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Abstract

In solving Partial Differential FEquations, such as the
Barotropic equations in ocean models, on Distributed Mem-
ory Computers, finite difference methods are commonly used.
Most often, processor subdomain boundaries must be up-
dated at each time step. This boundary update process in-
volves many messages of small sizes, therefore large commu-
nication overhead. Here we propose a new ghost cell ex-
pansion (GCE) approach which expands the ghost cell layers
and thus updates boundaries much less frequently — reduc-
ing total message volume and grouping small messages into
bigger ones. Together with a technique for eliminating di-
agonal communications, the method speedup communication
substantially, upto 170%. We explain the method and imple-
mentation in details, provide systematic timing results and
performance analysis on the Cray T3E and IBM SP.

Keywords: PDE, ghost cells, near neighbor communication,
bandwidth, latency.

1 Introduction

As processor clock speeds double every 18 months
(Moore’s Law) and reach or surpass 1 Giga Hertz, the
large gap between CPU processing speed and memory
access rate and inter-node communication rate is becom-
ing even bigger.

To bridge this gap, more methods need to be developed
to reduce communications. A common and easily imple-
mented approach is to change algorithms such that small
messages are grouped into one big message, thus achieves
higher communication bandwidth and lower communica-
tion latency. Another useful technique for multiple mes-
sages to/from multiple processors is to use asynchronous
send/receive and post receives with appropriate memory
buffers ahead of time.

Here we concentrate on solving partial differential
equations (PDE) problems on regular domains using fi-
nite difference method, a popular method adopted in
many applications. On a distributed system, each pro-
cessor holds a subset of the problem domain, referred to
as problem subdomains. Each processor subdomain con-

tains one or several boundary layers, which are usually
called ghost cells. Ghost cells contain most recent values
of the corresponding active cells on neighboring proces-
sors. They must be updated at every time step. This
is achieved by pair-wise inter-processor communication,
exchanging the most recent values of ghost cells.

The number of ghost cell layers is usually determined
by the order of the accuracy of the numerical discretiza-
tion method. For stencils of second order accuracy for
clliptic equations only one layer is required. But in
many applications, such as in climate modeling, third
or fourth order is commonly used. Such an example is
the barotropic equations in ocean models. In these cases,
two layers of ghost cells are needed. There are applica-
tions that use even higher order accuracy and more layers
of ghost cells.

In the most common approach(e.g.,[1]), subdomain
boundaries (ghost cells) are updated in every time step.
It is straightforward, easily implemented and scales to
large number of processors reasonably well. However,
this update typically involves many messages of small
sizes. So far to our knowledge, no study has been done
that addresses the problem of substantial communica-
tion time due to the large amount of small messages ex-

changed between processors in every time step.

To speed up the communication, one idea is fo com-
bine messages for different time steps and exchange the
bigger combined message but less frequently. In this way,
the communication latency could be reduced and the
communication bandwidth is increased since the mes-
sage sizes are bigger. In the following, we examine the
feasibility of this idea and give a brief analysis of the
method. More detailed explanation could be found in

[5].

1.1 Ghost Cell Expansion Method

We propose to expand the layers of ghost cells so that
they can be updated much less frequently, and small mes-
sages can be combined into bigger messages. A further
important advantage is that the total message volume is
in fact reduced.



Consider the case of 2 layers of ghost cells. If we ex-
pand ghost cells to 24+4=6 layers, we only need to update
ghost cells once every 5 time steps, with a total of 6 layers
being exchanged. Without ghost cell expansion, we must
update the 2 ghost cell layers every time step, leading to
total of 10 layers of ghost cells being exchanged in 5 time
steps. The net message volume reduction is about (10-
6)/10 = 40%, not including the reduced communication
latency.

We denote the number of additional ghost cell layers
as expansion level e. The following pseudo code outlines
the algorithm. Here (n,, ny) is the owner subdomain
size, L is the number of ghost cell layers required for
the specific PDE problem. The 2D field is declared as
field(1-L-e:nx+L+e, 1-L-e:ny+L+e).

do istep = 1, total_steps

j = mod(istep—1,e+1)

if (j==0) update ghost_cells
y_start = 1 -e + j

y_end =ny + e - j

x_start = 1 -e + j

x_end =nx + e - j

if subdomain touches real boundaries,
set y_start, y_end to 1 or ny
set x_start, x_end to 1 or nx

do iy = y_start, y_end
do ix = x_start, x_end
update field(ix, iy)
enddo
enddo
enddo
One can easily see that for L = 1 this will produce

identical results for different expansion levels e, because
the active domain is reduced successively and the field
values are always updated using the most recent layer
ghost cells.

However, for L > 2, several points are updated us-
ing several stale values on next nearest neighors. This
is not a problem, because (1) the most important con-
tributions in stencil computations are the fields on near-
est neighbors (for example, 16/60 vs. 1/60 in Eq.8),
which always use most recent values. (2) as convergence
is approached, the differences between most recent and
next-most-recent values become increasingly small. At
convergence they are identical. Therefore, the results
are correct. One may view this issue as the Additive
Schwarz domain decomposition method on overlapping
boundaries. The overlapping depth is e+1 in our case.
A well known result there is that the convergence rate
scales as 1/(e + 1). This implies that equivelantly, we
need update the ghost cells once every e+1 time steps.

In this ghost cell expansion method, messages are ex-
changed every e+1 time steps instead of every step, we
substantially reduce the communication overhead. The
disadvantage is the slightly increased memory and com-
putation costs.

1.2 Eliminating Communications with
Diagonal Processors

For inter-processor communications with relatively
small-size messages, the number of messages is of pri-
mary concern. For regular grids, there are 8 neighboring
processors in 2D and 26 neighboring processors in 3D
(see Figure 1). Although not all finite difference opera-
tors (stencils) in PDE require all the neighboring points,
some of them, especially in climate model (primitive
equations), do require most neighboring points. Further-
more, in ghost cell expansions, those corner points need
to be updated fto keep the results correct and consistent.

Thus we consider the full neighbor case.

It is clear that if a given processor directly exchanges
ghost cells with all its neighbors, there must be 8 mes-
sages in 2D and 26 messages in 3D. This standard ap-
proach is implemented in some applications.

Here we describe a diagonal communication elimina-
tion technique (first implemented in [2] in a slightly dif-
ferent form) that reduces the number of messages to the
minimum. In 2D, the total messages are reduced from 8§
to 4, and in 3D, total messages are reduced from 26 to 6.
In essence, this technique requires only communications
with nearest neighbors.

For simplicity, consider a 2D data array using a 2D
domain decomposition (Figure 1). The key idea in diag-
onal communication elimination technique is to let the
diagonal blocks go with the main ghost cell blocks. Con-
sider the left and right communication step in Figure 1.
In this step, we send to the right processor corner blocks
5 and 7 together with the main block 3. The proces-
sor receives similar blocks from right processor as well.
Another similar exchanges with left processor deals with
blocks 6, 8 and 4. After these two right/left exchanges,
the processor covering block 1 has also diagonal blocks 5
and 6. The processor covering block 2 has also diagonal

blocks 7 and 8.

Figure 1: Tllustration of ghost cells in 2D. Shaded area
is active region (subdomain). 4 ghost cells blocks (1,2,3,4)
are from immediate neighbors (horizontal and vertical neigh-
bors). Another 4 corner ghost cell blocks (5,6,7,8) are from
2nd nearest neighbors (diagonal processors). In 3D, there will
be 6 ghost cell blocks from immediate neighbors, 12 planar
corner blocks from 2nd nearest neighbors, and 8 cubic corner
blocks from 3rd nearest neighbors.

Now in the next two up/down exchanges, each proces-



sor exchanges blocks 1, 5 and 6 with its down neighbor,
and exchanges blocks 2, 7 and 8 with its upper neigh-
bor. After these two exchanges all 8 ghost cell blocks
are in exactly the correct ghost cell buffers. Therefore,
we need only 4 exchange communications, instead of 8
exchanges. This technique is easily generalized to 3D,
where only 6 exchanges are required to communicate 26
ghost cell blocks with 26 neighbors.

To be clear, in this technique the corner blocks are
moved twice to reach their final destinations in 2D, and
the cubic diagonal blocks are moved 3 times to reach
their final destinations. Since corner blocks are far
smaller than the main blocks, they do not affect the com-
munication time. However, the substantial reduction in
total number of messages reduces the communication la-
tency significantly, and also reduces programming com-
plexity and traffic congestions resulting from much more
messages in the communication network.

2 Analysis of GCE Method

2.1 Message Volume

For a 2D domain decomposition with the subdomain size
of (ng,ny), the amount of total message volume (ghost
cells) for each update for the conventional method and
the ghost cell method (average) are:

Vol = 2L . (ny + ny + 2L) (1)

Vnew(f_) — (2L F 2C’j . (-nr +ny + 2L + 2(’)/((’ +1) (2)

In most cases, we have n; + ny > L + e. The ratio of
total message volumes for a 2D decomposition is

D,’n ew

- L+e
Vveld = L(e +1)

(3)

For L = 2, and e = 4, this ratio is 3/5. Thus by us-
ing ghost cells layers expansion, we not only reduce the
message exchange frequency, but also decrease the total
message volume.

In 1D decomposition, there are two messages ex-
changed with up or down processors. In 3D decomposi-
tion, using the diagonal communication elimination tech-
nique, only a total of 6 messages are exchanged with its
neighbors. The ratio of communication volume between
the new method and the conventional method remains
the identical as in Eq.3 for all three decompositions.

2.2 Communication Time

To analyze the communication time T,.pmm, we as-
sume it can be approximated by a simple “(message-
volume)/bandwidth + latency” model.

For a 2D domain decomposition, the communication
times for updating the ghost cells in each time step for

the conventional method and new method (average) are:

T = 2L(n; ¥+ ny +2L)8/B F 4T, (4)

Tnew (o) = (2L + 2¢)(ny + ny + 2L + 2¢)8/B + 4Ty,
COTMIm .C. - e 'F 1 .
(5)

where B is the bandwidth and Tf is the communica-
tion latency. The communication time for 1D and 3D
decompositions could be calculated in a similar fashion.

For large messages, we have measured the communica-
tion bandwidth and latency B, Tt [4]: On the Cray T3E,
B = 300MB/sec, Tr, = 17pusec, and for the IBM SP, B =
133MB/sec, T, = 26pusec. Using n, = 800,n, = 800 as
an example, the theoretical maximum speedup for 2D
decomposition could be more than two-fold for L = 2 on
both machines.

2.3 Memory Usage and Computational
Cost

The new method has the disadvantage of using slightly
more memory and computation than the conventional
method. This is because even though we only need to
update fields in active cells, some fields in ghost cells are
updated in order to maintain the correct fimelineness.
The overhead is summarized in Table 1. In all practical
cases, they remain very small. In 2D decomposition, for
e =4 and n, = ny, = 800, the overhead for memory and
computation are 2% and 0.5%, respectively.

Table 1: Overhead in memory usage (AM /M) and in com-
putational cost (AC/C) for GCE method expressed as a ratio
in 1D, 2D and 3D decompositions.

AM/M AC/C
1D | 2¢/n. e/2n;
2D | 2e/ng + 2e/ny e/2ng + e/2ny
3D | 2¢/ny+2e/ny +2¢/n. e/2ny +e/2n, + ¢/2n;

3 Test problem

Although the original motivation for this work is on at-
mosphere and ocean models, we test the ghost cell ex-
pansion method on a simpler 2D static heat distribution
problem, to clearly illustrate some performance issues.

The 2D problem is governed by the Laplacian equa-
fion,
?u  0%u

0%z + 9%y =0

on a rectangular region with Dirichlet boundary condi-

(6)

tions. After discretization on a regular grid, the problem
is solved by a finite difference method. In 2nd order ac-
curacy, we perform Gauss-Seidel iterations using 5-point



stencils

u(z, ) = glu(z—1, g)+u(e+1,g)+ulz, y-1)+ulz, y+1)]

(M
This stencil requires one layer of ghost cells (L=1). In
4th order accuracy, we use 9-point stencils

u(z,y)

1 i . ) §
@[Iﬁu(r —1,y) + 16u(z + 1,y)
+ 16u(z,y—1)+ 16u(z,y+ 1) —ulz—2,y)

— ulz+2,y)—u(z,y+2)-u(z,y—-2)] (8
This stencil requires two layers of ghost cells (L=2).

The tests are performed on both CRAY T3E and IBM
SP at NERSC. Four tests with the following parameters
are studied:

e Test 1: Global size 3200 x 3200, P = 16, L=1.
e Test 2: Global size 3200 x 3200, P = 16, L=2.
e Test 3: Global size 6400 x 6400, P = 64, L=1.

e Test 4: Global size 6400 x 6400, P = 64, L=2.

where P is the total number of processors. Note that
using 2D decomposition, all four tests have the same
local domain size of 800 x 800. We performed a fixed
total of 512 Gauss-Seidel iterations in all 4 tests.

4 Performance Analysis

In Figure 2, calculation time (a), communication time
(b), and total time (c) at different ghost cell expansion
levels (e) are shown on the left for the four tests on IBM
SP. One can see that calculation times remain very much
the same, confirming the analysis in Section 2.3. Note
that since the local domain size is 800 x 800 in all tests,
calculation time for Tests I and 3 should be same. Sim-
ilarly, curves for Tests 2 and 4 coincide too.

As expansion level increases, the communication times
steadily decrease, leading to fairly large (upto a factor
of 2.8) communication speedup. The total time of com-
munication and calculation also decrease steadily. The

speedup of total solution time increases by 25% at e = 8.

In Figure 3, timing results on Cray T3E are shown.
They are similar to that in SP. Again calculation times
remain almost same, while the communication fimes
speedup by 170%. On the T3E, however, the total prob-
lem speedup is only about 3%. This is because the com-
munication on the T3E is much faster, so the communi-
cation time is only about 3% of the total computational
time. Even though this small proportion is speedup by
170%, the total time does not drop very much.

On communication time reduction or speedup, two
layer ghost cell (L=2) cases always have higher speedup,
than those with one-layer (L=1) cases. The speedups
are comparable to the theoretical estimation in Section
2.2. The differences are: tests with P=16 has the smaller

communication speedup than those with P=64 on IBM
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Figure 2: (a) calculation time and speedup, (b) communica-
tion time and speedup, (c) total time and speedup for these

four tests on IBM SP.
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Figure 3: (a) calculation time and speedup, (b) communica-
tion time and speedup, (c) total time and speedup for these
four tests on Cray T3E.



SP, while they are very close on Cray T3E. This is due
to the optimal message bandwidth was not reached on
IBM SP for a small size problem.

Comparison of the T3E timing with and the SP timing
shows some interesting points. For these stencils type fi-
nite difference computations, the T3E (450 MHz Alpha
EV5, peak 900 MFlop/sec) achieves a higher computa-
tional speed than the SP (200 MHz Winterhawk, peak
800 MFlop/sec) does on per processor basis. For the 9-
stencil calculations, the T3E obtained 121.4 MFlop/sec
while the SP obtained 73.2 MFlop/sec per processor.

On communication, the T3E is much faster than SP:
the T3E requires 0.65 sec while the SP requires 7.5 sec
for L = 2 case on 64 processors. This is factor of 12 dif-
ference. Although on the measured point-to-point mes-
sage latency and bandwidth, the SP is only factor of 2
slower than the T3E, actual measurements on commu-
nications involving more than 2 processors always show
the SP much slower than the T3E [4]. This indicates a
very significant communication traffic congestion in the
SP interconnect, possibly due to the serial access on the
adaptor between the SMP node and the commnucation
switch.

Scaling from smaller number of processors (16) to
larger number of processors (64), the communication
time T,pmm always increases on both the T3E and the
SP. Teomm increases about 40% on the T3E (Figure 3),
and is almost doubled on the SP (Figure 2). This is an-
other indication that the SP communication has some

serious ftraffic congestion.

5 Conclusions and Discussions

In this paper, we propose and analyze a ghost cell ex-
pansion method for reducing communications in solving
PDE problems in detail. Both the total message volume
and total number of messages are reduced leading to sig-
nificant speedup in communications. The key to imple-
ment GCE method is to support variable layers of ghost
cells and update them efficiently. The diagonal commu-
nication elimination technique we introduced is critical
for efficiency. It reduces the total number of messages
exchanged between processors from 8 to 4 in 2D domain
decomposition and from 26 to 6 in 3D domain decompo-
sition. We provide key implementation steps and carry
out systematic experiments and performance analysis on
IBM SP and Cray T3E. On both computers, the GCE
method speedup communications up to 170%.

In general when solving PDE problems involving 3D
fields, 3D domain decomposition is best because it has
the least total amount of communication volume in up-
dating ghost cells. However, many other considerations
are sometimes more important than communication cost.
For example, the vertical direction is very special in at-
mosphere or ocean modeling, where parallelization along

vertical direction is either undesirable or simply too com-
plicated. In these cases, typically a 2D [6, 9] or even
1D [7], where parallelization along domain decomposi-
tion is adopted for the 3D fields, and vertical direction
are entirely local to a processor. Remapping to other
decompositions[4] are often necessary to facilitate other
tasks such as spectral transform [6], polar filtering [8]

and parallel 1/O [3].

In addition, due to array indexing, some data pack-
ing and unpacking are necessary. In these procedures,
moving a block of data, rather than moving one array
clement at a time, will increase speed.
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