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Introduction
We consider a single-fluid diffuse interface model
to simulate surface tension effects. Parasitic flow
is a widely-faced unwanted numerical effect for
surface tension models. It is a small velocity field
caused by an unbalance between numerically cal-
culated stresses in the interfacial region[1]. In
this simulation we consider the full model in-
stead of the isothermal case, and we use a tech-
nique similar to that of [1] that completely removes
parasitic flow. We show the benchmark of this
model against Laplacian equation and its parasitic
flow removal performance, then show a droplet
breakup scenario.

Application
Our goal is to accurately simulate the droplet
breakup with a proper surface tension model. Its
application includes NDCX-II experiment and an
EUV lithography using laser heated tin droplets.

NDCX-II is an ion beam accelerator that can be used to study
warm dense matter regime For certain targets, metal droplets

are formed, requiring surface tension effects in modeling.

For EUV lithography applications, a laser prepulse
causes Sn droplets to flatten followed by main pulse,

which vaporizes the Sn producing EUV radiation.

Model
Out single fluid diffuse interface model is based on
the full(nonisothermal) Korteweg model. In con-
servation form for mass, momentum and entropy
we have
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Here S is entropy per volume, ν is viscosity coef-
ficient. K is a parameter related to the strength of
surface tension. A Van der Waals EOS closes the
system.

Numerical simulation
The main technique is similar to that of [1], but we
extend it to non-isothermal case. Instead of using
∇ρ, we use S∇T + ρ∇µ. Here T denotes temper-
ature and µ is the chemical potential. These will
make sure that total energy
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is conserved. This formulation can be derived di-
rectly from the Hamiltonian fluid mechanics. This
will produce wrong equilibrium condition in the
case with no surface tension, but only because nor-
mal Navier-Stokes equation cannot handle evapo-
ration and condensation well. We use 4th order ex-
plicit Runge-Kutta for time discretization.

Benchmark-Laplace’s equation
To benchmark the result against the Laplace’s
equation, we use a droplet surrounded by vapor of
the same material, temperature, and similar pres-
sure. Then we run the simulation until it reaches
equilibrium, recording the difference of pressure
between two sides of the interface. We measure the
actual pressure difference and compare it against
the Laplace equation δp = σ

R where σ is the surface
tension coefficient measured as in Eq. 5.

Benchmark against the Laplace’s equation. The x-axis is the
radius of droplet R, and the y-axis is the pressure difference dp.

Circle denotes the theoretical δp from Laplace’s equation,
and cross is the δp measured from simulation.

The line is δp = C/R where C is a constant for comparison.

Another test problem shows the reduction in par-
asitic flow. We run the previous simulation out to
longer time with same initial condition, comparing
the two schemes with and without parasitic flow
removal. Since parasitic flow is characterized by
a non-zero velocity, the simulation with parasitic
flow will not converge to a full equilibrium state.
Kinetic energy is used as a measure of the remnant
of the parasitic flow in the plot below.

Kinetic energy as a function of time, t. The x-axis is time,
and y-axis is the kinetic energy. Blue curve has

parasitic flows reduced, red curve is the unaltered method.
Parasitic flow remains significant even as the simulation

moves towards equilibrium in the unaltered case.

Droplet breakup simulation
Droplet breakup is simulated as example for many
other numerical models, but most of those simu-
lations has an explicitly specified external force or
shear flow that causes the breakup. In this section
we present a droplet breakup scenario caused only
by heating. We start with a droplet in vapor set-
ting as previous simulation, then heat the droplet
to a higher temperature. Depending on the tem-
perature of heated droplet, 1) if it is higher than
a threshold temperature T0, the droplet will com-
pletely evaporize; 2) if it is lower than T0, it will ex-
pand before the decrease of pressure cause it to ex-
tract back. We initialize the heated droplet to a tem-
perature with perturbation around T0, and when
it expands part of the droplet will tend to expand
and part will tend to retract. These two effects com-
bined will cause the droplet to breakup.

Sample of a droplet breakup simulation

Surface tension coefficient
Equivalent surface tension coefficient

α = K

∫ +

−
(
dρ

dz
)2dz, (5)

where z is the normal direction of the interface and
the integration is done across the interface [2]. If
we write interfacial width as ε, then α ∼ K δρ2

ε .
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