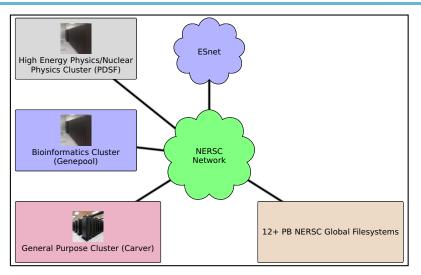

Cluster Consolidation at NERSC

Snapshot of NERSC

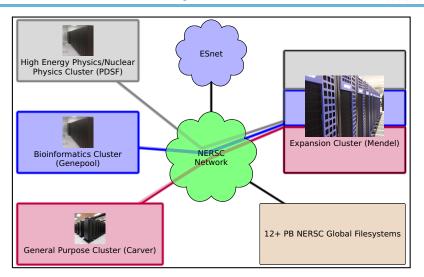
- Located at Lawrence Berkeley National Laboratory, NERSC is the production computing facility for the US DOE Office of Science
- NERSC serves ~5000 users, ~400 projects, and ~500 codes
 - Focus is on "unique" resources:
 - Expert computing and other services
 - 24x7 monitoring
 - High-end computing and storage systems
 - Known for:
 - Excellent services and user support
 - Diverse workload
 - NERSC provides Hopper (a Cray XE6), Edison (a Cray XC30), and three data-intensive systems: Carver, PDSF, and Genepool.

The NERSC Cluster Model

Cluster Expansion


- ► In 2012, NERSC purchased a new system, "Mendel" to systematically expand its cluster resources
 - ▶ 500+ Sandy Bridge nodes, 8000+ cores
 - ► FDR InfiniBand interconnect
- Mendel transparently expands production clusters and services
 - Carver, PDSF, and Genepool (the "parent systems") schedule jobs on portions of Mendel
 - Mendel provides multiple software environments to match those on each parent system
- This model was presented at the 2013 Cray User Group meeting
 - http://cug.org/proceedings/cug2013_proceedings/includes/files/pap184-file1.pdf
 - http://cug.org/proceedings/cug2013_proceedings/includes/files/pap184-file2.pdf

Data-Intensive Systems



Data-Intensive Systems

The Mendel Approach

- We use tools to construct convenient management abstractions and tuned user environments on top of this platform:
 - Familiar open-source software:
 - xCAT to provision and manage nodes
 - Cfengine3 to provide configuration management (versioned with SVN)
 - NERSC-developed BSD-licensed software:
 - avs_image_mgr to handle xCAT image management and versioning

http://github.com/lpezzaglia/avs_image_mgr

 CHOS to provide multiple compute environments concurrently and seamlessly

http://github.com/scanon/chos

minimond to collect trending data for troubleshooting and analysis

http://github.com/lpezzaglia/minimond

NERSC Cluster Model

User Applications	SL 6.4	PDSF SL 5.3 Apps	1 1 1 1	Apps	De L	ebian 6 Logins		Carver SL 5.5 Apps
CHOS	sl64	PDSF sl53 CHOS	1	Genepool Compute CHOS	ı	enepool Login CHOS	1	Carver Compute CHOS
		PDSF Genepool UGE UGE		ol		Carver TORQUE		
Boot-time Differentiation	PDSF Cfengine Policy			Genepool Cfengine Policy				Carver Cfengine Policy
	PDSF xCAT Policy			Genepool xCAT Policy				Carver xCAT Policy
	PD Add	SF -ons	1	Genepool Add-ons				Carver Add-ons
7	Add-ons Unified Mendel Base OS							
Base OS								
Hardware/ Network	Unified Mendel Hardware Platform							

Extending the Model

Motivation for Consolidation

- Easy Mendel administration highlighted the operational burden of managing legacy clusters
 - Changing configurations with pdsh scales poorly
 - Mendel demonstrated the value of leveraging automation to manage complex systems
- We pursued further cluster consolidation efforts
 - Staff efficiency is highly valued
 - Legacy hardware also gains benefits through Mendel membership
 - Cost: Upfront effort to consolidate clusters and risk of user disruption
 - Reward: Reduced long-term sysadmin burden and increased system consistency

Extending the Model

- In spring 2014, we merged "Genepool", a legacy parent cluster, into Mendel's management system
- ► The combined cluster is now managed as a single integrated system with:
 - ► ~1000 nodes
 - Multi-generational, multi-vendor hardware
 - Multiple separate interconnects
 - ► A unified xCAT+Cfengine management interface
- Constrained by a 24x7, disruption-sensitive environment
- Change activated in a single all-day maintenance

Consolidated Cluster Model

User Applications	PDSF SL 6.4 Apps		1	Genepool Debian 6 Apps	D	enepool ebian 6 Logins		Carver SL 5.5 Apps
CHOS	PDSF sl64 CHOS	3133	1	Genepool Compute CHOS	1	enepool Login CHOS		Carver Compute CHOS
-	PDSF Genepool UGE UGE		ool		Carver TORQUE			
Boot-time Differentiation	PDSF Cfengine Policy			Genepool Cfengine Policy				Carver Cfengine Policy
	PDSF xCAT Policy			Genepool xCAT Policy				Carver xCAT Policy
	PD Add-		1	Genepool Add-ons			Carver Add-ons	
[]	Add-ons Add-ons							
Base OS	Unified Mendel Base OS							
Hardware/ !		xCAT Management Abstractions						
Network	Multi-vendor, Multi-generational hardware							

Specific challenges

Genepool and Mendel differ in several respects

	Mendel (New)	Genepool (Legacy)
Production interconnect	FDR InfiniBand	Gigabit Ethernet
Provisioning/IPMI network	Dedicated GbE	Dedicated IPMI network Provisions over production network
OS	SL 6.3 base OS with CHOS	Debian 6 without CHOS
Hardware	Homogeneous platform	Many hardware configurations

Approach

- xCAT's hierarchical management features are suited to managing dissimilar hardware
- Expansion required changes to our software stack
 - 1. Expand hardware support in the base OS image
 - 2. Configure an xCAT service node
 - 3. Expand Cfengine rules and boot scripts
 - Perform thorough testing
 - Reboot the Genepool nodes through Mendel's management system

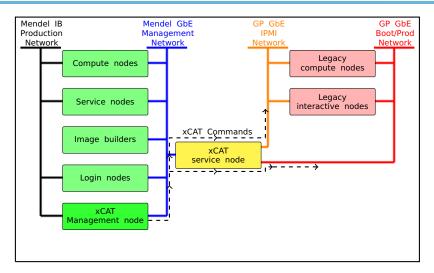
Base OS modifications

- Support for all Genepool hardware was added to the base OS image.
 - Kernel modules for disk and network controllers
 - Initrd code to handle Genepool network characteristics
- An xCAT add-on was created for the xCAT service node
- Changes were made with avs_image_mgr
 - Provides a full revision history of every file
 - Provides the ability to roll back to any previous image

xCAT modifications

- An xCAT Service Node (SN) handles Genepool provisioning/management under the direction of the Management Node (MN)
- Only the SN requires connectivity to the Genepool networks
 - The MN only requires connectivity to the SN
 - The SN provides DHCP/TFTP/HTTP/xCATd services
 - xCAT commands, such as power/console operations, are transparently routed through the SN
- The SN is provisioned through the Mendel cluster model
 - 1. The Mendel base OS image is booted
 - 2. The xCAT add-on is activated
 - 3. Cfengine rules apply SN-specific configurations

Postscripts and Cfengine


- Postscripts were extended to support Genepool characteristics
 - GPFS cluster configuration
 - Multipath access to local disk arrays
 - Local filesystem configurations
 - Multiple hardware configurations
- Cfengine rules were augmented to support the additional node classes

The Combined Cluster

Cluster Automation

- ► The combined Mendel+Genepool system is complex
 - Many different node classes
 - Each node class represents a unique software/hardware combination
- Configuration complexity grows with the number of node classes.

Cluster Automation

- The quantity of node classes exceeds what a human administrator can hold in immediate memory
 - We must build abstractions to retain system manageability as complexity increases
 - Configuration management has become a necessity
- We manage a single integrated system, not a collection of nodes.
- Every change must be considered in a system-wide context
- Cfengine must broker change rollout

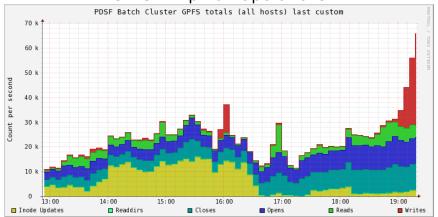
Development Updates

CHOS development

- ► CHOS enables concurrent support of multiple Linux environments on a single server
- A core component of the Mendel cluster model
- Under active development
- Recent changes include:
 - Ability to exit CHOS from within a CHOS environment
 - Build system improvements
 - pam_chos configurability enhancements
 - EL7 kernel support in a testing branch
- Planned features include:
 - Scripts to transform an installed EL system into a CHOS environment
 - A framework for user-supplied CHOS environments
 - Reduced kernel module scope

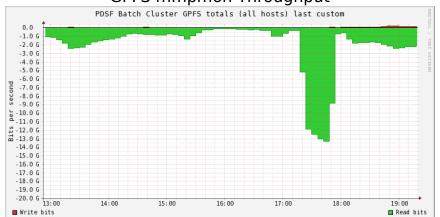
Data Collection

- Collecting trending data for historical analysis is growing increasingly important
- NERSC developed minimond to systematize this process
- Collects ~1000 statistics per node
- Modular framework for sending metrics to multiple data aggregation services
 - Supported output methods: plain text and Ganglia (via gmetric or EmbeddedGmetric)
 - AMQP support is planned
- Only absolute counter values are recorded.
 Calculation of derived statistics must be performed on a remote analysis server



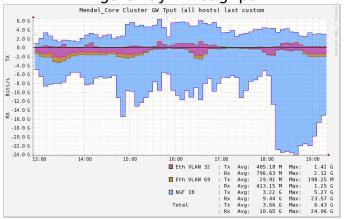
Metrics Graphs

GPFS mmpmon Operations



Metrics Graphs

GPFS mmpmon Throughput



Metrics Graphs

Conclusions

- The extended NERSC cluster model enables systematic management of several multi-vendor, multi-interconnect, and multi-generational clusters as a single integrated system
- A unified management interface abstracts away complex details
- Implementation involved minimal user disruption
- Extending the model was far easier than separately managing both clusters
- The new model dramatically simplifies operations

Acknowledgements

► This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

National Energy Research Scientific Computing Center

