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Abstract. In order to reduce the current costs associated with carbon capture technologies,
novel materials such as zeolites and metal-organic frameworks that are based on microporous
networks are being studied. We have developed a GPU code that can characterize and screen
a large database of zeolite structures and help identify the most e�cient structures for carbon
capture. The interactions between the atoms that constitute the zeolite structures and the gas
molecules such as carbon dioxide and methane are described by the Lennard-Jones and Coulomb
potentials. We have also developed a CPU algorithm that identifies inaccessible regions inside
the zeolite structures based on their energy profiles. Putting all this together, we can compute
the selectivity for separating carbon dioxide molecules from other flue gases in each of the zeolite
structures.

1. Introduction
The implementation of current technology of carbon capture based on scrubbing carbon dioxide
with amine solutions may decrease the e�ciency of a power plant by as much as 30–40% [1].
An alternative solution with lower energy costs such as solid-state adsorbent based on porous
materials is being developed. In this work, we focus on zeolite structures, which are among
the most widely reported adsorbents for carbon capture [2]. Finding the optimal zeolite is an
arduous task, since the number of possible pore topologies is extremely large. Approximately
190 unique zeolite frameworks are known to exist today in more than 1,400 zeolite crystals of
various chemical composition. However, these experimentally known zeolites constitute only a
very small fraction of more than 2.7 million structures that are feasible on theoretical grounds
[3],[4], of which between 314,000 and 585,000 are predicted to be thermodynamically accessible
as aluminosilicates, with the remainder potentially accessible via elemental substitution [5],[6].
Databases of similar or greater magnitude can be developed for other nanoporous materials such
as metal organic frameworks (MOFs) or ZIFs.

To characterize and later screen a large database of zeolite structures within a reasonable
computational time, we developed a GPU code to accelerate our molecular simulations. Unlike
conventional CPUs, GPUs have many more transistors devoted to data processing and, as such,
can provide significant performance improvement in problems that can be easily mapped into
its multithreaded hardware. In our code, the bottleneck routines can easily be abstracted into
a SIMD (single instruction, multiple data) format, making it ideal for GPU acceleration.



The paper is organized as follows. In Section 2, we outline the algorithm behind our hybrid
GPU + CPU screening code. In Section 3, we provide both the performance and the Henry
coe�cient results obtained from the code and briefly mention future work regarding our project.

2. Algorithm for Characterizing Zeolites
Various computational techniques in molecular simulations can be used to predict adsorption
and di↵usion properties of the gas molecules adsorbed in zeolites [7]. In this work, we compute
the Henry coe�cients (KH) of CH4 and CO2 gas molecules, which are basic constants describing
equilibrium between the gas phase and adsorbed phase. The ratio of Henry coe�cients
characterizes the selectivity of the material at low pressure and serves as a useful quantity for
screening large number of adsorbent frameworks. The mathematical expression for the Henry
coe�cient is as follows [8]:

KH = �hexp(��Uins)i,

where � = 1 / (kBT ) with kB representing the Boltzmann constant and T indicating temperature.
Uins is the energy of the test molecule inserted at a random position in the materials, that is,
a Widom insertion move. This formula is frequently used in molecular simulations to compute
the chemical potential of a particular component. In general, ideal zeolite structures that are
suitable for carbon dioxide separation will possess a su�ciently large ratio between the CO2

Henry coe�cient and the Henry coe�cients of other flue gases.
Our GPU algorithm for simulating a single zeolite structure is summarized as follows: (1)

construct an energy grid where each grid point maps to the total energy value of a single gas
molecule (either CH4 or CO2 in this work), (2) automatically detect inaccessible regions within
the zeolites utilizing the energy grid constructed from the previous step, and (3) conduct a large
number of Monte Carlo Widom insertion moves in the accessible space to compute the average
Henry coe�cient of the gas molecule inside the zeolite structure.

2.1. Energy grid construction

The purpose behind constructing the energy grid is twofold: (1) to obtain the test molecule
insertion energies via interpolating energy values from the grid in the Widom insertion moves
and (2) to automatically detect the inaccessible regions within the zeolites via marching through
the grid points so that the subsequent Monte Carlo insertions are rejected at these positions.
This is important because in our calculation of the Henry coe�cient, we insert at random
positions and, therefore, inaccessible cavities should be excluded from the sampling.

Because zeolites are crystalline structures, we can characterize various properties of the zeolite
by analyzing just a single unit cell and applying the periodic boundary condition. In the
GPU algorithm, an energy grid with a mesh size of 0.1Å along the x, y, and z directions is
superimposed on top of the entire simulation volume of a single zeolite unit cell. In each of the
energy grid points, we compute the interaction between the guest gas molecule and all of the
framework atoms using pairwise potentials (for noncharged molecules such as CH4, the Lennard-
Jones potential, and for charged molecules such as CO2, the combination of Lennard-Jones and
Coulomb potentials). We use the Ewald summation to compute the periodic Coulomb potential
values by replacing the summation of interaction energies from the real to the Fourier space for
faster convergence.

Given the large number of energy grid points (over a million for most zeolite structures),
we can e�ciently utilize the thousands of lightweight GPU threads present within the GPU
architecture to accelerate the energy grid construction kernel. From the hardware perspective,
each CUDA thread maps to a single energy grid point, and the pairwise potential calculations are
conducted in parallel inside the GPU. We minimize the number of global memory transactions
by moving the framework atom data into the fast, constant GPU memory before the energy



computation kernel launch. Other optimization techniques (e.g., reducing the number of division
operators and precomputing shared terms among the CUDA threads) are used to further
accelerate the routine. At the end of the routine, the array containing the energy grid values
is transferred from the GPU to the CPU and used as an input to the CPU pocket blocking
function, which will be explained next.

2.2. Pocket blocking

We have adopted algorithms for analysis of the void space in porous materials and detection of
inaccessible pockets proposed in [9],[10]. The original algorithms relied on front propagation
techniques based on partial di↵erential equations (PDEs). In particular, the problem of
determination of accessibility was casted as an Hamilton-Jacobi-type Eikonal equation in
configuration space describing a guest molecule inside a material:

|rU | = C(x).

Here, U is the minimal total cost, and C(x) is a cost function defined at each point x in the
domain and corresponds to its ability to be occupied. Abstractly, this cost function is defined at
the beginning of the problem, and the solution U(x) to the above problem represents the total
cost, which is the smallest obtainable integral of C(x), considered over all possible trajectories
throughout the computational domain from a start point to finish point. The latter feature can
be then used to construct practical approaches, allowing one not only to obtain shortest paths
but also to predict accessibility of sections of the void space (e.g., detect inaccessible pockets).

In the current project, we have made two modifications to this algorithm. First, we
have used the energy criterion to determine cost and the related accessibility of a particular
configuration/point in the domain. Second, we have substituted solving of the Eikonal equation
with a computationally cheaper flood fill algorithm.

The energy terms calculated at each discrete grid point can be interpreted as conveying the
probability of the guest molecule occupying that position in the form of the Boltzmann factor,
exp(-�Ei) with Ei representing the energy of the ith grid point. We interpret this grid in a
binary fashion, as containing grid points that can or cannot be occupied by the guest molecule
in the timeframe of our application. We set the following.

if(Ei < (p ⇤ T )) ! accessible;

else ! inaccessible;

Here T is the temperature, and p relates to the probability of the position being occupied. At
long timescales, for instance in geologic applications, high barriers can be overcome, and so p

can take a high value; however, for our carbon capture application we set p = 15 such that
a point is accessible if exp(-Ei) > exp(-15⇥T ). Given this binary interpretation of the energy
grid, we segment the grid into disconnected nonperiodic regions (marches) using the traversal
algorithm described above. Each of these distinct marches is then analyzed periodically to
determine whether it forms a channel through the void space or an inaccessible pocket. We
perform this analysis by examining the positions where each march reaches a face of the unit
cell and inspecting their periodic neighbors for accessibility, connecting these marches. By this
method, marches that do not reach a face are pockets, as are marches that cross the periodic
boundary but do not form a loop. It is important to exclude these inaccessible pockets prior to
performing Monte Carlo sampling; otherwise the energy terms calculated within the pockets will
contribute to the measured behavior of the system, even though in reality the guest molecule
cannot access these positions. We overcome this problem by generating blocking spheres for
each march that is flagged as being part of a pocket; and, in the following Monte Carlo step,
moves that are within a blocking sphere are rejected. We generate spheres large enough that the



Table 1. Simululation timing results (seconds) for 193 IZA zeolite structures. The wall times
spent in three main routines are tabulated for both CH4 and CO2 molecules.
Gas GPU Grid Construction CPU Pocket Blocking GPU Widom Insertions Total Wall Time
CH4 139.95 274.84 5.63 426.61
CO2 1521.42 4439.91 65.73 6137.51

entire march is excluded, without interfering with other marches. The algorithm for generating
these spheres is described in [10].

2.3. Monte Carlo Widom insertion

Utilizing the energy grid and the blocking spheres from the previous subsections, we can calculate
the Henry coe�cients for a given zeolite structure using the Monte Carlo Widom insertion
moves. We test insert a single, guest gas molecule inside our simulation box and compute the
Boltzmann factor (i.e., exp(��Uins)), where Uins is the insertion energy of the test molecule
obtained from the interpolating energy values from the energy grid. In our algorithm, we set
the total number of Monte Carlo Widom insertion moves to be 4.3 million. Because these
insertions can be conducted independently, we use the GPU to accelerate the insertion routine
and utilize the CUDA CURAND library to generate random numbers uniformly sampled from
the unit cell for the Widom insertion moves. Zero contribution to the Henry coe�cient is added
upon sampling regions inside the blocking sphere. For linear molecules such as carbon dioxide,
multiple insertions for each atom (e.g., C, O, O) are conducted in sequence, and the energy for
each of the atoms is added to obtain the total Uins.

3. Performance Results
We utilize the NERSC Dirac GPU cluster (Figure 1) to run our GPU zeolite simulations. Dirac
consists of 44 NVidia Fermi Tesla c2050 GPU cards with each node having 2 Intel 5530 2.4 GHz
Nehalem quad cores. All the results here are based on single-precision floating numbers, since the
format has su�cient precision to accurately model our stochastic simulations. Simulation timing
results for computing the CH4 and the CO2 Henry coe�cients of 193 IZA zeolite structures are
tabulated in Table 1.

As can be seen from the data, the total wall time spent in CO2 calculations is around 11.01⇥
longer compared with the total wall time spent in CH4 calculations as the long-range Coulomb
interactions entail summing interactions over multiple copies of the unit cells in both the real
and the Fourier spaces in the Ewald summation. The Coulomb term required to perform the
CO2 energy grid calculation has the additional e↵ect of causing many more isolated regions of
low energy than are detected in the CH4 energy grid. The impact of this is to generally increase
the quantity of pockets that need to be excluded in the pocket blocking routine. Overall, 64.4%
(CH4) and 72.3% (CO2) of total wall time is spent in the single CPU core pocket blocking
routine. This is not surprising considering that this portion of the code has not been optimized
and there remains a great deal of scope for acceleration. In the future, we intend to implement
various multicore approaches (e.g., OpenMP and Pthreads) to treat the pockets independently
and exclude them in parallel. The quantity of pockets detected is generally in the tens or
hundreds, and so the blocking step is not likely to benefit fom a GPU application. Therefore,
this part of the code is not the emphasis of this work.

The CH4 and the CO2 IZA Henry coe�cients data are shown in Figure 2 using histograms
with a bin size of 2.5e�6 mol/gram/Pa. The Henry coe�cient results agree well with the CPU
results (not included in the figure), and the performance improvement makes it possible to
simulate an entire hypothetical database of zeolite structures in a reasonable time. As the



Figure 1. The NERSC Dirac
GPU cluster rack.

Figure 2. Histogram of CH4

and CO2 Henry coe�cients for
the 193 IZA zeolite structures.

next step, we plan to incorporate additional features to our code to simulate other framework
structures such as metal organic frameworks.
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