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Abstract

A growing trend in developing large and complex applications on today’s Teraflop scale
computers is to integrate stand-alone and/or semi-independent program components into a
comprehensive simulation package. One example is the Community Climate System Model
which consists of atmosphere, ocean, land-surface and sea-ice components. Each component
is semi-independent and has been developed at a different institution. We study how this
multi-component, multi-executable application can run effectively on distributed memory ar-
chitectures. For the first time, we clearly identify five effective execution modes and develop
the MPH library to support application development utilizing these modes. MPH performs
component-name registration, resource allocation and initial component handshaking in a flex-
ible way.

Keywords: multi-component, multi-executable, component integration, distributed memory
architecture, climate modeling, CCSM, PCM.

1 Introduction

With rapid increase in computing power of distributed-memory computers, and clusters of Sym-
metric Multi-Processors (SMP) application problems grow rapidly both in scale and complexity.
Effectively organizing a large and complex simulation program so that it is maintainable, re-usable,
sharable and efficient becomes an important task for high performance computing. Building a
comprehensive application system utilizing (and modifying) existing codes developed by different
groups is a standard development approach.

Component-based software engineering (CBSE) is an emerging trend for software develop-
ment in both research and applications. Effective management of large-scale software systems
typically follows the modular approach, in which each program component is a self-consistent,
semi-independent system. In this context, “component” is defined as a unit of software program
that has its own functionality. Each component communicates with other components through
well-defined interfaces. It provides services through export interfaces, and uses other components’
services through import interfaces. This approach allows maximum flexibility and independence.
The developers of a particular component can use whichever algorithm and method they see fit,
depending on suitability, running time, and practicality etc.



Quite often, program components of many large-scale applications, such as climate modeling,
engine combustion simulations, chemistry applications, optimization problems, and many others,
are developed by different groups in different organizations. Each component has either distinct
physics or utilizes a distinct numerical algorithm. For example, in modeling long-term global
climate, the Community Climate System Model (CCSM)[10] consists of an atmosphere model, an
ocean model, a sea-ice model and a land-surface model. These component models interact with
each other through a flux coupler component (Figure 1). The atmosphere model itself includes a
dynamics subcomponent and a physics subcomponent.
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Figure 1: The schematic illustration of model components for a coupled climate model. Within
MPH, any component can talk to any other component directly. In the Community Climate
System Model (CCSM), all components communicate through a flux-coupler.

On current distributed memory computers, it remains a cumbersome task for independent
program components (or executables) to recognize each other. This is similar to finding and
communicating to other processes under the UNIX environment (imagine one submits several
independent jobs under UNIX and the task is for each job to detect the existence of other jobs and
communicate with them.) We refer to this task as handshaking. This crucial task enables stand-
alone and/or semi-independent program components to function as a comprehensive application
code/system.

Our work focus is on building a comprehensive computational code integrating several (semi-)
independent domain-specific codes. The coupled climate system is the motivating example. The
development of a MPH (Multi-Program Component Handshaking) library for the climate/weather
modeling community is driven by the component software trend as represented by CORBA [8],
and the Common Component Architecture (CCA) project [11, 2] (see Section 8 for details). MPH,
in turn, further promotes this trend in climate model and other scientific software developments.
MPH can be used as a part of these systems for multi-component/executable handshaking.

There are a large number of projects and software development to make parallel High Per-
formance Computing (HPC) more suitable for component-based application code development.
They are outlined in Section 8. Among these, NASA’s Earth System Models Framework (ESMF)
[22] is more closely related to the target application of MPH.

In the following, we first examine several mechanisms that allow multiple components to
be integrated into a single simulation system both in software integration and job execution.
We provide several novel concepts in this direction (Section 2). In Section 3, we design the MPH
library that facilitates the utilization of the above integration mechanism. Detailed functionalities
of MPH are explained in Section 4 and Section 5. Algorithms and implementations are discussed
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in Section 6, and applications in Section 7. Related work is presented in Section 8. Summary
and discussion are given in Section 9. A preliminary result of this work was presented at the
European Centre for Medium-Range Weather Forcasts (ECMWF) workshop on high performance
computing[14].

2 Multi-Component Multi-Executable Applications on Distrib-

uted Memory Architectures

In this paper, we define a program as an entire application with proper inputs and outputs. A
program may consist of one or more executables (binary images). Each executable may consist
of one or more components. Here a component is a semi-independent code segment with its own
data and functions upon them. Communication with different components is usually achieved
through explicit data exchange, instead of accessing a common data area. Note that a component
could be a rather large and complicated code. In the CCSM example, atmosphere, ocean, ice,
and land are all components, each with its own data and associated functions performing relevant
physical processes.

We provide a systematic study on how a multi-component multi-executable application code
can effectively run on distributed memory architectures. This forms the basis for designing the
software for the component handshaking process.

There are two interrelated aspects of multi-component application codes running on a distrib-
uted memory computer: (1) How different components are integrated into a single application
software structure; (2) What are the execution modes of the application system on distributed
memory computers. Several new concepts on distributed multi-component systems are formalized
here.

First, we preserve the stand-alone or semi-independent nature of each program component.
That is, these stand-alone components are independently compiled to its own binary executable
file. Depending upon some runtime parameter setting, each component either does a stand-alone
computation, or interacts with other independent executables. Thus executables are the base units
of a multi-component simulation system. Executables are not allowed to overlap on processors,
i.e, each processor or MPI process is exclusively owned by an executable. This is dictated by the
processor sharing policy on most current HPC platforms.

Second, an executable may contain several program components. Different components may
share a global address space. All components are written as modules. They are compiled into a
single executable. For example, an atmosphere circulation model may contain air convection dy-
namics, vertical radiation and clouds physics, land-surface modules, modules for chemical tracers
such as CO2, etc. Most current HPC applications are of this type. In these executables, different
components may run on different processor subsets. Some components may also share the same
processor subset.

Therefore, on distributed memory computers, a multi-component user application system may
consist of several executables, each of which could contain a number of program components. In
MPH, we systematically identify and study the following different possible combinations.

(1) Single-Component Executable, Single-Executable Application (SCSE)
(2) Multi-Component Executable, Single-Executable Application (MCSE)
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(3) Single-Component Executable, Multi-Executable Application (SCME)
(4) Multi-Component Executable, Multi-Executable Application (MCME)
(5) Multi-Instance Executable, Multi-Executable Aapplication (MIME)

In the following, we discuss each of these modes in some details. All of these modes are supported
by MPH in a unified interface. Interfaces for each mode are discussed in Section 3.

2.1 Single-Component Executable, Single-Executable Application (SCSE)

This is the conventional mode. The complete program is a single component, and is compiled
into a single executable. We mention it here for completeness.

2.2 Multi-Component Executable, Single-Executable Application (MCSE)

The entire application is contained in a single executable. Components may run on different
processor subsets. Two or more components may also run on a same processor subset. They will
run one after another, in a sequential manner. For example, Parallel Climate Model (PCM) [31]
uses this mode.

All components are written as modules and are finally merged into one single source code.
There are many programming issues associated with this tight software integration mechanism.
Name conflicts have to be resolved. Static allocation will increase unnecessary memory usage. For
example, component A on processor group A will still allocate memory for static allocations in
module component B which actually sits in processor group B. Data inputs and outputs become
more complicated. A large amount of coordination must be done to ensure consistency, user inter-
face flexibility, etc. Furthermore, if one needs to create a stand-alone version of the component,
sufficient modifications (such as preprocessor ifdef) need to be inserted. The good feature of
this approach is that the code is a single program, a practice that is familiar to most programmer
including “beginners”. The job launching process is also greatly simplified: it is merely launching
an executable.

Please see detailed examples of MCSE in Section 4.1.

2.3 Single-Component Executable, Multi-Executable Application (SCME)

The entire application consists of several executables. Most, if not all, current HPC platforms
adopt a resource allocation policy that does not allow two executables to overlap on the same
subset of processors. (On clusters of SMP architectures, it is allowed that two executables reside
on one SMP node, each occupying a different set of processors.)

Each executable contains a single program component. Inside the executable, there are flags
to detect if the executable is running in a stand-alone mode or in a joint multi-executable environ-
ment. This integration mechanism allows maximum flexibility in software development. Different
components can use different programming languages, different internal structures, conventions,
etc. Different components do not need to know the details of other components. They commu-
nicate with each other through a well defined common interface, which is the only development
constraint. CORBA takes this approach. The first version of the Community Climate System
Model also uses this approach. One issue with this approach is the job launching process. On
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different vendor systems, the launching mechanisms vary slightly. But this is manageable, since
there are only a few major HPC vendors.

It is possible that the non-overlapping resource allocation policy can be modified. When that
happens, however, the entire load balance, in both data distribution and task distribution, of a
parallel application will become unsatisfactory, because a processor (or an SMP node) will have
another user job that takes away CPU cycles and memory in an unpredictable way.

Please see detailed examples of SCME in Section 4.2.

2.4 Multi-Component Executable, Multi-Executable Application (MCME)

The entire application consists of several executables, each of which contains several component
programs. Different executables run on different set of processors. Within each executable,
different components may or may not overlap on processors. The number of processors allocated
to each executable is determined by the multi-executable job launching commands. However,
within each executable, processor allocation per component is determined by the executable, not
the job launching command. This is the most flexible and comprehensive mechanism. Both MCSE
and SCME could be viewed as special cases of MCME.

The component software integration for each executable is the same as in MCSE (Section 2.2).
Please see detailed examples of MCME in Section 4.3.

2.5 Multi-Instance Executable for Ensemble simulations (MIME)

Ensemble simulation is used frequently in climate modeling for assessing the uncertainties in
climate predictions. In ensemble simulations, identical codes are run multiple times, each time
with a different set of input parameters. The conventional approach is to treat K runs as K
independent jobs. The simulation results of the K runs are then averaged to get an ensemble
average. It is sometimes advantageous to do the K runs simultaneously: (a) Nonlinear order
statistics can be computed by aggregating instantaneous fields from K runs periodically; (b) Based
on simulation results on the current K runs, the future simulation direction can be dynamically
adjusted in real time. Nonlinear statistics and dynamical control cannot be done if the K runs
are performed as independent runs.

MPH provides a convenient framework to do the ensemble simulations. The same executable
is replicated multiple times (multiple instances) on different processor subsets. This enables
running ensembles simultaneously as a single job, and ensemble averaging being done on the fly.
This eliminates large data output and storage for post-processing averaging, and enables nonlinear
ensemble statistics which are otherwise impossible to compute as a post-processing step.

One may use MCME for ensemble simulations by compiling K different executables with
names such as “ocean-1”, “ocean-2”, ..., “ocean-K”. These executables have identical source
codes, except that the component names and input/output file names are different. However,
maintaining K executables and keeping track of the component input/output names of each
executable increase the complexity and thus chances of errors of a large ensemble simulation. It
is desirable to maintain only one executable, while different input/output names can be passed
on to different runs in an ensemble.

Please see detailed examples of MIME in Section 4.4.
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3 MPH: Multiple Program-Component Handshaking

We have identified the typical modes for multi-components multi-executable applications in the
above section. One common critical issue in these modes is that when different executable images
are loaded onto different processor subsets, each executable is not aware of the existence of the
other executables. Each processor only knows its own processor ID within the world of processors
allocated for this potentially multi-executable application.

For different executables to recognize each other, the only way is to assign a unique name to
each executable as the identifier. We then require a process of handshaking to set up a registry of
executable names and communication channels. On tightly coupled HPC platforms, we use MPI
communicators for high performance and portability.

A multi-component executable may contain several components, therefore each component
requires a unique component name. With careful examination of the necessary steps involved, it
turns out that the “executable name” is not necessary for multi-component executables. Complete
specification of names for all components within the multi-component executable is sufficient. Of
course, the component name on a single-component executable is sufficient for identifying both
the component and the executable. For these reasons, we use component names throughout this
paper. The corresponding executable is clear by the context. For the same reason, we call this
process “component handshaking”, instead of “executable handshaking”.

The MPH library is developed to handle this critical initial component handshaking and
registration process in a distributed environment. MPH supports component name registration,
resource allocation for each component, different execution modes as discussed in Section 2, and
standard-out redirection.

One design goal of MPH is complete flexibility. The number of components and executables,
names of each component, and processor allocation are all determined by a component registration
file that is read in when the multi-executable job is launched on different subsets of processors.
One can easily insert or delete components from the application system. We found that this is an
important feature in climate model development.

MPH has the following characteristics: (a) It allows flexible component names. As applica-
tion code is developed, component models and their names evolve, e.g., the atmosphere model in
CCSM changed from CCM to CAM. Component names cannot be hardwired into the coupler.
(b) It includes several component integration mechanisms. In the previous coupler model, each
component model is a single executable. In the related PCM (Parallel Climate Model), each com-
ponent model is a subroutine, and all program components are compiled into a single executable.
As CCSM evolves, a component model could have several sub-components. Finally, ensemble
simulations require yet another multi-instance mechanism. (c) It has flexible resource allocation.
Processor allocation must be flexible and only need to be specified at runtime through a simple
control mechanism. In addition, a few further utilities are provided as well.

4 MPH Main Interface and Functionality

A unified interface is provided for all the different software integration mechanisms (modes). Due
to their varieties and different levels of complexity, we explain the interface in each integration
mode separately. This will also serve as a concrete introduction to these new concepts of compo-
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nent integration.
Since this is an application oriented software design, we outline some of the concrete main

coding examples, both to help understand these new component integration modes and to demon-
strate the ease of use of these interfaces. One point to bear in mind is that for a multi-component
executable, a master program is usually needed to prepare and initiate different components on
different (or overlapping) subsets of processors. Such a master program does not need to exist for
a single-component executable.

4.1 Multi-Component Executable, Single-Executable Application (MCSE)

In this mechanism, each component is a subroutine or a module, but all codes are compiled into
a single executable. A master program will call the appropriate subroutine on the appropriate
subset of processors. Using a climate system model as an example, in the master program, the
following call is made first:

exe_world = MPH_components_setup (name1="atmosphere",
& name2="ocean", name3="coupler")

This setup routine informs MPH that there will be 3 components, with name-tags “at-
mosphere”, “ocean” and “coupler”. Here again, name-tags are arbitrary, except they must match
the “processors map.in” file that determines which processors are associated with which compo-
nent.

Afterwards in the master program, we call

if(PROC_in_component("ocean", comm)) call ocean_xyz(comm)
if(PROC_in_component("atmosphere",comm)) call atmosphere(comm)
if(PROC_in_component("coupler",comm)) call coupler_abc(comm)

Note that subroutine names do not have be to the same as the corresponding name-tags. We use
“ xyz”, “ abc” etc. to emphasize this fact.

The resource allocation “processors map.in” is a user-supplied file. It contains the list of
component name-tags and processor ranges. For example, one sample registration file is

BEGIN
Multi_Component_Begin
atmosphere 0 15
ocean 16 31
coupler 32 35
Multi_Component_End
END

for 3 components on 36 processors (or MPI processes). Here Multi Component Begin and
Multi Component End specify the start and end of a multi-component executable. In this regis-
tration file, no component overlaps with another on the same processor.

MPH allows components to overlap their processor allocations. This feature allows more flex-
ibility in code structure. It is the users’ responsibility to know what is overlapping with what else,
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and invoke components appropriately. One can use the logical function PROC_in_component("ocean",
ocean_comm) to check if “ocean” covers this processor, and obtain the correct “ocean” commu-
nicator, “ocean comm”. When sending data to components on the overlapped processors, we
recommend using message tags to distinguish different components.

4.2 Single-Component Executable, Multi-Executable Application (SCME)

In this mode, each component is a complete stand-alone executable with a main program. It calls
the shared handshaking routine with an input name-tag and returns the MPI communicator for
the component.

For example, in the main program of an atmosphere component, we call

atmosphere_World = MPH_components_setup (name1="atmosphere")

It is similar for “ocean”, “land”, “ice”, and “coupler” components. The names of the components
are registered in “processors map.in” file. The order of file names is irrelevant.

BEGIN
atmosphere
ocean
land
ice
coupler
END

An important feature of MPH is the name-tag for identifying a given component. Its actual
name is entirely arbitrary. One may use “NCAR atm”, or “UCLA atm”, or any other names
for atmosphere component. The only necessary constraint here is that the name-tags used in
the atmosphere component must appear correctly in the registration file. In this way, nothing is
hard-coded into the implementation. Imaging that later on, one needs to insert a visualization
component to produce a movie about the simulation, one can simply add the name-tag of the
graphics component into the registration file.

4.3 Multi-Component Executable, Multi-Executable Application (MCME)

This is the most flexible of the modes described in Section 2. Suppose we have the following
example that contains 3 executables: The 1st executable has 3 components: atmosphere, land,
chemistry; the 2nd executable has 2 components: ocean, ice; the 3rd executable has a single
component: coupler. Each executable could contain up to 10 components.

In the atm-land-chem executable, we invoke MPH by

atm_land_chem_world = MPH_components_setup(name1="atmosphere",
& name2="land", name3="chemistry")

In the ocean-ice executable, the component is invoked as

ocean_ice_world = MPH_components_setup(name1="ocean",name2="ice"),
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In the coupler.F file, the coupler component is invoked as

coupler_world = MPH_components_setup(name1="coupler")

The following registration file is used for this 3-executable problem:

BEGIN
Multi_Component_Begin ! first multi-component executable
atmosphere 0 15
land 0 15 ! overlap with atmosphere
chemistry 16 19
Multi_Component_End
Multi_Component_Begin ! second multi-component executable
ocean 0 15
ice 16 31
Multi_Component_End
coupler ! a single-component executable
END

The single-component executable with component coupler is listed directly. Within the first
multi-component executable, atmosphere and land components overlap completely on processor
allocation.

4.4 Multi-Instance Executable for Ensemble Simulations (MIME)

A multi-instance executable is a special type of executable. It differs from regular single-component
and multi-component executables in that this particular executable is replicated multiple times
(multiple instances) on different processor subsets. There is no limit to the number of instances
in this type of executable.

A multi-instance executable is setup by invoking

Ocean_world = MPH_multi_instance("Ocean")

Note that the component name prefix “Ocean” determines that all instances of this executable
must have component names using this prefix.

The number of instances and specific component names for these instances are specified in the
runtime resource allocation/registration file. An example of 3 instances could look like this:

BEGIN
Multi_Instance_Begin ! a multi-instance executable
Ocean1 0 15 infile_1 outfile_1 logfile_1 alpha=3 debug=off
Ocean2 16 31 infile_2 outfile_2 beta=4.5 debug=on
Ocean3 32 47 infile_3 dynamics=finite_volume
Multi_Instance_End
statistics ! a single-component executable
END
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Here Multi Instance Begin and Multi Instance End specify the start and end of a multi-
instance executable.

Upon invocation of the multi-instance executable, MPH replicates 3 instances of “Ocean” as 3
components, on the specified MPI processes. Each component will have the expanded component
names (Ocean1, Ocean2, and Ocean3) as specified in the registration file.

In this registration file, a single-component executable with name “statistics” is also present.
This executable is invoked as

statistics_world = MPH_components_setup(name1="statistics")

It collects instantaneous fields, computes statistics and controls evolution of each “Ocean” in-
stance. Any other mix of single-component and/or multi-component executables may coexist
with multi-instance executables.

Up to 5 character strings (separated by white spaces) can be appended at the end of each
line of the instances in the registration file. This is for passing input/output file names and
parameters to the specific instances. MPH also provides a function interface to get values for
specific parameters. Examples are

call MPH_get_argument("alpha",alpha2)
call MPH_get_argument("beta",beta)
call MPH_get_argument(field_num=1,field_val=filename)

Thus alpha2 will get the value integer 3 if a string “alpha=3” is present, beta will get the value
real 4.5 if a string “beta=4.5” is present, and filename will get string “infile 3” if such a string
is in the first field. This command line argument passage uses the function overloading feature of
Fortran 90. It is worth noting that this parameter passing feature also works for the components
of multi-component executables.

We suggest two examples where multi-instance-components could be used. In a typical en-
semble simulation example, 4 ocean ensembles are running concurrently using a multi-instance
executable, while a single-component executable is running simultaneously collecting statistics
and controlling the evolution of different ensembles. In a global warming scenario simulation,
3 instances of an atmospheric model are running concurrently, each testing a different warming
scenario with different CO2 emission rates, but all couple to the same ocean circulation model
which feels the “average” effects of the atmosphere. The ocean model uses a multi-component
executable.

5 Other MPH Functionalities

5.1 Joining Two Components

Besides providing the basic handshaking, MPH also provides a number of other functionalities for
the ease of communication between components.

A joint communicator between any two components could be created by

call MPH_comm_join("atmosphere", "ocean", comm_joined)
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The output, comm_joined communicator, will contain all processors in both components, with
processors in the “atmosphere” component ranked first (rank 0 - 15) and processors in the “ocean”
component ranked second (rank 16 - 23) assuming the atmosphere has 16 processors and the ocean
has 8 processors. If one reverses “atmosphere” with “ocean” in the call, then the ocean processors
will rank 0 - 7 and the atmosphere processors will rank 8-23 in the comm_joined communicator.
With this joint communicator, collective operations such as data redistribution could easily be
performed.

5.2 Inter-Component Communications

MPI communication between local processors and remote processors (processors on other com-
ponents) are invoked through component names and the local ID. For example, if a processor on
atmosphere wants to send data to ocean processor 3, it invokes

MPI_send(..., MPH_global_id("ocean", 3), MPH_Global_World,.....)

MPH_Global_World is the global communicator within this part of the application. It is the same
as MPI_Comm_World for a simple multi-component application. The reason we did not use an
inter-communicator is because the entire application is assumed to run on a tightly coupled HPC
computer with a single MPI_Comm_World. An inter-communicator would be more appropriate for
a heterogeneous client-server environment, where CORBA or DCE is more widely used.

5.3 Inquiry about multi-component environment

MPH also provides a set of inquiry functions to get information about the multi-component
environment. At run time, a component simply calls these subroutines to find out the processor
configuration, component-name, etc. Some examples are:

MPH_local_proc_id(): find local processor id in a component.
MPH_global_proc_id(): find global processor id.
MPH_comp_name(cid): find component name given component id.
MPH_total_components(): find number of total components.
MPH_exe_up_proc_limit(): find lower processor limit of a component

in the executable world given component id.

5.4 Multi-Channel Output

Suppose we have an application with five components running. Each component normally prints
out messages by print *, write(*) for monitoring, control, diagnostics, and other purposes. If
nothing special is done, all of these messages to stdout will go to the session launching terminal.
The mixed output would be extremely difficult to decipher.

The ideal solution to this problem is for each component to write to its own output (log) file.
In practice, however, there are a number of difficulties. First, file systems on different platforms
are typically very different. Some of the parallel file systems provide a “log” mode, i.e., writes
from different processors will be buffered and appended in some (random) order, such as Parallel
File System (PFS) on Intel Paragon (without this “log” mode, in the usual “unformatted” mode,
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different writes could over-write each other and cause error conditions). In these cases, we need
to modify these print *, write(*) statements and file open statements to achieve the desired
effects. However, many existing components contain very large number of these statements which
will be very time-consuming to modify. We need to find a way to do this automatically.

On other file systems, such as IBM SP’s General Parallel File System (GPFS), there is no
such “log” mode. Although MPI-IO [17] does support the “log” mode, the write statement
syntax in MPIO is sufficiently different from print *, write(*) that makes a simple script-
based automatic preprocessing difficult. (We emphasize here that the stdout on the IBM SP
does support buffered I/O, similar to “log” mode, but it supports only one such I/O stream, not
multiple stdout streams for multi-executable jobs.)

MPH resolves this difficulty by redirecting the stdout. Typically, local processor 0 of each
component is responsible for print output messages. The stdout for this processor can be redi-
rected by

call MPH_redirect_output(component_name)

and the output messages from each component will go to component_name.log file. All other
occasional writes from all other processors are stored in one combined standard output file. The
log file names of those components are defined by run time environment variables either in a
command line or in a batch run script.

6 Algorithms and Implementation for MPH

Most applications currently running on HPC platforms are still single executable codes, so multi-
executable jobs as discussed in this paper are presently a minority of applications. But the
number of multi-executable applications are increasing as the size and complexity of the “Grand
Challenge” problems grow. It is important to understand this multi-executable job environment
for the implementation of MPH.

Currently, all major HPC platforms support multi-executable jobs using an MPP-run like
command. For example, on IBM SP, we use the MPMD (Multi Program Multa Data) mode,
“-pgmmodel mpmd” to launch such a job. Different executables are specified in a command
file using “-cmdfile”. Similar commands exist for HP AlphaServer SC and SGI Origin (detailed
launching commands for each platform are described in details in test examples available online
[13]).

Behind the seemingly different job launching commands on different platforms, the internal
system environments are identical. When a job with K executables is launched on the specified
SMP node and processor domains, all executables share the same MPI_Comm_World, but with
different logical processor IDs (MPI process IDs on a cluster of SMP architectures). How the
processor IDs are assigned to each executable depends on the job launching commands. Since no
executable can overlap on the same processors, the processor ID assignments are unique.

However, when a job is launched, only the single global MPI communicator for MPI_Comm_World
is created, no other MPI communicators are formed (for individual executables). Each processor
does not know which executables are loaded onto other processors. MPH establishes the multi-
component multi-executable environment by first creating local communicators for each compo-
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nent. This task depends crucially on the fact that each component has a unique component-name
provided by the run-time registration file, as explained in Section 4.

It is important to distinguish executables from components. A single-component executable
has one component, thus its communicator is unique. A multi-component executable has several
components, and its components could overlap on processor subsets. We first describe MPH im-
plementation for single-component executables. Later we describe the implementation for multi-
component executables.

(1) Single-Component Executable Handshaking
Upon startup, the information in the registration file is read by the root processor (global

Processor ID = 0) and broadcast to all processors. Now every processor knows how many num-
ber of executables (number of components) in the entire application. Different executables differ
because they have unique component “names”. Each name is then mapped into a sequential
number, a unique component id. Now processors allocated to the same executable will obtain
the same component id. Thus, processors allocated to different executables will have differ-
ent component ids. Using this component id as “color”, MPH calls MPI_Comm_Split() to split
MPI_Comm_World into non-overlapping local communicators, each covering exactly the appropriate
processor-subset for the component.

Once component communicators are established, information exchange between different com-
ponents can be conveniently handled by the rank-0 processors in each component. Furthermore,
two components can be joined by merging their communicators.

(2) Multi-Component Executable Handshaking
If the components within each executable are non-overlapping (on processors), all components

can be established using a single invocation of MPI_Comm_Split() to split the current communi-
cator for the executable into communicators, one for each component.

MPH allows different components within an executable to partially or completely overlap on
processors. (This allows a single unified user interface for all five software integration modes). In
this case, we create component communicators by repeatedly invoking MPI_Comm_Split, creating
one component communicator at a time. This order-C (C is the total number of components)
strategy is partially dictated by the restriction for invoking MPI_Comm_Split that all processors
must participate.

The codes are written in Fortran 90 for supporting CCSM development at present. We plan
to create a C++ version later.

7 Applications

The development of the MPH library is primarily motivated by the Community Climate System
Model (CCSM) development. The large number of different components in CCSM, including
atmosphere, ocean, land, ice, flux coupler and many other potential components such as biochem-
istry, require a general purpose handshaking library to setup the distributed multi-component
environment.

MPH is an application driven software development. MPH version 1 was first developed for the
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single-component multi-executable mode (see Sections 2.3 and 4.2) for the CCSM model. MPH
version 2 was developed for the multi-component single-executable mode (see Sections 2.2 and
4.1) for the PCM model. MPH version 3 was developed for the multi-component multi-executable
mode (see Sections 2.4 and 4.3) to provide a unified user interface for MPH1 and MPH2. The
multi-instance-executable and the command line argument passing (discussed in Section 4.4)
are implemented in MPH version 4 to support climate ensemble simulations to ascertain the
uncertainty in climate predictions.

Currently, all MPH functionalities work on the IBM SP, SGI Origin, HP AlphaServer SC, and
Linux clusters. Source codes and instructions on how to compile and run on all these platforms
are publicly available on our MPH web site [13].

MPH has been adopted in CCSM development[10]. CCSM is the U.S. flagship coupled climate
model system most widely used in long-term climate system modeling in the U.S. MPH has been
adopted in NCAR’s Weather Research and Forecast (WRF) model [32]. MPH is also used in the
Colorado State University’s geodesic grid coupled model[9]. A Model Coupling Toolkit [23] for
communication between different component models uses MPH. Edinburgh Parallel Computing
Centre (EPCC) at the University of Edinburgh uses MPH for ensemble simulations.

8 Related Work

Component-based software engineering (CBSE) trend is well reflected in the software industry.
The prominent examples are Visual Basic [30], CORBA, COM [29], and Enterprise JavaBeans
[15]. In the scientific high performance computing area, CCA provides a specification of a com-
ponent environment. In its core implementation CCAFFEINE[1], CCA provides a light-weight
programming model that supports the distributed memory single program multiple data (SPMD)
mode. Identical frameworks containing the same component objects are instantiated on all proces-
sors. Different components on the same processor communicate with each other through inter-
faces/ports, and MPI communications are used for parallelism between the same component on
different processors. Some other implementations are: Unitah [12], GrACE [27], CCAT [4], and
XCAT [33].

Besides CCA, there are many domain-specific frameworks and problem solving environments
(PSE) that emphasize completeness of the software system. Frameworks often have more assump-
tions about a particular structure or workflow for the specific application domain. For example,
the ESMF project is funded to facilitate coupling earth system model components and to promote
organization interoperability for the weather and climate community. Recently, there is increased
collaboration between the ESMF and CCA communities [24, 34].

A framework paradigm defines most common data and software structures, a large set of com-
monly used numerical algorithms, and provides a full-featured functionality, which goes beyond
pure interface. Some other examples are PETSc [3], POOMA [28], Overture [5], Hypre [7], and
CACTUS [6], to name a few. Problem solving environments essentially define all the structures
and skeleton codes for solving many different problems within a clearly defined special domain,
such as Purdue PSEs [19], ASCI PSE [26], Jaco3 [20], and JULIUS [21] or even more narrowly
focused on a special area such as NWChem [18]. Developing codes using tools from frameworks
or PSEs is fast and straightforward, but the codes are no longer independent [25]. It becomes
heavily and tightly coupled to the framework or PSEs.
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In comparison with all these development, MPH aims at quick adaptation of existing MPMD
capabilities of current major HPC platforms for component-based application development. MPH
fills this critical gap before the more comprehensive software systems become widely accepted and
adopted.

9 Summary and Discussion

We describe the rationale, functionality and implementation of MPH for integrating stand-alone
and/or semi-independent program components into a comprehensive simulation system. On to-
day’s Teraflop scale computers, as the problems being attemped become ever larger and complex,
the CBSE approach becomes necessary. The development of MPH for the climate/weather mod-
eling community is driven by this trend which in turn further promotes this trend.

We have systematically studied the practical modes of a multi-executable application code
that can be effectively executed on current major HPC platforms. The resulting five modes
of execution are discussed in detail in Sections 2 and 3. MPH is developed to support all the
modes by providing a simple, flexible and unified interface for integrating independent program
components together. With convenient MPH testing codes, compile/run scripts on all major
platforms, this work also promotes the use of the multi-component multi-executable approach in
climate modeling software development.

MPH handles the critical task of helping each stand-alone component-model executable to
recognize the existence of other components within CCSM and getting necessary processor in-
formation. MPH provides several possible independent component integration mechanisms. It
allows component model processor geometries to be specified in a small input file. It also provides
facilities for standard out redirection and joining of MPI communicators. MPH is only needed at
the initial setup, and its overhead is trivial.

Some further work for component integration mechanisms of MPH are: (a) a flexible way to
handle SMP nodes, i.e., recognizing a 16-cpu SMP node could be carved into different number of
MPI tasks; (b) a dynamic component model processor allocation or migration; (c) an extension
of MPH to do model integration over the grid; and (d) a C/C++ version of MPH.

We hope that the multi-component multi-executable approach for the large and comprehensive
applications described here will help motivate HPC vendors to develop/implement more useful
user interfaces for this type of application.
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