and ent4 to the physical
adapter. Additionally, ent3 is defined as a default adapter with the default VLAN
ID of 2. This means that untagged packets received by the Shared Ethernet
Adapter are tagged with the VLAN 2 ID and are send to the virtual Ethernet
adapter ent3.

After running the mkvdev command, the system will create the Shared Ethernet
Adapter ent5. You now can configure the ent5 interface with an IP address using
the mktcpip command.

6.6.1 Shared Ethernet Adapter performance

190

This test environment was conducted using the same conditions as described in
“General comments about measurements” on page 174.

Figure 6-32 on page 191 shows the setup of the experiment. The communication
path starts on a client partition that has a single dedicated processor, and is
connected via a VLAN adapter, through the POWER Hypervisor to the VLAN
adapter of the Virtual I/O Server partition, which bridges the virtual Ethernet
adapter to a physical Ethernet adapter that is connected via a gigabit Ethernet
network to a two-way POWER4+ processor—based server. The Virtual I/O Server
runs in a partition with a single dedicated 1.65 GHz POWERS5 processor.

The TCP_STREAM workload as described in “Description of the performance
tests and tools” on page 174 is used to examine the throughput.

Note: The measurements are not done with a Gigabit Ethernet switch.
Instead, a physical point-to-point connection (crossover cable) was used so
there is no falsification of the measurement due to the internal behavior of a
real switch.

Advanced POWER Virtualization on IBM @server p5 Servers

Client Partition Virtual 1/0 POWERA4+

Server Partition Server

1 VLAN adapter

1 dedicated CPU 1 VLAN adapter 1 Gb Ethernet Adapter

1 Gb Ethernet Adapter
1 dedicated CPU

SEA
|_ Bridge —l
' Gb Gb
VLAN VLAN Ethernet Ethernet
POWER Hypervisor Gb Ethernet Network

Figure 6-32 Configuration of test environment

Virtual I/O Server performance results

The next two figures show the results measured on the Virtual I/O Server.
Figure 6-33 on page 192 shows the throughput of the Virtual I/O Server at MTU
sizes of 1,500 and 9,000 in both modes, simplex and duplex. Note that this test
maximized the line speed of the Gigabit Ethernet. Therefore, the limitation is the
physical network media speed (1 Gb simplex or 2 Gb duplex).

Figure 6-34 on page 192 presents the utilization of the processor in the Virtual
I/O Server partition. To provide a better comparison of processor utilization
versus MTU size and simplex/duplex modes, the utilization is normalized to 1Gb
data throughput.

The results show that the Shared Ethernet Adapter enables the adapters to
stream data at media speed as long as it has enough processor entitlements.

Processor utilization per gigabit of throughput is higher with the Shared Ethernet
Adapter because it has to use the POWER Hypervisor to move the packets of the
VLAN between partitions, and because of the SEA’s device driver code.

Chapter 6. Virtual I/0 191

Virtual /0 Server Throughput, TCP_STREAM
Throughput
[Mb/s]

2000+

1500+

1000+

500+

MTU 1500 1500 9000 9000
Simplex/Duplex simplex duplex simplex duplex

Figure 6-33 Throughput of the Virtual I/O Server

CPU Virtual /O Server
Utilization normalized CPU utilization, TCP_STREAM
[%cpu/Gb]
100+
80
60
40
20
0-
MTU 1500 1500 9000 9000
Simplex/Duplex simplex duplex simplex duplex

Figure 6-34 Processor utilization of the Virtual I/O Server

192 Advanced POWER Virtualization on IBM @server p5 Servers

6.6.2 Request/response time and latency

In this test, the workload TCP_RR was used to determine the difference in
transaction rate and the latency between the Shared Ethernet Adapter and a
physical 1 Gb Ethernet adapter.

The measurements for the Shared Ethernet Adapter (SEA) were taken using the
configuration that was shown in Figure 6-32 on page 191, with traffic exchanged
between LPAR1 and the server.

Figure 6-35 shows the configuration of the physical Ethernet test. The Virtual I/0
Server is bypassed and the traffic flows directly from the client partition to the
POWER4+ server through the 1 Gbps physical network.

Client Partition POWER4+

Server
1 Gb Ethernet Adapter

1 dedicated CPU 1 Gb Ethernet Adapter

Gb Gb
Ethernet Ethernet

Gb Ethernet Network

Figure 6-35 Dedicated connection between a partition and an external server

Results of request/response time and latency

The next two figures show the results of the TCP_RR benchmark for 1 and 20
sessions.

Note that the values shown for tests where there was just one session are limited
by the default setting of the physical Ethernet adapter’s interrupt coalescing
value. The physical Ethernet adapter has interrupt coalescing enabled by default
(intr_rate=10000) because this helps reduce CPU utilization at higher transaction
rates. However, this adds latency when only a single transaction is running due to
delaying the interrupt. Some workloads with small packets and light workload
may benefit from disabling the interrupt coalescing on the physical adapter.

Chapter 6. Virtual /O 193

Tip: Some workloads with small packets and light workloads may benefit from
disabling the interrupt coalescing on the physical adapter.

Transactions/sec, TCP_RR, 1 session
Transactions
[1/s]
5000

4000

3000

2000 mSEA
0 Gb Ethernet

1000

~ Gb Ethernet
SEA

0

MTU= 1500 9000

Figure 6-36 Transaction rates, TCP_RR, 1 session

Transactions/sec, TCP_RR, 20 sessions
Transactions

[1/s]
BOOOOW
60000 -
40000 m SEA
O Gb Ethernet
20000
7 Gb Ethernet
0 i

SEA
MTU= 1500 9000

Figure 6-37 Transaction rates, TCP_RR, 20 sessions

194 Advanced POWER Virtualization on IBM @server p5 Servers

Latency was measured with the same parameters as the transaction rate.
Figure 6-38 and Figure 6-39 show the differences between the Shared Ethernet
Adapter and physical Ethernet and the increasing latency if the load grows to 20

sessions.

Latency Latency, TCP_RR, 1 session

[us]

200

150

100

50
" Gb Ethernet

0 SEA

9000

MTU= 1500

W SEA
O Gb Ethernet

Figure 6-38 Latencies, TCP_RR, 1 session

Latency, TCP_RR, 20 sessions

Latency
[us]

300

200+
100+
" Gb Ethernet
0 SEA
MTU= 1500 9000

mSEA
0O Gb Ethernet

Figure 6-39 Latency, TCP_RR, 20 sessions

Chapter 6. Virtual /0

195

6.7 Implementation guidelines

Sizing a server can be somewhat complex and time-consuming. Furthermore, it
can be performed with varying accuracy, depending on the amount of data you
can collect about the resources requirements of your applications.

This section offers some guidelines for designing a Virtual I/O Server partition.
The intent is to give some quick sizing guidelines that may be simple enough for
initial sizing when very little data about the application requirements is available.
Later on, the server could have its partition size increased or decreased to adjust
for variations in the actual workload during peak times of the day. Because of the
virtualization features of the hardware, the machine resources can be adjusted to
meet the demands of the Virtual I/O server. See 6.7.1, “Guidelines for Shared
Ethernet Adapter sizing” on page 197 for a more accurate method to adjust the
Virtual I/0 Server resources.

Important: The following recommendations provide a reasonable starting
point for an initial configuration. Further tuning will be required to obtain
optimal performance.

Guidelines for sizing and configuring the network
The following guidelines are given to assist you in properly sizing your network.

1. Know your environment and the network traffic.

2. For the most demanding network traffic between VLANs and local networks,
use a dedicated network adapter.

3. For optimal performance, use dedicated processors for the Virtual /O Server
partition.

4. Choose 9000 for the MTU size or what makes sense for your network traffic.

Guidelines for optimizing network throughput

Table 6-6 lists guidelines for easy estimating of network throughput. The speed
numbers are a bit conservative but rounded down for easy estimating. These
numbers are for POWERS5 processor-based systems with PCI-X slots.

Table 6-6 Network streaming rates

Adapter speed Throughput (MB/second)

Simplex Full Duplex

10 Mb Ethernet 1 MB/s 2 MB/s

100 Mb Ethernet 10 MB/s 20 MB/s

196 Advanced POWER Virtualization on IBM @server p5 Servers

Adapter speed Throughput (MB/second)

Simplex Full Duplex

1000 Mb Ethernet (Gigabit Ethernet) | 100 MB/s 150 MB/s (1.5X the simplex rate)

Guidelines for processor requirements

Because Ethernet running with an MTU size of 1500 bytes consumes more CPU
cycles than Ethernet running with Jumbo frames (MTU 9000), the guidelines are
different for each. In round numbers, the CPU uitilization for large packet
workloads on jumbo frames is about half of the CPU required for MTU 1500.

With configurations where MTU is 1500

A basic general rule is to provide 100% of one POWERS5 processor (1.65 GHz)
per Gigabit Ethernet adapter to drive it to maximum bandwidth. This would
translate to ten 100-Mbit Ethernet adapters if attached to a 100 Mb LAN.

For example, if two Gigabit Ethernet adapters will be used, then up to two
processors should be allocated to the partition.

With configurations where MTU is 9000 (jumbo frames)

The general rule is 50% of one POWERS5 processor (1.65 GHz) per Gigabit
Ethernet to drive to maximum bandwidth.

The processing power needed to transfer data over a network depends mainly on
the number of packets to be handled. If your network traffic contains a lot of small
transactions that do not take advantage of the jumbo frame payload but use
small packets, then you should plan on one full CPU to drive each Gigabit
Ethernet adapter. (Jumbo frames do not help the small packet workload case).

6.7.1 Guidelines for Shared Ethernet Adapter sizing

Sizing of the Virtual I/O Server for the Shared Ethernet Adapter component
involves these steps:

1. Define the target bandwidth or transaction rate requirements.

The idea is to determine the target bandwidth on the physical Ethernet side of
the Virtual I/O Server partition, as this will determine the rate that data can be
transferred between the Virtual I/O Server partition and the client partitions.
When the target rate is known, the proper type and number of network
adapters can be selected. For example, various speed Ethernet adapters
could be used, such as 10 Mb, 100 Mb, or Gigabit. One or more adapters
could be used on individual networks or they could be aggregated using port
aggregation.

Chapter 6. Virtual /O 197

2. Define the type of workload.

The type of workload can be streaming data for workloads such as file
transfers or data backup, or small transaction workloads such as remote
procedure calls (RPCs). The streaming workload is mainly dominated by
large full-size network packets and associated small TCP Acknowledgement
packets. Transaction workloads typically involve smaller packets or may
involve small requests, such as a URL, and a larger response, such as a Web
page. It is common for an I/O server to have to support streaming and small
packet 1/0 during various periods of time. In such cases, the sizing should be
approached from both models and the larger sizing used.

3. Identify the MTU size that will be used.

The standard Internet cell size is 1,500 bytes (1,518 bytes on the wire) and is
the typical setting on adapter cards. Gigabit Ethernet can support MTU
9000-byte Jumbo frames and may be desirable for localized networks. The
larger Jumbo frames can reduce the CPU cycles considerably for the
streaming types of workloads. However for small workloads, the larger MTU
size will not help reduce CPU cycles. In many cases, the MTU choice is
driven by the existing network infrastructure and cannot be freely chosen
according to the application requirements.

4. Define the Virtual I/O Server partition configuration.

This definition includes the number of processors and I/O adapters. Another
issue that affects the CPU cycles used is whether the Shared Ethernet
Adapter is configured to run in threaded or non-threaded mode. Threaded
mode is used mainly when VSCSI will be configured on the same Virtual 1/0
Server partition. Threaded mode helps ensure that VSCSI and the Shared
Ethernet Adapter share the CPU resource fairly. Threading adds more
instruction path length, however, thus using more CPU cycles. If the Virtual
I/O Server partition will be dedicated to running shared Ethernet and
associated virtual Ethernet only, they should be configured with threading
disabled in order to run in the most efficient mode. Enabling and disabling of
threading is covered in 6.7.3, “Control of threading in the Shared Ethernet
Adapter” on page 204.

Important: The threading concept discussed above is software threading.
It is not the POWERS hardware feature that enables running the virtual
processors in single-threaded or simultaneous multithreading mode.

When the workload and type of adapters have been chosen, determine how
many processors are required to move data through the network at the desired
rate. The networking device drivers are CPU-intensive. Small packets can come
in at a faster rate and use more CPU cycles than larger packet workloads. Larger
packet workloads are normally limited by network wire bandwidth and come in at

198 Advanced POWER Virtualization on IBM @server p5 Servers

a slower rate, thus requiring less CPU than small-packet workloads for the
amount of data transferred.

CPU sizing

CPU sizing for the SEA is divided into two workload types, TCP streaming and
TCP request/response (transaction), for both MTU 1500 and MTU 9000
networks. The sizing is provided in terms of number of machine cycles needed
per byte of throughput or machine cycles needed per transaction.

The upcoming tables were derived with these formulas:

cycles per byte = (# CPUs * CPU_Utilization * CPU clock frequency)/
Throughput rate in bytes per second

and

cycles per transaction = (#CPUs * CPU_Utilization * CPU clock frequency)/
Throughput rate in transactions per second

When sizing, it is necessary to consider the impact of the threading option that is
available for the device driver of the Shared Ethernet Adapter. The threading
option increases processor utilization at lower workloads due to the threads
being started for each packet. At higher workload rates, such as full duplex or the
request/response workloads, the threads can run longer without waiting and
being redispatched. The thread option should be disabled if the Shared Ethernet
Adapter is running in a partition by itself without VSCSI.

The numbers were measured on a single 1.65 GHz POWERS5 processor, running
with the default of simultaneous multithreading enabled. For other CPU
frequencies, the numbers in these tables can be scaled by the ratio of the CPU
frequencies for approximate values to be used for sizing.

For example, for a 1.5 GHz processor speed, use 1.65/1.5 * cycles per byte or
transactions value from the table. This example would result in a value of 1.1
times the value in the table, thus requiring 10% more cycles to adjust for the 10%
slower clock rate of the 1.5 GHz processor.

To use these values, multiply your required throughput rate (in bytes or
transactions) by the number of cycles per byte or transactions in the tables that
follow. This produces the required machine cycles for the workload for a 1.65
GHz speed. Then adjust this value by the ratio of the actual machine speed to
this 1.65 GHz speed.

Then to find the number of CPUs, divide the result by 1,650,000,000 cycles. You
would need that many CPUs to drive the workload. In these tables, one MB is
1,048,576 bytes.

Chapter 6. Virtual /O 199

For example, if the Virtual I/O Server must deliver 200 MB of streaming
throughput, it would take 200 * 1,048,576 * 11.2 = 2,348,810,240 /1,650,000,000
cycles per CPU=1.42 CPUs. Thus, in round numbers, it would take 1.5
processors in the Virtual 1/0 Server partition to handle this workload.

This could be handled with either a two-CPU dedicated partition or a 1.5-CPU
micro-partition.

Table 6-7 provides the figures to use for streaming workloads when the threading
option is enabled.

Table 6-7 Streaming workload, machine cycles per byte - threading enabled

Streaming MTU 1500 MTU 1500, MTU 9000 MTU 9000,
type rate and CPU | cycles per rate and CPU | cycles per
utilization byte utilization byte
Simplex 112.8 MB at 11.2 117.8 MB at 5.0
80.6% CPU 37.7% CPU
Duplex 162.2 MB at 8.6 217.0 MB at 3.8
88.8% CPU 52.5% CPU

Table 6-8 provides the figures to use when the threading option is disabled.

Table 6-8 Streaming workload, machine cycles per byte - threading disabled

Streaming MTU 1500 MTU 1500, MTU 9000 MTU 9000,
type rate and CPU | cycles per rate and CPU | cycles per
utilization byte utilization byte
Simplex 112.8 MB at 9.3 117.8 MB at 3.6
66.4% CPU 26.7% CPU
Duplex 161.6 MB at 7.4 216.8 MB at 29
76.4% CPU 39.6% CPU

Table 6-9 on page 201 has figures to use for transaction workloads when the
threading option is enabled. A transaction is a round-trip request and reply of size
listed in the first column of the table. Table 6-10 on page 201 has figures for when
threading is disabled.

200 Advanced POWER Virtualization on IBM @server p5 Servers

Table 6-9 Transaction workload, transactions per second - threading enabled

Size of transactions

Transactions/second
and I/O server utilization

MTU 1500 or 9000, cycles
per transaction

Small packets 59772 TPS at 83.4% CPU | 23022
(64 bytes)
Large packets 51956 TPS at 80.0% CPU | 25406
1024 bytes)
Table 6-10 Transaction workload, transactions per second - threading disabled

Size of transactions

Transactions/second
and I/O server utilization

MTU 1500 or 9000, cycles
per transaction

Small packets 60249 TPS at 65.6% CPU | 17965
(64 bytes)
Large packets 53104 TPS at 65.0% CPU | 20196

1024 bytes)

Micro-Partitioning considerations

Creating the Virtual I/O Server partition with Micro-Partitioning can be used when
interfacing to slower speed networks (for example, 10/100 Mb) since a full,
dedicated processor is not needed. This probably should be done only if the
workload is less than 50% CPU utilization or if the workload characteristics are
burst-type transactions. Configuring the partition as uncapped can also enable it
to use more processor cycles as needed to handle the bursts.

For example, if the network is used only at night when other processors may be
idle, the partition may be able to use the unused machine cycles. It could be
configured with minimal CPU to handle light traffic during the day, but the
uncapped processor could use more machine cycles during idle periods.

When configuring Micro-Partitioning for the Virtual I/O Server partition, it is
suggested that you increase the entitlement to accommodate the extra resources
needed by the POWER Hypervisor.

Memory sizing

The memory requirements for a Virtual I1/0O Server partition that provides the
Shared Ethernet Adapter functions only (no VSCSI) are minimal. In general, a
512 MB partition should work for most configurations.

Enough memory must be allocated for the I/O server data structures. For the
Ethernet and virtual devices, there are dedicated receive buffers that each device
will use. These buffers are used to store the incoming packets from the VLAN,
before delivery to the physical Ethernet adapter, so they are very transient.

Chapter 6. Virtual I/0 201

For physical Ethernet network, the system typically uses 4 MB for MTU 1500 or
16 MB for MTU 9000 for dedicated receive buffers. For virtual Ethernet, the
system typically uses 6 MB for dedicated receive buffers; however, this number
can vary based on load.

Each instance of a physical or virtual Ethernet would need memory for this many
buffers.

In addition, the system has an mbuf buffer pool per CPU that is used if additional
buffers are needed. These mbufs typically occupy 40 MB.

6.7.2 Guidelines for physical Ethernet sizing

This section provides information about bandwidth for various Ethernet adapters,
CPU cycles required for the Virtual I/O Server to handle these packets, and the
formulas used to compute the server sizings.

Table 6-11 has approximate throughput rates for the various Ethernet adapters
and MTU sizes in simplex mode. Table 6-12 on page 203 provides approximate
throughput rates for various Ethernet adapters and MTU sizes in duplex mode.

Table 6-11 TCP streaming rates, simplex mode

Network type Raw bit rate Payloadrate | Payload
(Mb/s) (Mb/s) rate (MB)

10 Mb Ethernet, Half Duplex 10 6 7

10 Mb Ethernet, Full Duplex? 10 (20 Mbit full 9.48 1.13
duplex)

100 Mb Ethernet, Half Duplex 100 62 7.3

100 Mb Ethernet, Full Duplex 100 (200 Mbit 94.8 11.3
full duplex)

1000 Mb Ethernet, Full Duplex, 1000 (2000 Mbit | 948 113

MTU 1500 full duplex)

1000 Mb Ethernet, Full Duplex, 1000 (2000 Mbit | 989 117.9

MTU 9000 full duplex)

a. The peak numbers represent best case throughput with multiple TCP ses-
sions running in duplex mode. Other rates are for single TCP sessions.

202 Advanced POWER Virtualization on IBM @server p5 Servers

Table 6-12 TCP Streaming rates, duplex mode

Network type Raw bit rate (Mb/s) Payload Payload
rate (Mb/s) | rate (MB)

10 Mbit Ethernet, half duplex 10 5.8 7

10 Mbit Ethernet, full duplex 10 (20 Mbit full duplex) 18 2.2

100 Mbit Ethernet, half duplex | 100 58 7

100 Mbit Ethernet, full duplex | 100 (200 Mb full duplex) | 177 211

1000 Mbit Ethernet, full 1000 1470 175

duplex, MTU 15002 (2000 Mbit full duplex) (1660 peak) | (198 peak)

1000 Mbit Ethernet, full 1000 1680 200

duplex, MTU 9000P (2000 Mbit full duplex) (1938 peak) | (231 peak)

a. 1000 Mbit Ethernet (Gigabit Ethernet) duplex rates are for the PCI-X adapter in
PCI-X slots.

b. Data rates are for TCP/IP using IPV4 protocol. Adapters with MTU 9000 have
RFC1323 enabled.

These tables provide the maximum network payload speeds. These are user
payload data rates that can be obtained by sockets-based programs for
applications that are streaming data (one program doing send() calls and the
receiver doing recv() calls over a TCP connection). The rates are a function of
the network bit rate, MTU size, physical level requirements such as Inter-frame
gap and preambile bits, data link headers, and TCP/IP headers. These are best
case numbers for a single LAN, and may be lower if going through routers or
additional network hops or remote links.

Note that the raw bit rate is the physical media bit rate and does not reflect
physical media data like Inter-frame gaps, preamble bits, cell information (for
ATM), data link headers, and trailers. These all reduce the effective usable bit
rate of the wire.

Uni-directional (simplex) TCP streaming rates are rates that can be seen by a
workload such as File Transfer Protocol (FTP) operations sending data from
machine A to machine B in a memory-to-memory test. Note that full duplex
media performs slightly better than half duplex media because the TCP
acknowledgement packets can flow back without contending for the same wire
that the data packets are flowing on.

These are user payload data rates that can be obtained by sockets-based
programs for applications that are streaming data (one program doing send()
calls and the receiver doing recv() calls) over a TCP connection. The rates are a
function of the network bit rate, MTU size, physical level requirements such as

Chapter 6. Virtual /O 203

Inter-frame gap and preamble bits, data link headers, and TCP/IP headers.
These are best-case numbers for a single LAN, and may be lower if going
through routers or additional network hops or remote links.

Bi-directional (duplex) TCP streaming workloads have streaming data in both
directions (for example, an FTP from machine A to machine B and another FTP
running from machine B to machine A, concurrently). Such workloads can take
advantage of full duplex media that can send and receive concurrently. Some
media (for example, Ethernet in half duplex mode), cannot send and receive
concurrently, thus they will not perform any better (usually worse) when running
duplex workloads. Duplex workloads do not provide twice the throughput as
simplex workloads. This is because TCP acknowledge packets coming back from
the receiver have to compete with data packets flowing in the same direction.

6.7.3 Control of threading in the Shared Ethernet Adapter

These steps are necessary to configure the threading mode for the Shared
Ethernet Adapter:

1. Log on to the Virtual I/O Server partition as the user padmin.

2. Using the 1sdev command, list the virtual adapters to find the Shared
Ethernet Adapter, as shown in Example 6-2.

Example 6-2 Listing virtual devices with Isdev

§ 1sdev -virtual

name status description

ent2 Available Virtual I/0 Ethernet Adapter (1-lan)
vsal Available LPAR Virtual Serial Adapter

ent3 Available Shared Ethernet Adapter

3. In this example, the Shared Ethernet Adapter is ent3. Use the 1sdev
command again to find the current settings of the adapter. Example 6-3
shows that the thread mode is currently disabled (0).

Example 6-3 Displaying attributes of the Shared Ethernet Adapter

$ 1sdev -dev ent3 -attr

attribute value description user_settable
pvid 100 PVID to use for the SEA device True
pvid_adapter ent2 Default virtual adapter to use for non-VLAN-tagged packets True
real_adapter ent0 Physical adapter associated with the SEA True
thread 0 Thread mode enabled (1) or disabled (0) True
virt_adapters ent2 List of virtual adapters associated with the SEA (comma

separated) True

204 Advanced POWER Virtualization on IBM @server p5 Servers

4. To enable threading, use the chdev command as shown in Example 6-4.

Example 6-4 Enabling threading with chdev

$ chdev -dev ent3 -attr thread=1
ent3 changed

5. You can confirm that the threading mode is enabled, shown in Example 6-5.

Example 6-5 Checking the new threading mode

$ 1sdev -dev ent3 -attr

attribute value description user_settable
pvid 100 PVID to use for the SEA device True
pvid_adapter ent2 Default virtual adapter to use for non-VLAN-tagged packets True
real_adapter ent0 Physical adapter associated with the SEA True
thread 1 Thread mode enabled (1) or disabled (0) True
virt_adapters ent2 List of virtual adapters associated with the SEA (comma
separated) True
$

6.8 Virtual SCSI

Virtual SCSI is based on a client/server relationship. A Virtual I/O Server partition
owns the physical resources, and logical client partitions access the virtual SCSI
resources provided by the Virtual I/O Server partition. The Virtual I/O Server
partition has physically attached 1/0O devices and exports one or more of these
devices to other partitions. The client partition is a partition that has a virtual
client adapter node defined in its device tree and relies on the Virtual I/O Server
partition to provide access to one or more block interface devices. Virtual SCSI
requires POWERS5 hardware with the Advanced POWER Virtualization feature
activated. It provides virtual SCSI support for AIX 5L V5.3 and Linux.

As we write this book, the virtualization features of the POWERS5 platform
support up to 254 partitions, but the server hardware only provides up to 160 1/0
slots per machine. With each partition typically requiring one 1/O slot for disk
attachment and another one for network attachment, this puts a constraint on the
number of partitions. To overcome these physical limitations, I/O resources must
be shared. Virtual SCSI provides the means to do this for SCSI storage devices.

Furthermore, virtual I/0 allows attachment of previously unsupported storage
solutions. As long as the Virtual I/O Server partition supports the attachment of a
storage resource, any client partition can access this storage by using virtual
SCSI adapters.

Chapter 6. Virtual /O 205

For example, if there is no native support for EMC storage devices on Linux,
running Linux in a logical partition of a POWERS5 server makes this possible. A
Linux client partition can access the EMC storage through a Virtual SCSI
adapter. Requests from the virtual adapters are mapped to the physical
resources in the Virtual I/O Server partition. Therefore, driver support for the
physical resources is needed only in the Virtual I/O Server partition.

Note: You will see different terms in this publication that refer to the various
components involved with virtual SCSI. Depending on the context, these
terms may vary. With SCSI, usually the terms initiator and target are used, so
you may see terms such as virtual SCSI initiator and virtual SCSI target. On
the Hardware Management Console, the terms virtual SCSI server adapter
and virtual SCSI client adapter are used. Basically they refer to the same
thing. When describing the client/server relationship between the partitions
involved in virtual SCSI, the terms hosting partition (meaning the Virtual 1/0
Server) and hosted partition (meaning the client partition) are used.

Virtual SCSI client and server architecture overview

Virtual SCSI is based on a client/server relationship. The Virtual I/O Server
partition owns the physical resources and acts as server or, in SCSI terms, target
device. The logical partitions access the virtual SCSI resources provided by the
Virtual I/O Server partition as clients.

The virtual I/O adapters are configured using an HMC. The provisioning of virtual
disk resources is provided by the Virtual I/O Server. The virtual SCSI adapter
driver on the server partition is a dynamically loadable kernel extension and its
entry points are contained in the device switch table. As a virtual SCSI target
device, the primary function of the device driver is to convert SCSI Remote DMA
Protocol (SRP) requests from the initiator driver (client side) into I/0O requests
that are forwarded to the device that is physically attached to the server. Data is
then transferred directly to the client memory using LRDMA. LRDMA is covered
in “Logical Remote Direct Memory Access (LRDMA)” on page 150, and SRP is
covered in “SCSI Remote DMA Protocol” on page 214.

The virtual SCSI client adapter device driver (vscsi_initdd) is a dynamically
loadable kernel extension and its entry points are contained in the device switch
table. As a virtual SCSI initiator, the primary function of the initiator driver is to
convert I/O requests from the peripheral or media device drivers to SRP
Information Units (IUs), then forward the SRP [Us to the target device for
LRDMA.

The virtual adapter on the client partition is in many ways similar to a physical
SCSI adapter. While a typical SCSI adapter has a parallel bus or optical link

206 Advanced POWER Virtualization on IBM @server p5 Servers

attached to it, the virtual adapter’s link is the POWER Hypervisor’s Reliable
Command/Response Transport.

Physical disks owned by the Virtual I/O Server partition either can be exported
and assigned to a client partition whole, or can be partitioned into several logical
volumes. The logical volumes can then be assigned to different partitions.
Therefore, Virtual SCSI enables sharing of adapters as well as disk devices.

For a physical or a logical volume to be available to a client partition, it is
assigned to a virtual SCSI server adapter in the Virtual I/O Server. The basic
command to map the Virtual SCSI with the logical volume or physical volume is:

mkvdev -vdev TargetDevice -vadapter VirtualSCSIServerAdapter
[-dev DeviceName]

Run the 1sdev -virtual command to make sure that your new virtual SCSI
adapter is available, as shown in Example 6-6.

Example 6-6 Checking for virtual SCSI adapters

$ 1sdev -virtual

name status description

ent2 Available Virtual I/0 Ethernet Adapter (1-lan)
vhost0 Available Virtual SCSI Server Adapter

vhostl Available Virtual SCSI Server Adapter

vsal Available LPAR Virtual Serial Adapter

The next step is to create a virtual target device, which maps the Virtual SCSI
server adapter vhost0 to the logical volume rootvg_dbsrv. When you do not use
the -dev flag, the default name of the virtual target device adapter is vtscsix. Run
the mkvdev command as shown in Example 6-7 to perform this task. If you want
to map a physical volume to the virtual SCSI server adapter, use hdiskx instead
of the logical volume devices for the -vdev flag.

Example 6-7 Using mkdev to create a virtual target device

$ mkvdev -vdev rootvg dbsrv -vadapter vhost0 -dev vdbsrv
vdbsrv Available

The 1sdev command (Example 6-8), shows the newly created virtual target
device adapter.

Example 6-8 Using Isdev to show the virtual target device

$ Tsdev -virtual
name status description

Chapter 6. Virtual /O 207

vhost0 Available Virtual SCSI Server Adapter
vsal Available LPAR Virtual Serial Adapter
vdbsrv Available Virtual Target Device - Logical Volume

The 1smap command (Example 6-9), shows the logical connections between
newly created devices.

Example 6-9 Using Ismap to show logical connections

$ Tsmap -vadapter vhost0

SVSA Physloc Client PartitionID
vhost0 U9111.520.10DDEEC-V1-C20 0x00000000

VTD vdbsrv

LUN 0x810