
11/19/2002 Yun (Helen) He, SC2002 1

MPI and OpenMP Paradigms on Cluster
of SMP Architectures: the Vacancy
Tracking Algorithm for Multi-
Dimensional Array Transposition

Yun (Helen) He and Chris Ding
Lawrence Berkeley National Laboratory

11/19/2002 Yun (Helen) He, SC2002 2

 Outline
n  Introduction

n  Background
n  2-array transpose method
n  In-place vacancy tracking method
n  Performance on single CPU

n  Parallelization of Vacancy Tracking Method
n  Pure OpenMP
n  Pure MPI
n  Hybrid MPI/OpenMP

n  Performance
n  Scheduling for pure OpenMP
n  Pure MPI and pure OpenMP within one node
n  Pure MPI and Hybrid MPI/OpenMP across nodes

n  Conclusions

11/19/2002 Yun (Helen) He, SC2002 3

 Background

n  Mixed MPI/openMP is software trend for SMP
architectures
n  Elegant in concept and architecture
n  Negative experiences: NAS, CG, PS, indicate pure

MPI outperforms mixed MPI/openMP
n  Array transpose on distributed memory architectures

equals the remapping of problem subdomains
n  Used in many scientific and engineering applications
n  Climate model: longitude local <=> height local

11/19/2002 Yun (Helen) He, SC2002 4

Two-Array Transpose Method

n  Reshuffle Phase
n  B[k1,k3,k2]ç A[k1,k2,k3]
n  Use auxiliary array B

n  Copy Back Phase
n  Aç B

n  Combine Effect
n  A’[k1,k3,k2]ç A[k1,k2,k3]

11/19/2002 Yun (Helen) He, SC2002 5

 Vacancy Tracking Method
 A(3,2) è A(2,3)
Tracking cycle: 1 – 3 – 4 – 2 - 1

 A(2,3,4) è A(3,4,2), tracking cycles:
 1 - 4 - 16 - 18 - 3 - 12 - 2 - 8 - 9 - 13 - 6 - 1
 5 - 20 - 11 - 21 - 15 - 14 - 10 - 17 - 22 - 19 - 7 – 5

 Cycles are closed, non-overlapping.

11/19/2002 Yun (Helen) He, SC2002 6

 Algorithm to Generate Tracking Cycles

! For 2D array A, viewed as A(N1,N2) at input and as A(N2,N1) at output.
! Starting with (i1,i2), find vacancy tracking cycle
 ioffset_start = index_to_offset (N1,N2,i1,i2)
 ioffset_next = -1
 tmp = A (ioffset_start)
 ioffset = ioffset_start
 do while (ioffset_next .NOT_EQUAL. ioffset_start) (C.1)
 call offset_to_index (ioffset,N2,N1,j1,j2) ! N1,N2 exchanged
 ioffset_next = index_to_offset (N1,N2,j2,j1) ! j1,j2 exchanged
 if (ioffset .NOT_EQUAL. ioffset_next) then
 A (ioffset) = A (ioffset_next)
 ioffset = ioffset_next
 end if
 end_do_while
 A (ioffset_next) = tmp

11/19/2002 Yun (Helen) He, SC2002 7

 In-Place vs. Two-Array

11/19/2002 Yun (Helen) He, SC2002 8

 Memory Access Volume and Pattern

n  Eliminates auxiliary array and copy-back phase,
reduces memory access in half.

n  Has less memory access due to length-1 cycles
not touched.

n  Has more irregular memory access pattern than
traditional method, but gap becomes smaller
when size of move is larger than cache-line size.

n  Same as 2-array method: inefficient memory
access due to large stride.

11/19/2002 Yun (Helen) He, SC2002 9

 Outline
n  Introduction

n  Background
n  2-array transpose method
n  In-place vacancy tracking method
n  Performance on single CPU

n  Parallelization of Vacancy Tracking Method
n  Pure OpenMP
n  Pure MPI
n  Hybrid MPI/OpenMP

n  Performance
n  Scheduling for pure OpenMP
n  Pure MPI and pure OpenMP within one node
n  Pure MPI and Hybrid MPI/OpenMP across nodes

n  Conclusions

11/19/2002 Yun (Helen) He, SC2002 10

 Multi-Threaded Parallelism

Key: Independence of tracking cycles.

!$OMP PARALLEL DO DEFAULT (PRIVATE)

!$OMP& SHARED (N_cycles, info_table, Array) (C.2)

!$OMP& SCHEDULE (AFFINITY)

 do k = 1, N_cycles

 an inner loop of memory exchange for each cycle using info_table

 enddo

!$OMP END PARALLEL DO

11/19/2002 Yun (Helen) He, SC2002 11

 Pure MPI
A(N1,N2,N3) è A(N1,N3,N2) on P processors:

(G1) Do a local transpose on the local array

 A(N1,N2,N3/P) è A(N1,N3/P,N2).
(G2) Do a global all-to-all exchange of data blocks,
 each of size N1(N3/P)(N2/P).
(G3) Do a local transpose on the local array
 A(N1,N3/P,N2), viewed as A(N1N3/P,N2/P,P)
 è A(N1N3/P,P,N2/P), viewed as A(N1,N3,N2/P).

11/19/2002 Yun (Helen) He, SC2002 12

 Global all-to-all Exchange

 ! All processors simultaneously do the following:
 do q = 1, P - 1
 send a message to destination processor destID
 receive a message from source processor srcID
 end do
 ! where destID = srcID = (myID XOR q)

11/19/2002 Yun (Helen) He, SC2002 13

 Total Transpose Time (Pure MPI)

 Use “latency+ message-size / bandwidth” model

 TP = 2MN1N2N3/P + 2L(P-1) + [2N1N3N2 /BP][(P-1)/P]

 where P --- total number of CPUs
 M --- average memory access time per element
 L --- communication latency
 B --- communication bandwidth

11/19/2002 Yun (Helen) He, SC2002 14

 Total Transpose Time (Hybrid MPI/OpenMP)

Parallelize local transposes (G1) and (G3) with OpenMP

 N_CPU = N_MPI * N_threads

 T = 2MN1N2N3/NCPU + 2L(NMPI-1)
 + [2N1N3N2/BNMPI][(NMPI-1)/NMPI]
 where NCPU --- total number of CPUs
 NMPI --- number of MPI tasks

11/19/2002 Yun (Helen) He, SC2002 15

 Outline
n  Introduction

n  Background
n  2-array transpose method
n  In-place vacancy tracking method
n  Performance on single CPU

n  Parallelization of Vacancy Tracking Method
n  Pure OpenMP
n  Pure MPI
n  Hybrid MPI/OpenMP

n  Performance
n  Scheduling for pure OpenMP
n  Pure MPI and pure OpenMP within one node
n  Pure MPI and Hybrid MPI/OpenMP across nodes

n  Conclusions

11/19/2002 Yun (Helen) He, SC2002 16

 Scheduling for OpenMP
n  Static: Loops are divided into n_thrds partitions, each

containing ceiling(n_iters/n_thrds) iterations.
n  Affinity: Loops are divided into n_thrds partitions, each

containing ceiling(n_iters/n_thrds) iterations. Then each
partition is subdivided into chunks containing
ceiling(n_left_iters_in_partion/2) iterations.

n  Guided: Loops are divided into progressively smaller
chunks until the chunk size is 1. The first chunk contains
ceiling(n_iter/n_thrds) iterations. Subsequent chunk
contains ceiling(n_left_iters /n_thrds) iterations.

n  Dynamic, n: Loops are divided into chunks containing n
iterations. We choose different chunk sizes.

11/19/2002 Yun (Helen) He, SC2002 17

Scheduling for OpenMP within one Node

64x512x128: N_cycles = 4114, cycle_lengths = 16
16x1024x256: N_cycles = 29140, cycle_lengths= 9, 3

11/19/2002 Yun (Helen) He, SC2002 18

Scheduling for OpenMP within one Node (cont’d)

8x1000x500: N_cycles = 132, cycle_lengths = 8890, 1778, 70, 14, 5
32x100x25: N_cycles = 42, cycle_lengths = 168, 24, 21, 8, 3.

11/19/2002 Yun (Helen) He, SC2002 19

Pure MPI and Pure OpenMP
Within One Node

OpenMP vs. MPI (16 CPUs)

64x512x128: 2.76 times faster
16x1024x256:1.99 times faster

11/19/2002 Yun (Helen) He, SC2002 20

Pure MPI and Hybrid MPI/ OpenMP
Across Nodes

With 128 CPUs, n_thrds=4
hybrid MPI/OpenMP performs
faster than n_thrds=16 hybrid by
a factor of 1.59, and faster than
pure MPI by a factor of 4.44.

11/19/2002 Yun (Helen) He, SC2002 21

 Conclusions
n  In-place vacancy tracking method outperforms 2-array

method. It could be explained by the elimination of copy
back and memory access volume and pattern.

n  Independency and non-overlapping of tracking cycles
allow multi-threaded parallelization.

n  SMP schedule affinity optimizes performances for larger
number of cycles and small cycle lengths. Schedule
dynamic for smaller number of cycles and larger or
uneven cycle lengths.

n  The algorithm could be parallelized using pure MPI with
the combination of local vacancy tracking and global
exchanging.

11/19/2002 Yun (Helen) He, SC2002 22

 Conclusions (cont’d)
n  Pure OpenMP performs more than twice faster than pure

MPI within one node. It makes sense to develop a hybrid
MPI/OpenMP algorithm.

n  Hybrid approach parallelizes the local transposes with
OpenMP, and MPI is still used for global exchange across
nodes.

n  Given the total number of CPUs, the number of MPI tasks
and OpenMP threads need to be carefully chosen for
optimal performance. In our test runs, a factor of 4
speedup is gained compared to pure MPI.

n  This paper gives a positive experience of developing
hybrid MPI/OpenMP parallel paradigms.

