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                     Background 

n  Mixed MPI/openMP is software trend for SMP 
architectures 
n  Elegant in concept and architecture 
n  Negative experiences: NAS, CG, PS,  indicate pure 

MPI outperforms mixed MPI/openMP 
n  Array transpose on distributed memory architectures 

equals the remapping of problem subdomains 
n  Used in many scientific and engineering applications 
n  Climate model: longitude local <=> height local 
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Two-Array Transpose Method 

n  Reshuffle Phase 
n  B[k1,k3,k2]ç A[k1,k2,k3] 
n  Use auxiliary array B 

n  Copy Back Phase 
n  Aç B 

n  Combine Effect 
n  A’[k1,k3,k2]ç A[k1,k2,k3] 
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  Vacancy Tracking Method 
       A(3,2) è A(2,3) 
Tracking cycle: 1 – 3 – 4 – 2 - 1 

         A(2,3,4) è A(3,4,2), tracking cycles: 
            1 - 4 - 16 - 18 - 3 - 12 - 2 - 8 - 9 - 13 - 6 - 1 
            5 - 20 - 11 - 21 - 15 - 14 - 10 - 17 - 22 - 19 - 7 – 5 

   Cycles are closed, non-overlapping. 
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      Algorithm to Generate Tracking Cycles 

! For 2D array A, viewed as A(N1,N2) at input and as A(N2,N1) at output. 
! Starting with (i1,i2), find vacancy tracking cycle 
        ioffset_start = index_to_offset (N1,N2,i1,i2) 
        ioffset_next = -1 
        tmp = A (ioffset_start) 
        ioffset = ioffset_start 
        do while ( ioffset_next .NOT_EQUAL. ioffset_start)             (C.1) 
               call offset_to_index (ioffset,N2,N1,j1,j2)          ! N1,N2 exchanged 
               ioffset_next = index_to_offset (N1,N2,j2,j1)     ! j1,j2 exchanged 
               if (ioffset .NOT_EQUAL. ioffset_next) then 
                    A (ioffset) = A (ioffset_next) 
                    ioffset = ioffset_next 
               end if 
        end_do_while 
        A (ioffset_next) = tmp 
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    In-Place vs. Two-Array 
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     Memory Access Volume and Pattern 

n  Eliminates auxiliary array and copy-back phase, 
reduces memory access in half. 

n  Has less memory access due to length-1 cycles 
not touched. 

n  Has more irregular memory access pattern than 
traditional method, but gap becomes smaller 
when size of move is larger than cache-line size.   

n  Same as 2-array method: inefficient memory 
access due to large stride. 
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   Multi-Threaded Parallelism 

Key: Independence of tracking cycles.   
 

!$OMP PARALLEL DO DEFAULT (PRIVATE) 

!$OMP&         SHARED (N_cycles, info_table, Array)      (C.2) 

!$OMP&         SCHEDULE (AFFINITY) 

      do k = 1, N_cycles 

         an inner loop of memory exchange for each cycle using info_table 

      enddo 

!$OMP END PARALLEL DO 
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               Pure MPI 
A(N1,N2,N3) è A(N1,N3,N2) on P processors: 

(G1) Do a local transpose on the local array  

            A(N1,N2,N3/P)  è A(N1,N3/P,N2). 
(G2) Do a global all-to-all exchange of data blocks,  
        each of size N1(N3/P)(N2/P). 
(G3) Do a local transpose on the local array  
              A(N1,N3/P,N2), viewed as A(N1N3/P,N2/P,P) 
        è A(N1N3/P,P,N2/P), viewed as A(N1,N3,N2/P). 
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         Global all-to-all Exchange 

 ! All processors simultaneously do the following: 
    do q = 1, P - 1 
       send a message to destination processor destID              
       receive a message from source processor srcID 
    end do 
 ! where destID = srcID = (myID XOR q) 
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      Total Transpose Time (Pure MPI) 

 Use “latency+ message-size / bandwidth” model 

 TP = 2MN1N2N3/P + 2L(P-1) + [2N1N3N2 /BP][(P-1)/P] 

 where P --- total number of CPUs 
            M --- average memory access time per element 
            L --- communication latency 
            B --- communication bandwidth  
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 Total Transpose Time (Hybrid MPI/OpenMP) 

Parallelize local transposes (G1) and (G3) with OpenMP 

     N_CPU = N_MPI * N_threads 

    T = 2MN1N2N3/NCPU + 2L(NMPI-1)  
           + [2N1N3N2/BNMPI][(NMPI-1)/NMPI] 
 where NCPU --- total number of CPUs  
            NMPI --- number of MPI tasks 
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    Scheduling for OpenMP 
n  Static: Loops are divided into n_thrds partitions, each 

containing ceiling(n_iters/n_thrds) iterations. 
n  Affinity: Loops are divided into n_thrds partitions, each 

containing ceiling(n_iters/n_thrds) iterations.  Then each 
partition is subdivided into chunks containing 
ceiling(n_left_iters_in_partion/2) iterations. 

n  Guided: Loops are divided into progressively smaller 
chunks until the chunk size is 1.  The first chunk contains 
ceiling(n_iter/n_thrds) iterations. Subsequent chunk 
contains ceiling(n_left_iters /n_thrds) iterations. 

n  Dynamic, n: Loops are divided into chunks containing n 
iterations.  We choose different chunk sizes. 
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Scheduling for OpenMP within one Node  

64x512x128:   N_cycles = 4114,   cycle_lengths = 16 
16x1024x256: N_cycles = 29140, cycle_lengths= 9, 3 
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Scheduling for OpenMP within one Node (cont’d)  

8x1000x500: N_cycles = 132, cycle_lengths = 8890, 1778, 70, 14, 5  
32x100x25:   N_cycles = 42,   cycle_lengths = 168, 24, 21, 8, 3. 
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Pure MPI and Pure OpenMP 
Within One Node 

OpenMP vs. MPI (16 CPUs) 
 
64x512x128:  2.76 times faster 
16x1024x256:1.99 times faster 
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Pure MPI and Hybrid MPI/ OpenMP 
Across Nodes 

With 128 CPUs, n_thrds=4 
hybrid MPI/OpenMP performs 
faster than n_thrds=16 hybrid by 
a factor of 1.59, and faster than 
pure MPI by a factor of 4.44. 
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                       Conclusions 
n  In-place vacancy tracking method outperforms 2-array 

method.  It could be explained by the elimination of copy 
back and memory access volume and pattern. 

n  Independency and non-overlapping of tracking cycles 
allow multi-threaded parallelization.  

n  SMP schedule affinity optimizes performances for larger 
number of cycles and small cycle lengths. Schedule 
dynamic for smaller number of cycles and larger or 
uneven cycle lengths. 

n  The algorithm could be parallelized using pure MPI with 
the combination of local vacancy tracking and global 
exchanging. 
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       Conclusions (cont’d) 
n  Pure OpenMP performs more than twice faster than pure 

MPI within one node.  It makes sense to develop a hybrid 
MPI/OpenMP algorithm. 

n  Hybrid approach parallelizes the local transposes with 
OpenMP, and MPI is still used for global exchange across 
nodes. 

n  Given the total number of CPUs, the number of MPI tasks 
and OpenMP threads need to be carefully chosen for 
optimal performance. In our test runs, a factor of 4 
speedup is gained compared to pure MPI.   

n  This paper gives a positive experience of developing 
hybrid MPI/OpenMP parallel paradigms. 


