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Abstract. We evaluate remapping multi-dimensional arrays on cluster of SMP architectures under OpenMP,
MPI, and hybrid paradigms. Traditional method of multi-dimensional array transpose needs an auxiliary array of
the same size and a copy back stage. We recently developed an in-place method using vacancy tracking cycles. The
vacancy tracking algorithm outperforms the traditional 2-array method as demonstrated by extensive comparisons.
Performance of multi-threaded parallelism using OpenMP are first tested with different scheduling methods and
different number of threads. Both methods are then parallelized using several parallel paradigms. At node level,
pure OpenMP outperforms pure MPI by a factor of 2.76 for vacancy tracking method. Across entire cluster of SMP
nodes, by carefully choosing thread numbers, the hybrid MPI/OpenMP implementation outperforms pure MPI by a
factor of 3.79 for traditional method and 4.44 for vacancy tracking method, demonstrating the validity of the parallel
paradigm of mixing MPI with OpenMP.
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1. Introduction. Large scale highly parallel systems based on cluster of SMP archi-
tectures are today’s dominant computing platforms. OpenMP has recently emerged as the
definitive standard for parallel programming at the SMP node level[1][2]. Using MPI to
handle communications between SMP nodes and OpenMP within nodes, the MPI/OpenMP
hybrid parallelization paradigm is the emerging trend for parallel programming on cluster of
SMP architectures[3] [4] [5] [6] [7], especially for those applications which exhibit naturally
a two-level parallelism.

The MPI/OpenMP hybrid parallelization paradigm is elegant in both conceptual and ar-
chitectural level. At node level, use of OpenMP avoids the extra communications that MPI
would require. It also allows the fine granularity of the application, making good usage of
shared memory with increased dynamic load balancing. MPI is used to handle coarse-grained
parallelism among SMP nodes, with larger message sizes therefore more efficient communi-
cations.

Although the hybrid MPI/OpenMP could have better performance than both pure MPI,
However, in practice, performance of many large scale applications indicate otherwise (for
example, NAS benchmarks[4], conjugate-gradient algorithms[5] and particle simulations[7]).
There are some positive experiences[3][6], but it is often the case that existing applications
using pure MPI paradigm over all processors and ignoring the shared memory nature among
the processors on the single SMP node outperform the same application codes utilizing the
hybrid OpenMP with MPI paradigm.

In this paper, we provide an in-depth analysis on remapping problem domains on cluster
of SMP architectures under several OpenMP, MPI, and hybrid paradigms.

Dynamically remapping problem domains are encountered frequently in many scientific
and engineering applications. Instead of fixing the problem decomposition during entire com-
putation, dynamically remapping the problem domains to suit the specific needs at different
stages of the computation can often simplify computational tasks significantly, saving coding
efforts and reducing total problem solution time.
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For example, the 3D fields of an atmosphere (or ocean) model are mapped onto 8 pro-
cessors, with horizontal dimensions split among the processors. In spectral transform based
models, such as the CCM atmospheric model[8] and the shallow water equation[9], one of-
ten needs to dynamically remap between the height-local domain decomposition and the
longitude-local decomposition for tasks of distinct nature. In grid-based atmosphere and
ocean models, similar remappings are needed for data input/output[10].

To transpose a multidimensional array
�

, say between 2nd and 3rd indices, the conven-
tional method uses an auxiliary array � of same size of

�
.

�������	�
���
��������� � �������������
���
���(1)

In many situations, � is copied back to memory locations of
�

(denoted as
� ��� ), and

memory for � is freed. We will call this traditional method as two-array reshuffle method,
because of the need of the auxiliary array � . Combining the �������������
�
������� � �����������������
�
reshuffle phase and the copy-back

� ��� phase, the net effect of the two-array reshuffle
method can be written symbolically as

� � �����!�
���
�������"� � �����	�
�#���
���
�(2)

Here
� �

indicates that reshuffle results are stored at the same location as the original array
�

.
The issue of memory copy in OpenMP were studied in [11].

Recently, a vacancy tracking algorithm for multidimensional array index reshuffle is
developed[12] that can perform the transpose in Eq.2 in-place, i.e., without requiring the
auxiliary array � . This reduces the memory requirement by half, therefore lifting a severe
limitation on memory-bound problems.

Both the conventional two-array method and the new vacancy tracking algorithm can be
implemented on cluster of SMP architectures using OpenMP, MPI, and hybrid MPI/OpenMP
paradigms. We have investigated them systematically. Some preliminary results were pre-
sented at SC2002[13]. Here we perform more systematic studies on both sequential and
distribited platforms for both methods. Our main results are that (i) Vacancy tracking algo-
rithm outperforms conventional two-array method in all situations. (ii) OpenMP parallelism
performs slightly better than MPI for the traditional two-array method but is substantially
faster than MPI parallelism for the vacancy tracking method on a single SMP node. (iii)
On up to 128 CPUs, the hybrid paradigm performs about a factor of 4 faster than pure MPI
paradigm for both methods. (iv) Contrary to some existing negative experience of developing
hybrid programming applications, our hybrid MPI/OpenMP implementation for the vacancy
tracking algorithm outperforms pure MPI by a factor of 4.44.

2. Vacancy Tracking Algorithm . Array transpose can be viewed as a mapping from
original memory locations to new target memory locations. The key idea of this algorithm is
to move elements from old locations to new locations in a specific memory-saving order, by
carefully keeping track of the source and destination memory locations of each array element.
When an element is moved from its source to new location, the source location is freed, i.e., a
vacancy. This means another appropriate element can be moved to this location without any
intermediate buffer. Then the source location of that particular element becomes a vacancy,
and yet another element is moved directly from its source to this destination. This is repeated
several times, and a closed loop of vacancy tracking cycles is formed.

Consider transpositionof a 2D array A(3,2). Six elements of A(3,2) are labeled as
�%$

,
� � ,� � , � � , �'& , �)( , and are stored in six consecutive memory locations * $ , *+� , *,� , *-� , * & , * (

(shown in the leftmost layout in Figure 1). The transposition is accomplished by moving
elements following the vacancy tracking cycle

1 - 3 - 4 - 2 - 1
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Move content in * � to a temporary buffer, now * � becomes the vacancy; Move content
in * � to * � , now * � becomes the vacancy; Move content in * & to * � ; Move content in * � to
* & ; Move content in buffer to * � . Note that contents in * $ and * ( are not touched, because
they are already in the correct locations. Assume the buffer is a register in CPU, the total
memory access is 4 memory writes and 4 memory reads. In contrast, the conventional two-
array transpose algorithm will move all 6 elements to array � , and copy them back to

�
,

with a total of 12 reads and 12 writes. The vacancy tracking algorithm achieves the optimal
(minimum) number of memory access.

A1A0

A2
A3
A4
A5

A1
A0

A2
A3
A4
A5

A0

A2

A4
A5

A3

A0

A4
A2
A5

A3
A0

A2
A4

A5

A3
A0

A1
A4
A2
A5

A3

FIG. 1. Transposition for the array A(3,2).
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are successive vacancies.

Vacancy tracking algorithm applies to many other index operations more complex than
two-index reshuffle. For example, the simultaneous transpose of three indexes, the left-
circular-shift,

� � ���#���
���
����� �"� � �����	�
�#���
���
�(3)

can be easily accomplished. For a 3D array
���
	 ������
�� with 24 elements, the three-index

left-shift reshuffle can be achieved by the following two cycles,

1 - 4 - 16 - 18 - 3 - 12 - 2 - 8 - 9 - 13 - 6 - 1
5 - 20 - 11 - 21 - 15 - 14 - 10 - 17 - 22 - 19 - 7 - 5

A simple algorithm to automatically generate the cycles for 2 indices transpose is
! For 2D array A, viewed as A(N1,N2) at input and as A(N2,N1) at output.
! Starting with (i1,i2), find vacancy tracking cycle
ioffset_start = index_to_offset(N1,N2,i1,i2)
ioffset_next = -1
tmp = A(ioffset_start)
ioffset = ioffset_start
do while( ioffset_next .NOT_EQUAL. ioffset_start) (C.1)

call offset_to_index(ioffset,N2,N1,j1,j2) ! N1,N2 exchanged
ioffset_next = index_to_offset(N1,N2,j2,j1)! j1,j2 exchanged
if(ioffset .NOT_EQUAL. ioffset_next) then

A(ioffset) = A(ioffset_next)
ioffset = ioffset_next

end if
end_do_while
A(ioffset_next) = tmp

Here index to offset and offset to index are two simple routines that con-
verts two-dimensional index from/to one-dimensional offset. A slight modification can handle
3 indices operations. The cycle information will be stored in a table first in the actual imple-
mentation and the outer do loop (C.1) is performed to move the data from actual memory
locations.

We assess the effectiveness of the algorithm by comparing the timing results between the
traditional 2-array method and the in-place vacancy tracking method for the index reshuffling
of a three-dimensional array

����� ��� � ��� � ��� by moving around the array elements in the
block size of the first dimension as shown in Eq.(2). The algorithm is implemented in F90,
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and tests are carried out on a POWER3 IBM SP. We use compiler option -O5 for highest level
of optimization for both methods.

Figure 2 shows the ratio of timing between the two-array method (include array copy
back) and in-place algorithm for three array sizes. In-place algorithm performs better for
almost all the array sizes except for N

�
4. For large array size, vacancy tracking algorithm

achieves more than a factor of 3 speedup for
� � = 8, 16, and 64.

The number of memory access and the access pattern could explain the speedup. First,
the in-place algorithm eliminates the copy back phase so it reduces memory access by half.
Second, for a 2D array

����� �
� � � � , the number of memory access required for the � � ��������� �"�� ��� � �
� � � reshuffle phase of a two-array method is
� � � � . But for the in-place method, the

total lengths of all cycles would be
� � � � . The length-N cycle involves N-1 memory-to-

memory copies, one memory-to-tmp copy and one tmp-to-memory copy. Normally, access
to the tmp storage is a register or cache, and is much faster than the DRAM access. We
could safely count the number of a memory access for the length-N cycle as N. Meanwhile,
all the length-1 cycles means the memory locations are untouched, thus saves the number of
memory access. Third, on cache-based processor architectures, the memory access pattern
is as important as the number of memory access. Though memory access pattern for the
in-place method seems more random than traditional method, the number of bytes moved is
often large for the problems the method is targeted for. The gap is reduced and the memory
access in vacancy tracking algorithm is not irregular at scales relevant to cache performance
when the size of the move is larger than cache-line size, which is 128 bytes (16 real*8 data
elements). Also, the � � � �	�
���
�
�#����� � �����	�
�#���
���
� reshuffle phase of the two-array method
has the same disadvantage of the in-place method: not efficient memory access due to the
large stride.
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FIG. 2. Timing for a local 3D array index reshuffle on IBM SP. Plotted are the ratio of timing between the
two-array method (include array copy back) and in-place algorithm.

3. Parallel Paradigms on Cluster SMP Architectures.

3.1. Multi-Threaded Parallelism. The traditional two-array method adopts a nested do
loops to perform index reshuffles. The OpenMP parallelism could be added straightforwardly.
The pseudo code is as follows:
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!$OMP PARALLEL DO DEFAULT (PRIVATE)
!$OMP& SHARED (N3, N2, A, B)
!$OMP& SCHEDULE (AFFINITY)

do i3 = 1, N3
do i2 = 1, N2

B(:,i2,i3) = A(:,i3,i2) (C.2)
end do
end do

!$OMP END PARALLEL DO

The vacancy tracking algorithm can also be easily parallelized using a multi-threaded
approach in a shared-memory multi-processor environment to speed up data reshuffles, e.g.,
to re-organize a database on an SMP server. As mentioned in Ding[12], the vacancy tracking
cycles are non-overlapping. If we assign a thread to each vacancy tracking cycle, they can
proceed independently and simultaneously.

The cycle generation code (C.1) runs first in the initialization phase before the actual data
reshuffle, to determine the number of independent vacancy tracking cycles and associated cy-
cle lengths and starting locations. These cycle information can be stored in a table, each cycle
entry with a starting location offset and cycle length. The starting offset uniquely determines
the cycle, and the cycle length determines the work-load.

The pseudo code for the OpenMP implementation for the main loop for each vacancy
tracking cycle is as follows:

!$OMP PARALLEL DO DEFAULT (PRIVATE)
!$OMP& SHARED (N_cycles, info_table, Array)
!$OMP& SCHEDULE (AFFINITY)

do k = 1, N_cycles
an inner loop of memory exchange for each cycle using info_table (C.3)

enddo
!$OMP END PARALLEL DO

Proper scheduling the independent cycles to threads are important. The workload is
based on the cycle lengths. So, it could be done either statically or dynamically. In a static
multi-thread implementation, with a given fixed number of threads, an optimization is needed
to assign nearly same work-load to each thread. After this assignment, the data reshuffle can
be carried out as a regular multi-threaded job.

In a dynamic multi-thread implementation, the next available thread picks up the next
independent cycle from the cycle information table and completes the cycle. How to choose
the next independent cycle among the remaining cycles in order to minimize the total runtime
is a scheduling optimization. For example, a simple and effective method is to choose the
task with largest load among the remaining tasks on the queue. Or, if the cycles are short,
we could group cycles into chunks so that each thread will pick up a chunk instead of an
individual cycle to minimize thread overhead.

3.2. Pure MPI Parallelism. Transposition of a global multi-dimensional array dis-
tributed on a distributed-memory system is a remapping of processor subdomains. It involves
local array index reshuffles and global data exchanges. The goal is to remap 3D array on
processors such that data points along a particular dimension is entirely locally available on
the processor, and the data access along this dimension corresponds to the fastest running
storage index, just as in the usual array transpose.

Using MPI to communicate data between different processors is the best paradigm for
distributed memory architectures such as Cray T3E, where each node has only a single pro-
cessor. On cluster of SMP architectures, such as IBM SP, each node has, say, 16 processors
and they share a global memory space on the node.

Running MPI between different processors on the same node is equivalent to communi-
cating messages using inter-process communication (IPC) between different Unix processes
under the control of a single operating system running on the SMP node. Therefore, a simula-
tion code compiled for 64 processors can successfully run on 4 SMP nodes with 16 processors
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on each node, since the OS automatically replaces MPI calls by IPC when the relevant inter-
processor communications are detected to be within a single SMP node. Communications
between processors residing on different SMP nodes will go on to the inter-node communica-
tion networks. This “pure” MPI paradigm therefore has the desired portability and flexibility.

Here we outline the algorithm for remapping a 3D array
����� ��� � ��� � ��� regarding the

2nd and 3rd indices using pure MPI (see more details in [12]). For a global multi-dimensional
array, it involves local array transpose and global data exchange. Use

��� � ��� � �
� � � � as an
example, to transpose it to be

����� �
� � �
� � � � on
�

MPI processors, the steps are:

(G1) Do a local transpose on the local array
��� � ��� � �
� � ��� � ��� ����� ��� � ��� � � � � �

(G2) Do a global all-to-all exchange of data blocks, each of size
� � ��� ��� � � � � ��� � �

(G3) Do a local transpose on the local array viewed as
��� � � � ��� � � � ��� � � � �

� ����� � � � � � � � � � � � � � viewed as
��� � � � � � � � � � � � .

Local in-place algorithm is used for steps (G1) and (G3). For step (G2) global exchange,
the following all-to-all communication pattern[9][14][15] is used:

! All processors simultaneously do the following:
do q = 1, P - 1

send a message to destination processor destID (C.4)
receive a message from source processor srcID

end do

Here we adopt destID = srcID = (myID XOR q), where myID is the processor
id, and XOR is the bit-wise exclusive OR operation. This is a pairwise symmetric exchange
communication. As q loops through all processors, the destID traverses over all other
processors.

Communication time can be approximately calculated from a simple latency + message-
size / bandwidth model. Assuming there are enough communication channels, and no traffic
congestion on the network, every processor will spend the same time interval for the global
exchange. Adding the local reshuffle time, we have the total global remapping time 	�
 on

�
processors:

	�

� 
�� � � � � � ��� ��� 

* � ����� � � � 
 � � � � � ����� � � � ����� ��� �(4)

where � is the average memory access time per element, * is the communication latency
including both hardware and software overheads, and � is the point-to-point communication
bandwidth.

3.3. Hybrid MPI/OpenMP Parallelism. The emerging programming trend on cluster
of SMP is to use MPI between SMP nodes and use multi-threaded OpenMP on the processors
within an SMP node. This matches most logically with the underlying system architecture.

A variant of this hybrid parallelism is to create several MPI tasks (Unix processes) on an
SMP node and use multi-threaded OpenMP within each such MPI task. For example, on 4
SMP nodes with 16 processors per node, one may create a total of 8 MPI tasks; within each
MPI task, one may create 8 threads to match 8 CPUs per MPI task. Therefore, the pure MPI
parallelism of Section 3.2 can be viewed as a special case of this hybrid paradigm, where one
simply creates 4 � 16=64 MPI tasks for each of the 64 CPUs on the 4 SMP nodes.

For the remapping problem on cluster SMP architectures, the array is decomposed into
subarrays owned by each MPI task. Local transpose will be done by each MPI task, with
the choice of either the traditional two-array method or vacancy tracking method. It is par-
allelized with the multiple threads created by each MPI task. The total number of vacancy
tracking cycles shared by the threads are determined by the local array size. After that, global
data exchange is done among all the MPI tasks, and another local transpose as in (G.3) is
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performed. The timing analysis can be approximated by

	�� 
�� � � � � � ��� � � 
�� � 
�* � ��� 
�� � � � � � 
 � � � � � ���
� ��� 
���� ����� 
�� � � ��� ��� 
��
(5)
where

� � 
�� is the total number of CPUs in the system and
��� 
�� is number of MPI tasks

created.
As the number of MPI tasks increases, the local array size is reduced and so does local

reshuffle time (first term in Eqs. 4 and 5). As importantly, as the number of MPI tasks
reduces from

� � 
�� to the number of SMP nodes
�
	�� 
 , the total communication volume

decreases, and so does the communication time. (Here we simply assume the communication
rates between MPI tasks are the same. In practice, communication between MPI tasks on the
same SMP nodes are faster than those between different SMP nodes.) Thus theoretically, we
expect the choice

� � 
�� � � 	�� 
 is optimal.
A specific issue regarding the speedup on more threads is that vacancy tracking cycles

are split among different threads; thus reduce the local reshuffle time as well.
Given the same amount of resources (the total number of CPU), the more MPI tasks we

choose, the less available CPUs that OpenMP threads could use, and vice versa. No OpenMP
parallelism is added in the global exchange stage, the local array size and the number of MPI
tasks related to the network communication determine the time spent in this stage. To gain
the best performance from the above analysis, we need to utilize an optimal combination of
MPI tasks and OpenMP threads on cluster of SMP architectures.

4. Performance.

4.1. Scheduling for OpenMP Parallelism. We tested different scheduling methods
combined with different number of the threads used on different array sizes within one IBM
SP node. The algorithm is implemented in F90 with OpenMP directives, and tests are carried
out on a 16-way SMP node IBM SP. Notice, with OpenMP directives (use compiler option
-qsmp), optimization level specified as -O5 in compiler option will change the loop structures
so that the results are incorrect. We use level -O4 instead. The tested schedules are:


 Static: Loops are divided into N threads partitions, each containing ceiling
(N iterations / N threads) iterations. Each thread is responsible for one partition.


 Affinity: It is an IBM extension, and not part of the OpenMP standard. Loops are
divided into N threads partitions, each containing ceiling (N iterations / N threads)
iterations. Then each partition is subdivided into chunks containing n (if specified)
or ceiling (N remain iterations in partion / 2) (if not specified) iterations. Each
thread takes a chunk from its partition first, if none left, then takes a chunk from
another thread.


 Guided: Loops are divided into progressively smaller chunks until the minimum
size of chunk (default 1) is reached. The first chunk contains ceiling (N iterations
/ N threads) iterations. Subsequent chunk contains ceiling (N remain iterations /
N threads) iterations. Threads taking chunks on a first-come-first-serve basis.


 Dynamic: Loops are divided into chunks containing n (if specified) or ceiling
(N iterations / N threads) (if not specified) iterations. We choose different chunk
sizes. Threads taking chunks on a first-come-first-serve basis.

For the traditional two-array method, the tested array size is 64 � 512 � 128. Table 1 lists
the timing results obtained from ensemble average of 100 test runs. A star is marked for the
fastest timing among all different number of threads. Among all the schedules, static and
affinity have very close timings and are overall the fastest. reasonable speedup is gained
for up to 16 threads with these schedules. Although we could set up number of threads as
many as we like, there is no gain in performance beyond 16 threads on the 16-way IBM SP.
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The overhead of threads creation often deteriorates the performance as shown in columns for� ���������
	�� � � 
 .

TABLE 1
Timing for Array Size 64 
 512 
 128 with Different Schedules and Different Number of Threads Used within

One IBM SP Node with Traditional Two-Array Method (Time in seconds)

Schedule 64 
 512 
 128
32 thrd 16 thrd 8 thrd 4 thrd 2 thrd

Static 44.1* 28.7* 46.1* 90.4* 164.8
Affinity 48.1 27.8* 45.8* 90.6* 164.0
Guided 51.9 45.9 52.6 91.3* 160.8*
Dynamic,1 48.1 50.9 60.5 104.6 191.8
Dynamic,2 50.0 49.6 59.7 99.4 173.7
Dynamic,4 47.6 50.4 55.8 100.0 169.3
Dynamic,8 46.1 48.0 53.7 99.4 173.8
Dynamic,16 56.9 60.3 57.1 97.7 169.1
Dynamic,32 86.9 93.8 87.6 98.7 167.9
Dynamic,64 150.9 163.1 152.5 97.4 162.1
Dynamic,128 296.1 327.0 298.4 328.3 331.9
Dynamic,256 296.3 326.2 301.3 333.0 324.5

For the vacancy tracking method, the tested array sizes are: (i) 64 � 512 � 128,
���
���
�����

= 4114, cycle lengths = 16; (ii) 16 � 1024 � 256,
���
���
�����

= 29140, cycle lengths = 9, 3; (iii)
8 � 1000 � 500,

�������
�����
= 132, cycle lengths = 8890, 1778, 70, 14, 5; and (iv) 32 � 100 � 25,�������������

= 42, cycle lengths = 168, 24, 21, 8, 3.

TABLE 2
Timing for Array Sizes 64 
 512 
 128 and 16 
 1024 
 512 with Different Schedules and Different Number of

Threads Used within One IBM SP Node with Vacancy Tracking Method (Time in seconds)

Schedule 64 
 512 
 128 16 
 1024 
 256
32 thrd 16 thrd 8 thrd 4 thrd 2 thrd 32 thrd 16 thrd 8 thrd 4 thrd 2 thrd

Static 34.1 15.3 15.0 25.3 47.4 34.2* 17.8 24.9 42.4 83.6
Affinity 28.8* 10.8* 13.9* 24.7* 47.2* 34.2* 15.5* 23.0* 42.0* 83.1*
Guided 35.3 14.2 20.8 30.4 47.5 38.0 17.6 27.4 46.8 83.3
Dynamic,1 32.3 16.5 22.9 36.1 58.6 358.8 348.7 55.6 68.0 151.6
Dynamic,2 32.6 16.1 22.3 34.7 55.7 180.6 165.8 37.5 61.6 103.3
Dynamic,4 33.8 16.7 22.7 35.6 54.7 39.9 23.3 35.5 58.2 98.8
Dynamic,8 32.4 16.1 21.4 33.5 53.9 39.4 21.4 33.3 54.3 94.8
Dynamic,16 30.3 16.0 22.8 33.6 53.3 36.9 20.6 31.4 52.5 93.0
Dynamic,32 28.9 16.2 21.4 32.4 52.4 38.9 21.2 31.4 62.3 91.5
Dynamic,64 34.9 16.0 20.5 32.8 59.9 38.6 20.2 29.9 50.9 89.9
Dynamic,128 28.9 16.1 20.0 35.8 51.0 33.5 19.2 29.6 64.9 88.9
Dynamic,256 29.5 16.0 20.0 31.8 52.7 34.4 18.9 29.8 50.0 87.6
Dynamic,512 - - - - - 34.5 19.9 29.9 63.2 87.9
Dynamic,1024 - - - - - 35.3 19.6 30.7 49.0 87.2

Tables 2 and 3 list the timing results obtained from ensemble average of 100 test runs.
It is shown that with large number of cycles and small cycle lengths, schedule affinity
is among the best; and with small number of cycles and large or uneven cycle lengths, dy-
namic schedule with small chunk size is preferred. This holds true for almost all number
of threads tested. Reasonable speedup is reached with schedules guided and affinity
for relative large arrays up to 16 threads used. There are limited speedup with some of the
schedules, even in some cases speed-down, especially for smaller arrays. It is due to the large
overhead associated with the creation of the threads, for example, array size 16 � 1024 � 256
with Dynamics,1 and Dynamics,2 schedules.
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TABLE 3
Timing for Array Sizes 8 
 1000 
 500 and 32 
 100 
 25 with Different Schedules and Different Number of

Threads Used within One IBM SP Node with Vacancy Tracking Method (Time in seconds)

Schedule 8 
 1000 
 500 32 
 100 
 25
32 thrd 16 thrd 8 thrd 4 thrd 2 thrd 32 thrd 16 thrd 8 thrd 4 thrd 2 thrd

Static 57.9 58.8 93.3 158.3 261.5 18.7 2.84 1.49 1.34 1.10
Affinity 48.5 38.0 59.3 86.3 158.0 16.6 1.88 1.72 0.95 1.31
Guided 58.0 58.4 92.7 159.9 261.4 15.3* 3.99 1.71 1.93 1.08*
Dynamic,1 47.1* 32.7* 49.7* 84.0 147.2 19.3 0.81* 1.05* 0.94* 1.35
Dynamic,2 50.8 32.7* 51.9 82.5* 145.8 17.0 2.68 1.12 0.97 1.38
Dynamic,4 56.9 37.8 53.9 83.7 144.3 17.0 3.45 2.03 0.98 1.24
Dynamic,8 63.3 52.7 52.3 82.5* 144.1* 16.5 3.29 2.68 1.57 1.28
Dynamic,16 107.9 92.1 92.2 90.2 148.6 18.7 4.28 3.20 2.09 1.33
Dynamic,32 165.1 159.4 158.8 187.8 155.8 - - - - -

4.2. Pure MPI and Pure OpenMP Parallelisms within One Node. Figure 3 shows the
performance of the parallel implementation with different number of threads (pure OpenMP)
or processors (pure MPI) within one node on 16-way SMP of IBM SP with each method,
respectively. As tested in Ding[12], vacancy tracking method performs better with real*8
than real*4 as compared to two-array method. We use real*8 in this test for all MPI data
types. The array sizes are chosen to be fit in local memory of one processor.

Clearly, both parallelisms with both methods have quite good speedup, except that the
MPI performance with vacancy tracking method at 2 processors has a drop, which is due to
the increased communication overhead compared to the entire local remapping. The vacancy
tracking method is about twice faster than the two-array method. Both methods indicate
a better OpenMP scaling than MPI scaling. With two-array method, OpenMP is slightly
faster than MPI. With vacancy tracking method, OpenMP outperforms MPI substantially at
all times. With 16 threads, it is faster than MPI by a factor of 2.76 for array size 64 � 512 � 128
and by a factor of 1.99 for array size 16 � 1024 � 256. Thus it makes sense to develop a hybrid
MPI/OpenMP parallelism, however, experiences of other researchers[3][7] indicate that a
better performance is not guaranteed[3].

4.3. Pure MPI and Hybrid MPI/OpenMP Parallelisms across Nodes. Figure 4 shows
the performance of the parallel implementation across several nodes on IBM SP with each
method, respectively. (timing with total CPUs = 16 is plotted for comparison) with array
size 64 � 512 � 128 (results for array size 16 � 1024 � 256 are very similar). We use schedule
affinity for OpenMP parallelism in both methods. The timing for both methods are very
close while the speedup values are about twice in the two-array method than those in the va-
cancy tracking method. This is due to the ratio of sequential running time for both methods
used as base to calculate the speedups is about 2 to 1. The closeness of total remapping timing
in these methods is due to the fact thay the majority (over 90%) of total timing is spent at the
global exchange stage, which is only parallelized by pure MPI.

The maximum number of threads we could efficiently use for one MPI task per node
is 16. Pure MPI [NETWORK.MPI=SHARED is already utilized] does not scale above 16
processors. Using one MPI task per node with full 16 threads at each node results even
worse performance at 32 total CPUs, although close or better performance than pure MPI
are achieved at 64 and 128 total CPUs. The dip at 32 CPUs for both pure MPI and hybrid
MPI/OpenMP parallelisms could be explained by the large across-node communication over-
head for the global exchange stage (last term in Eq.5) which accounts for more than 90% of
total remapping time.

Given total number of CPUs (
� � 
�� ), we could adjust the number of processors to be
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FIG. 3. Time and speedup for global array remapping on different number of processors(pure MPI)
or threads (pure OpenMP).

used as MPI tasks (
��� 
�� ) and number of threads per MPI task (

� ���������
	�� ). An example of
choices for

� � 
�� and
� ���������
	�� with

� � 
�� = 64 would be:

N_CPU = N_MPI * N_threads
64 4 16
64 8 8
64 16 4

The communication overhead is reduced when MPI tasks within same node utilize the
in-node MPI network. The different subarray size each MPI task owns also contributes to
the timing difference. Although we use the same number of total CPUs, the subarray sizes
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FIG. 4. Time and speedup for global array remapping with different combinations of MPI tasks and
OpenMP threads for array size 64 � 512 � 128.

are determined by the number of MPI tasks; thus the numbers of vacancy tracking cycles in
the loop for different

� � 
�� are different. Since we only have OpenMP directives for the
local reshuffles, we need to find an optimal combination of MPI tasks and OpenMP threads
to achieve the overall best performance.

From our experiments,
� ���
��� �
	�� � 	

gives an overall best performance among all other
number of threads. At 128 total CPUs, the hybrid MPI/OpenMP parallelism with

� � �
��� �
	�� �	
performs faster than with

� ���������
	�� � ���
by a factor of 1.37 (two-array method) and 1.59

(vacancy tracking method), respectively; and it performs faster than pure MPI parallelism
by a factor of 3.79 (two-array method) and 4.44 (vacancy tracking method), respectively.
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Although it still does not have better performance than with
� ����� ����� � � � �

, the hybrid
MPI/OpenMP parallelism scales up from 32 CPUs to 128 CPUs, compared to scales down
with pure MPI.

5. Summaries and Discussions. In this paper, we first assess the effectiveness of an
in-place vacancy tracking algorithm for multi-dimensional data remapping by comparing the
timing results with traditional 2-array methods. We tested with different array sizes on IBM
SP. The in-place method outperforms the traditional method for all the array sizes when the
data block to move is not too small. The speedup we gain for a big array is 3.24. This could
be explained by two factors: 1) the elimination of the auxiliary array thus the copy back; 2)
the memory access volume and pattern.

The vacancy tracking algorithm is efficient and easy to parallelize with OpenMP in a
shared programming model. The independency of the vacancy tracking cycles allows us to
parallelize the in-place method using a multi-threaded approach in a shared-memory proces-
sor environment to speed up data reshuffles. The vacancy tracking cycles are non-overlapped
so multiple threads can process each tracking cycles simultaneously. We extensively tested
the different thread scheduling methods on 16-way IBM SP and found that schedule affinity
optimizes the performance for arrays with large number of cycles and small cycle lengths,
while dynamic schedule with small chunk size is preferred for arrays with small number of
cycles and large or uneven cycle lengths. Meanwhile, the OpenMP parallelism could be used
directly upon the nested loops of the memory copy for the traditional two-array mothod. The
timing results show that schedules static and affinity are among the best.

On distributed memory architectures, both methods could be parallelized using pure
MPI with the combination of local array transpose method and an existing global exchange
method. Based on the fact that pure OpenMP performs faster and has better scaling than
pure MPI on a single node of IBM SP, we are encouraged to develop a hybrid MPI/OpenMP
approach on cluster SMP architectures for an efficient global data remapping algorithm.

We discussed the algorithms of the hybrid approach, advantages and disadvantages of
choosing the number of MPI tasks and OpenMP threads if the total number of nodes is given,
and carried out systematic tests on IBM SP. For both array sizes we tested, pure MPI does not
scale beyond total 16 processors, in fact, scales down from 32 processors to 128 processors.
But by using hybrid MPI/OpenMP approach, and by carefully choosing the number of threads
per MPI task, we gained about a factor of 4 speedup for both the two-array method and the
vacancy tracking method from pure MPI.

In a distributed memory model, the local transpose is only applied within each MPI
task and a standard all-to-all communication algorithm is used across the nodes. Thus the
OpenMP parallelization is more efficient than the MPI parallelization within one SMP node.
As expected, the hybrid OpenMP/MPI parallel performance is in between.

Contrary to some existing negative experience in hybrid programming applications, this
paper gives a positive aspect of developing hybrid MPI and OpenMP parallel paradigms for
real applications. The vacancy tracking algorithm itself also eliminates an important mem-
ory limitation for multi-dimensional data remapping on sequential, distributed memory and
cluster SMP computer architectures while improving performance significantly at same time.
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