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Abstract

A growing trend in developing large and complex ap-
plications on today’s Teraflop computers is to integrate
stand-alone and/or semi-independent program components
into a comprehensive simulation package. One example
is the climate system model which consists of atmosphere,
ocean, land-surface and sea-ice. Each component is semi-
independent and has been developed at different institu-
tions. We study how this multi-component multi-executable
applicationcan run effectively on distributed memory archi-
tectures. We identify five effective execution modes and de-
velop the MPH library to support application developments
utilizing these modes. MPH performs component-name reg-
istration, resource allocation and initial component hand-
shaking in a flexible way.

Keywords: multi-component, multi-executable, compo-
nent integration, climate modeling, distributed memory ar-
chitecture.

1. Introduction

With the rapid increase in computing power of the
distributed-memory computers, clusters of Symmetric
Multi-Processors (SMP), the application problems also
grow rapidly both in scale and complexity. Effectively or-
ganizing a large and complex simulation program such that
it is maintainable, re-usable, sharable and efficient becomes
an important task for high performance computing.

Multiple component approach, as a way to organize soft-
ware, is a natural evolution for many large scale simula-
tions, such as climate modeling, engine combustion simu-
lations, and many others. For example, in modeling long-
term global climate, the Community Climate System Model
(CCSM)[5] consists of an atmosphere model, an ocean
model, a sea-ice model and a land-surface model. These
component models interact with each other through a flux

coupler component.

Quite often, program components of a application are de-
veloped by different groups in different organizations. Ef-
fective management of large scale software systems typ-
ically follows the modular approach, in which each pro-
gram component is a self-consistent, semi-independent sys-
tem. Each component communicates with other compo-
nents through a well defined interface. This approach al-
lows maximum flexibility and independence. The develop-
ers of a particular component can use whichever algorithm
and method they see fit, depending on suitability, running
time, practicality etc. This trend is well reflected in the
software industry. The prominent example is CORBA [2].
Another development along this line within the high perfor-
mance computing community is the Common Component
Architecture (CCA) project [6].

On current distributed memory computers, it remains a
cumbersome task for independent program components (or
executables) to recognize each other. This is similar to find-
ing and communicating to other processes under UNIX en-
vironment (imaging one submits several independent jobs
under UNIX and the task is for each job to detect the ex-
istence of other jobs and communicate with them.) We re-
fer to this task as handshaking. This crucial task enables
stand-alone and/or semi-independent program components
to function as a comprehensive application code/system.

In the following, we first examine several mechanisms
that allow multiple components to be integrated into a single
simulation system both in software integration and job exe-
cution. We provide several novel concepts in this direction
(Section 2). In Section 3, we design the MPH library which
facilitates the utilization of the above integration mecha-
nism. Detailed functionality of MPH is explained in Sec-
tion 4 and Section 5. Algorithms and implementations are
discussed in Section 6, and applications in Section 7. Some
related work is discussed in Section 8. Conclusion and dis-
cussions are given in Section 9.



2 Multi-Component Multi-Executable Appli-
cations on Distributed Memory Architec-
tures

In this paper, we define a program as an entire applica-
tion with proper inputs and outputs. A program may con-
sist of one or more executables (binary images); Each ex-
ecutable may consist of one or more components. Here
a component is a semi-independent code segment with its
own data and operations on them. Communication with dif-
ferent components is usually achieved through explicit data
exchange, instead of accessing a common data area. Note
that a component could be a rather large and complicated
code. In the CCSM example, atmosphere, ocean, ice, and
land are all components, each with its own data and associ-
ated functions performing relevant physical processes.

We provide a systematic study on how a multi-
component multi-executable application code can effec-
tively run on distributed memory architectures. This forms
the basis for designing the software for the component
handshaking process.

There are two interelated aspects on a multi-component
application codes running on a distributed memory com-
puter: (1) how different components are integrated into a
single application software structure; (2) how the execu-
tion modes of the application system on distributed mem-
ory computers. Several new concepts on distributed multi-
component systems are formalized here.

First, we preserve the stand-alone or semi-independent
nature of each program component. That is, these stand-
alone components are independently compiled to its own bi-
nary executable file. Depending upon some runtime param-
eter setting, each component either do a stand-alone compu-
tation, or interact with other independent executables. Thus
executables are the base units of a multi-component sim-
ulation system. Executables are not allowed to overlap on
processors, i.e, each processor or MPI process is exclusively
owned by an executable. This is dictated by the processor
sharing policy on most current HPC platforms.

Second, an executable may contain several program
components. Different components may share a global ad-
dress space. All components are written as modules and
are finally merged into one single source code. They are
compiled into a single executable. For example, an atmo-
sphere circulation model may contain air convection dy-
namics, vertical radiation and clouds physics, land-surface
modules, modules for chemical tracers such as CO � , etc.
Most current HPC applications are of this type. In these ex-
ecutables, different components may run on different pro-
cessor subsets; Some components may also share same pro-
cessor subset.

Therefore, on distributed memory computers, a multi-
component user application system may consist of several

executables, each of which could contain a number of pro-
gram components. In MPH, we systematically study the
following different possible combinations.

(1) Single-Component executable, Single-Executable
application (SCSE)

(2) Multi-Component executable, Single-Executable ap-
plication (MCSE)

(3) Single-Component executable, Multi-Executable ap-
plication (SCME)

(4) Multi-Component executable, Multi-Executable ap-
plication (MCME)

(5) Multi-Instance executable, Multi-Executable appli-
cation (MIME)
In the following, we discuss each of these modes in some
details. All these modes are supported by MPH in a unified
interface. Interfaces for each mode are discussed in Section
3.

2.1 Single-Component Executable, Single-
Executable Application (SCSE)

This is the conventional mode. The complete program
is a single component, and is compiled into a single exe-
cutable. We mention it here for completeness.

2.2 Multi-Component Executable, Single-
Executable Application (MCSE)

The entire application is contained in a single executable.
Components may run on different processor subsets. Two or
more components may also run on a same processor subset;
They will run one after another, in a sequential manner. The
widely used Parallel Climate Model (PCM) [17] uses this
mode.

All components are written as modules and are finally
merged into one single source code. There are many pro-
gramming issues associated with this tight software inte-
gration mechanism. Name conflicts have to be resolved.
Static allocation will increase unnecessary memory usage.
For example, component A on processor group A will still
allocate memory for statical allocations in module compo-
nent B which actually sits in processor group B. Data inputs
and outputs become more complicated. A large amount of
coordination must be done to ensure consistency, user in-
terface flexibility, etc. Furthermore, if one needs to create
a stand-alone version of the component, sufficient modifi-
cations (such as preprocessor ifdef ) need to be inserted.
The good feature of this approach is that the code is a sin-
gle program, a practice that is familiar to most programmer
including “beginners”. The job launching process is also
greatly simplified: it is merely launching an executable.
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2.3 Single-Component Executable, Multi-
Executable Application (SCME)

The entire application consists of several executables.
Most, if not all, current HPC platforms adopt a resource
allocation policy that does not allow two executables over-
lap on the same subset of processors. (On clusters of SMP
architectures, it is allowed that two executables reside on
one SMP node, each occupying different set of processors.)

Each executable contains a single program component.
Inside the executable, there are flags to detect if the ex-
ecutable is running in a stand-alone mode or in a joint
multi-executable environment. This integration mecha-
nism allows maximum flexibility in software developments.
Different components can use different programming lan-
guages, different internal structures and conventions, etc.
Different components do not need to know the details of
other components. They communicate with each other
through a well defined common interface, which is the only
constraint in development. CORBA takes this approach.
The first version of Climate System Model also uses this
approach. One issue with this approach is the job launching
process. On different vendor systems, the launching mech-
anisms vary slightly. But this is manageable, since there are
only a few major HPC vendors.

It is possible that the non-overlapping resource alloca-
tion policy can be modified; when that happens, however,
the entire load balance in both data distribution and task
distribution of a parallel application will become unsatis-
factory, because a processor (or an SMP node) will have
another user job that takes away CPU cycles and memory
in an unpredictable way.

2.4 Multi-Component Executable, Multi-
Executable Application (MCME)

The entire application consists of several executables,
each of which contains several component programs. Dif-
ferent executables run on different set of processors. Within
each executable, different components may or may not
overlap on processors. The number of processors allocated
to each executable is determined by the multi-executable
job launching commands. However, within each exe-
cutable, processor allocation per component is determined
by the executable, not the job launching command. This is
the most flexible and comprehensive mechanism.

The component software integration for each executable
is the same as in MCSE (Section 2.2).

2.5 Multi-Instance Executable for Ensemble sim-
ulations

Ensemble simulation is a new emerging trend in climate
modeling for assessing the uncertainties in climate predic-

tions. In ensemble simulations, identical codes are run mul-
tiple times, each time with a different set of input parame-
ters. Conventional approach is to treat the K runs as K inde-
pendent jobs. The simulation results of the K runs are then
averaged to get ensemble average. It is sometimes advan-
tageous to do the K runs simultaneously: (a) Nonlinear or-
der statistics can be computed by aggregating instantaneous
fields from K runs periodically; (b) Based on simulation re-
sults on the current K runs, the future simulation direction
can be dynamically adjusted at real time. Nonlinear statis-
tics and dynamical control cannot be done if the K runs are
performed as independent runs.

MPH provides a convenient framework to do the ensem-
ble simulations. The same executable is replicated multi-
ple times (multiple instances) on different processor sub-
sets. This enables running multiple ensembles simultane-
ously as a single job, and ensemble averaging being done
on the fly. This eliminates large data output and storage for
post-processing averaging, and enables nonlinear ensem-
ble statistics which are otherwise impossible to compute at
post-processing step.

One may use MCME for ensemble simulations by com-
piling K different executables with names such as “ocean-
1”, “ocean-2”, ..., “ocean-K”. These executables have iden-
tical source codes, except that the component names and
input/output file names are different. However, maintain-
ing K executables and keeping track of the component in-
put/output names of each executable increase the complex-
ity and thus chances of errors of a large ensemble simula-
tion. It is desirable to maintain only one executable, while
different input/output names can be passed on to different
runs in an ensemble.

3 MPH: Multiple Program-Component
Handshaking

We have identified the typical modes for multi-
components multi-executable applications in the above sec-
tion. One common critical issue in these modes is that when
different executable images are loaded onto different pro-
cessor subsets, one executable is not aware of the existence
of other executables. Each processor only knowns its own
processor ID within the entire processors allocated for this
potentially multi-executable applications.

For different executables to recognize each other, the
only way is to assign a unique name to each executable as
the identifier. We then require a process of handshaking to
set up a registry of executable names and communication
channels. On tightly coupled HPC platforms, we use MPI
communicators for high performance and portability.

A multi-component executable may contain several com-
ponents, therefore each component requires a unique com-
ponent name. With careful examination of the necessary
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steps involved, it turns out that the “executable name” is
not necessary for multi-component executables. Complete
specification of names for all components within the multi-
component executable is sufficient. Of course, the compo-
nent name on a single-component executable is sufficient
for identifying both the component and the executable. For
these reasons, we use component names throughout this pa-
per. The corresponding executable is clear by the context.
For the same reason, we call this process “component hand-
shaking”, instead of “executable handshaking”.

The MPH library is developed to handle this critical
initial components handshaking and registration process
in a distributed environment. MPH supports component
name registration, resource allocation for each component,
different execution modes as discussed in Section 2, and
standard-out redirection.

One design goal of MPH is the complete flexibility. The
number of components and executables, names of each
components, processor allocation are all determined by a
component registration file that is read in when the multi-
executable job is launched on different subsets of proces-
sors. One can easily insert or delete components from the
application system. We found that this is one important fea-
ture in climate model developments.

MPH has the following characteristics: (a) It allows flex-
ible component names. As application code is developed,
component models and their names evolve, e.g., the at-
mosphere model in CCSM changed from CCM to CAM.
Component names cannot be hardwired into the coupler.
(b) It includes several component integration mechanisms.
In the previous coupler model, each component model is
a single executable. In the related PCM (parallel climate
model), each component model is a subroutine, and all pro-
gram components are compiled into a single executable. As
CCSM evolves, a component model could have several sub-
components. Finally, ensemble simulations require yet an-
other multi-instance mechanism. (c) It has flexible resource
allocation. Processor allocation must be flexible and only
need to be specified at runtime through a simple control
mechanism. All these requirements are met by MPH. In
addition, a number of further utilities are provided as well.

4 MPH Main Interface and Functionality

A unified interface is provided for all different software
integration mechanisms (modes). Due to their varieties and
different levels of complexity, we explain the interface in
each integration mode separately. This will also serve as
concrete introduction to these new concepts of component
integration.

Since this is an application oriented software design, we
outline some of the concrete main coding examples, both
to help understand these new component integration modes

and to demonstrate the ease of use of these interfaces. One
point to bear in mind is that for a multi-component exe-
cutable, a master program is usually needed to prepare and
initiate different components on different (or overlapping)
subsets of processors. Such a master program does not ex-
ist for a single-component executable.

4.1 Single-Component Executable, Multi-
Executable Application (SCME)

In this mode, each component is a complete stand-alone
executable with a main program. It calls the shared hand-
shaking routine with an input name-tag and an output which
is a MPI communicator.

Using the climate modeling system as an example, in the
main program of atmosphere component, we call

atmosphere_World = &
MPH_components_setup (name1="atmosphere")

It is similar for “ocean”, “land”, “ice”, and “coupler” com-
ponents. The names of the components are registered in
”processors map.in” file. The order of file names are irrele-
vant.

BEGIN
atmosphere
ocean
land
ice
coupler
END

An important feature of MPH is that the name-tag is for
identifying a given component; its actual name is entirely
arbitrary. One may use ”NCAR atm”, or ”UCLA atm”, or
any other names for atmosphere component. The only nec-
essary constraint here is that the name-tags called in atmo-
sphere component must appear correctly in the registration
file. In this way, nothing is hardcoded into the implementa-
tion. Imaging that later on, one needs to insert a visualiza-
tion component to produce a movie about the simulation,
one can simply add the name-tag of the graphics into the
registration file.

4.2 Multi-Component executable, Single-
Executable application (MCSE)

In this mechanism, each component is a subroutine or a
module, but all codes are compiled into a single executable.
A master program will call the appropriate subroutine on the
appropriate subset of processors. In the master program, the
following call is made first:

exe_world = MPH_components_setup ( &
name1="atmosphere", name2="ocean", &
name3="coupler")
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This setup routine informs MPH that there will be 3 com-
ponents, with name-tags ”atmosphere”, ”ocean” and ”cou-
pler”. Here again, name-tags are arbitrary, except they must
match the ”processors map.in” file that determines which
processors are associated with which component.

Afterwards in the master program, we call

if(PROC_in_component("ocean", comm)) &
call ocean_xyz(comm)

if(PROC_in_component("atmosphere",comm)) &
call atmosphere(comm)

if(PROC_in_component("coupler",comm)) &
call coupler_abc(comm)

Note that subroutine names do not have be to the same as
the corresponding name-tags. We use ” xyz”, ” abc” etc to
emphasize this fact.

The resource allocation “processors map.in” is a user-
supplied file. It contains the list of component name-tags
and processor ranges. For example, one sample registration
file is

BEGIN
Multi_Component_Begin
atmosphere 0 15
ocean 16 31
coupler 32 35
Multi_Component_End
END

for 3 components on 36 processors (or MPI processes).
Here Multi Component Begin and
Multi Component End specify the start and end of a
multi-component executable. In this registration file, no
component overlaps with another on the same processor.

MPH allows components to overlap on their proces-
sor allocations. This feature allows more flexibility
in code structure. It is users’ responsibility to know
what is overlapping with what else, and invoke compo-
nents appropriately. One can use the logical function
PROC_in_component("ocean", ocean_comm) to
check if ”ocean” covers this processor, and obtain the cor-
rect ”ocean” communicator “ocean comm”. When sending
data to components on the overlapped processors, we rec-
ommend to use message tags to distinguish different com-
ponents.

4.3 Multi-Component Multi-Executable Applica-
tion (MCME)

This is the most flexible mode. Suppose we have the
following example that contains 3 executables: The 1st exe-
cutable has 3 components: atmosphere, land, chemistry; the
2nd executable has 2 components: ocean, ice; the 3rd exe-
cutable has a single component: coupler. Each executable
could contain up to 10 components.

On the atm-land-chem executable, we invoke MPH by

mpi_exec_world = MPH_components_setup ( &
name1="atmosphere", name2="land", &
name3="chemistry")

On the ocean-ice executable, the component is invoked as

mpi_exec_world = MPH_components_setup ( &
name1="ocean",name2="ice")

In the coupler.F file, the coupler component is invoked as

mpi_exec_world
= MPH_components_setup(name1="coupler")

The following registration file is used for this 3-
executable problem:

BEGIN
Multi_Component_Begin ! 1st multi-comp exec
atmosphere 0 15
land 0 15 ! overlap with atm
chemistry 16 19
Multi_Component_End
Multi_Component_Begin ! 2nd multi-comp exec
ocean 0 15
ice 16 31
Multi_Component_End
coupler ! a single-comp exec
END

The single-component executable with component cou-
pler is listed directly. Within the first multi-component
executable, atmosphere and land components overlap com-
pletely on processors allocations.

4.4 Multi-Instance Executable for Ensemble Sim-
ulations

Multi-instance executable is a special type of exe-
cutable. It differs from regular single-component and multi-
component executables in that this particular executable is
replicated multiple times (multiple instances) on different
processor subsets. There is no limit of the number of in-
stances in this type of executables.

A multi-instance executable is setup by invoking

Ocean_world = MPH_multi_instance("Ocean")

Note that the component name prefix ”Ocean” determines
that all instances of this executable must have component
names using this prefix.

The number of instances and specific component names
for these instances are specified in the runtime resource al-
location/registration file. An example of 3 instances could
look like this:

BEGIN
Multi_Instance_Begin ! a multi-instance exec
Ocean1 0 15 inf1 outf1 logf alpha=3 debug=on
Ocean2 16 31 inf2 outf2 beta=4.5 debug=off
Ocean3 32 47 inf3 dynamics=finite_volume
Multi_Instance_End
statistics ! a single-component exec
END
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Here Multi Instance Begin and
Multi Instance End specify the start and end of
a multi-instance executable.

Upon invocation of multi-instance executable, MPH
replicates 3 instances of “Ocean” as 3 components, on the
specified MPI processes. Each component will have the ex-
panded component names (Ocean1, Ocean2, and Ocean3)
as specified in the registration file.

In this registration file, a single-component executable
with name “statistics” is also present. This executable
is invoked as before (cf. Section 4.1); it collects in-
stantaneous fields, computes statistics and controls evolu-
tion of each “Ocean” instance. Any other mix of single-
component and/or multi-component executables may coex-
ist with multi-instance executables.

Up to 5 character strings can be appended to each line of
the instance name in the registration file. This is for pass-
ing input/output file names and parameters to the specific
instances. MPH Ensemble also provides a function inter-
face to get values for specific parameters. Examples are

call MPH_get_argument("alpha",alpha2)
call MPH_get_argument("beta",beta)
call MPH_get_argument(field_num=1,field_val=fname)

Thus alpha2 will get integer 3 if a string “alpha=3” is
present, beta will get real 4.5 if a string “beta=4.5” is
present, and fname will get string “infile3” if such a string
is in the first field. This command line argument passage
uses the function overloading feature of Fortran 90. It is
worth to note that this parameter passing feature also works
for the components of multi-component executbales.

We suggest two examples where multi-instance-
components are used. In a typical ensemble simulation ex-
ample, 4 ocean ensembles are running concurrently using
multi-instance executable, while a single-component exe-
cutable is running simultaneously collecting statistics and
controlling the evolution of different ensembles. In a global
warming scenario simulation, 3 instances of an atmospheric
model are running concurrently, each testing a different
warming scenario with different CO � emission rates, but all
couple to the same ocean circulation model which feels the
“average” effects of the atmosphere. The ocean model uses
a multi-component executable.

5 Other MPH Functionalities

5.1 Joining Two Components

Besides providing the basic handshaking, MPH also pro-
vides a number of other functionalities for the ease of com-
munication between components.

A joint communicator between any two components
could be created by a call to

comm_new = MPH_comm_join("atmosphere", "ocean")

The output comm_new communicator will contain all pro-
cessors in both components, with processors in ”atmo-
sphere” component ranked first (rank 0 - 15) and processors
in ”ocean” component ranked second (rank 16 - 23) assum-
ing atmosphere has 16 processors and ocean has 8 proces-
sors. If one reverses “atmosphere” with “ocean” in the call,
then ocean processors will rank 0 - 7 and atmosphere pro-
cessors will rank 8-23. With this joint communicator, col-
lective operations such as data redistribution could easily be
performed.

5.2 Inter-Component Communications

MPI communication between local processors and re-
mote processors (processors on other components) are in-
voked through component names and the local ID. For ex-
ample, if a processor on atmosphere wants to send Process
3 on ocean, it invokes

MPI_send(..., MPH_global_id("ocean", 3), &
MPH_Global_World,.....)

MPH_Global_World is the global communicator within
this part of the application. It will be MPI_Comm_World
for a simple multi-component application. The reason
we did not use inter-communicator is because the entire
application is assumed to run on a tightly coupled HPC
computer with a single MPI_Comm_World. An inter-
communicator would be more appropriate for a heteroge-
neous client-server environment, where CORBA or DCE
are more widely used.

5.3 Inquiry on multi-component environment

MPH also provides a set of inquiry functions to get in-
formation about the multi-component environment. At run
time, a component simply calls these subroutines to find out
the processor configuration, component-name, etc. Some
examples are:

MPH_local_proc_id()
MPH_global_proc_id()
MPH_comp_name()
MPH_total_components()
MPH_exe_up_proc_limit()
MPH_exe_low_proc_limit().

5.4 Multi-Channel Output

Suppose we have an application with five components
running. Each component normally prints out messages by
print *, write(*) for monitoring, control, diagnos-
tics, and other purposes. If nothing special is done, all these

6



messages sent to stdout will go to the session launching
terminal. The mixed output would be extremely difficult to
decipher.

The ideal solution to this problem is for each compo-
nent to write to its own output (log) file. In practice, how-
ever, there are a number of difficulties. First, file systems
on different platforms are typically very different. Some
of the parallel file system on the platform provides a “log”
mode, i.e., writes from different processors will be buffered
and appended in some (random) order, such as PFS on Intel
Paragon (without this “log” mode, in the usual ”unformat-
ted” mode, different writes could over-write each other and
cause error conditions). In these cases, we need to modify
these print *, write(*) statements and file open
statements to achieve the desired effects. However, many
existing components contain very large number of these
statements which will be very time-consuming to modify.
We need to find a way to do this automatically.

On many file systems, such as IBM SP’s GPFS, there
is no such “log” mode. Although MPI-IO [9] does sup-
port the ”log” mode, the write statement syntax in MPIO
is sufficiently different from print *, write(*) that
makes a simple script-based automatic preprocessing diffi-
cult. (We emphasize here that the stdout on IBM SP does
support buffered I/O, similar to “log” mode; but it supports
only one such I/O stream, not multiplestdout streams for
multi-executable jobs; that is the difficulty).

MPH resolves this difficulty by redirecting the stdout.
Typically, local processor 0 of each component is responsi-
ble for print out messages. The stdout for this processor
can be redirected by

MPH_redirect_output(component_name)

and the output messages from each component will go to
component_name.log file. All other occasional writes
from all other processors are stored in one combined stan-
dard output file. The log file names of those components are
defined by run time environment variables either in com-
mand line or in batch run script.

6 Algorithms and Implementation for MPH

Most applications currently running on HPC platforms
are still single executable codes, so multi-executable jobs
as discussed in this paper are at present a minority of ap-
plications. But the number of multi-executable jobs are in-
creasing as the size and complexity of the “grand challenge”
problems being solved on current large scale computers
grow. It is important to understand this multi-executable
job environment for the implementation of MPH.

Currently, all major HPC platforms support multi-
executable jobs using an MPP-run like command. For ex-
ample, on IBM SP, we use the MPMD mode, “-pgmmodel

mpmd” to launch such a job. Different executables are spec-
ified in a command file using “-cmdfile”. Similar com-
mands exist for Compaq Alpha clusters, and SGI Origin
(detailed launching commands for each platform are de-
scribed in details in test examples available online [7]).

Behind the seemingly different job launching commands
on different platforms, the internal system environments are
identical. When a job with

�
executables starts on the

specified processor domains, all executables share the same
MPI_Comm_World, but with different logical processor
IDs (MPI process IDs on cluster of SMP architectures).
How the processor IDs are assigned to each executable de-
pends on the job launching commands. Since no executable
can overlap on same processors, the processor ID assign-
ments are unique.

However, when a job is launched, besides the single
global MPI communicator for MPI_Comm_World, no
other MPI communicators are formed (for individual ex-
ecutables); each processor does not know which executa-
bles are loaded onto other processors. MPH establishes the
multi-component multi-executable environment by first cre-
ating local communicators for each component. This task
depends crucially on the fact that each component has a
unique component-name provided by the run-time registra-
tion file.

It is important to distinguish executables from compo-
nents. A single-component executable has one component,
thus its communicator is unique. A multi-component exe-
cutable has several components, and its components could
overlap on processor subsets. We first describe MPH im-
plementation for single-component executables. Later we
describe it for multi-component executables.

(1) Single-Component Executable Handshaking
Upon startup, the information in the registration file is

read by the root processor (global Processor ID = 0) and
broadcast to all processors. Based on the number of ex-
ecutables (number of components), each executable ob-
tains a unique component id. Using this component id
as “color”, MPH calls MPI_Comm_Split() to split
MPI_Comm_World into non-overlapping local commu-
nicators, each covering exactly the appropriate processor-
subset for the component.

Once component communicators are established, infor-
mation exchange between different components can be con-
veniently handled by the rank-0 processors in each compo-
nent. Furthermore, two components can be joined by merg-
ing their communicators.

(2) Multi-Component Executable Handshaking
If the components within each executable are non-

overlapping (on processors), all components can be estab-
lished using a single invocation of MPI_Comm_Split()
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to split the current communicator for the executable into
communicators one for each component.

MPH allows different components within an executable
to partially or completely overlap on processors. (This al-
lows a single unified user interface for all five software inte-
gration modes). In these cases, we create component com-
municators by repeatedly invoking MPI_Comm_Split,
creating one component communicator at a time.

The codes are written in Fortran 90 for supporting
CCSM development at present. We plan to create a C++
version later.

7 Applications

The development of the MPH library is primarily mo-
tivated by the Community Climate System Model (CCSM)
development, as mentioned earlier. The large number of dif-
ferent components in CCSM, including atmosphere, ocean,
land, ice, flux coupler and many other potential components
such as biochemistry, require a general purpose handshak-
ing library to setup the distributed multi-component envi-
ronment.

MPH is an application driven software development.
MPH version 1 is first developed for the single-component
multi-executable mode (see Sections 2.3 and 3.3) for the
CCSM model, MPH version 2 for the multi-component
single-executable mode (see Sections 2.2 and 3.2) for the
PCM model. MPH version 3 is developed for the multi-
component multi-executable mode (see Sections 2.4 and
3.4) to provide a unified user interface for MPH1 and
MPH2. The multi-instance-component and the command
line argument passing (discussed in Section 3.4) is imple-
mented in MPH version 4 to support climate ensemble sim-
ulations, a new emerging trend to ascertain the uncertainty
in climate predictions.

Currently, all MPH functionalities are working on IBM
SP, SGI Origin, Compaq AlphaSC, and Linux clusters.
Source codes and instructions on how to compile and run
on all these platforms are publicly available on our MPH
web site [7].

MPH has been adopted in CCSM development[5].
CCSM is the U.S. flag-ship coupled climate model system
most widely used in long-term climate system modeling
in the U.S. MPH is adopted in NCAR’s Weather Research
and Forecast (WRF) model [18], the new generation of the
mesoscale model (MM5) [15]. Many countries use MM5
for their regional mid-range weather/climate forecast. MPH
is also adopted in Colorado State University’s geodesic grid
coupled model[3]. A Model Coupling Toolkit [13] for com-
munication between different component models also uses
MPH.

8 Generally Related Software systems

The development of MPH for climate/weather modeling
community is driven by the component software trend as
represented by CORBA and CCA. MPH, in turn, further
promotes this trend in climate model and other scientific
software developments.

There are other software development trends that empha-
size completeness of the software system. Here we mention
two popular types. A framework paradigm defines most
common data and software structures and provides full-
feature functionality, which goes much beyond pure inter-
face. Some examples are PETSc [1], POOMA [16], ESMF
[12], and CACTUS [4] to name a few. Another type is the
Problem Solving Environment, which essentially defines all
the structures and skeleton codes for solving many different
problems within a clearly defined special domain, such as
Purdue PSEs [11], ASCI PSE [14], or even more focused on
special area such as NWChem [10]. However, our approach
is on developing complex simulation packages that utilize
stand-alone or semi-independent components which are not
necessarily developed by same group or institution. Build-
ing a comprehensive application system utilizing (and mod-
ifying) existing codes developed by different groups is one
of the standard development approaches. MPH can be used
as a part of these systems for multi-component/executable
handshaking.

9 Summary and Discussions

We describe the rational, functionality and implemen-
tation of MPH for integrating stand-alone and/or semi-
independent program components into a comprehensive
simulation system. On today’s Teraflop computers, as the
problems being attacked become ever larger and complex,
this software development approach becomes necessary.
The development of MPH for climate/weather modeling
community is driven by this trend which in turn further pro-
motes this trend.

We have systematically studied practical modes that a
multi-executable application code can be effectively exe-
cuted on current major HPC platforms. The resulting five
modes are discussed in details in Sections 2 and 3. These
form the basis that MPH is developed to support them by
providing a simple, flexible and unified interface for inte-
grating independent program components together. With
convenient MPH testing codes, compile/run scripts on all
major platforms, this work also promotes the use of the
multi-component multi-executable approach in the climate
modeling software developments.

MPH handles the critical task of helping each stand-
alone component-model executable to recognize the exis-
tence of other components within CCSM and getting neces-
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sary processor information. MPH provides several possible
independent component integration mechanisms. It allows
component model processor geometries to be specified in a
small input file. It also provides facilities for standard out
redirection and joining of MPI communicators.

Some further work of component integration mecha-
nisms of MPH are: (a) flexible way to handle SMP nodes,
i.e., recognizing a 16-cpu SMP node could be carved into
different number of MPI tasks; (b) dynamic component
model processor allocation or migration; (c) an extension
of MPH to do model integration over the grid; and (d) a
C/C++ version of MPH.

We hope that the multi-component multi-executable
approach for large and comprehensive applications de-
scribed here will help and motive HPC vendors to de-
velop/implement more useful user interface for this type of
applications.
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