OpenMP Basics
and MP1/OpenMP
Scaling

Yun (Helen) He, NERSC
YEARS Mar 23,2015

FOREFRONT

1974-2014

~

«, U.S. DEPARTMENT OF Office of rfrj}‘ 0
B\

ENERGY Science

 NeRsc/| [@ T
Outline ove

* Introductions to OpenMP

* Featuresin OpenMP 3.1

e What’s new in OpenMP 4.0

* Adding OpenMP to your code using Cray Reveal
* Hybrid MPI/OpenMP Scaling

Office of
Science

T
37 0\
£ A
B 2
o\ @ 5/
L‘”An\m >

YEARS

at the
FOREFRONT

1974-2014

~

2 U.S. DEPARTMENT OF 1 g A
‘ Office of P10

. ENERGY Science -3-

Common Architectures iinse/

 Shared Memory Architecture
— Multiple CPUs share global memory, could have local cache
— Uniform Memory Access (UMA)

— Typical Shared Memory Programming Model: OpenMP,
Pthreads, ...

* Distributed Memory Architecture
— Each CPU has own memory
— Non-Uniform Memory Access (NUMA)
— Typical Message Passing Programming Model: MPI, ...

* Hybrid Architecture

— UMA within one SMP node or socket

— NUMA across nodes or sockets
— Typical Hybrid Programming Model: hybrid MPI/OpenMP, ...

Office of
Science

Current Architecture Trend iinse/

* Multi-socket nodes with rapidly increasing core counts
 Memory per core decreases

 Memory bandwidth per core decreases

 Network bandwidth per core decreases

* Need a hybrid programming model with three levels of
parallelism
— MPI between nodes or sockets
— Shared memory (such as OpenMP) on the nodes/sockets
— Increase vectorization for lower level loop structures

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science = &;;a\l%B

N
A
rrrrrrr "“l

LT
£k !
B 2
% @ /4
NS

What is OpenMP

* OpenMP is an industry standard

APl of C/C++ and Fortran for shared OpenMP

memory parallel programming.

— OpenMP Architecture Review Board

* Major compiler vendors: Intel, Cray,
Intel, Oracle, HP, Fujitsu, NEC, NVIDIA,
AMD, IBM, Texas Instrument, ...

e Research institutions: cOMPunity,
DOE/NASA Labs, Universities...

— The ARB mission is to standardize
directive-based multi-language
high-level parallelism that is
performant, productive and
portable.

U.S. DEPARTMENT OF Ofﬂce Of

V' ENERGY Science -6-

YEARS

at the
FOREFRONT

OB openmp.org

nMPlang Google Google Maps LabMail Calendar ServiceNow NERSC Joblogs NIM #i%th# CrayPort Netflix EightBig Ideas Apple Wikipedia Yahoo ~News

| {Rin}¥|

N
Subscribe to the
News Feed

»OpenMP
Specifications

»About the OpenMP
ARB

»Frequently Asked
Questions
»Compilers
»Resources

»Who's Using
OpenMP?

»Press Releases
»Videos

»Discussion Forums

Events
»Public OpenMP
Calendar

Input Register
Alert the OpenMP.org
webmaster about new

OpenMP News

»OpenMP ARB Announces Lawrence Berkeley National Laboratory as
New Member

27 vendors and research organizations now collaborating on
developing parallel programming model

Champaign, lllinois — February 17, 2015 — Lawrence Berkeley National
Laboratory (Berkeley Lab) has joined the OpenMP Architecture Review
Board (ARB), a group of leading hardware and software vendors and
research organizations creating the standard for the most popular shared-
memory parallel programming model in use today.

“We expect users will need to increase application thread parallelism to run
efficiently on next- generation computing architectures, including the Cori,
the Cray XC system which will be installed at NERSC in mid-2016", said
Katie Antypas, head of the Services Department at the National Energy
Research Scientific Computing Center (NERSC) at Berkeley Lab. “Our
participation in the OpenMP ARB will assure we have a voice in the
development strategy of this important computing language standard.”

Lawrence Berkeley National Laboratory addresses the world’s most
urgent scientific challenges by ing i energy, p ing
human health, creating new materials, and revealing the origin and fate of
the universe. Founded in 1931, Berkeley Lab’s scientific expertise has
been recognized with 13 Nobel prizes. The University of California
manages Berkeley Lab for the U.S. Department of Energy’s Office of
Science. Berkeley Lab is also home to NERSC, the primary high-
performance computing facility for scientific research sponsored by DOE's
Office of Science.

“We welcome the addition of Berkeley Lab and NERSC to the OpenMP
family”, said Michael Wong, OpenMP CEO. “As one of the earliest national
laboratories, they have a history of innovation and inventiveness that will
benefit the evolution of OpenMP.”

The OPeNMP® API SPECIFICATION FOR PARALLEL PROGRAMMING

The OpenMP API
supports multi-platform
shared-memory parallel
programming in C/C++

and Fortran. The
OpenMP API defines a
portable, scalable
model with a simple
and flexible interface for
developing paralle!
applications on
platforms from the
desktop to the
supercomputer.
»Read about
OpenMP.org

Get
»OpenMP specs

Use
»OpenMP Compilers

Learn

Please bring your OpenMP concerns to us

~

A
frreeerer I"l

ERKELEY LAB

Lawrarce Berkeiy Natonal Laseratory

OpenMP Components CZ) (e

 Compiler Directives and Clauses
— Interpreted when OpenMP compiler option is turned on.

— Each directive applies to the succeeding structured
block.

e Runtime Libraries
e Environment Variables

officeof i
Science "7 BERKELEY LAB

OpenMP Execution Model 1ifesc/

 Fork and Join Model

— Master thread forks new threads at the beginning of
parallel regions.

— Multiple threads share work in parallel.
— Threads join at the end of the parallel regions.

Parallel Regions

A Nested
Master / ! \ Parallel
Thread region
in greg‘ S— / .—‘\\
=T e
S— _//,’
|

Sequential Parts

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -8- WEN

<
A
rrrrrrr ‘"'|

RENTOr S
4 >
£ 5\
% @ 4
), &
S i

OpenMP Memory Model a0 Fo

* All threads have access to the same shared global
memory.

* Each thread has access to its private local memory.

* Threads synchronize implicitly by reading and writing
shared variables

* No explicit communication is needed between threads.

Local

Local memor
thread y

memory thread

are emory
Local for all threads
memory

thread

258, U.S. DEPARTMENT OF Office of

&) ENERGY scionce

>
A
rrrrrrr ""l

BERKELEY LAB

= ; y YEARS
Serial vs. OpenMP e
Serial OpenMP
void main () #include “omp.h”
{ Void main ()
double x(256); {
for (int i=0; i<256; i++) double x(256);
{ #pragma omp parallel for
some_work(x[i]); for (int i=0; i<256; i++)
by {
b some_work(x[i]);
¥
¥

OpenMP is not just parallelizing loops! It offers a lot
more

U.S. DEPARTMENT OF Ofﬂce Of

= A
ENERGY Science -10- r/:r\r” l

BERKELEY LAB

T
£ %)
. @ :
7 g
% /5
2 %
S5 i

Advantages of OpenMP L&

e Simple programming model

— Data decomposition and communication handled by
compiler directives

e Single source code for serial and parallel codes
* No major overwrite of the serial code

* Portable implementation

* Progressive parallelization

— Start from most critical or time consuming part of the code

Office of

AY
e ‘"'|
Science il

BERKELEY LAB

OpenMP vs. MPI Nensc gL

* Pure MPI Pro * Pure OpenMP Pro
— Portable to distributed and — Easy to implement parallelism
shared memory machines. — Low latency, high bandwidth
— Scales beyond one node — Implicit Communication
— No data placement problem — Coarse and fine granularity
* Pure MPI Con — Dynamic load balancing
— Difficult to develop and debug ¢ Pure OpenMP Con
— High latency, low bandwidth — Only on shared memory
— Explicit communication machines
— Large granularity — Scale within one node
— Difficult load balancing — Possible data placement
problem

— No specific thread order

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -12- &;;a\l%B

N
A
rrrrrrr "“l

T

£k !

B 2
b.‘,m\m >

OpenMP Basic Syntax L.

* Fortran: case insensitive
— Add: use omp_lib or include “omp _lib.h”

— Fixed format

e Sentinel directive [clauses]
e Sentinel could be: ISOMP, *SOMP, cSOMP

— Free format
e ISOMP directive [clauses]

* C/C++: case sensitive

e Add: #include “omp.h”
* #pragma omp directive [clauses] newline

Office of

‘_‘0‘"“0"%,1 U.S. DEPARTMENT OF

b 5 2

.',_ E . = 13 =
ENERG I Science

Compiler Directives e

Parallel Direcitve
— Fortran: PARALLEL END PARALLEL
— C/C++: paralllel

Worksharing constructs

— Fortran: DO ... END DO, WORKSHARE
— C/C++: for

— Both: sections

Synchronization
— master, single, ordered, flush, atomic

Tasking

— task, taskwait, ...

Office of

Science -14-

Clauses e

e private (list), shared (list)
 firstprivate (list), lastprivate (list)
* reduction (operator: list)

* schedule (method [,chunk_size])
* nowait

 if (scalar_expression)
 num_threads (hum)

» threadprivate (list), copyin (list)
* ordered

* collapse (n)

* tie, untie

 And more.

Office of

Science -15-

T

L4 &

1\ w 5
‘-‘un\m >

Runtime Libraries iR=c/

 Number of threads: omp_{set,get} num_threads
* Thread ID: omp_get _thread_num

* Scheduling: omp_{set,get} dynamic

* Nested parallelism: omp_in_parallel

* Locking: omp_{init,set,unset} lock

* Active levels: omp _get thread_limit

 Wallclock Timer: omp_get_wtime
— Thread private
— Call function twice, use difference between end time and start
time
 And more ...

Office of

Science -16-

T

L4 &

1\ w 5
‘-‘un\m >

Environment Variables e
 OMP_NUM_THREADS

 OMP_SCHEDULE

e OMP_STACKSIZE

« OMP_DYNAMIC

e OMP_NESTED

« OMP_WAIT_POLICY

 OMP_ACTIVE_LEVELS

 OMP_THREAD_LIMIT

e And more

Office of
Science

-17 -

A Simple OpenMP Program

#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
int main () {
int tid, nthreads;
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num();
printf(“Hello World from thread %d\n", tid);
#pragma omp barrier
if (tid==0){
nthreads = omp_get_num_threads();
printf(“Total threads= %d\n",nthreads);
by
¥
¥

Sample Compile and Run:
% ifort —openmp test.f90
% setenv OMP_NUM_THREADS 4

% ./a.out

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -18-

T

£k !

B 2
b.‘,m\m >

YEARS

at the
FOREFRONT

Program main
use omp_lib (or: include “omp_lib.h")
integer :: id, nthreads
I$SOMP PARALLEL PRIVATE(id)
id = omp_get_thread_num()
write (*,*) “Hello World from thread", id
I$OMP BARRIER
if (id == 0) then
nthreads = omp_get_num_threads()
write (*,*) "Total threads=",nthreads
end if
I$SOMP END PARALLEL
End program

Sample Output: (no specific order)

Hello World from thread 0
Hello World from thread 2
Hello World from thread 3
Hello World from thread 1
Total threads= 4

N
A
rrrrrrr "“l

BERKELEY LAB

Features in OpenMP 3.1

YEARS

at the
FOREFRONT

1974-2014

2 U.S. DEPARTMENT OF 1 g A
‘ Office of P10

. ENERGY Science -19-

Major Features in OpenMP 3.1 L&

* Thread creation with shared and private memory
* Loop parallelism and work sharing constructs

* Dynamic work scheduling

* Explicit and implicit synchronizations

 Simple reductions

* Nested parallelism

 OpenMP tasking

Office of

Science -20-

N)
m N A YEARS

The parallel Directive N
FORTRAN: C/C++: | |
1SOMP PARALLEL PRIVATE(id) #pragma omp parallel private(thid)
id = omp_get_thread_num() { _
write (*,*) “I am thread” id thid = omp_get_thread_num();
1$OMP END PARALLEL printf("I am thread %d\n"; thid);
¥

« The parallel directive forms a team of threads for
parallel execution.

« Each thread executes within the OpenMP parallel
region.

U.S. DEPARTMENT OF Offlce Of

ENERGY Science -21- WE&B

<
A
rrrrrrr "“l

P
7 \E)
: @ ;
|2, =
4 /5
DN 2
S i

if and num_threads clauses B2 s

C/C++ example:

++ le:
int n=some_func(); c/c exampte

int n=some_func();
#pragma omp parallel num_threads(n)

#pragma omp parallel if(n>10) {
{ do_stuff;
... do_stuff; }'" S
)

 The if clause contains a conditional expression.
Fork only occurs if it is TRUE.

 The num_threads defines the number of threads
active in a parallel construct

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "22- E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

T
£ 0\
B 2
% @ 5
», 4
S5 iy

First Hands-on Exercise EZ s

Get the Source Codes:
% cp —r /project/projecdirs/training/OpenMP_20150323/openmp .

Compile and Run:

% ftn —openmp —o hello_world hello_world.f90
(or % cc —openmp —o hello_world hello_world.c)
% qsub —I —q debug —Imppwidth=24

% cd $PBS_O_WORKDIR
% setenv OMP_NUM_THREADS 6 (for csh/tcsh)

(or % export OMP_NUM_THREADS=6 for bash/ksh)
% aprun —n 1 —N 1 —d 6 ./hello_world

Sample Output: (no specific order)

Hello World from thread 0
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Hello World from thread
Total threads= 6

OO WrDN

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science "23- BERKELEY LAB

o
5
£ %)
% @ %
NES
s

N | 1=

Loop Parallelism i
FORTRAN: C/C++:
'$OMP PARALLEL [Clauses] #pragma omp parallel [clauses]
.
'$OMP DO [Clauses] #pragma omp for [clauses]
do i =1, 1000 {
a (i) = b(i) + c(i) for (int i=0; i<1000; i++)
enddo { a[i] = b[i] + c[i;
1$SOMP END DO [NOWAIT])
)
1$OMP PARALLEL)

* Threads share the work in loop parallelism.
 For example, using 4 threads under the default “static”
scheduling, in Fortran:
— thread 1 has i=1-250
— thread 2 has i=251-500, etc.

U.S. DEPARTMENT OF Ofﬂce Of

= A
ENERGY Science - 24~ /_\H l

BERKELEY LAB

ey
£ W
d @ ;
& 3
2 /7
2 4
S i

schedule Clause e

 Static: Loops are divided into #thrds partitions.

* Guided: Loops are divided into progressively
smaller chunks until the chunk size is 1.

* Dynamic, #chunk: Loops are divided into chunks
containing #chunk iterations.

e Auto: The compiler (or runtime system) decides
what to use.

* Runtime: Use OMP_SCHEDULE environment
variable to determine at run time.

Office of
Science

-25-

Second Hands-on Exercise iinse/

Sample codes: schedule.f90

-- Experiment with different number of threads.
-- Run this example multiple times.

% ftn —openmp —o schedule schedule.f90
% qsub —I —q debug —Imppwidth=24

% cd $PBS_O_WORKDIR

% setenv OMP_NUM_THREADS 3
% aprun —n 1 =N 1 —d 4 ./schedule
% setenv OMP_NUM_THREADS 6

-- Compare scheduling results with different scheduling algorithm:
default static, “static, 2”, “dynamic, 3”, etc.
-- Results change with dynamic schedule at different runs.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science - 26- &;;a\l%B

N
A
rrrrrrr "“l

T

£ W

B 2
RS

N E

Combined parallel worksharing Constructs S
FORTRAN: C/C++:
'$OMP PARALLEL DO #pragma omp parallel for
doi=1,1000 for (int i=0; i<1000; i++) {
a (i) = b(i) + c(i) a[i] = b[i] + c[i];
enddo)

1$OMP PARALLEL END DO

FORTRAN example:

1SOMP PARALLEL SECTIONS FORTRAN only:

INTEGER N, M
!$Og40PiS=EC1TI%|\(I)O PARAMETER (N=100)
c (i) = a’(i) + b(i) REAL A(N,N), B(N,N), C(N,N), D(N,N)
I$OMP PARALLEL WORKSHARE
enddo Sl
I$OMP SECTION 1
doi=1, 1000 S A [
d(i) = a(i) * b(i)

l
enddo 1$OMP PARALLEL END WORKSHARE

I$SOMP PARALLEL END SECTIONS

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -27 -

<
A
rrrrrrr "“l

LT
£l \&
B @ f
2 /5
A\ s
G

BERKELEY LAB

Third Hands-on Exercise iinse/

Sample code: sections.f90

-- Experiment with different number of threads.
-- Run this example multiple times.

% ftn —openmp —o sections.f90
% qgsub -V —I —q debug —Imppwidth=24

% cd $PBS_O_ WORKDIR

% setenv OMP_NUM_THREADS 3
% aprun —n 1 —N 1 —d 3 ./sections
% setenv OMP_NUM_THREADS 5
% aprun —n 1 —N 1 —d 5 ./sections

-- What happens when more sections than threads?
-- What happens when more threads than sections?

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science - 28- &;;a\l%B

N
A
rrrrrrr "“l

T
CERD
N
R &
s

Loop Parallelism: ordered and collapse s/

= " YEAhRS
Directives e
FORTRAN example:
FORTRAN example:
150MP DO ORDERED P DO g T oE (2)
doi =1, 1000 0(;0_]':’ 1100
AU a(id) = b(i) + c(i)
enddo 4do
1$OMP END DO enc?crl]o
1$OMP END DO

» ordered specifies the parallel loop to be executed in the
order of the loop iterations.

e collapse (n) collapses the n nested loops into 1, then
schedule work for each thread accordingly.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "29- a;a\ltsma

N
A
rrrrrrr ""|

ST

/57 %)

% w 5
RS

N | =

Loop-based vs. SPMD e
SPMD (Single Program Multiple Data):
Loop-based: 1$OMP PARALLEL DO PRIVATE(start, end, i)
ISOMP PARALLEL DO PRIVATE(i) 1SOMP& SHARED(a,b)
I$OMP& SHARED(a,b,n) num_thrds = omp_get_num_threads()
doI=1,n thrd_id = omp_get_thread_num()
a(i) = a(i) + b(i) start = n * thrd_id/num_thrds + 1
enddo end = n * (thrd_num+1)/num_thrds
I$OMP END PARALLEL DO do i = start, end
a(i) = a(i) + b(i)
enddo

I$OMP END PARALLEL DO

SPMD code normally gives better performance than loop-based
code, but is more difficult to implement:

* Less thread synchronization.

* Less cache misses.

* More compiler optimizations.

U.S. DEPARTMENT OF Office of

ENERGY Science -30- a;a\lts.ma

N
A
rrrrrrr ""|

ENT O
Eog o,
4 B
% @ 5
RS

SP-1-
m : A YEARS

reduction Clause e
C/C++ example: Fortran example:
int i; sum = 0.0
#pragma omp parallel reduction(*:i) I$OMP parallel reduction (+: sum)
{ doi=1,n
i=omp_get_num_threads(); sum = sum + X(i)
} enddo
printf(“result=%d\n"i); I$OMP end do

I$SOMP end parallel

« Syntax: Reduction (operator : list).
* Reduces list of variables into one, using operator.
« Reduced variables must be shared variables.
» Allowed Operators:
* Arithmic: + - */ # add, substract, multiply, divide
* Fortran intrinsic: max min
- Bitwise: & | * # and, or, xor
 Logical: && || # and, or

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -31-

N
A
rrrrrrr ""|

P
R
4 \&
% /
&
Lo o

BERKELEY LAB

Synchronization: barrier Directive oV Eo
r$%I:4TPRPAAI\r‘{:ALLEL C/C++:
doi=1,n #pragma omp parallel

{ ...some work;

enc?éig = b)) + <) #pragma omp barrier
1$OMP BARRIER \ ... some other work;
doi=1,n
e(i) = a(i) * d(i)
enddo

1$OMP END PARALLEL

* Every thread will wait until all threads at the barrier.

e Barrier makes sure all the shared variables are (explicitly)
synchronized.

U.S. DEPARTMENT OF Offlce Of

ENERGY Science -32- WE&B

<
A
rrrrrrr ""|

T
g &
: @ ;
g 3
A 5
2 4
S i

N I ™
m N A YEARS

Synchronization: critical Directive i

FORTRAN: C/C++:
ISOMP PARALLEL SHARED (x) #pragma omp parallel shared (x)

... some work ... {
I$OMP CRITICAL [name] #pragma omp critical

X=x+ 1.0 {
I$SOMP END CRITICAL X =X +1.0;

... some other work ... }
I$OMP END PARALLEL }

* Every thread executes the critical region one at a time.

 Multiple critical regions with no name are considered as one
critical region: single thread execution at a time.

U.S. DEPARTMENT OF Offlce Of

= A
ENERGY Science -33- /_\Hl

BERKELEY LAB

T
g &
: @ ;
g 3
A 5
2 4
S i

Synchronization: master and single

. . S 4 YEARS
Directives oo
FORTRAN: C/C++:
1$SOMP MASTER #pragma omp master
... some work ... {
I$SOMP END MASTER - some work ...
FORTRAN: C/C++:
I$SOMP SINGLE #pragma omp single
... some work ... {
I$OMP END SINGLE some work ...

* Master region:
— Only the master threads executes the MASTER region.
— No implicit barrier at the end of the MASTER region.
» Single region:
— First thread arrives the SINGLE region executes this region.
— All threads wait: implicit barrier at end of the SINGLE region.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -34- a;a\ltsma

N
A
rrrrrrr ""|

ST

/57 %)

% w 5
RS

NEsRO Ly YEARS

Synchronization: atomic and flush Directives o
FORTRAN: C/C++:
'$OMP ATOMIC #pragma omp atomic
... Some memory update Some memory update ...
FORTRAN: C/C++:
I$SOMP FLUSH [(var_list)] #pragma omp flush [(var_list)]

 Atomic:
— Only applies to the immediate following statement.

— Atomic memory update: avoids simultaneous updates from multiple
threads to the same memory location.

 Flush:

— Makes sure a thread’s temporary view to be consistent with the
memory.

— Applies to all thread visible variables if no var_list is provided.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -35- a;;ma

N
A
rrrrrrr ""|

T
£)

£ 2

B 2
L‘”An\m >

Thread Safety CZ] (e

* In general, 10 operations, general OS functionality,
common library functions may not be thread safe.
They should be performed by one thread only or
serialized.

* Avoid race condition in OpenMP program.

— Race condition: Multiple threads are updating the same
shared variable simultaneously.

I”

— Use “critical” directive
— Use “atomic” directive

— Use “reduction” directive

N
A
rrrrrrr ""|

Office of

;«*‘-‘i*c,@ U.S. DEPARTMENT OF
Y : -36-
z.pp«“* ENERG Science BERKELEY LAB

NEsRO Ly YEARS
at the

Fourth Hands-on Exercise

Sample codes: pi.c, pi_omp_wrong.c,
pi_omp1.c, pi_omp2.c, pi_omp3.c

-- Understand different versions of calculating pi.
-- Understand the race condition in pi_omp_wrong.c

-- Run multiple times with different number of threads

% .Icompile_pi
% qsub pi.pbs

-- Race condition generates different results.
-- Needs critical or atomic for memory updates.

-- Reduction is an efficient solution.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -37- E.;Eﬂ\‘%“?

N
A
rrrrrrr "“l

)"hmm“‘\“

Serial code calculating Pl

/* file name: pi.c */
/* this is the serial code of calculating pi */

static long num_steps = 100000;
double step;

int main()
{
int i; double x, pi, sum =0.0;
step = 1.0 /(double) num_steps;
for (i=0;i<=num_steps; i++)
{
x=(i+0.5)*step;
sum=sum+ 4.0/(1.0+x*x);
}
pi = step * sum;
printf("pi=%f\n",pi);
return O;

SR, U.S. DEPARTMENT OF Office of

i ENERGY Science -38-

N =
m N A YEARS

0-0 1 .o
X

Mathematicallv, we know:

f (1+x2) = T

And this can be approximated

as a sum of the area of rectangles:

N
> F(x)Ax =
=1

Where each rectangle has a width
of Ax and a height of F(x) at the

middle of interval i.

at the
FOREFRONT

~

A
I}

frreeerer

BERKELEY LAB

pi_omp_wrong.c e c/| (g e

/* pi_omp_wrong.c */

int main()

{
int i; double x, pi, sum =0.0;
step = 1.0/(double) num_steps;

#pragma omp parallel private(x, sum)

Multiple threads may update pi at
{ . T
SR G e the same time. Race condition!
for (i=0;i<=num_steps; i++)
{
x=(i+0.5)*step;
sum=sum+ 4.0/(1.0+x*x);

}

pi = pi + step * sum;
}

printf("pi=%f\n",pi);

return O;

}

~

U.S. DEPARTMENT OF Ofﬂce Of

’\‘ ¥
ENERGY Science -39~ ;R;%Elr LAB

RENTOr S
4 >
£ 5\
% @ 4
), &
S i

pi_omp1.c with critical ilesc/

/* file name: pi_omp1l.c */

int main()

{
int i; double x, pi, sum =0.0;
step = 1.0/(double) num_steps;

#pragma omp parallel private(x, sum)

{ - .

#pragma omp for “critical” directive ensures
for (i=0;i<=num_steps; i++) updates from one thread at a time
{

x=(i+0.5)*step;
sum=sum+ 4.0/(1.0+x*x);
}
#pragma omp critical
pi = pi + step * sum;
}
printf("pi=%f\n",pi);
return O;

}

~

&R U.S. DEPARTMENT OF i A
Office of ceerees] !

1 EN ERGY Science =40~ BERKELEY LAB

pi_omp2.c with atomic ngesc/| g

/* file name: pi_omp2.c */

int main()

{
int i; double x, pi, sum =0.0;
step = 1.0/(double) num_steps;

#pragma omp parallel private(x, sum)

{ :

ST BT “atomic” does faster memory
for (i=0;i<=num_steps; i++) update than “critical”. It also
{ ensures update from one thread

x=(i+0.5)*step;
sum=sum+ 4.0/(1.0+x*x);

}

#pragma omp atomic
pi = pi + step * sum;
}
printf("pi=%f\n",pi);
return O;

}

at a time

~

é“"‘"’"ﬁ,‘i U.S. DEPARTMENT OF Ofﬂce Of

. oy
o0 4 ENERGY Science “4L- ;R:‘%EJ;%B

pi_omp3.c with reduction 1ifesc/

/* file name: pi_omp3.c */

int main()

{
int i; double x, pi, sum =0.0;
step = 1.0/(double) num_steps;

#pragma omp parallel for private(x) reduction (+:sum)

° o o 7))
for (i=0;i<=num_steps; i++) reduction” is a more scalable

{ and elegant solution than
x=(i+0.5)*step; “critical”.
sum=sum+ 4.0/(1.0+x*x); * Only 2 extra lines of codes
|}oi = step * sum; than the serial code!
printf("pi=%f\n",pi);
return O;

~

ST, 5
a‘\ » U.S. DEPARTMENT OF Ofﬂce Of
e

oy
ENERGY Science “4z- ;R:‘%EJ;%B

Data Scope ()

* Most variables are shared by default
— Fortran: common blocks, SAVE variables, module variables
— C/C++: file scope variables, static variables
— Both: dynamically allocated variables

 Some variables are private by default
— Certain loop indices

— Stack variables in subroutines or functions called from
parallel regions

— Automatic (local) variables within a statement block

Office of a. e ‘ﬁll
Science B BERKELEY LAB

Data Sharing: firstprivate Clause

ST
LB
3 \
B 2
% @ 7
) Z
S i

FORTRAN Example:

PROGRAM MAIN
USE OMP_LIB
INTEGER I
I=1
ISOMP PARALLEL FIRSTPRIVATE(I) &
I$OMP PRIVATE(tid)
I=1+2 !I=3
tid = OMP_GET_THREAD_NUM()
if (tid ==1) PRINT *, I ! 1=3
I$OMP END PARALLEL
PRINT *,1 11=1
END PROGRAM

* Declares variables in the list private

* |Initializes the variables in the list with the value when they
first enter the construct.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science

-44 -

N[~ =
m N A YEARS

at the
FOREFRONT

BERKELEY LAB

Data Sharing: lastprivate Clause L&

FORTRAN example:

Program main

Real A(100)

I$OMP parallel shared (A) &

I$OMP do lastprivate(i)

DOI=1, 100
AD)=I+1

ENDDO

I$SOMP end do

I$SOMP end parallel
PRINT*, I I'1=101

end program

* Declares variables in the list private

* |Initializes variables in the list with the value when they
last exit the construct.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science “45- WD&B

ST
P 3 A
£ A
B 2
% @ 7
) Z
S5 i

Data Sharing: threadprivate and copyin isc

YEtllthS
Clauses
;glgR'l;\I;AN Example: « A threadprivate variable has
main - .

use OMP_LIB its own copies of the global

INTEGER tid, K variables and common

COMMON /T/K
1$OMP THREADPRIVATE(/T/) blocks.

K=1 . .

* A threadprivate variable has

ISOMP PARALLEL PRIVATE(tid) COPYIN(/T/) its scope across multiple

PRINT *, "thread ", tid, ” , K=", K . .

tid = omp_get_thread_num() parallel regions, unlike a

K=tid+K . .

PRINT *, "thread ", tid, * K=", K private variable.
'$OMP END PARALLEL - The copyin clause: copies
ISOMP PARALLEL PRIVATE(tid) the thread private variables

tid = omp_get_thread_num() from master thread to each

PRINT *, "thread ", tid, ” ,K=", K
I$SOMP END PARALLEL local thread.

END PROGRAM main

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science ~46- a;;ma

LT
£ 2

£ %)

B 2
NS

Tasking: task and taskwait Directives oo
OpenMP:
Serial: int fib (int n) {
int fib (int n) int x,y;
{ if (n < 2) return n;
int x, y; #pragma omp task shared (x)
if (n < 2) return n; x = fib (n — 1);
x = fib (n —1); #pragma omp task shared (y)
y = fib (n - 2); y = fib (n = 2);
return x+vy; #pragma omp taskwait
¥ return x+v;
}

 Major OpenMP 3.0 addition. Flexible and powerful. Useful for
situations other than counted loops.

* The task directive defines an explicit task. Threads share work from all
tasks in the task pool. The taskwait directive makes sure all child tasks
created for the current task finish.

* Helps to improve load balance.

N
A
rrrrrrr ""|

Office of

a,é“"""e,;‘_‘ U.S. DEPARTMENT OF /_\l
d Y : 47 -
%*s‘* ENERG Science BERKELEY LAB

Nested OpenMP

#include <omp.h>
#include <stdio.h>
void report_num_threads(int level)

{

#pragma omp single
{

printf("Level %d: number of threads in the team - %d\n", level,

omp_get_num_threads());

}

}

int main()

{

}

ENT O
G .
S/ &
S0

omp_set_dynamic(0);
#pragma omp parallel num_threads(2)
{
report_num_threads(1);
#pragma omp parallel num_threads(2)
{
report_num_threads(2);
#pragma omp parallel num_threads(2)
{
report_num_threads(3);
}
}
}

return(0);

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science

-48 -

% a.out
Level 1:
Level 2:
Level 3:
Level 2:
Level 3:

number of threads in the team - 2
number of threads in the team - 1
number of threads in the team - 1
number of threads in the team - 1
number of threads in the team - 1

% setenv OMP_NESTED TRUE

% a.out
Level 1:
Level 2:
Level 2:
Level 3:
Level 3:
Level 3:
Level 3:

Level O:
Level 1:
Level 2:
Level 3:

number of threads in the team - 2
number of threads in the team - 2
number of threads in the team - 2
number of threads in the team - 2
number of threads in the team - 2
number of threads in the team - 2
number of threads in the team - 2

PO

PO P1

PO P2; P1 P3

PO P4; P2 P5; P1 P6; P3 P5

rreeeee

YEARS

at the
FOREFRONT

A
i

BERKELEY LAB

Fifth Hands-on Exercise EZ s

Sample codes: jacobi_serial.f90 and jacobi_omp.f90

-- Check the OpenMP features used in the real code.
-- Understand code speedup.

% qgsub jacobi.pbs

Or:
% ftn —openmp —o jacobi_omp.f90
% qsub —I —q debug —Imppwidth=24

% cd $PBS_O_WORKDIR

% setenv OMP_NUM_THREADS 6

% aprun —n 1 —N 1 —d 6 ./jacobi_omp
% setenv OMP_NUM_THREADS 12
% aprun —n 1 =N 1 —d 12 ./jacobi_omp

-- Why not perfect speedup?

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science “49- &;;a\l%B

T
CERD
N
R &
s

Why not perfect speedup with OpenMP? L.

Jacobi OpenMP Execution Time (sec) Speedup
1 thread 121 1
2 threads 63 1.92
4 threads 36 3.36

* Possible causes
— Serial code sections not parallelized
— Thread creation and synchronization overhead
— Memory bandwidth
— Memory access with cache coherence
— Load balancing
— Not enough work for each thread

Office of

Science -50-

a
FFFFFFFFF

NP-% =

Cache Coherence and False Sharing [

AT
L4 &
1\ % 5
4
Lo o

ccNUMA node: cache-coherence NUMA node.
Data from memory are accessed via cache lines.

Multiple threads hold local copies of the same (global)
data in their caches. Cache coherence ensures the local
copy to be consistent with the global data.

Main copy needs to be updated when a thread writes to
local copy.

Writes to same cache line from different threads is
called false sharing or cache thrashing, since it needs to
be done in serial. Use atomic or critical to avoid race
condition.

False sharing hurts parallel performance.

Office of

Science -51-

Cache Locality EZ) e

* Use data in cache as much as possible
— Use a memory stride of 1

e Fortran: column-major order
e C: row-major order

— Access variable elements in the same order as they are
stored in memory

— Interchange loops or index orders if necessary
— Tips often used in real codes

& "6:1,* U.S. DEPARTMENT OF Ofﬂce Of

i» ENERGY Science "o2- E._;a\‘%“’

N
A
rrrrrrr "“l

SP-0 =
m T A YEARS

Fine Grain and Coarse Grain Models e

Program fine_grain
I$OMP PARALLEL DO

do i=1,n
... computation
enddo

I$OMP END PARALLEL DO
... some serial computation ...

I$SOMP PARALLEL DO
doi=1,n
... computation
enddo
I$OMP END PARALLEL DO
end

* Program is single threaded except
when actively using multiple threads,
such as loop processing,

* Pro: Easier to adapt to MPI program.

* Con: thread overhead, serial section
becomes bottleneck.

& "6:1,‘ U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science

-53-

Program coarse_grain
I$SOMP PARALLEL
I$OMP DO
doi=1,n
... computation
enddo
I$OMP END DO

I$SOMP DO
doi=1,n
... computation
enddo
I$SOMP END DO
I$SOMP END PARALLEL
end

* Majority of program run within an
OMP parallel region.

* Pro: low overhead of thread
creation, consistent thread affinity.

* Con: harder to code, prone to race
condition.

~

A
i

rreeeee

BERKELEY LAB

Memory Affinity: “First Touch” Memory 0

 Memory affinity: allocate memory as close as possible to the core on
which the task that requested the memory is running.

Memory affinity is not decided by the memory allocation, but by the
initialization. Memory will be local to the thread which initializes it. This
is called “first touch” policy.

 Hard to do “perfect touch” for real applications. Instead, use number of
threads few than number of cores per NUMA domain.

Initialization
Stream NUMA effects - Hopper
#pragma omp parallel for 60

for (j=0; j<VectorSize; j++) {
a[j] = 1.0; b[j] = 2.0; c[j] = 0.0;}

"
o

=*=TouchByAll
“@-TouchByOne

'
o

Bandwidth GB/s
P 8

Compute
#pragma omp parallel for
for (j=0; j<VectorSize; j++) {

Jon99g st JoysiH

-
o

o

. . . 1234567 8 9101112131415161718192021222324
a[J]Zb[J]-l-d*C[J]"} No. of OpenMP Threads
Courtesy of Hongzhang Shan

N
A
rrrrrrr "“l

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "o4- WD&B

ST
P 3 A
£ A
B 2
% @ 7
) Z
S5 i

OMP STACK SIZE EZ) (e

* OMP_STACK_SIZE defines the private stack space each
thread has.

* Default value is implementation dependent, and is
usually quite small.

* Behavior is undefined if run out of space, mostly
segmentation fault.

* To change, set OMP_STACK_SIZE to n (B,K,M,G) bytes.
setenv OMP_STACK_SIZE 16M

Office of
Science

LT

I B

o\ w 5/
RS

-55-

YEARS

at the
FOREFRONT

1974-2014

R U.S. DEPARTMENT OF Office of

. ENERGY Science

-56 -

~

frreeerer

A
|

New Features in OpenMP 4.0 L&

* OpenMP 4.0 was released in July 2013

* Device constructs for accelerators

* SIMD constructs for vectorization

* Task groups and dependencies

* Thread affinity control

* User defined reductions

e Cancellation construct

* Initial support for Fortran 2003

* OMP_DISPLAY_ENV for all internal variables

Office of
Science

AT

I &

2\ w 5/
Lo o

-57-

NEsRO Ly YEARS

Device Constructs for Accelerators e

C/C++:
#pragma omp target map(to:B,C), map (tofrom: sum)
#pragma omp parallel for reduction(+,sum)
for (int i=0; i<N; i++) {
sum += B[i] + C[i];
}

* Use “target” directive to offload a region to device.
* Host and device share memory via mapping: to, from, tofrom.

C/C++:
#pragma omp target teams distribute parallel for \
map (to:B,C), map (tofrom:sum) reduction(+:sum)
for (int i=0; i<N; i++) {

sum += B[i] + C[i];
}

* Use “teams” clause to create multiple master threads that can
execute in parallel on multiple processors on device.

* Use “distribute” clause to spread iterations of a parallel loop across
teams.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -98- BERKELEY LAB

T
CERD
N
R &
s

OpenMP Vectorization Support [

 More architectures support longer vector length.

* Vectorization: execute a single instruction on
multiple data objects in parallel within a single
CPU core.

e Auto-vectorization can be hard for compilers
(dependencies).

 Many compilers support SIMD directives to aid
vectorization of loops.

* OpenMP 4.0 provides a standardization for SIMD.

Office of
Science

LT

I B

o\ w 5/
RS

-59-

simd Directive iR=c/

* Vectorize a loop nest, cut loop into chunks that fit
into a SIMD vector register

* Loop is not divided across threads
* Clauses can be:

— safelen(length): defines the max number of iterations can
run concurrently without breaking dependence.

— linear: lists variables with a linear relationship to the
iteration number.

— aligned: specifies byte alignment of the list items
— all regular clauses

Office of

‘__w*'-‘i*% U.S. DEPARTMENT OF
ENERG I Science

Parallelize and Vectorize a Loop Nest s

e C/C++: #pragma omp for simd [clauses]
* Fortran: !SOMP do simd [clauses]

* Divide loop first across a thread team, then
subdivide loop chunks to fit a SIMD vector register.

Office of
Science -61-

LT
5/ &
B 2
1\ @ 5
RS

SIMD Function Vectorization B o

C/C++:

#pragma omp declare simd
float min (float a, float b) {
y return a<b ? a:b;

 Compilers may not be able to vectorize and inline function calls
easily.
e #pramga declare simd tells compiler to generate SIMD function

e Useful to “declare simd” for elemental functions that are called
from within a loop, so compilers can vectorize the function.

£ERY, U-S. DEPARTMENT OF Office of

a ENERGY science 62 E;E"\l%m

N
A
rrrrrrr "“l

taskgroup Directive L <

* OpenMP 4.0 extends the tasking support.

* The taskgroup directive waits for all descendant
tasks to complete as compared to taskwait which

only waits for direct children.

Office of

Science -63-

T
&7 0\
£ 2
B 2
o\ @ 5/
RS

Task Dependencies s/ [

#pragma omp task depend (out:a)

#b}'agma omp task depend (out:b)

{..}
#pragma omp task depend (in:a,b)

Lo}

* The first two tasks can execute in parallel

* The third task can only start after both of the first
two are complete.

Office of

Science -64-

Better Thread Affinity Control E.Z

* OpenMP 3.1 only has OMP_PROC_BIND, either
TRUE or FALSE.

* OpenMP 4.0 still allows the above. Can now
provide a list: master, close, or spread.

* Also added OMP_PLACES environment variable,
can specify thread, cores, and sockets.

 Examples:
— export OMP_PLACES=threads

— export OMP_PROC_BIND="“spread, close” (for nested
levels)

Office of
Science

LT
5/ &
B 2
1\ @ 5
RS

=65 -

User Defined Reductions iinse/

#pragma omp declare reduction (merge: std::vector<int>
: omp_out.insert(omp_out.end(), omp_in.begin(),
omp_in.end()))

e OpenMP 3.1 can not do reductions on objects or
structures.

e OpenMP 4.0 can now define own reduction operations
with declare reduction directive.

* “merge” is now a reduction operator.

Office of

Science - 66 -

LT,
£ %)
B 2
9 @ 5
R &
S5 iy

Construct Cancellation iinse/

FORTRAN:
I$SOMP PARALLEL DO PRIVATE (sample)
doi=1,n
sample = testing(i,...)
I$OMP CANCEL PARALLEL IF (sample)
enddo
I$OMP END PARALLEL DO

» cancel / cancellation point is a clean way of early
termination of an OpenMP construct.

* First thread exits when TRUE. Other threads exit when
reaching the cancel directive.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -67-

N
A
rrrrrrr "“l

T

£ W

B 2
RS

BERKELEY LAB

Adding OpenMP to Your Code
Using Cray Reveal

YEARS

at the
FOREFRONT

1974-2014

~

2 U.S. DEPARTMENT OF 1 g A
‘ Office of P10

. ENERGY Science -68-

What is Reveal iR=c/

* A tool developed by Cray to help developing the hybrid
programming model (based on original serial or MPI code)

e Part of the Cray Perftools software package
* Only works under PrgEnv-cray

* Utilizes the Cray CCE program library for loopmark and
source code analysis, combined with performance data
collected from CrayPat

* Helps to identify top time consuming loops, with compiler
feedback on dependency and vectorization

* Loop scope analysis provides variable scope and compiler
directive suggestions for inserting OpenMP parallelism to a
serial or pure MPI code

Office of

Science -69-

ENT O
> o
“ \
& % /i
RS

Steps to Use Reveal on Edison (1) C.Z

* Load the user environment
— % module swap PrgEnv-intel PrgEnv-cray
— % module unload darshan
— % module load perftools (current default is version 6.2.2)

* Generate loop work estimates
— % ftn —c —h profile_generate myprogram.f90

— % ftn —o poisson_serial —h profile_generate myprogram.o
* Good to separate compile and link to keep object files
* Optimization flags disabled with —h profile-generate

— % pat_build —w myprogram (-w enables tracing)
* It will generate executable “myprogram+pat”

— Run the program “myprogram+pat”
* |t will generate one or more myprogram+pat+...xf files

— % pat_report myprogram+pat...xf > myprogram.rpt
* It will generate myprogram+pat....ap2 file

o“‘"‘“""fa,‘ U.S. DEPARTMENT OF Ofﬂce Of

3 ENERGY Science -70-

YEARS

at the
FOREFRONT

BERKELEY LAB

Steps to Use Reveal on Edison (2) E e

* Generate a program library
— % ftn =03 —hpl=myprogram.pl —c myprogram.f90
— Optimization flags can be used

n”

— Build one source code at a time, with “-c” flag

— Use absolute path for program library if sources are in multiple
directories

— User needs to clean up program library from time to time

* Launch Reveal
— % reveal myprogram.pl myprogram+pat...ap2

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science “71- WD&B

<
A
rrrrrrr ""|

ey
g &
i @ ;
7 g
2 /7
2 4
S5 i

YEARS

at the
FOREFRONT

Cray Reveal GUI

File Edit View Help |
wpoisson_mpi.pl X |

-Navigation -Source
<« Loop Performance |w | o

P 1180531 main@148
P 852622 main@161
P 85.0968 main@163
P 325785 main@325
P 324084 main@327
P 00423 main@343
P 00298 main@354
b
b
b
b
b
b

New to Reveal?

Try_ "Getting Started”
in the "Help" Menu

0.0058 main@252
0.0057 main@258
0.0055 main@495
0.0000 main@404
0.0000 main@414
0.0000 main@423

-Info

~

U.S. DEPARTMENT OF 1 A\
Office of p—1

ENERGY Science -72-

Top loops with compiler loopmarks and feedback

YEARS

at the
FOREFRONT

- NN I —
File Edit View Help

I\ Reveal

wpoisson_mpi.pl 5 |

-Navigation

dirsiyunhe/reveal/poisson_mpi.c

aaaaaaa

Compiler | | 5

< Loop Performance [V|¢ joopmarks oo o {‘}w%pw{}gown g Save
p 118.0531 main@148
t 225222 ::::g:g; for (1 =i _min[my_rank] + 1; i <= i_max[my_rank] - 1; i++)
» 325785 main@325 326 {
b 324084 main@327 rLr4 327 for (7 =1 7 <= N; j++)
b 0.0423 main@343 328 {
b 0.0298 main@354 329 u_new[INDEX(1,3j)] =
b 0.0059 main@252 330 0.25 * (u[INDEX(1i-1,3j)] + ulINDEX(i+l,j)] +
b 0.0057 main@258 331 u[INDEX(1,3j-1)] + ulINDEX(1,j+1)] +
b 0.0055 main@495 332 h * h * f[INDEX(i,j)]);
b 0.0000 main@404 333 }
p 0.0000 main@414 334}
4 0.0000 main@423 335 /*

336 Wait for all non-blocking communications to complete.

337 */

: o

aaaaaaa

-Info - Line 325

i

@ Aloop was notvectorized because a recurrence was found between "u" and "u_new" at line 329.

Compiler

U.S. DEPARTMENT OF Ofﬁce of

ENERGY Science

|poisson_mpi.pl loaded. poisson_mpi+p

feedback

-73 -

~

frreeerer

A
|||‘

Compiler feedback explanation

YEARS

at the
FOREFRONT

Eile Edit View Help

wpoisson_mpi.pl X

-Navigation

I-Source - Iscratch1/scratchdirsiyunhe/reveal/poisson_mpi.c

e OO ~[\] Explain

<4 Loop Performance

v |

Explain CC-6290

b 118.0531 main@148

’ 852622 ma!n@‘l 61 VECTOR: Aloop was not vectorized because a recurrence was found between
b 85.0968 main@163 “var" and "var" at line num.

b 325785 main@325

b 324084 main@327 Scalar code was generated for the loop because it contains a linear

b 00423 main@343 recurrence. The following loop would cause this message to be issued:
b 0.0298 main@354 for (i=1;i<100;i++) {

b 0.0059 main@252 b[i] = a[i-1];

b 00057 main@258 } ali] = b{iL

4 0.0055 main@495

b 0.0000 main@404

b 0.0000 main@414

b 0.0000 main@423

o close

Explain other message. .. |

..r-::i-'fi[

1+
1)] + _Il
omplete.
~If
0

Double click

U.S. DEPARTMENT OF

ENERGY Science

Office of

Aloop was notvectorized because a recurrence was found between "u" and "u_new" at line 329.

] to explain

74 -

~

frreeerer

A
|

YEARS

at the

Compiler feedback explanation (2)

FOREFRONT
XlRexeal - S @ T (N {1 | W Oos—
File Edit View Help Explain CC-6005 z
wpoisson_mpipl ¥ | SCALAR: Aloop was unrolled.
-Navigation -Source - /scratchl1/scratchdirsiyunhe/reveal/poisson_mpi.c—— The compiler unrolled the loop. Unrolling creates a number of copies of the
« Loop Performance [v | & loop hody. When unrolling an outer loop, the compiler attempts to fuse
replicated inner loops - a transformation known as unroll-and-jam. The
b 1180531 main@148 - = - lcompiler will always employ the unroll-and-jam mode when unrolling an outer
i oop; literal outer loop unrolling may occur when unrolling to satisify a
’ 326 { | literal outer | i h lling to satisify
b 85.2622 main@161 for (j =1; j <= N; jot+) user directive (pragma). i
3 85,0968 main@163 . . 0
b loTES main@325 N Identied loop. A ditrent message 1 isoued whan iteral owterioop. | |1
) = 329 u new[INDEX(1,] = | | . Imrer IS ISSU W Ier. uter
32.4084 main @327 - [N (1,3)] . ..unrolling is performed, as this transfomation is far less likely to be]
b 00423 main@343 330 0.25 * (ulINDEX(i-1,)]peneficial, !
3 0.0298 main@354 331 u[INDEX(1,]-1)] |
b 00053 main@252 332 h * h * f[INDEX For sake of illustration, the following contrasts unroll-and-jam with literal
b 0'0057 main@258 133 } outer loop unrolling. |
b 0.0055 main@495 334 } A A _
b 00000 main@404 335 /* A bl —
b 0.0000 main@414 336 Wait for all non-blocking com oar[i(][li]; B[Ij][i]+4'2?(;;){
3 0.0000 main@423 337 */ }
338 MPI_Waitall (requests, reque }
339 /# for (j=0;i<10;i+=2) {
4 for(i=0;i<100; i++) {
- e ali 10l =bf 0] + 42.0;
nfo - Line 327 ali+1][i] = b[i+1][i] + 42.0;
A loop was notvectorized because the loop initialization wou }
A loop was unrolled 4 times. } =l
| >
"""" Explain other message... | o close |
Ipoisson_mpi.pl loaded. poisson_mpi+pat+7119-5669t.ap2 loaded. Y

U.S. DEPARTMENT OF Office of

ENERGY Science

-75-

frreeerer

A
|||‘

BERKELEY LAB

YEARS

at the

Reveal scoping assistance

FOREFRONT
X\ Reveal
File Edit View Help
w poisson_mpi.pl X|
-Navigation——————— rSource - /scratch1/scratchdirsiyunhe/reveal/poisson_mpi.c
<« Loop Penormanc[vIQ Qgpl I% Down | B save | £
b 1180531 main@148 T |
3 85.2622 main@161 Lra 307 P (i=1; 4 < N; i)
b 850968 main@163 i or Ly =43 =N+
b 325785 main@325 328 { o
b 32.4084 main@327 329 u_new[INDEX(1,]j)] =
> 330 0.25 * (u[INDEX(i-1,3)] + ul[INDEX(i+1,j)] - x| Reveal OpenMP Scoping
b 00298 mai Scope Loop 331 U[INDEX(1,j-1)] + ulINDEX(i,j+1)] - ls 1 | -
b 00059 main@252 332 h * h * fIINDEX(i,i)]); cope Loops |
b 0.0057 main@258 333 JI EditListl List of Loops to be Scoped
E gggzz ma!“g:zi Scope? |Line# IFiIe or Source Line =
| main 4 . . - - -
b 0.0000 main@414 nght C||Ck to for all non-blocking communications to compl o /scratchl/scratchdirs/yunhe/reveal/poisson_mpi.c
3 0.0000 main@423 Select |Oops 327 for (J=1;] <= N; j++)
g PL_Waitall (requests, request, status); 343 for (j=1; J <=N; j+)
339 /* L'
[>l
Info - Line 343 —
Aloop was notvectorized because the loop initialization would be too costly. =
& Aloop was unrolled 4 times. —
Apply Filter| Time: [0.000 Trips: |0
1 I3 R | [| [
= = = = StartScopingI Cancelll Closel
]pmsson_mpl.pl loaded. poisson_mpi+pat+7119-5669t.ap2 loaded. y y,

Start Scoping

U.S. DEPARTMENT OF Office of

EN ERGY Science " 76- BERKELEYLAi

Scoping Results

YEARS

at the
FOREFRONT

X| Reveal
Help
X
I 8 0 0 [X| Reveal OpenMP Scoping
-Source - /scratch1/scratchdirsiyunhe/reveal/poisson_mpi.c Scope Loops Scoping Results |
s

ance | v |4 {}y_pl ¥ Down | f- ;aveli poisson_mpi.c: Loop@325

e s wpmmae vr aems e res ea TS TET T
n@148 324 */ Name |Type |Scope Info
n@161 . e . . .
ng163 for (1 =i_min[my_rank] + 1; i <= i_max[my_rank] - 1; i f Scalar FAIL: Possible recurrence involving
n@325 @ 326 { . . . FAIL: Possible resolvable recurrent
n@327 -LSr4 327 for (j=1; 7 <=N; j+) u Scalar - FAIL: Possible recurrence involving
n@343 { o FAIL: Possible resolvable recurrenc
n@3s4 u_new[INDEX(1.])) = . . . u_new Scalar - L: Possible recurrence involving
n@252 0.25 * (ulINDEX(i-1,3)] + u[INDEX(i+l,j)] + - Possible resolvable recurrent
n@258 u[INDEX(1,j-1)] + ul[INDEX(1,j+1)] + .) -
n@495 h * h * £IINDEX(i.j)]): ' SEalar Piivaie
n@404 } N Scalar Shared
n@414 334 } h Scalar Shared
n@423 335 /* i Scalar Shared

336 Wait for all non-blocking communications to complete. i max Scalar Shared

337 */ o

. i_min Scalar Shared
338 MPI_Waitall (requests, request, status); -
339 /* my_rank Scalar Shared

O]

.......

K1

First/Last Private

~Reduction

-Info - Line 325

@ Aloop was notvectorized because a recurrence was found between "u" and "u_new" at line 329.

ded. poisson_mpi+pat+7119-5669t ap2 loaded. 0
. U.S. DEPARTMENT OF Ofﬁce Of
ENERGY Science -77-

[C] Enable FirstPrivate
[C] Enable LastPrivate

None

Find Name: I

Insert Directive | iShow Directive:

\
rrreeee ”"

BERKELEY LA

tary

YEARS

at the
FOREFRONT

Suggested OpenMP directives

e OO [X| Reveal
File Edit View Help
wpoisson_mpi.pl & |

(X/ Reveal OpenMP Scoping
-Navigation————— -Source - /scratch1/scratchdirsiyunhe/reveal/poisson_mpi.c be Loops Scoping Results |
« =
Loop Performance [v|¢- -@gpl {}gownlﬁgave £+ poisson_mpl.c: Loop@325
o ——— MMMMMA MMM LS M AR s T bl iy e
b 1180531 main@148 ., <l ke [Type [scope |info
b 852622 main@161 A ST K] +1; 1 <= 1 max] TR Py B Possibl ———
b 850968 main@163 or (i =1 min[my_rank] + 1; i <= i_max[my_rank] - 1; i calar : Possible recurrence involving this object.
b 325785 main@325 @ 326 { FAIL: Possible resolvable recurrence involving this objec
b 324084 main@327 Lsr4 327 for (j =1; j <=N; j+) Scalar - FAIL: Possible recurrence involving this object.
b 00423 main@343 328 { FAIL: Possible resolvable recurrence involving this objec
b 00298 main@354 329 u_new[INDEX(1i,j)] = e S e .. RV
b 00059 main@252 330 0.25 * (u[INDEX(i-1,3)] + u[INDEX(i+l,j)] + (X! OpenMP Directive
b 00057 main@258 331 ul[INDEX(1,j-1)1 + ulINDEX(i,j+1)] + rective inseﬂedl?ylframevi?t Ma)ybe incomplete. .
. . i hgma omp parallel for default(none
b 00055 main@495 I 332 h * h * f[INDEX(i,j)]); J unresolved (f,u,u_new) \
b 0.0000 main@404 E 333 T I private (j) \
b 0.0000 main@414 : 334} shared (h.i,N.my_ranki_min.i_max)
b 0.0000 main@423 335 /*
336 Wait for all non-blocking communications to complete.
337 */
338 MPI_Waitall (requests, request, status);
339 /* LI
[« | I |
Info- Line 35— 7T _—
@ Aloop was notvectorized because a recurrence was found between "u” and "u_new” atline 329. Copy Directive | K close |
Name: |
1t Directi Show Directi Cl I
[poisson_mpi.pl loaded. poisson_mpi+pat+7119-5669t ap2 loaded. ~ I c |rec1ve| ow |recwe| osevv

e Make sure to always save a copy of your original file first before click the
“Insert Directive” button. Your original file will be overwritten!!

~

U.S. DEPARTMENT OF 1 g A\
Office of ...‘

ENERGY Science -78-

YEARS

at the
FOREFRONT

Extensive “Help” topics in Reveal

X Reveal
Eile Edit View Help (3} O O ~\ Reveal - Loopmark Legend
~poisson_mpipl ¥ | Loopmark Legend
P A PatternMatched
Navigati Iscratch1/scratchdirsiyunhe/r poi 1_mpi. P C Collapsed
<« Loop Performance [vlﬁ b D Deleted
— Al s == e b E Cloned
b 118.0531 main@148 > F Flat
b 852622 main@161 " ra— z z
= ; = ~ b G Accelerated
b 850968 main@163 for (1 =i _min[my_rank] + 1; i <= i_max[my_rank] L ey
b 325785 main@325 @ . ! . . . b M Notinlined
b 324084 main@327 2 for (3 =1: 3 <= N jo+) b L Loop
b 00423 main@343 328 { b M Multithreaded
b 00298 main@354 329 u_new[INDEX(i,j)] = R Region
4 0.0059 main@252 330 0.25 * (u[INDEX(i-1,j)] + ulINDEX(i+l,j)] + b S Scoping Analysis
b 00057 main@258 331 U[INDEX(i,j-1)] + ulINDEX(i,j+1)] + |p v vectorized
b 0.0055 main@495 332 h * h * f[INDEX(1i,j)]):
> 0.0000 main@404 H 333 3 a Atomic Memory Operation
b 0.0000 main@414 4 334 } b Blocked
b 00000 main@423 335 /* ¢ Conditional and/or Computed
336 Wait for all non-blocking communications to complete|b f Fused
337 */ g Partitioned
338 MPI_Waitall (requests, request, status); b i Interchanged
339 /* n Non-blocking Remote Transfer
- . e e . .- - R p Partial
[| b r Unrolled
-Info - Line 325 P s Shortloop
@ Aloop was notvectorized because a recurrence was found between "u"and "u_new"atlinp w Unwound
xgosel
[poisson_mpi.pl loaded. poisson_mpi+pat+7119-5669t ap2 loaded. S _—
OpENVIFTIPS on aloop and select "Scope Loop"to make it a candidate for scoping.

Reduction in an inlined function
There is a reduction to a variable which is in a called function.
The OMP programming model does not provide any method for automatically
protecting the reduction variable.
Forthe loop to run correctly, the user needs to protect this reduction with a
lock or change it to an atomic operation.

You can select multiple loops before starting the scoping. A new window titled

"Reveal OpenMP Scoping” will appear. When ready to startthe scoping, select "Start Scoping”
atthe bottom left of the "Scope Loops"tab of the Scoping window. Files listed in the
navigation panel will have a red or green icon added when they contain scoping information.

When loop performance information is attached, this enables performance filtering in
the Scoping window. One way to use this feature is to add all the the program’s loops
using the "Edit List" menu in the scoping window and then using the filtering to uncheck
loops that are notimportant. You may filter by execution time or number of loop trips.
Setting a Time of 5.0 seconds will modify the loop list so that only loops using>=5.0
seconds will be checked.

Note:

Because of current limitations in the analysis. if a global variable is inlined
anywhere into the calling function, it must assume there is an inlined referenc
in any loop which has any reference to the variable.

As a consequence of this, Reveal may display this scoping problem when

it does not really exist. b Create OpenMP or dir
P View and Save OpenMP directives
Note: b C AR P

Since the addition of a lock or changing to an atomic operation may

significantly decrease performance, it may to necessary to clone the function
containing the reduction if it is called from other places where the protection
is unnecessary.

b Notes

xglose |

=
U.S. DEPARTMENT OF 3 AY
Office of ...‘

ENERGY omeeo oo

Lawrarce Bekeiy NatonalLaberatary

Reveal helps to start adding OpenMP e

* Only under PrgEnv-cray, with CCE compiler
e Start from most time consuming loops first

* Insert OpenMP directives

— Make sure to save a copy of the original code first, since the saved
new file will overwrite the original code

* There will be unresolved and incomplete variable scopes

* There maybe more incomplete and incorrect variables
identified when compiling the resulted OpenMP codes

e User still needs to understand OpenMP, and resolves the
issues.

* Verify correctness and performance
* Repeat as necessary
* No OpenMP tasks, barrier, critical, atomic regions, etc

Office of o \'ﬁ|
Science e BERKELEY LAB

More work after reveal (1) e

Reveal suggests: Final code:
#pragma omp parallel for default(none) \ #pragrr?\f\af[);n(t)nsaEilfnlgf:rn::lfleilt(none) Q
nresolved (my_change,my n - =
8 ved (my_ . ge,my_n) \ shared (my_rank,N,i_min,i_max,u_new,u) \
shared (my_rank,N,i_max,u_new,u) \ . \
firstprivate (i) Erivate (Ji)
VEIF{ = Tt i R0l 45 0 <= e fy)fetildf () for (i=i_min[my_rank]; i <=i_max[my_rank]; i++)
{ = — ’ — U — ’
L . {
for(j=1;j<=N;j++) . . .
for(j=1;j<=N;j++
{ { (I=1;] j++)
if (u_new[INDEX(i,j)] '=0.0) i ((u_new[INDEX(i,j)] 1= 0.0)
{ . Y « .
my_change = my_change {my SRR iy AR
+ fabs (1.0 - u[INDEX(i,j)] / u_new[INDEX(i,j)]); . f_abs (1.0- u[IIGDEX(i i1/ u_new[INDEX(ij)]);
my n=my_n+1;
my n=my n+1;
} } y_ y_
: }
})
U.S. DEPARTMENT OF Ofﬂce Of rrr:rrr 'n

T
P 2
£ A
% @ 7
) Z
S i

ENERGY Science -81- WD&B

More work after Reveal (2) e

Reveal suggests: Final code:
#pragma omp parallel for default(none) \ #pragma omp parallel for default(none) \
shared (f,N,u,u_new,i,h) private (my_rank,j,i) \
shared (f,N,u,u_new,h,i_min,i_max)
for (i=i_min[my_rank] + 1; i <=i_max[my_rank] - 1; i+
+) for (i=i_min[my_rank] + 1; i <=i_max[my_rank] - 1; i++)
{ {
for(j=1;j<=N;j++) for(j=1;j<=N;j++)
{ {
u_new[INDEX(i,j)] = u_new[INDEX(i,j)] =
0.25 * (u[INDEX(i-1,j)] + u[INDEX(i+1,j)] + 0.25 * (u[INDEX(i-1,j)] + u[INDEX(i+1,j)] +
u[INDEX(i,j-1)] + u[INDEX(i,j+1)] + u[INDEX(i,j-1)] + u[INDEX(i,j+1)] +
h * h * fINDEX(i,j)]); h * h * fINDEX(i,j)]);
} }
} }

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science -82- WD&B

TGN
LT
5/ A
% @ 7
S %
S i

Performance with OpenMP added Ll (e

poisson_omp

poisson_mpi_omp, 4 MPI nx=ny=1201, on Edison

tasks, N=1200, on Edison

160
40
140
35
530 120 |
Q

100

—25 |
(]
£20 E 80
[
c 15 60
=)
e 10 40

5

20
0 T T T 1
0 n T T T T

Pure MPI 1 thread 3 threads 6 threads
1 thread 2 threads 6 threads 12 threads 24 threads

Run Time (sec)

U.S. DEPARTMENT OF Office of

ENERGY Science -83-

YEARS

at the
FOREFRONT

1974-2014

R U.S. DEPARTMENT OF Office of

. ENERGY Science

-84 -

~

frreeerer

A
|

The Big Picture L <

* The next large NERSC production system “Cori” will be Intel
Xeon Phi KNL (Knights Landing) architecture:

— >60 cores per node, 4 hardware threads per core
— Total of >240 threads per node

* Your application is very likely to run on KNL with simple
port, but high performance is harder to achieve.

 Many applications will not fit into the memory of a KNL
node using pure MPI across all HW cores and threads
because of the memory overhead for each MPI task.

* Hybrid MPI/OpenMP is the recommended programming
model, to achieve scaling capability and code portability.

e Current NERSC systems (Babbage, Edison, and Hopper) can
help prepare your codes.

Office of

__w‘-‘"*«a% U.S. DEPARTMENT OF
ENERGY science -85~

Why Hybrid MP1/OpenMP

ENT O
Eog o,
“ \
& % /i
RS

Hybrid MP1/OpenMP paradigm is the software trend for
clusters of SMIP architectures.

Elegant in concept and architecture: using MPI across nodes
and OpenMP within nodes. Good usage of shared memory
system resource (memory, latency, and bandwidth).

Avoids the extra communication overhead with MPI within
node. Reduce memory footprint.

OpenMP adds fine granularity (larger message sizes) and
allows increased and/or dynamic load balancing.

Some problems have two-level parallelism naturally.

Some problems could only use restricted number of MPI
tasks.

Possible better scalability than both pure MPI and pure
OpenMP.

Office of

Science -86-

YEARS
at the

FFFFFFFFF

Hybrid MPI/OpenMP Reduces Memory Usage CZ =

* Smaller number of MPI processes. Save the memory needed
for the executables and process stack copies.
* Larger domain for each MPI process, so fewer ghost cells
— e.g. Combine 16 10x10 domains to one 40x40. Assume 2 ghost layers.
— Total grid size: Original: 16x14x14=3136, new: 44x44=1936.
* Save memory for MPI buffers due to smaller number of MPI
tasks.

* Fewer messages, larger message sizes, and smaller MPI all-
to-all communication sizes improve performance.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -87- &;;a\l%B

N
A
rrrrrrr "“l

T

£k !

B 2
b.‘,m\m >

A Pseudo Hybrid Code

Program hybrid

call MPI_INIT (ierr)

call MPI_COMM_RANK (...)

call MPI_COMM_SIZE (...)
... some computation and MPI communication
call OMP_SET_NUM_THREADS(4)

ISOMP PARALLEL DO PRIVATE(i)

I$SOMP& SHARED(n)
do i=1,n
... computation
enddo
I$SOMP END PARALLEL DO
... some computation and MPI communication
call MPI_FINALIZE (ierr)
end

‘\\“"\""'fa,x U.S. DEPARTMENT OF Ofﬁce Of

ENERGY Science -88-

N =
m N A YEARS

at the
FOREFRONT

<
A
rrrrrrr ‘"'|

BERKELEY LAB

MPL_INIT_Thread Choices - Fr

 MPIL_INIT_THREAD (required, provided, ierr)
— IN: required, desired level of thread support (integer).
— OUT: provided, provided level of thread support (integer).
— Returned provided maybe less than required.

 Thread support levels:

— MPI_THREAD_SINGLE: Only one thread will execute.

— MPI_THREAD_FUNNELED: Process may be multi-threaded, but only
master thread will make MPI calls (all MPI calls are ”funneled" to
master thread)

— MPI_THREAD_SERIALIZED: Process may be multi-threaded, multiple

threads may make MPI calls, but only one at a time: MPI calls are not
made concurrently from two distinct threads (all MPI calls are

”serialized").
— MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with no
restrictions.

£ERY, U-S. DEPARTMENT OF Office of

~ A
£ 3 /_\| |
a ENERGY science -89~ ;R;;;E.;JJ

NGRS/ YEARS

Thread Support Levels =RJ
environment variable thread Support Ievel
MPICH_MAX_THREAD_SAFETY
not set MP|_THREAD_SINGLE
single MP|_THREAD_SINGLE
funneled MP|_THREAD_FUNNELED
serialized MP|_THREAD_SERIALIZED
multiple MP|_THREAD_MULTIPLE

=B, U.S. DEPARTMENT OF Office of

& ENERGY sconce

<
A
rrrrrrr ""l

MPI Calls Inside OMP MASTER Fr

* MPI_THREAD_FUNNELED is required.

* OMP_BARRIER is needed since there is no
synchronization with OMP_MASTER.

* Itimplies all other threads are sleeping!

I$SOMP BARRIER
ISOMP MASTER

call MPI_xxx(...)
I$SOMP END MASTER
I$SOMP BARRIER

Office of

Science -91-

MPI Calls Inside OMP SINGLE Fr

* MPI_THREAD_SERIALIZED is required.

* OMP_BARRIER is needed since OMP_SINGLE only
guarantees synchronization at the end.

* It also implies all other threads are sleeping!

I$OMP BARRIER
I$OMP SINGLE

call MPI_xxx(...)
1I$SOMP END SINGLE

Office of

Science -92-

THREAD FUNNELED/SERIALIZED
vs. Pure MPI =

 FUNNELED/SERIALIZED:

— All other threads are sleeping while single thread
communicating.

— Only one thread communicating maybe not able to
saturate the inter-node bandwidth.

* Pure MPI:

— Every CPU communicating may over saturate the inter-
node bandwidth.

* Overlap communication with computation!

Office of

Science -93-

Overlap COMM and COMP e

* Need at least MPI_THREAD_FUNNELED.
 Many “easy” hybrid programs only need MPI_THREAD_ FUNNELED

* While master or single thread is making MPI calls, other threads
are computing

 Must be able to separate codes that can run before or after halo
info is received. Very hard

* Lose compiler optimizations.

I$SOMP PARALLEL
if (my_thread_rank < 1) then
call MPI_xxx(...)
else
do some computation
endif
I$SOMP END PARALLEL

Office of ga. i
Science I BERKELEY LAB

FOREFRONT

Hopper/Edison Compute Nodes Ngeso/ g

Edison Compute Node

H C te Nod E g - e
opper Compute Node = g g 3
Socket 0 Socket 1 °
< n
NUMA node 0 NUMA node 2 o9 S 8 S N Q Q a b & ol |2
] %9 ~ ~ ~ ~ > ~ ~ ~ ~ ~ S -
opo 5 - ~ o < 1 © N) =) S b
S o o o o o o o o o o
ooro | B [e~] [ooms SEls s (518|538]5([3/8/¢|/:z
1 S o o o o o o o o o o S S
Core 2 Core 3 Core 2 Core 3 z
DDR3 DDR3
Core 4 Core 5 Core 4 Core 5 . .
NUMlLod(H >< Nuwlaodes
NN
- 0] ~ -] [<)) [=] - o o < wn -] ~
|core 1|| [DDRS 2021212121212 1212121212 13
DDR3 | Core 1 % o ~ P = N v ~)) =) - ~ o
% 2 - -l - - - - - - ~N ~ o~ o~
Core 2| |core3 Core 2| |Core 3 2 e 4 o e 4 o o o o o o [
DDR3 DDR3 2] S S S S S S <]] <] <] 5]
2 o o o o o o o o o o o o
Core4| |Core5 Core4| |Core5 2
2 Y 2 2
a a a a
a a a a

e Hopper: NERSC Cray XE6, 6,384 nodes, 153,126 cores.
e 4 NUMA domains per node, 6 cores per NUMA domain.
e Edison: NERSC Cray XC30, 5,576 nodes, 133,824 cores.

e 2 NUMA domains per node, 12 cores per NUMA domain.
2 hardware threads per core.

e Memory bandwidth is non-homogeneous among NUMA domains.

U.S. DEPARTMENT OF Office of ‘

AY
ENERGY Science -95- /_\|

BERKELEY LAB

S
/57
b.‘,m\m >

MPI Process Affinity: aprun “-S” Option 2] { J==

* Process affinity: or CPU pinning, binds MPI process to a CPU or a ranges of
CPUs on the node.
* Important to spread MPI ranks evenly onto different NUMA nodes.

* Use the “-S” option for Hopper/Edison.

Hopper Compute Node

s oo GTC Hybrid MP1/OpenMP
on Hopper, 24,576 cores
aprun—-n4-d6 1400
1200 +— S2-d3

1000

800 -
600 i with -S -ss

ore ore 1 el el

re e ore

ore ore o]
400 7 no -S -ss

Hopper Compute Node ="
200 -

Socket 0
T T T T T 1

24576*1 12288*2 8192*3 4096*6 2048*12
MPI Tasks * OpenMP Threads

ua)1ag SI JoamoT
Run Time (sec)

U.S. DEPARTMENT OF Ofﬁce of

4 ENERGY Science -96 -

Hopper Core Affinity L&

« “xthi.c”: a hybrid MPI/OpenMP code that reports process
and thread affinity.

e Source code can be found at (page 95-96):
http://docs.cray.com/books/S-2496-4101/5-2496-4101.pdf

% aprun -n 4 ./xthi

Hello from rank O, thread 0, on nid01085. (core affinity = 0)
Hello from rank 1, thread 0, on nid01085. (core affinity = 1)
Hello from rank 3, thread 0, on nid01085. (core affinity = 3)
Hello from rank 2, thread 0, on nid01085. (core affinity = 2)

% aprun -n 4 -S 1 ./xthi

Hello from rank 3, thread 0, on nid01085. (core affinity = 18)
Hello from rank O, thread 0, on nid01085. (core affinity = 0)
Hello from rank 2, thread 0, on nid01085. (core affinity = 12)
Hello from rank 1, thread 0, on nid01085. (core affinity = 6)

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science "97- a;a\lts.ma

N
A
rrrrrrr ""|

P
R
4 \&
% /
&
Lo o

Thread Affinity: aprun “-cc” Option e

* Thread affinity: forces each process or thread to run on
a specific subset of processors, to take advantage of
local process state.

* Thread locality is important since it impacts both
memory and intra-node performance.

* On Hopper/Edison:

— The default option is “-cc cpu” (use it for non-Intel
compilers)

— Pay attention to Intel compiler, which uses an extra
thread.

e Use “-cc none” if 1 MPI process per node

e Use “-cc numa_node” (Hopper) or “-cc depth” (Edison) if
multiple MPI processes per node

Office of

Science -98-

LT
(4 0
B 2
1\ @ 5
L‘”An\m >

y YEARS

Babbage ‘ [

T
R
1S e)
& @ 7
AN
SO i

NERSC Intel Xeon Phi Knights KNC Card

Corner (KNC) testbed. @ KNG Car

Intel® Xeon®
Processor \§

45 compute nodes, each has:

Host node: 2 Intel Xeon
Sandybridge processors, 8 cores
each.

2 MIC cards each has 60 native
cores and 4 hardware threads per
core.

MIC cards attached to host nodes To best prepare codes on Babbage for Cori:

>= 8GB GDDRS memory

via PCl-express. ¢ Use “native” mode on KNC to mimic KNL, which
— 8 GB memory on each MIC card means ignore the host, just run completely on
KNC cards.
Recommend to use at least 2 * Encourage single node exploration on KNC cards

threads per core to hide latency of = with problem sizes that can fit.
in-order execution.

U.S. DEPARTMENT OF Ofﬂce Of

/—\‘ .
ENERGY Science "99- BERKELEY LAB

Babbage MIC Card il Jye

Babbage MIC Card

Logical Core 233,234,235,236

Logical Core 13,14,15,16
Physical Core 60

Logical Core 5,6,7,8
Logical Core 9,10,11,12
Logical Core 237,238,239,0

<
]
N
i
Q
Y
<}
o
©
2
T3
o
-

Physical Core 1
Physical Core 2
Physical Core 3
Physical Core 4
Physical Core 5
Physical Core 6
Physical Core 58
Physical Core 59

Babbage: NERSC Intel Xeon Phi testbed, 45 nodes.

* 1 NUMA domain per MIC card: 60 physical cores, 240 logical cores.
* Process affinity: spread MPI process onto different physical cores.

* Logical core 0 is on physical core 60.

U.S. DEPARTMENT OF Ofﬂce of

; ENERGY Science - 100 -

Why Scaling is So Important

2000
Intel Xeon Phi coprocessor Peak
1800 /
1600 /
1400

/

YEARS

at the
FOREFRONT

1200 /

1000 /

800

600 S

ey

oy o

400 +— T
S/ V
S/ o

200 7 =Ca

0 IIIII TTTTTTTTT T TITTTTT T T T T T e v T T T T T T v v T T T T T T v v vy v T rrr T ey T TTTTTTTTT TITTTTTITTTI T TITTTT T T TTTTTTTT

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101106111116
Threads

Intel Xeon processor Peak

lepeg si JaybiH
Performance

Courtesy of Jim Jeffers and James Reinders
e Scaling of an application is important to get the performance potential on
the Xeon Phi manycore systems.
e Does not imply to scale with “pure MPI” or “pure OpenMP”
e Does not imply the need to scale all the way to 240-way either

e Rather, should explore hybrid MPI/OpenMP, find some sweet spots with
combinations, such as: 4 MPI tasks * 15 threads per task, or 8*20, etc.

~

U.S. DEPARTMENT OF H A
Office of :r_\r‘ v

ENERGY Science -101 -

RENTOr S
4 >
£ 5\
% @ 4
), &
S i

BERKELEY LAB

Thread Affinity: KMP_AFFINTIY 0 i

* Run Time Environment Variable.
* none: no affinity setting. Default setting on the host.
* compact: default option on MIC. Bind threads as close to each other as possible

HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4

Thread 0 1 2 3 4 5

* scatter: bind threads as far apart as possible. Default setting on MIC.
HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4

Thread 0 3 1 4 2 5

* balanced: only available on MIC. Spread to each core first, then set thread numbers using different HT of
same core close to each other.

Node
HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4 HT1 HT2 HT3 HT4

Thread 0 1 2 3 4 5

* explicit: example: setenv KMP_AFFINITY “explicit, granularity=fine, proclist=[1:236:1]"
* New env on coprocessors: KMP_PLACE_THREADS, for exact thread placement

~

U.S. DEPARTMENT OF Ofﬂce Of

AY
ENERGY Science -102 - f/r_\‘

2

Thread Affinity: KMP_PLACE_THREADS ES] (e

* New setting on MIC only. In addition to KMP_AFFINITY, can
set exact but still generic thread placement.

* KMP_PLACE_THREADS=<n>Cx<m>T,<0>0
— <n> Cores times <m> Threads with <o> of cores Offset

— e.g. 40Cx3T,10 means using 40 cores, and 3 threads (HT2,3,4) per
core

* OS runs on logical proc 0, which lives on physical core 60
— OS procs on core 60: 0,237,238,239.
— Avoid use proc O

Office of

Science -103 -

MPI Process Affinity: |_MPI_PIN_DOMAIN C.Z o S5

* A domainis a group of logical cores
— Domains are non-overlapping

— Number of logical cores per domain is a multiple of 4
. Logical CPU O - MPI process
— 1 MPI process per domain .

— OpenMP threads can be pinned inside each domain
 |_MPI_PIN_DOMAIN=<size>[:<layout>]

<size>=omp adjust to OMP_NUM_THREADS
auto #CPUs/ #MPI procs

<n> a number
<layout> = platform according to BIOS numbering
compact close to each other
scatter far away from each other

S U.S. DEPARTMENT OF Ofﬁce of

\C ENERGY Science -104 - ;;:Lu

NT=§ =
m : A YEARS

Hybrid Parallelization Strategies .

3
PR,
I &
1\ % 5
4
Lo o

From sequential code, decompose with MPI first, then
add OpenMP.

From OpenMP code, treat as serial code.

From MPI code, add OpenMP.

Simplest and least error-prone way is to use MPI
outside parallel region, and allow only master thread to
communicate between MPI tasks.
MPI_THREAD_FUNNELED is usually the best choice.

Could use MPI inside parallel region with thread-safe
MPI.

Avoid MPI_THREAD MULTIPLE if you can. It slows down
performance due to the usage of global locks for thread
safety.

Office of
Science

- 105 -

Programming Tips for Adding OpenMP E e

* Choose between fine grain or coarse grain parallelism
implementation.

e Use profiling tools to find hotspots. Add OpenMP and
check correctness incrementally.

* Parallelize outer loop and collapse loops if possible.
 Minimize shared variables, minimize barriers.
* Decide whether to overlap MPI communication with

thread computation.

— Simplest and least error-prone way is to use MPI outside
parallel region, and allow only master thread to communicate
between MPI tasks.

— Could use MPI inside parallel region with thread-safe MPI.
* Consider OpenMP TASK.

Office of

Science -106 -

Why Hybrid MP1/0penMP Code
IS Sometimes Slower? i

* All threads are idle except one while MPI
communication.

— Need overlap comp and comm for better performance.
— Critical Section for shared variables.

* Thread creation overhead

* Cache coherence, false sharing.

* Data placement, NUMA effects.

* Natural one level parallelism problems.

* Pure OpenMP code performs worse than pure MPI
within node.

* Lack of optimized OpenMP compilers/libraries.

Office of

Science -107-

If a Routine Does Not Scale Well Mins2/

« Examine code for serial/critical sections, eliminate if possible.
 Reduce number of OpenMP parallel regions to reduce overhead costs.

* Perhaps loop collapse, loop fusion or loop permutation is required to
give all threads enough work, and to optimize thread cache locality. Use

NOWAIT clause if possible.

* Pay attention to load imbalance. If needed, try dynamic scheduling or
implement own load balance scheme.

* Experiment with different combinations of MPI tasks and number of
threads per task. Less MPI tasks may not saturate inter-node bandwidth.

* Test different process and thread affinity options.

 Leave some cores idle on purpose, for memory capacity or bandwidth
capacity.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -108- a;;ma

N
A
rrrrrrr ""|

T
£)

£ &

B 2
RS

MPI vs. OpenMP Scaling Analysis e

Flash Kernel on Babbage * Each line represents
50 : : ! multiple runs using fixed
—%— 60-way MPI+OpenMP
a5l ~|——— 120-way MPI+OpenMP | total number of cores =
— MPl-only 0wy MPLOpNMP #MPI tasks x #OpenMP
o s e .
= | | threads/task.
7 e Scaling may depend on the
o kernel algorithms and
=3 . problem sizes.
N * In this test case, 15 MPI
| : » tasks with 8 OpenMP
152 ' ' . N
60 MP! ranks por card 5 threads per task is optimal.

Courtesy of Chris Daley, NERSC

* Understand your code by creating the MPI vs. OpenMP scaling plot,
find the sweet spot for hybrid MPI/OpenMP.

* It can be the base setup for further tuning and optimizing on Xeon Phi.

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science o WD&B

ST
P 3 A
£ A
B 2
% @ 7
) Z
S5 i

Performance Analysis And Debugging ES] (e

* Performance Analysis
— Hopper/Edison:
* Cray Performance Tools
* |PM

e Allinea MAP, perf-reports
* TAU

— Babbage:
* Vtune
* Intel Trace Analyzer and Collector
 HPCToolkit
* Allinea MAP

 Debugging
— Hopper/Edison: DDT, Totalview, LGDB, Valgrind
— Babbage: Intel Inspector, GDB, DDT

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -110- WE&B

<
A
rrrrrrr ""|

ENToN
3‘\»‘ 'JIG:‘/
3 %)
4)
g 3
A 5
), @ 4
S i

NEsRO Ly YEARS

Case Studies Introduction e

 OpenMP parallelizing techniques used in real codes.
* Hybrid MPI/OpenMP applications on Hopper

* LBM on TACC Stampede (by Carlos Rosales, TACC)
— Add OpenMP incrementally
— Compare OpenMP affinity

* MFDn on Hopper (by H. Metin Aktulga et al., LBNL)
— Overlap communication and computation

* NWChem on Babbage (by Hongzhang Shan et al., LBNL)
— CCSD(T)
 Add OpenMP at the outermost loop level
* Loop permutation, collapse
* Reduction, remove loop dependency
— Fock Matrix Construction (FMC)
e Add OpenMP to most time consuming functions
* OpenMP Task
* Find sweet scaling spot with hybrid MPlI/OpenMP

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -1l- &;;a\l%B

N
A
rrrrrrr "“l

T
CERD
N
R &
s

=2 [

y YEARS

Hopper: Hybrid MPI/OpenMP NPB 00 s

=B, U.S. DEPARTMENT OF Office of

NPB 3.3 BT C 24 (1 Node) Hybrid Benchmark NPB 3.3 LU C 16 (1 Node) Hybrid Benchmark

250.00 1.2 350.00 =11
1 300.00 0.9
200.00
™ 250.00 .
08 @ [0} .
£ 150.00 —_— & Wmpal E 20000 B PGl
o € ®cray x o8 [Cray
38 . § [Pathscale 8 150.00 ’ [0 Pathscale
O 100.00 2 EGnu S B Gnu
g 5 — g 03 —
S 04 5 Mem(GB) 2 10000 Mem(GB)
[}
=
0.00 0 0.00 2-0.1
1 2 3 4 6 8 12 24 1 2 3 6 12 24

OpenMP Threads per Node OpenMP Threads Per Node

Courtesy of Mike Stewart

On a single node, hybrid MP1/OpenMP NAS Parallel Benchmarks:
* Reduced memory footprint with increased OpenMP threads.
* Hybrid MP1/OpenMP can be faster or comparable to pure MPI.

* Try different compilers.
* Sweet spot: BT: 1-3 threads; LU: 6 threads.

ENERGY Science -112 -

Hopper: Hybrid MP1/OpenMP fvCAM CZ3] (e

Total y o
%00 70 Physics” Component
800 -~ = OpenMP MPI
[60 140
il : -
50 120
600 . 3 . — — J— —
= 500 40 %
£ §
= 400 02
g

n
o

- 80
K
E
! 4 ! = 60
a0
. .
20
200 -
0
1 2 3 6 12

100 i
e Bl B Bl -

1 2 3 6 12 24

[
o

o

OpenMP threads / MPI tasks

240 120 80 40 20 10

“Dynamics” Component

®OpenMP & MPI

Community Atmospheric Model:

* Memory reduces to 50% with 3 threads but . -
only 6% performance drop.

* OpenMP time starts to grow from 6 —

threads. . .

* Load imbalance in “Dynamics” OpenMP Sheenl

Courtesy of Nick Wright, et. al, NERSC/Cray Center of Excellence”

U.S. DEPARTMENT OF Offlce of

ENERGY omeeo o

Hopper: Hybrid MPI/OpenMP GTC E e

3.0E+03 2000 =t=pusher =E=shift =*=poisson
1800 1.40E+03
2.56+03
1600 1.20E403
2.0E+03 g 1.00£+03
1200 £
= z = 8.00E+02
£ 156403 1000 § ¢
= 2 F 6.00£+02
800 ®
1.0E+03 g
g 600 4.00E+02
5.0E402 400 2.00E402
200
0.00E+00
0.0E+00 0 1 2 3 6 12
1 2 3 6 12
1536 768 512 256 128

OpenMP threads / MPI tasks

3d Gyrokinetic Toroidal Code:
* Memory reduces to 50% with 3 threads, also 15% better performance

* NUMA effects seen with 12 threads
* Mixed results in different kernels

Courtesy of Nick Wright, et. al, NERSC/Cray Center of Excellence

\ U.S. DEPARTMENT OF Ofﬁce of

— A
\i ENERGY Science - 114~ ;.ERTK%:L‘H

LBM, Add OpenMP Incrementally

400
350
300
250
200

Time (sec)

150

191199 SI JaMOT

100
50

o“"‘“""ﬁ",‘ U.S. DEPARTMENT OF

Steps to Parallelize LBM

1 1 1 - i Collision
l [| —

Serial Step 1

Step 2

Step 3

i PostStream
Stream

PostCollision

Jonag si JaysiH
MLUPS

140

120

100

80

60

40

20 4

0

Compare OpenMP Affinity Choices

YEARS

at the
FOREFRONT

? Balanced —&—

Scatter N
Compallct ——
0 50 100 150 200 250
Number of OMP Threads

Lattice Boltzmann Method: a Computational Fluid Dynamics Code.

Actual serial run time for Collision > 2500 sec (plotted above as 200 sec only for better
display), > 95% of total run time.

Step 1: Add OpenMP to hotspot Collision. 60X Collision speedup.
Step 2: Add OpenMP to the new bottleneck, Stream and others. 89X Stream speedup.

Step 3: Add vectorization. 5X Collision speedup.

Balanced provides best performance overall.

Office of

EN ERGY Science

-115-

~

A
i

rreeeee

BERKELEY LAB

MFDn, Overlap Comm and Comp CZ] (e

Janag sI J9YsiH

pure MPI hybrid A hybrid B hybrid C hybrid D

* MFDn: a nuclear physics code.

e Hopper. Pure MPI: 12,096 MPI tasks.

e Hybrid A: hybrid MPI/OpenMP, 2016 MPI* 6 threads.

e Hybrid B: hybrid A, plus: merge MPI_Reduce and MPI_Scatter into
MPI_Reduce_Scatter, and merge MPI_Gather and MPI_Bcast into MPI_Aligatherv.

e Hybrid C: Hybrid B, plus: overlap row-group communications with computation.

e Hybrid D: Hybrid C, plus: overlap (most) column-group communications with
computation.

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science -116- &;;a\l%B

D
(4 0\
2 ©
R

NWChem CCSD(T), Baseline OpenMP L&

Baseline OpenMP

10000
=®-Total Time
5 -*Time in Loop Nests
= 2 -®-Time in GetBlock
= 8 1000
e 311
('
g ° 215
o £
®© £ —a— =
= 100 96
c
=}
(14
10

1 2 4 8 16 32 60 120 180 240
OMP_NUM_THREADS

 Due to memory limitation, can only run with 1 MPI process per MIC.

* OpenMP added at the outermost loops of hotspots: Loop Nests. Scales
well up to 120 threads.

* GetBlock is not parallelized with OpenMP. Hyper-threading hurts
performance.

* Total time has perfect scaling from 1 to 16 threads. Best time at 120
threads.

* Balanced affinity gives best performance.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -117- &;;a\l%B

T
CERD
N
R &
s

NWChem CCSD(T), More OpenMP -
Optimizations e

Optimized OpenMP

10000
=B=-Total Time
- —*Time in Loop Nests
g 'g -#Time in GetBlock
) 9 1000
_ o
o @L
vy)
L E 12
@ Ll 100 4
g 62
(14 62
10

1 2 4 8 16 32 60 120 180 240
OMP_NUM_THREADS

* GetBlock optimizations: parallelize sort, loop unrolling.

* Reorder array indices to match loop indices.

 Merge adjacent loop indices to increase number of iterations.
e Align arrays to 64 bytes boundary.

* Exploit OpenMP loop control directive, provide complier hints.
* Total speedup from base is 2.3x.

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science -118- BERKELEY LAB

ST O
LT
(4 0\
», &
S5 iy

N | ' =
el | YEARS

NWChem FMC, Add OpenMP to HotSpots (OpenMP #1) aron
100
< Pure MPI OMP=1 -~ OMP=2 & OMP=3 i OMP=4
5 @
s E
K% I:D 10
s £
= €
-5
o
1JIJIJl-lI-II-l--II.I-.I_ ii I
N X v N kS AN
Q}\\(?Q c,‘v%%@be‘;{oo éo%éb\ \‘,\'z’& +$QQ ‘9("@@ Q&b?&@&& @@(;Q ’\o@

* Total number of MPI ranks=60; OMP=N means N threads per MPI rank.

* Original code uses a shared global task counter to deal with dynamic load balancing
with MPI ranks

* Loop parallelize top 10 routines in TEXAS package (75% of total CPU time) with
OpenMP. Has load-imbalance.

e OMP=1 has overhead over pure MPI.
« OMP=2 has overall best performance in many routines.

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -119- E.;Eﬂ\‘%“?

T
£ 0\
B 2
% @ 5
», 4
S5 iy

NWChem FMC, OpenMP Task Implementation s/
(OpenMP #3))

Fock Matrix Construction — OpenMP Task

Implementation
cSOMP parallel
myfock() =0
c¢SOMP master . .
current_task_id = 0 * OpenMP task model is flexible and
mytid = omp_get_thread_nuny,; f |
My_task = global_task_counter(task_u.osk size) power ul.
for |Jk|f2*n.type toZ.s'tep -1do } * The task directive defines an eXp|iCit task.
for ij = min(ntype, ijkl - 1) to max(1, ijkl - ntype) scen -1 do .
I = ijkl - j * Threads share work from all tasks in the
if (my_task .eq. current_task_id) then
c$SOMP task firstprivate(ij,kl) default(shared) task pOOl .
create_task(ij,kl, ...)
R TPt * Master thread creates tasks.
my_task=global_task_counter(task_block_size) ° The taskwait direct—ive makes sure a”
end if
current_task_id = current_task_id + 1 child tasks created for the current task
end for ﬁ . h
end for nisn.
cSOMP end master ° i
e Helps to improve load balance.

cSOMP end parallel
Perform Reduction on myfock to Fock matrix

 Use OpenMP tasks.

* To avoid two threads updating Fock matrix simultaneously, a
local copy is used per thread. Reduction at the end.

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science -120- BERKELEY LAB

T
B

S/

K @ %
NS
T

NWChem FMC, Run Time J:

MIC
10000 Fock Matrix Construction Time|
- Host
2 10000
9 OpenMP Module
0 —
£ 1000 T:' =>&Pure MPI
(%)
QE, . E 1000 OpenMP Task
k= = %
C 2 T
€ 100 | -E-Flat MPI § o h.{;‘}***«w :
® —A—OpenMP #1 (loop-level) & i N
|2 =@—-0OpenMP #2 (module-level) 72 54 10 B
——0OpenMP #3 (Tasks) 1) 4 3 16

10 No. of Threads

1 2 4 8 16 32 60 120 180 240
Total Hardware Thread Concurrency

* Flat MPl is limited to a total of 60 ranks due to memory limitation.
e OpenMP #1 uses flat MPI up to 60 MPI processes, then uses 2, 3, and 4 threads per MPI rank.
e OpenMP #2 and #3 are pure OpenMP.

e OpenMP #2 module-level parallelism saturates at 8 threads (critical and reduction related).
Then when over 60 threads, hyper-threading helps.

 OpenMP #3 Task implementation continues to scale over 60 cores. 1.33x faster (with 180
threads) than pure MPI.

* The OpenMP Task implementation benefits both MIC and Host.

LT
£ 2
£ %)
S0

~

U.S. DEPARTMENT OF H A
Office of Pl

ENERGY Science -121- a;;ma

NWChem FMC, MPI/0OpenMP Scaling and

(=)=
- N y YEARS
Tu n I n g Bl b ™ FOF?tEtF';i)NT
90
85
60-way 60
*g 80_
N v
g 75:
- < 120 £
120-way 3 E
2 g
= £
= 65§
=]

- : 180 [~
180-way S 605
— =]
S =

= 55

240-way 240 45 45 50

45

1 2 3 4 6 8 12

No. of MPI Processes

* Another way of showing scaling analysis result.

 Sweet spot is either 4 MPI tasks with 60 OpenMP threads per task,
or 6 MPI tasks with 40 OpenMP threads per task.

e 1.64x faster than original flat MPI.
e 22% faster than 60 MPI tasks with 4 OpenMP threads per task.

=B, U.S. DEPARTMENT OF Office of

& ENERGY sconce

<
A
rrrrrrr ""l

Summary (1) EZ (e

* OpenMP is a fun and powerful language for shared
memory programming.

* Hybrid MPI/OpenMP is recommended for many
next generation architectures (Intel Xeon Phi for
example), including NERSC-8 system, Cori.

* You should explore to add OpenMP now if your
application is flat MPI only.

Office of
Science

3
PR,
I &
1\ % 5
4
Lo o

-123 -

Summary (2) 0

* Use Edison/Babbage to help you to prepare for Cori regarding
thread scalability.

— MPI performance across nodes or MIC cards on Babbage is not optimal.
— Concentrate on optimization on single MIC card.

* Case studies showed effectiveness of OpenMP
— Add OpenMP incrementally. Conquer one hotspot at a time.

— Experiment with thread affinity choices. Balanced is optimal for most
applications. Low hanging fruit.

— Pay attention to cache locality and load balancing. Adopt loop collapse,
loop permutation, etc.

— Find sweet spot with MP1/OpenMP scaling analysis.
— Consider OpenMP TASK. Major code rewrite.
— Consider overlap communication with computation. Very hard to do.

* Optimizations targeted for one architecture (XE6, XC30, KNC) can
help performance for other architectures (Xeon, XC30, KNL).

o“"‘“""fa,* U.S. DEPARTMENT OF Ofﬂce Of

a ENERGY science I E;E"\l%m

N
A
rrrrrrr "“l

References iR=c/

. OpenMP: http://openmp.org
NERSC Hopper/Edison/Babbage web pages:

— https://www.nersc.gov/users/computational-systems/hopper
— https://www.nersc.gov/users/computational-systems/edison

— https://www.nersc.gov/users/computational-systems/testbeds/babbage
. OpenMP Resources:

— https://www.nersc.gov/users/computational-systems/edison/programming/using-openmp/openmp-resources/

. Improving OpenMP Scaling (online soon)

— https://www.nersc.gov/users/computational-systems/cori/preparing-for-cori/improving-openmp-scaling/
. Cray Reveal at NERSC:

— https://www.nersc.gov/users/training/events/cray-reveal-tool-training-sept-18-2014/

— https://www.nersc.gov/users/software/debugging-and-profiling/craypat/reveal/

. H. M. Aktulga, C. Yang, E. G. Ng, P. Maris and J. P. Vary, "Improving the Scalability of a symmetric iterative eigensolver for multi-core
platforms,” Concurrency and Computation: Practice and Experience 25 (2013).

. Carlos Rosale, “Porting to the Intel Xeon Phi TACC paper: Opportunities and Challenges”. Extreme Scaling Workshop 2013
(XSCALE2013), Boulder, CO, 2013.

. Hongzhang Shan, Samuel Williams, Wibe de Jong, Leonid Oliker, "Thread-Level Parallelization and Optimization of NWChem for the
Intel MIC Architecture", LBNL Technical Report, October 2014, LBNL 6806E.

. Jim Jeffers and James Reinders, “Intel Xeon Phi Coprocessor High-Performance Programming”. Published by Elsevier Inc. 2013.
. Intel Xeon Phi Coprocessor Developer Zone:
— http://software.intel.com/mic-developer

. Interoperability with OpenMP API

— http://software.intel.com/sites/products/documentation/hpc/ics/impi/41/win/Reference Manual/
Interoperability with OpenMP.htm

~

. AY
U.S. DEPARTMENT OF Offlce Of rTr_r}‘ o

ENERGY Science -125- BERKELEY LAB

Q2
SO

