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Abstract

Understanding the most efficient design and utilization
of emerging multicore systems is one of the most chal-
lenging questions faced by the mainstream and scientific
computing industries in several decades. Our work ex-
plores multicore stencil (nearest-neighbor) computations
— a class of algorithms at the heart of many structured
grid codes, including PDE solvers. We develop a number of
effective optimization strategies, and build an auto-tuning
environment that searches over our optimizations and
their parameters to minimize runtime, while maximizing
performance portability. To evaluate the effectiveness of
these strategies we explore the broadest set of multicore
architectures in the current HPC literature, including the
Intel Clovertown, AMD Barcelona, Sun Victoria Falls,
IBM QS22 PowerXCell 8i, and NVIDIA GTX280. Overall,
our auto-tuning optimization methodology results in the
fastest multicore stencil performance to date. Finally, we
present several key insights into the architectural trade-
offs of emerging multicore designs and their implications
on scientific algorithm development.

1. Introduction

The computing industry has recently moved away from
exponential scaling of clock frequency toward chip mul-
tiprocessors (CMPs) in order to better manage trade-offs
among performance, energy efficiency, and reliability [1].
Because this design approach is relatively immature, there
is a vast diversity of available CMP architectures. System
designers and programmers are confronted with a confus-
ing variety of architectural features, such as multicore,
SIMD, simultaneous multithreading, core heterogeneity,
and unconventional memory hierarchies, often combined in
novel arrangements. Given the current flux in CMP design,
it is unclear which architectural philosophy is best suited
for a given class of algorithms. Likewise, this architectural
diversity leads to uncertainty on how to refactor existing
algorithms and tune them to take the maximum advantage
of existing and emerging platforms. Understanding the
most efficient design and utilization of these increasingly
parallel multicore systems is one of the most challenging

questions faced by the computing industry since it began.
This work presents a comprehensive set of multicore

optimizations for stencil (nearest-neigbor) computations —
a class of algorithms at the heart of most calculations
involving structured (rectangular) grids, including both
implicit and explicit partial differential equation (PDE)
solvers. Our work explores the relatively simple 3D heat
equation, which can be used as a proxy for more complex
stencil calculations. In addition to their importance in
scientific calculations, stencils are interesting as an archi-
tectural evaluation benchmark because they have abundant
parallelism and low computational intensity, offering a
mixture of opportunities for on-chip parallelism and chal-
lenges for associated memory systems.

Our optimizations include NUMA affinity, array
padding, core/register blocking, prefetching, and SIMDiza-
tion — as well as novel stencil algorithmic transformations
that leverage multicore resources: thread blocking and
circular queues. Since there are complex and unpredictable
interactions between our optimizations and the underlying
architectures, we develop an auto-tuning environment for
stencil codes that searches over a set of optimizations
and their parameters to minimize runtime and provide
performance portability across the breadth of existing and
future architectures. We believe such application-specific
auto-tuners are the most practical near-term approach for
obtaining high performance on multicore systems.

To evaluate the effectiveness of our optimization strate-
gies we explore the broadest set of multicore archi-
tectures in the current HPC literature, including the
out-of-order cache-based microprocessor designs of the
dual-socket×quad-core AMD Barcelona and the dual-
socket×quad-core Intel Clovertown, the heterogeneous
local-store based architecture of the dual-socket×eight-
core fast double precision STI Cell QS22 PowerX-
Cell 8i Blade, as well as one of the first scientific
studies of the hardware-multithreaded dual-socket×eight-
core×eight-thread Sun Victoria Falls machine. Addition-
ally, we present results on the single-socket×240-core mul-
tithreaded streaming NVIDIA GeForce GTX280 general
purpose graphics processing unit (GPGPU).

This suite of architectures allows us to compare the
mainstream multicore approach of replicating conventional
cores that emphasize serial performance (Barcelona and



Clovertown) against a more aggressive manycore strategy
that employs large numbers of simple cores to improve
power efficiency and performance (GTX280, Cell, and
Victoria Falls). It also enables us to compare traditional
cache-based memory hierarchies (Clovertown, Barcelona,
and Victoria Falls) against chips employing novel software
controlled memory hierarchies (GTX280 and Cell). Study-
ing this diverse set of CMP platforms allows us to gain
valuable insight into the tradeoffs of emerging multicore
architectures in the context of scientific algorithms.

Results show that chips employing large numbers of
simpler cores offer substantial performance and power ef-
ficiency advantages over more complex serial-performance
oriented cores. We also show that the more aggressive
software-controlled memories of the GTX280 and Cell of-
fer additional raw performance, performance productivity
(tuning time) and power efficiency benefits. However, if
the GTX280 is used as an accelerator offload engine for
applications that run primarily on the host processor, the
combination of limited PCIe bandwidth coupled with low
reuse within GPU device memory will severely impair the
potential performance benefits. Overall results demonstrate
that auto-tuning is critically important for extracting maxi-
mum performance on such a diverse range of architectures.
Notably, our optimized stencil is 1.5×–5.6× faster than
the naı̈ve parallel implementation, with a median speedup
of 4.1× on cache-based architectures — resulting in the
fastest multicore stencil implementation published to date.

2. Stencil Overview

Partial differential equation (PDE) solvers constitute a
large fraction of scientific applications in such diverse ar-
eas as heat diffusion, electromagnetics, and fluid dynamics.
These applications are often implemented using iterative
finite-difference techniques that sweep over a spatial grid,
performing nearest neighbor computations called stencils.
In a stencil operation, each point in a multidimensional grid
is updated with weighted contributions from a subset of its
neighbors in both time and space — thereby representing
the coefficients of the PDE for that data element. These
operations are then used to build solvers that range from
simple Jacobi iterations to complex multigrid and adaptive
mesh refinement methods [2]. A conceptual representation
of a generic stencil computation and its resultant memory
access pattern is shown in Figures 1(a—b).

Stencil calculations perform global sweeps through data
structures that are typically much larger than the capacity
of the available data caches. In addition, the amount of data
reuse is limited to the number of points in a stencil, which
is typically small. As a result, these computations generally
achieve a low fraction of theoretical peak performance,
since data from main memory cannot be transferred fast
enough to avoid stalling the computational units on modern
microprocessors. Reorganizing these stencil calculations
to take full advantage of memory hierarchies has been
the subject of much investigation over the years. These
have principally focused on tiling optimizations [3]–[5]

(a)

re
ad

_a
rra

y[
]

wr
ite

_a
rra

y[
]

(b)

Stream out planes to
target grid

Stream in planes
from source grid

(c)

Figure 1. Stencil visualization: (a) Conceptualization
of stencil in 3D space. (b) Mapping of stencil from 3D
space onto linear array space. (c) Circular queue opti-
mization: planes are streamed into a queue containing
the current time step, processed, written to out queue,
and streamed back.

that attempt to exploit locality by performing operations
on cache-sized blocks of data before moving on to the
next block. A study of stencil optimization [6] on (single-
core) cache-based platforms found that tiling optimizations
were primarily effective when the problem size exceeded
the on-chip cache’s ability to exploit temporal recurrences.
A more recent study of lattice-Boltzmann methods [7] em-
ployed auto-tuners to explore a variety of effective strate-
gies for refactoring lattice-based problems for multicore
processing platforms. This study expands on prior work
by developing new optimization techniques and applying
them to a broader selection of processing platforms, while
incorporating GPU-specific strategies.

In this work, we examine performance of the explicit
3D heat equation, naı̈vely expressed as triply nested loops
ijk over:

B[i, j, k] = C0A[i, j, k] + C1(

+ A[i− 1, j, k] + A[i, j − 1, k] + A[i, j, k − 1]

+ A[i + 1, j, k] + A[i, j + 1, k] + A[i, j, k + 1])

This seven-point stencil performs a single Jacobi (out-
of-place) iteration; thus reads and writes occur in two
distinct arrays. For each grid point, this stencil will execute
8 floating point operations and transfer either 24 Bytes
(for write-allocate architectures) or 16 Bytes (otherwise).
Architectures with flop:byte ratios less than this stencil’s
0.33 or 0.5 flops per byte are likely to be compute bound.

3. Experimental Testbed

A summary of key architectural features of the eval-
uated systems appear in Table 1. The sustained system
power data was obtained using an in-line digital power



Core Intel AMD Sun STI NVIDIA
Architecture Core2 Barcelona Niagara2 Cell eDP SPE GT200 SM

super scalar super scalar MT SIMD MTType
out of order out of order dual issue† dual issue SIMD

Process 65nm 65nm 65nm 65nm 65nm
Clock (GHz) 2.66 2.30 1.16 3.20 1.3
DP GFlop/s 10.7 9.2 1.16 12.8 2.6
Local-Store — — — 256KB 16KB∗∗

L1 Data Cache 32KB 64KB 8KB — —
private L2 cache — 512KB — — —

Xeon E5355 Opteron 2356 UltraSparc T5140 T2+ QS22 PowerXCell 8i GeForceSystem
(Clovertown) (Barcelona) (Victoria Falls) (Cell Blade) GTX280

Heterogeneous no no no multicore multichip
# Sockets 2 2 2 2 1

Cores per Socket 4 4 8 8(+1) 30 (×8)
4×4MB 2×2MB 2×4MBshared L2/L3 cache

(shared by 2) (shared by 4) (shared by 8)
— —

DP GFlop/s 85.3 73.6 18.7 204.8 78
primary memory Multithreading

parallelism paradigm
HW prefetch HW prefetch Multithreading DMA

with coalescing
DRAM 21.33(read) 42.66(read) 141 (device)

Bandwidth (GB/s) 10.66(write)
21.33

21.33(write)
51.2

4 (PCIe)
DP Flop:Byte Ratio 2.66 3.45 0.29 4.00 0.55

1GB (device)DRAM Capacity 16GB 16GB 32GB 32GB
4GB (host)

System Power (Watts)§ 330 350 610 270‡ 450 (236)?

Chip Power (Watts)¶ 2×120 2×95 2×84 2×90 165
Threading Pthreads Pthreads Pthreads libspe2.1 CUDA 2.0
Compiler icc 10.0 gcc 4.1.2 gcc 4.0.4 xlc 8.2 nvcc 0.2.1221

Table 1. Architectural summary of evaluated platforms. †Each of the two thread groups may issue up to one instruction.
∗∗16 KB local-store shared by all concurrent CUDA thread blocks on the SM. ‡Cell Bladecenter power running Linpack
averaged per blade. (www.green500.org) §All system power is measured with a digital power meter while under a full
computational load. ¶Chip power is based on the maximum Thermal Design Power (TDP) from the manufacturer’s
datasheets. ?GTX280 system power shown for the entire system under load (450W) and GTX280 card itself (236W).

meter while the node was under a full computational load∗;
while chip and GPU card power is based on the max-
imum Thermal Design Power (TDP), extrapolated from
manufacturer’s datasheets. Although the node architectures
are diverse, most accurately represent building-blocks of
current and future ultra-scale supercomputing systems.

3.1. Intel Xeon E5355 (Clovertown)

Clovertown is Intel’s first foray into the quad-core
arena. Reminiscent of Intel’s original dual-core designs,
two dual-core Xeon chips are paired onto a multi-chip
module (MCM). Each core is based on Intel’s Core2
microarchitecture, runs at 2.66 GHz, can fetch and decode
four instructions per cycle, execute 6 micro-ops per cycle,
and fully support 128b SSE, for peak double-precision
performance of 10.66 GFlop/s per core.

Each Clovertown core includes a 32KB L1 cache, and
each chip (two cores) has a shared 4MB L2 cache. Each
socket has access to a 333MHz quad-pumped front side

∗. Node power under a computational load can differ dramatically from
both idle power and from the manufacturer’s peak power specifications.

bus (FSB), delivering a raw bandwidth of 10.66 GB/s. Our
study evaluates the Sun Fire X4150 dual-socket platform,
which contains two MCMs with dual independent busses.
The chipset provides the interface to four fully buffered
DDR2-667 DRAM channels that can deliver an aggregate
read memory bandwidth of 21.33 GB/s, with a DRAM
capacity of 16GB. The full system has 16MB of L2 cache
and an impressive 85.3 GFlop/s peak performance.

3.2. AMD Opteron 2356 (Barcelona)

The Opteron 2356 (Barcelona) is AMD’s newest quad-
core processor offering. Each core operates at 2.3 GHz,
can fetch and decode four x86 instructions per cycle,
execute 6 micro-ops per cycle and fully support 128b
SSE instructions, for peak double-precision performance
of 9.2 GFlop/s per core or 36.8 GFlop/s per socket.

Each Opteron core contains a 64KB L1 cache, and a
512MB L2 victim cache. In addition, each chip instantiates
a 2MB L3 victim cache shared among all four cores. All
core prefetched data is placed in the L1 cache of the re-
questing core, whereas all DRAM prefetched data is placed



into the L3. Each socket includes two DDR2-667 memory
controllers and a single cache-coherent HyperTransport
(HT) link to access the other socket’s cache and memory;
thus delivering 10.66 GB/s per socket, for an aggregate
NUMA (non-uniform memory access) memory bandwidth
of 21.33 GB/s for the quad-core, dual-socket Sun X2200
M2 system examined in our study. The DRAM capacity
of the tested configuration is 16 GB.

3.3. Sun UltraSparc T2+ (Victoria Falls)

The Sun “UltraSparc T2 Plus”, a dual-socket × 8-core
SMP referred to as Victoria Falls, presents an interesting
departure from mainstream multicore chip design. Rather
than depending on four-way superscalar execution, each of
the 16 strictly in-order cores supports two groups of four
hardware thread contexts (referred to as Chip MultiThread-
ing or CMT) — providing a total of 64 simultaneous
hardware threads per socket. Each core may issue up
to one instruction per thread group assuming there is
no resource conflict. The CMT approach is designed to
tolerate instruction, cache, and DRAM latency through
fine-grained multithreading.

Victoria Falls instantiates only one floating-point unit
(FPU) per core (shared among 8 threads). Our study ex-
amines the Sun UltraSparc T5140 with two T2 processors
operating at 1.16 GHz, with a per-core and per-socket
peak performance of 1.16 GFlop/s and 9.33 GFlop/s,
respectively (no fused-multiply add (FMA) functionality).
Each core has access to a private 8KB write-through L1
cache, but is connected to a shared 4MB L2 cache via a
149 GB/s(read) on-chip crossbar switch. Each of the two
sockets is fed by two dual channel 667 MHz FBDIMM
memory controllers that deliver an aggregate bandwidth of
32 GB/s (21.33 GB/s for reads, and 10.66 GB/s for writes)
to each L2 (32 GB DRAM capacity). Victoria Falls has no
hardware prefetching and software prefetching only places
data in the L2. Multithreading may hide instruction and
cache latency, but may not fully hide DRAM latency.

3.4. IBM QS22 PowerXCell 8i Blade

The Sony Toshiba IBM (STI) Cell processor adopts a
heterogeneous approach to multicore, with one conven-
tional processor core (Power Processing Element / PPE)
to handle OS and control functions, combined with up
to eight simpler SIMD cores (Synergistic Processing Ele-
ments / SPEs) for the computationally intensive work [8],
[9]. The SPEs differ considerably from conventional core
architectures due to their use of a disjoint software con-
trolled local memory instead of the conventional hardware-
managed cache hierarchy employed by the PPE. Rather
than using prefetch to hide latency, the SPEs have effi-
cient software-controlled DMA engines which decouple
transfers between DRAM and the 256KB local-store from
execution. This approach allows potentially more efficient
use of available memory bandwidth, but increases the
complexity of the programming model.

The QS22 PowerXCell 8i blade uses the enhanced
double-precision implementation of the Cell processor

used in the LANL Roadrunner system, where each SPE
is a dual issue SIMD architecture that includes a fully
pipelined double precision FPU. The enhanced SPEs can
now execute two double precision FMAs per cycle, for a
peak of 12.8 GFlop/s per SPE. The QS22 blade used in this
study is comprised of two sockets with eight SPEs each
(204.8 GFlop/s double-precision peak). Each socket has
a four channel DDR2-800 memory controller delivering
25.6 GB/s, with a DRAM capacity of 16 GB per socket (32
GB total). The Cell blade connects the chips via a separate
coherent interface delivering up to 20 GB/s, resulting in
NUMA characteristics (like Barcelona and Victoria Falls).

3.5. NVIDIA GeForce GTX280

The recently released NVIDIA GT200 GPGPU archi-
tecture is designed primarily for high-performance 3D
graphics rendering, and is available only as discrete graph-
ics units on PCI-Express cards. However, the inclusion of
double precision datapaths makes it an interesting target
for HPC applications. The C-like CUDA [10] program-
ming language interface allows a significantly simpler and
much more general-purpose programming paradigm than
on previous GPGPU platforms.

The GeForce GTX280 evaluated in this work is a single-
socket×240-core multithreaded streaming processor (30
streaming multiprocessors, or SMs, comprising 8 scalar
cores). Each SM may execute one double-precision FMA
per cycle, for a peak double-precision throughput of 78
GFlop/s at 1.3GHz. This performance is only attainable if
all threads remain converged in a SIMD fashion. Given our
code structure, we find it most useful to conceptualize each
multiprocessor as a 8-lane vector core. The 64 KB register
file present on each streaming multiprocessor (16,384 32-
bit registers) is partitioned among vector elements; vector
lanes may only communicate via the 16 KB software
managed local-store, synchronizing via a barrier intrinsic.
The GT200 includes hardware multithreading support.
Thus, local-store and register files are further partitioned
between different vector thread computations executing on
the same core. In accordance with the CUDA terminology,
we refer to one such vector computation as a CUDA thread
block. CUDA differs from the traditional vector model in
that thread blocks are indexed multi-dimensionally, and
CUDA vector programs are written in an SPMD manner.
Each vector element corresponds to a CUDA thread.

The GTX280 architecture provides a Uniform Memory
Access interface to 1100 MHz GDDR3 DRAM, with a
phenomenal peak memory bandwidth of 140.8 GB/s. The
extraordinarily high bandwidth can provide a significant
performance advantage over commodity DDR based CPUs
by sacrificing capacity. However, the GTX280 cannot di-
rectly access system (CPU) memory. As a result, problems
that either exceed the 1 GB on-board memory capacity or
cannot be run exclusively on the GTX280 coprocessor can
suffer from costly data transfers between graphics DRAM
and the host DRAM over the PCI-express (PCIe) x16
bus. Consequently, we present both the GTX280 results
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Figure 2. Four-level problem decomposition: In (a), a node block (the full grid) is broken into smaller chunks. All the
core blocks in a chunk are processed by the same subset of threads. One core block from the chunk in (a) is magnified
in (b). A properly sized core block should avoid capacity misses in the last level cache. A single thread block from the
core block in (b) is then magnified in (c). A thread block should exploit common resources among threads. Finally, the
magnified thread block in (c) is decomposed into register blocks, which exploit data level parallelism.

unburdened by the host data transfers, to demonstrate the
ultimate potential of the architecture, as well as perfor-
mance handicapped by the data transfers.

4. Optimizations

To improve stencil performance across our suite of
architectures, we examine a wide variety of optimizations,
including: NUMA-aware allocation, array padding, multi-
level blocking, loop unrolling and reordering, as well as
prefetching for cache-based architectures and DMA for
local-store based architectures. Additionally, we present
two novel multicore-specific stencil optimizations: circular
queue and thread blocking. These techniques, applied in
the order most natural for each given architectures (gen-
erally ordered by their level of complexity), can roughly
be divided into four categories: problem decomposition,
data allocation, bandwidth optimizations, and in-core opti-
mizations. In the subsequent subsections, we discuss these
techniques as well as our overall auto-tuning strategy in
detail. Any exceptions are further explained in Section 4.6.
In addition, a summary of our optimizations and their
associated parameters is shown in Table 2.

4.1. Problem Decomposition

Although our data structures are just two large 3D
scalar arrays, we apply a four-level decomposition strategy
across all architectures. This allows us to simultaneously
implement parallelization, cache blocking, and register
blocking, as visualized in Figure 2. First, a node block (the
entire problem) of size NX × NY × NZ is partitioned
in all three dimensions into smaller core blocks of size
CX × CY × CZ, where X is the unit stride dimension.

This first step is designed to avoid last level cache capacity
misses by effectively cache blocking the problem. Each
core block is further partitioned into a series of thread
blocks of size TX × TY × CZ. Core blocks and thread
blocks are the same size in the Z (least unit stride)
dimension, so when TX = CX and TY = CY , there is
only one thread per core block. This second decomposition
is designed to exploit the common locality threads may
have within a shared cache or local memory. Note our
thread block is different than a CUDA thread block. Then,
our third decomposition partitions each thread block into
register blocks of size RX × RY × RZ. This allows us
to take advantage of the data level parallelism provided by
the available registers.

Core blocks are also grouped together into chunks of
size ChunkSize which are assigned to an individual core.
The number of threads in a core block (Threadscore) is
simply CX

TX ×
CY
TY , so we then assign these chunks to a

group of Threadscore threads in a round-robin fashion
(similar to the schedule clause in OpenMP’s parallel for
directive). Note that all the core blocks in a chunk are
processed by the same subset of threads. When ChunkSize
= 1, spaced out core blocks may map to the same set
in cache, causing conflict misses. However, we do gain a
benefit from diminished NUMA effects. In contrast, when
ChunkSize = max, contiguous core blocks are mapped
to contiguous set addresses in a cache, reducing conflict
misses. This comes at the price of magnified NUMA
effects. We therefore tune ChunkSize to find the best
tradeoff of these two competing effects. Thus, our fourth
and final decomposition is from chunks to core blocks. In
general, this decomposition scheme allows us to explain
shared cache locality, cache blocking, register blocking,



Optimization parameter tuning range by architecture
Category Parameter Name Clovertown Barcelona Victoria Falls Cell Blade GTX280

Data NUMA Aware N/A X X X N/A
Allocation Pad to a multiple of: 1 1 1 16 16

CX NX NX {8...NX} {64...NX} {16...32}
Core Block Size CY {8...NY} {8...NY} {8...NY} {8...NY} CX

CZ {128...NZ} {128...NZ} {128...NZ} {128...NZ} 64
Domain TX CX CX {8...CX} CX 1
Decomp

Thread Block Size
TY CY CY {8...CY} CY CY/4

Chunk Size {1... NX×NY×NZ
CX×CY×CZ×NThreads} N/A

RX {1...8} {1...8} {1...8} 2 TX
Register Block Size RY {1...2} {1...2} {1...2} 8 TY

RZ {1...2} {1...2} {1...2} 1 1
Low (explicitly SIMDized) X X N/A X N/A
Level Prefetching Distance {0...64} {0...64} {0...64} N/A N/A

DMA Size N/A N/A N/A CX×CY N/A
Cache Bypass X X N/A implicit implicit
Circular Queue — — — X X

Table 2. Attempted optimizations and the associated parameter spaces explored by the auto-tuner for a 2563 stencil
problem (NX, NY, NZ = 256). All numbers are in terms of doubles.

and NUMA-aware allocation within a single formalism.

4.2. Data Allocation

The source and destination grids are each individually
allocated as one large array. Since the decomposition
strategy has deterministically specified which thread will
update each point, we wrote a parallel initialization routine
to initialize the data. Thus, on non-uniform memory access
(NUMA) systems that implement a “first touch” page
mapping policy, data is correctly pinned to the socket
tasked to update it. Without this NUMA-aware allocation,
performance could easily be cut in half.

Some architectures have relatively low associativity
shared caches, at least when compared to the product of
threads and cache lines required by the stencil. On such
machines, conflict misses can significantly impair perfor-
mance. Moreover, some architectures prefer certain align-
ments for coalesced memory accesses; failing to do so can
greatly reduce memory bandwidth. To avoid these pitfalls,
we pad the unit-stride dimension (NX ← NX + pad).

4.3. Bandwidth Optimizations

The architectures used in this paper employ four prin-
cipal mechanisms for hiding memory latency: hardware
prefetching, software prefetching, DMA, and multithread-
ing. The x86 architectures use hardware stream prefetchers
that can recognize unit-stride and strided memory access
patterns. When such a pattern is detected successive cache
lines are prefetched without first being demand requested.
Hardware prefetchers will not cross TLB boundaries (only
512 consecutive doubles) and can be easily halted by
spurious memory requests. Both conditions may arise

when CX < NX — i.e. when core blocking results
in stanza access patterns. Although this is not an issue
on multithreaded architectures, they may not be able to
completely cover all cache and memory latency. In con-
trast, software prefetching, which is available on all cache-
based machines, does not suffer from either limitation.
However, it can only express a cache line’s worth of
memory level parallelism. In addition, unlike a hardware
prefetcher (where the prefetch distance is implemented in
hardware), software prefetching must specify the appropri-
ate distance to effectively hide memory latency. DMA is
only implemented on Cell, but can easily express the stanza
memory access patterns. DMA operations are decoupled
from execution and are implemented as double buffered
reads of core block planes.

So far we have discussed optimizations designed to hide
memory latency and thus improve memory bandwidth,
but we can extend this discussion to optimizations that
minimize memory traffic. The circular queue implementa-
tion, visualized in Figure 1(c), is one such technique. This
approach allocates a shadow copy of the planes of a core
block in local memory or registers. The seven-point stencil
requires three read planes to be allocated, which are then
populated through loads or DMAs. However, it can often
be beneficial to allocate an output plane and double buffer
reads and writes as well. The advantage of the circular
queue is the potential avoidance of lethal conflict misses.
We currently explore this technique only on the local-store
architectures but note that future work will extend this to
the cache based architectures.

Another technique for reducing memory traffic is the
cache bypass instruction. On write-allocate architectures,
a write miss will necessitate the allocation of a cache line.



Before execution can proceed, the contents of the line are
filled from main memory. In the case of stencil codes, this
superfluous transfer is wasteful as the entire line will be
completely overwritten. There are cache initialization and
cache bypass instructions that we exploit to eliminate this
unnecessary fill — in SSE this is movntpd. By exploiting
this instruction, we may increase arithmetic intensity by
50%. If bandwidth bound, this can also increase perfor-
mance by 50%. This benefit is implicit on the cache-less
Cell and GT200 architectures.

4.4. In-core Optimizations

Although superficially simple, there are innumerable
ways of optimizing the execution of a 7-point stencil.
After tuning for bandwidth and memory traffic, it often
helps to explore the space of inner loop transformations
to find the fastest possible code. To this end, we wrote a
code generator that could generate any unrolled, jammed
and reordered version of the stencil. Register blocking is,
in essence, unroll and jam in X , Y , or Z. This creates
small RX × RY × RZ blocks that sweep through each
thread block. Larger register blocks have better surface-
to-volume ratios and thus reduce the demands for L1
cache bandwidth. However, they may significantly increase
register pressure as well.

Although the standard code generator produces portable
C code, compilers often fail to effectively SIMDize the
resultant code. As such, we created several ISA-specific
variants that produce SIMD code for x86 and Cell. These
versions will deliver much better in-core performance than
a compiler. However, as one might expect, this may have
a limited benefit on memory-intensive codes.

4.5. Auto-Tuning Methodology

Thus far, we have described hierarchical blocking,
unrolling, reordering, and prefetching in general terms.
Given the combinatoric complexity of the aforementioned
optimizations coupled with the fact that these techniques
interact in subtle ways, we develop an auto-tuning en-
vironment similar to that exemplified by libraries like
ATLAS [11] and OSKI [12]. To that end, we first wrote
a Perl code generator that produces multithreaded C code
variants encompassing our stencil optimizations. This ap-
proach allows us to evaluate a large optimization space
while preserving performance portability across signif-
icantly varying architectural configurations. The second
component of an auto-tuner is the auto-tuning benchmark
that searches the parameter space (shown in Table 2)
through a combination of explicit search for global max-
ima with heuristics for constraining the search space. At
completion, the auto-tuner reports both peak performance
and the optimal parameters.

4.6. Architecture Specific Exceptions

Due to limited potential benefit and architectural charac-
teristics, not all architectures implement all optimizations
or explore the same parameter spaces. Table 2 details the

range of values for each optimization parameter by archi-
tecture. In this section, we explain the reasoning behind
these exceptions to the full auto-tuning methodology. To
make the auto-tuning search space tractable, we typically
explored parameters in powers of two.

The x86 architectures like Clovertown and Barcelona
rely on hardware stream prefetching as their primary means
for hiding memory latency. As previous work [13] has
shown that short stanza lengths severely impair memory
bandwidth, we prohibit core blocking in the unit stride (X)
dimension, so CX = NX . Thus, we expect the hardware
stream prefetchers to remain engaged and effective. Sec-
ond, as these core architectures are not multithreaded, we
saw no reason to attempt thread blocking. Thus, the thread
blocking search space was restricted so that TX = CX ,
and TY = CY . Both x86 machines implement SSE2.
Therefore, we implemented a special SSE SIMD code
generator for the x86 ISA that would produce both explicit
SSE SIMD intrinsics for computation as well as the option
of using a non-temporal store movntpd to bypass the cache.
On both machines, the threading model was Pthreads.

Although Victoria Falls is also a cache-coherent ar-
chitecture, its multithreading approach to hiding memory
latency is very different than out-of-order execution cou-
pled with hardware prefetching. As such, we allow core
blocking in the unit stride dimension. Moreover, we allow
each core block to contain either 1 or 8 thread blocks.
In essence, this allows us to conceptualize Victoria Falls
as either a 128 core machine or a 16 core machine with 8
threads per core. In addition, there are no supported SIMD
or cache bypass instrinsics, so only the portable pthreads
C code was run.

Unlike the previous three machines, Cell uses a cache-
less local-store architecture. Moreover, instead of prefetch-
ing or multithreading, DMA is the architectural paradigm
utilized to express memory level parallelism and hide
memory latency. This has a secondary advantage in that it
also eliminates superfluous memory traffic from the cache
line fill on a write miss. The Cell code generator produces
both C and SIMDized code. However, our use of SDK 2.1
resulted in poor double precision code scheduling as the
compiler was scheduling for a QS20 rather than a QS22.
Unlike the cache-based architectures, we implement the
dual circular queue approach on each SPE. Moreover, we
double buffer both reads and writes. For optimal perfor-
mance, DMA must be 128 byte (16 doubles) aligned. As
such, we pad the unit stride (X) dimension of the problem
so that NX+2 is a multiple of 16. For expediency, we also
restrict the minimum unit stride core blocking dimension
(CX) to be 64. The threading model was IBM’s libspe.

The GT200 has architectural similarities to both Vic-
toria Falls (multithreading) and Cell (local-store based).
However, it differs from all other architectures in that the
device DRAM is disjoint from the host DRAM. Unlike the
other architectures, the restrictions of the CUDA program-
ming model constrained the auto-tuner to a very limited
number of cases. First, we only explore only two core
block sizes: 32×32 and 16×16. We depend on CUDA to
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Figure 3. Optimized stencil performance results in double precision for Clovertown, Barcelona, Victoria Falls, a QS22
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implement the threading model and use thread blocking
as part of the auto-tuning strategy. The thread blocks for
the two core block sizes are restricted to 1×8 and 1×4
respectively. Since the GT200 contains no automatically-
managed caches, we use the circular queue approach that
was employed in the Cell stencil code. However, the
register file is four times larger than the local memory,
so we chose register blocks to be the size of thread blocks
(RX = TX,RY = TY, RZ = 1) and chose to keep some
of the planes in the register file rather than shared memory.

5. Performance Results and Analysis

To evaluate our optimization strategies and compare
architectural features, we examine a 2563 stencil calcu-
lation which, including ghost cells, requires a total of 262
MB of memory. Since scientific computing relies primarily
on double precision, all of our computations are also
performed in double precision across all architectures. In
addition, to keep results both consistent and comparable,
we exploit affinity routines to first utilize all the hardware
thread contexts on a single core, then scale to all the
cores on a socket, and finally use all the cores across all
sockets. This approach prevents the benchmark code from
exploiting a second socket’s memory bandwidth until all
the cores on a single socket are in use.

The stacked bar graphs in Figures 3 show individual
platform performance as a function of core concurrency
(using fully threaded cores). The stacked bars indicate
the performance contribution from each of the relevant
optimizations. All the attempted optimizations are listed in
the legend below. On the Cell, only the SPEs are used, and
on the GTX280 we plot performance as a function of the
number of CUDA thread blocks per CUDA grid. However,
neither the Cell SPEs nor the GTX280 can run our portable

C code, so there is no truly naı̈ve implementation for
either platform. Instead, for Cell, a DMA and local-store
implementation serves as the baseline. For the GTX280,
there are two baselines, both of which use a programming
style recommended in NVIDIA tutorials that we call Naı̈ve
CUDA. The lower green baseline represents the case where
the entire grid must be transferred back and forth between
host and device memory once per sweep (accelerator
mode). In contrast, the upper red line is the ideal case
when the grid may reside in device memory without any
communication to host memory (stand-alone). A typical
application will lie somewhere in between.

Figure 4 is a set of summary graphs that allows
comparisons across all architectures. Figure 4(a) focuses
on maximum performance, while Figure 4(b) examines
per core scalability. Then, we examine each architecture’s
resource utilization in the 2D scatter plot of Figure 4(c).
We computed the sustained percentage of the attainable
memory bandwidth (ABW ) and attainable computational
rate (AFlop) for each architecture. The former fraction
is calculated as the sustained stencil bandwidth divided
by the OpenMP Stream [14] (copy) bandwidth. For Cell,
we simply commented out the computation, but continued
to execute the DMAs. Similarly, the attainable fraction
of peak is the achieved stencil GFlop/s rate divided by
the in-cache stencil performance derived by running a
small problem that fits in the aggregate cache (or local-
store). For Cell, we simply commented out the DMAs,
but performed the stencils on data already in the local-
store. Thus floating-point bound architectures will be near
100% AFlop on the x-axis (GFlop/s), while memory bound
platforms will approach 100% ABW on the y-axis (GB/s).

These coordinates allow one to estimate how balanced
or limited the architecture is. Architectures that depart from
the upper or right edges of the figure fail to saturate one of
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these key resources, while systems achieving near 100%
for both metrics are well balanced for our studied stencil
kernel. Note that attainable peak is a tighter performance
bound than the traditionally used ratios of machine or al-
gorithmic peak as it incorporates many microarchitectural
and compiler limitations. Nevertheless, all three of these
metrics have a potentially important role in understanding
performance behavior. Finally, Figure 4(d) compares power
efficiency across our architectural suite in terms of system-,
card- and chip-power utilization.

5.1. Clovertown Performance

The Clovertown performance results are shown in the
leftmost graph of Figure 3. Since the Clovertown cores
have uniform memory access, the system is unaffected
by NUMA optimizations. Notable performance benefits
are seen from core blocking and cache bypass (1.7× and
1.1× speedups respectively at max concurrency). Addi-
tionally, for small numbers of cores Clovertown benefits
from explicit SIMDization. Note that experiments on a
smaller 1283 calculation (not shown) saw little benefit
from auto-tuning, as the entire working set easily fit within
Clovertown’s large 2MB per core L2 working set.

Clovertown’s poor multicore scaling indicates that the
system rapidly becomes memory bandwidth limited —
utilizing approximately 4.5 GB/s after engaging only two
of the cores, which is close to the practical limit of a
single FSB [15]. The quad pumping of the dual FSB
architecture has reduced data transfer cycles to the point
where they are on parity with coherency cycles. Given the
coherency protocol overhead, it is not too surprising that
the performance does not improve between the four-core
and eight-core experiment (when both FSBs are engaged),
despite the doubling of the peak aggregate FSB bandwidth.

Overall, Clovertown’s single-core performance of 1.4
GFlop/s grows by only 1.8× when using all eight cores, re-

sulting in aggregate node performance of only 2.5 GFlop/s
— about 2.7× slower than Barcelona. For this problem, the
improved floating point performance of this architecture
is wasted because of the sub-par FSB performance. We
expect that Intel’s forthcoming Nehalem, which eliminates
the FSB in favor of dedicated on-chip memory controllers,
will address many of these deficiencies.

5.2. Barcelona Performance

Figure 3 presents Opteron 2356 (Barcelona) results. Ob-
serve that the NUMA-aware version increases performance
by 115% when all sockets are engaged; this highlights
the potential importance of correctly mapping memory
pages in systems with memory controllers on each socket.
Additionally, the optimal (auto-tuned) core blocking re-
sulted in an additional 70% improvement (similar to the
Clovertown). The cache bypass (streaming store) intrinsic
provides an additional improvement of 55% when using all
eight cores — indicative of its importance only when the
machine is memory bound. Using this optimization reduces
memory traffic by 33% and thus changes the stencil
kernel’s flop:byte ratio from 1

3 to 1
2 . This potential 50%

improvement corresponds closely to the 55% observed
improvement — confirming the memory bound nature of
the stencil kernel on this machine.

Register blocking and software prefetching ostensibly
had little performance effect on Barcelona; however, the
auto-tuning methodology explores a large number of opti-
mizations in the hope that they may be useful on a given
architecture. As it is difficult to predict this beforehand, it
is still important to try each relevant optimization.

The Opteron’s per-core scalability can be seen in Fig-
ures 4(b). Overall, we see reasonably efficient scalability
up to two cores, but then a fall off at four cores —
indicative that the socket is only reaching a memory
bound limit when all four cores are engaged. When the



second socket and its additional memory controllers are
employed, near linear scaling is attained. Note, the X2200
M2 is not a split rail motherboard. As such, the lower
northbridge frequency may reduce memory bandwidth, and
thus performance by up to 20%.

5.3. Victoria Falls Performance

The Victoria Falls experiments in Figure 3 show several
interesting trends. Using all sixteen cores, Victoria Falls
sees a 6.1× performance benefit from array padding and
core/register blocking, plus an additional 1.1× speedup
from thread blocking to achieve an aggregate total perfor-
mance of 5.3 GFlop/s. Therefore, the fully-optimized code
generated by the auto-tuner was 6.7× faster than the naı̈ve
code. Victoria Falls is thus 2.7× faster than a fully-packed
Clovertown system, but still 1.3× slower than Barcelona.
The thread blocking optimization successfully boosted
performance via better per-core cache behavior. However,
the automated search to identify the best parameters was
relatively lengthy, since the parameter space is larger than
conventional threading optimizations.

5.4. Cell Performance

Looking at the Cell results in Figure 3, recall that
generic microprocessor-targeted source code cannot be
naı̈vely compiled and executed on the SPE’s software
controlled memory hierarchy. Therefore, we use a DMA
local-store implementation as the baseline performance for
our analysis. Our Cell-optimized version utilizes an auto-
tuned circular queue algorithm (described in Section 4.6).

Examining Cell behavior reveals that the system is
clearly computationally bound for the baseline stencil
calculation when using one to four cores — as visualized
in Figure 4(b). In this region, there is a significant per-
formance advantage in using hand optimized SIMD code.
However, at concurrencies greater than 8 cores, there is
essentially no advantage — the machine is clearly band-
width limited. The only pertinent optimization is optimal
NUMA-aware data placement. Exhaustively searching for
the optimal core blocking provided no appreciable speedup
over a baseline heuristic. Although the resultant perfor-
mance of 15.6 GFlop/s is a low fraction of performance
when operating from the local-store, it achieves nearly
100% of the streaming memory bandwidth as evidenced
in the scatter plot in Figure 4(c). Although this Cell blade
does not provide a significant performance advantage over
the previous Cell blade for memory intensive codes, it
provides a tremendous productivity advantage by ensuring
double precision performance is never the bottleneck —
one only need focus on DMA and local-store blocking.

5.5. GTX280 Performance

Finally, we examine the new double-precision results
of the NVIDIA GT200 (GeForce GTX280) shown in
Figure 3. In this graph, we superimpose three sets of
results. NVIDIA often recommends a style of CUDA
programming where each CUDA thread within a CUDA

thread block is responsible for a single calculation —
a stencil for our code. We label this approach as naı̈ve
CUDA. As some applications may require the CPU to have
frequent access to the entire problem, where others may
be completely ported to a GPU, we further differentiate
this category into two approaches: naı̈ve CUDA in host,
and naı̈ve CUDA in device. The former presumes the entire
problem must start and finish each time step in host (CPU)
memory, while the latter allows the data to remain in
device (GPU) memory. In either of these implementations
the number of CUDA thread blocks is huge and all cores
are used and balanced. Finally, we show our optimized
implementation using 16×4 threads tasked with processing
16×16 blocks as a function of the number of CUDA thread
blocks.

Note that GPGPU studies often do not address the
performance overhead of CPU to GPU data transfer. For
large-scale calculations, the actual performance impact will
depend on the required frequency of GPU-host data trans-
fers. Some numerical methods conduct only a single stencil
sweep before other types of computation are performed,
and will potentially suffer the roundtrip host latency be-
tween each iteration. However, there are important algo-
rithmic techniques that require consecutive stencil sweeps
— thereby amortizing the host data transfers. We therefore
present both cases — the optimistic case, unburdened by
the host transfers, and the pessimistic case that reflects the
performance constraints of a hybrid programming model.

The naı̈ve CUDA in host only affords us with about
1.4 GFlop/s. This is completely limited by a PCIe x16
sustained bandwidth of only 3.4GB/s. Clearly, for many
applications such poor performance is unacceptable. We
may optimize away the potentially superfluous PCIe trans-
fers and only operate from device memory. Such an
implementation delivers about 10.1 GFlop/s — a 3×
speedup. Our optimized and tuned implementation selects
the appropriate decomposition and number of threads.
Unfortunately, the problem decomposes into a power of
two number of CUDA thread blocks which we must
run on 30 streaming multiprocessors. Clearly when the
number of CUDA thread blocks is less than 30, there
is a linear mapping without load imbalance. However, at
32 CUDA thread blocks the load imbalance is maximal
(some cores are tasked with twice as many blocks as
others). As concurrency increases load balance diminishes
and performance saturates at a phenomenal 36.5 GFlop/s.

Figure 4(b) shows scalability as a function of the
number of CUDA thread blocks from 1 to 16. Additionally,
it shows performance when 1024 blocks are mapped to
30 streaming multiprocessors. Clearly, scalability is very
good — this machine’s phenomenal memory bandwidth
is not a bottleneck. However, the scatter plot suggests the
code is achieving nearly 100% of this algorithm’s double
precision peak flop rate while consuming better than 66%
of its memory bandwidth. Clearly, if the number of double
precision units per streaming multiprocessor were doubled,
the GTX280 could not fully exploit it.



5.6. Architectural Comparison

Figure 4(a) compares raw performance across the eval-
uated architectures. For stencil problems where the over-
head associated with copying the grid over PCIe can
be amortized (or eliminated), the GTX280 delivers 36
GFlop/s, by far the best performance among the evaluated
architectures — achieving 2.3×, 6.8×, 5.3×, and 14.3×
speedups compared with Cell, Victoria Falls, Barcelona,
and Clovertown respectively. However, for problems where
this transfer cannot be eliminated, the GPU-CPU mixed
implementation drops dramatically, achieving only 60% of
Clovertown’s relatively poor performance. In this scenario,
Cell is the clear winner, delivering speedups of 6.1×, 2.3×,
and 2.9× over the Clovertown, Barcelona, and Victoria
Falls respectively.

Figure 4(b) allows us to compare the scalability of
the various architectures. The poor scalability seen by the
high flop:byte Cell and Barcelona is easily explained by
their extremely high fractions of peak memory bandwidth
seen in Figure 4(c). Similarly, the low flop:byte GTX280’s
near perfect scalability is well explained by its limited
peak double precision performance. Unfortunately, neither
Clovertown nor Victoria Falls’ poor multicore scalability
is well explained by either memory bandwidth or in-
cache performance. Clovertown is likely unable to achieve
sufficient memory bandwidth because cache coherence
traffic consumes a substantial fraction of available FSB
bandwidth. In addition, for both Clovertown and Victoria
Falls, we do not include capacity or conflict misses when
calculating bandwidth — unlike the local-store based ar-
chitectures. As such, if either of those are high, then we
are significantly underestimating bandwidth.

We highlight that across all three cache-based machines,
the naı̈ve implementation has shown both poor scalabil-
ity and performance. In fact, for all three architectures,
the naı̈ve implementation is fastest when run at a lower
concurrency than the maximum. This is an indication
that even for this relatively simple computation, scientists
cannot rely on compiler technology to effectively utilize
the system’s resources. However, once our auto-tuning
methodology is employed, results show up to a dramatic
5.6× improvement, which was achieved on the Barcelona.

Finally, Figure 4(d) presents the stencil computational
power efficiency (MFlop/s/Watt) of our studied systems
(Table 1) — one of the most crucial issues in large-
scale computing today. The solid regions of the stacked-
bar graph represent power efficiency based on measured
total sustained system power, while the dashed region
for the GTX280 is the power for the card only. Finally,
the dotted region denotes power efficiency when only
counting each chip’s maximum TDP. This allows one to
differentiate drastically different machine configurations
and server expandability.

If (optimistically) no host transfer overhead is required,
the GTX280-based system† is more power efficient in

†. GTX280 power consumption baseline includes total system power
as well as the idle host CPU

double precision than Cell, Barcelona, Victoria Falls, and
Clovertown by an impressive 1.4×, 4.1×, 9.2×, and
10.5×, respectively. However, if (pessimistically) a CPU-
GPU PCIe roundtrip is necessary for each stencil sweep,
the GTX280 attains the worst power efficiency of the
evaluated systems, whereas Cell’s system power efficiency
exceeds the GTX280 by almost 17×, and outperforms
Barcelona, Victoria Falls, and Clovertown by 2.9×, 6.6×,
and 7.5×.

While the Cell’s and Opteron’s DDR2 DRAM consume
a relatively modest amount of power, the FBDIMMs used
in the Clovertown and Victoria Falls systems are extremely
power hungry and severely reduce the measured power
efficiency of those systems. In fact, just the FBDIMMs
used in Victoria Falls require a startling 200W; removing
a rank or a switch to unbuffered DDR2 DIMMs might
improve power efficiency by more than 16%.

6. Summary and Conclusions

This work examines optimization techniques for stencil
computations on a wide variety of multicore architectures
and demonstrates that parallelism discovery is only a
small part of the performance challenge. Of equal im-
portance is selecting from various forms of hardware
parallelism and enabling memory hierarchy optimizations,
made more challenging by the separate address spaces,
software-managed memory local-stores, and NUMA fea-
tures that appear in multicore systems today. Our work
leverages auto-tuners to enable portable, effective opti-
mization across a broad variety of chip multiprocessor ar-
chitectures, and successfully achieves the fastest multicore
stencil performance to date.

The chip multiprocessors examined in our study span
the spectrum of design trade-offs that range from repli-
cation of existing core technology (multicore) to em-
ploying large numbers of simpler cores (manycore) and
novel memory hierarchies (streaming and local-store). For
algorithms with sufficient parallelism, results show that
employing a large number of simpler processors offers
higher performance potential than small numbers of more
complex processors optimized for serial performance. This
is true both for peak performance and for performance per
watt (power efficiency). We also see substantial benefit to
novel strategies for hiding memory latency, such as using
large numbers of threads (Victoria Falls and GTX280)
and employing software controlled memories (Cell and
GTX280). However, the software control of local-store
architectures results in a difficult trade-off, since it gains
performance and power efficiency at a significant cost to
programming productivity.

Results also show that the new breed of GPGPU, exem-
plified by the NVIDIA GTX280, demonstrate substantial
performance potential if used stand alone — achieving an
impressive 36 GFlop/s in double precision for our stencil
computation. The massive memory bandwidth available
on this sytem is crucial in achieving this performance.
However, the GTX280 designers traded memory capacity



in favor of bandwidth, potentially limiting the GPGPU’s
applicability in scientific applications. Additionally, when
used as a coprocessor the performance advantage can
be substantially constrained by Amdahl’s law. The same
limitation exists for any heterogeneous architecture that is
programmed as an accelerator, but is exacerbated by the
need to copy application data structures from host memory
to accelerator memory (reminiscent of the lessons learned
on the Thinking Machines CM5).

Comparing the cache-based systems, the recently-
released Barcelona platform sustains higher performance
and power efficiency than Clovertown or Victoria Falls
for our stencil code. However, the highly multithreaded
architecture of Victoria Falls allowed it to effectively
tolerate memory transfer latency — thus requiring fewer
optimizations, and consequently less programming over-
head, to achieve high performance.

Now that power has become the primary impediment
to future performance improvements, the definition of
architectural efficiency is migrating from a notion of
“sustained performance” towards a notion of “sustained
performance per watt.” Furthermore, the shift to multicore
design reflects a more general trend in which software
is increasingly responsible for performance as hardware
becomes more diverse. As a result, architectural compar-
isons should combine performance, algorithmic variations,
productivity (at least measured by code generation and
optimization challenges), and power considerations. We
believe that our work represents a template of the kind of
architectural evaluations that are necessary to gain insight
into the tradeoffs of current and future multicore designs.

A disturbing aspect of the cache-based architectures’
performance in our study is the complete lack of multicore
scalability without auto-tuning — which may lead to a
programmer’s false impression that the architecture has
approached a performance ceiling and holds little potential
for further improvements. However, auto-tuning improves
the relatively poor per-core speedups on Barcelona and
Victoria Falls to near perfect scaling, resulting in a 5.6×
and 4.1× speedup (respectively) over the original untuned
parallel code. Although many of the techniques incorpo-
rated into our auto-tuner are ostensibly incorporated into
compiler technology, computational scientists assuming
that compilers will optimize performance of PDE solvers
on multicores — even those as simple as 3D heat equa-
tions — will be greatly disappointed. In summary, these
results highlight that auto-tuning is critically important for
unlocking the performance potential across a diverse range
of chip multiprocessors.
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