

NERSC Overview

Richard Gerber NERSC User Services

EETD Seminar June 22, 2011

National Energy Research Scientific Computing Center

EETD and **NERSC**

• NERSC's mission is to provide computing and storage resources for energy-related research and engineering

• Broad support for fusion, materials, chemistry research

 Hydrogen storage, artificial photosynthesis, solar energy storage, wind farm design, efficient combustion, understanding LED droop

• Energy efficiency research is an important part of this picture

 If there is a place for HPC in EETD, NERSC is capable and eager to help

- If you remain tied to single-threaded serial computing, you are going to be quickly left behind
 - Flops are cheap, so use them

Cost per Gflop: \$1.1 Trillion in 1960, \$15 M in 1984, \$30,000 in 1997, \$600 in 2003, \$0.42 in 2007, \$0.13 in 2009

- Chip density is continuing increase ~2x every 2 years
- Clock speed is not
- Number of processor cores may double instead
- Power is under control, no longer growing

BERKELEY LAB

- Number of cores per chip will double every two years
- Clock speed will not increase (possibly decrease)
- Need to deal with systems with millions of concurrent threads
- Need to deal with inter-chip parallelism as well as intra-chip parallelism
- Your take-away:
 - Future performance increases in computing are going to come from exploiting parallelism in applications

Why NERSC?

National Energy Research Scientific Computing Center

Expert Services

- NERSC's emphasis is on its users
 - Helping scientists and engineers be successful
- User-oriented systems and services
 - Sets NERSC apart from other centers
- Help Desk / Consulting
 - Immediate access to consultants (7 Ph.Ds)
- User group (NUG) has tremendous influence
 Monthly teleconferences & yearly meetings
- Requirement-gathering workshops with scientists
- Agile response to special requests from users

Advantages (to you) of NERSC

- Expert services
 - Updated OS, software
 - NERSC does system administration, 24x7
 - Consulting and advice
 - Emphasis on helping users being successful
 - Reliable systems; auto backups for disaster recovery

• Free access to vast amounts of computing, software, storage

- Play "what if" scenarios
- Pre-compute a large library of configurations at high resolution/level of detail (or whatever)
- Add physics and/or more parameters
- Get compute-intensive results quickly

Disadvantages (to you)

- NERSC computers are shared
 - Not generally interactive
 - "Long" turnaround time: hours to days to a week
 - Per user, per system limits on # of active jobs
- You must fill out an application for new projects
 - Startup projects are easy to get
- You have to learn how to use the systems
 - You are busy already
- You will probably have to change your code and/or your workflow to take best advantage of NERSC resources

What is NERSC?

National Energy Research Scientific Computing Center

NERSC Facility Leads DOE in Scientific Computing Productivity

NERSC computing for science

- •4000 users, 500 projects
- •From 48 states; 65% from universities
- •Hundreds of users each day

1500 publications per year Systems designed for science

- •1.3 PF Petaflop Cray: Hopper
 - 3rd fastest computer in US
 - Fastest open Cray XE6
 - Additional .5 PF in Franklin and smaller clusters

NERSC is the Production Facility for DOE Office of Science

NERSC serves a large population

- -About 4,000 users
- 400 projects
- 500 codes

Unique resources

- -Expert consulting and other services
- -High end computing systems
- -High end storage systems
- -Interface to high speed networking

Science-driven services

- Machines procured competitively using application benchmarks from DOE/SC
- Allocations controlled by DOE/SC Program
 Offices to couple with funding decisions

NERSC Workload

NERSC 2011 Allocations By Science Area

- Fusion Energy
- Materials Science
- Lattice QCD
- Climate Research
- Chemistry
- Astrophysics
- Life Science
- Accelerator Science
- Combustion
- Applied Math
- Computer Science
- Geoscience
- Environmental Science
- Nuclear Physics
- Other
- Engineering
- High Energy Physics
- Nuclear Energy
- Humanities

DOE Office of Advanced Scientific Computing Facilities

NERSC at LBNL

- 1000s users,100s projects
- Allocations:
- 80% DOE program managers
- 10% ASCR Leadership Computing Challenge
- 10% NERSC reserve
- Science includes all of DOE Office of Science
- Machines procured competitively

"Leadership Facilities" at Oak Ridge & Argonne

- 100s users 10s projects
- Allocations:
 - 60% ANL/ORNL managed INCITE process
 - 30% ACSR Leadership Computing Challenge^{*}
 - 10% LCF reserve
- Science limited to largest scale; no commitment to DOE/SC offices
- Machines procured through partnerships

High Performance Computing Systems

National Energy Research Scientific Computing Center

Distributed Memory Systems

- Most HPC systems are "distributed memory"
 - Many nodes, each with its own local memory and distinct memory space
 - Nodes communicate over a specialized highspeed, low-latency network
 - SPMD (Single Program Multiple Data) is the most common model
 - Multiple copies of a single program (tasks) execute on different processors, but compute with different data
 - Explicit programming methods (MPI) are used to move data among different tasks

NERSC Systems

Large-Scale Computing Systems Hopper (NERSC-6): Cray XE6

6,384 compute nodes, 153,216 cores 110 Tflop/s on applications; 1.27 Pflop/s peak

Franklin (NERSC-5): Cray XT4

9,532 compute nodes; 38,128 cores ~25 Tflop/s on applications; 356 Tflop/s peak

Clusters

140 Tflops total **Carver**

IBM iDataplex cluster **PDSF (HEP/NP)** ~1K core cluster

Magellan Cloud testbed IBM iDataplex cluster

Office of

Science

GenePool (JGI)

~5K core cluster

U.S. DEPARTMENT OF

NERG

1.5 PB capacity 5.5 GB/s of bandwidth

40 PB capacity 4 Tape libraries

150 TB disk cache

Euclid 512 GB shared mem Dirac GPU testbed 48 nodes

Major Compute Systems

• Hopper

 Hopper is NERSC's flagship computer for running high-performance parallel scientific codes.

• Franklin

– Franklin, an earlier-generation Cray computer, augments the Hopper system.

Carver

 Carver provides a generic full Linux environment for codes that need operating system features that are not available on the Cray systems or don't demand massive parallelism.

Hopper - Cray XE6

1.2 GB memory / core (2.5 GB / core on "fat" nodes) for applications

/scratch disk quota of 5 TB

2 PB of /scratch disk

- Choice of full Linux operating system or optimized Linux OS (Cray Linux)
- PGI, Cray, Pathscale, GNU compilers

153,408 cores, 6,392 nodes

"Gemini" interconnect

- 2 12-core AMD 'MagnyCours' 2.1 GHz processors per node
- 24 processor cores per node

32 GB of memory per node (384 "fat" nodes with 64 GB)

216 TB of aggregate memory

Use Hopper for your biggest, most computationally challenging problems.

Franklin - Cray XT4

- 38,288 compute cores
- 9,572 compute nodes
- One quad-core AMD 2.3 GHz Opteron processors (Budapest) per node
- 4 processor cores per node
- 8 GB of memory per node
- 78 TB of aggregate memory
- 1.8 GB memory / core for applications
- /scratch disk default quota of 750 GB

- Light-weight Cray Linux operating system
- No runtime dynamic, sharedobject libs
- PGI, Cray, Pathscale, GNU compilers

Use Franklin for all your computing jobs, except those that need a full Linux operating system.

Carver - IBM iDataPlex

- 3,200 compute cores 400 compute nodes
- 2 quad-core Intel Nehalem 2.67 GHz processors per node
- 8 processor cores per node
- 24 GB of memory per node (48 GB on 80 "fat" nodes)
- 2.5 GB / core for applications (5.5 GB / core on "fat" nodes)

NERSC global /scratch directory quota of 20 TB Full Linux operating system PGI, GNU, Intel compilers

InfiniBand 4X QDR

Use Carver for jobs that use up to 512 cores, need a fast CPU, need a standard Linux configuration, or need up to 48 GB of memory on a node.

Magellan - IBM IDataPlex

Magellan at NERSC

Scientific Discovery through Cloud Computing

- Dedicated to HPC Cloud Computing research
- 4,480 compute cores
- 560 compute nodes
- Two quad-core Intel Nehalem 2.67 GHz processors per node
- 8 processor cores per node

- 24 GB of memory per node (48 GB on 160 "fat" nodes)
- 2.5 GB / core for applications (5.5 GB / core on "fat" nodes)
- NERSC global /scratch directory quota of 20 TB
- Full Linux operating system
- PGI, GNU, Intel compilers

Using NERSC

National Energy Research Scientific Computing Center

Allocations

• You must have an allocation of time to run jobs at NERSC (be a member of a "repo")

- Project PIs apply through the ERCAP process
- Computer time and storage allocations are awarded by DOE Program Offices
- Most allocations are awarded in the fall
 - Allocation year starts in January
 - 2011: Additional awards made for May 1 start of Hopper production service
 - Small startup allocations are awarded throughout the year
 - Additional time available through NISE and ALCC

Jobs at NERSC

- Most jobs are parallel, using 10s to 100,000+ cores.
- Mostly run as batch scripts; limited interactive access
- Many use custom codes; others use pre-installed applications
- Typically run a few hours, up to 48. Longer runs can be accommodated if needed and logistically possible.
- Many jobs "package" lower concurrency runs into one job
 - Even many "serial jobs"
 - Load balance may be an issue

System Architecture

National Energy Research Scientific Computing Center

HPC Node

- A "node" is a (physical) collection of CPUs, memory, and interfaces to other nodes and devices.
 - Single memory address space
 - Memory access "on-node" is significantly faster than "off-node" memory access
 - Often called an "SMP node" for "Shared Memory Processing"
 - Not necessarily "symmetric" memory access as in "Symmetric Multi-Processing"

NERSC Login Nodes and Compute Nodes

- Each supercomputer has 3 types of nodes that you will use directly
 - Login nodes
 - Compute nodes
 - "MOM" nodes
- Login nodes
 - Edit files, compile codes, run UNIX commands
 - Submit batch jobs
 - Run short, small utilities and applications
- Compute nodes
 - Execute your application; dedicated to your job
 - No direct login access
- "MOM" nodes
 - Execute your batch script commands
 - Carver: "head" compute node; Cray: shared "service" node

Cray Systems

Carver / Magellan / Dirac

Parallel Models

- SPMD
 - Single Program, Multiple Data
 - Most common way to run codes at NERSC
 - N copies of your program/application/ code execute at the same time
 - Each instance does calculations involving a portion of a large data set
 - Temperature in a house grid example

- Each code instance executes on one compute "core"
- Each instance holds its data in local private memory
- If other instances need data or the results of calculations owned by another instance, the two must "pass the data (message)" to where it is needed
- Library of functions (MPI)

Shared-Memory Threaded Parallelism

- A single executable creates multiple process threads of execution that all have access to a shared pool of memory
- Typically one thread per compute core
- Number of threads limited to the number of cores on a node
- Computational work distributed to threads by programmer or maybe compiler

Hybrid Model

- Run multiple instances
 - Communicate via MPI function calls
- Multiple threads per instance
 - Often 1 MPI task and cores_per_node threads per task
 - Architecture may dictate best ratio of threads/ MPI task
- Now two layers of parallelism

GPUs

- NVIDIA Tesla "gaming chip"
 - 515 Flops
 - vs. ~ 50 Gflops on AMD hex-core on Hopper
 - 448 lightweight cores w/ private memory
 - Currently implemented as a "coprocessor" on a PCI card

Program with CUDA

- "Disaster" from a programming perspective
 - Third layer of parallelism: MPI+Threads+CUDA
 - You do the memory management between GPU and CPU
 - A new API to learn
 - Few and immature programming tools
 - Future of CUDA and "coprocessor" paradigm uncertain at best
- Not all codes will benefit from GPU acceleration
- There is hope for tighter integration of CPU and GPU and better programming models

Why Do You Care About Parallelism?

National Energy Research Scientific Computing Center

Moore's Law

2X transistors/Chip Every 1.5 years Called "<u>Moore's Law</u>" Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra

Power Density Limits Serial Performance

- Concurrent systems are more power efficient
 - Dynamic power is proportional to V²fC
 - Increasing frequency (f) also increases supply voltage (V) \rightarrow cubic effect
 - Increasing cores increases capacitance (C) but only linearly
 - Save power by lowering clock speed
 - Year High performance serial processors waste power
 - Speculation, dynamic dependence checking, etc. burn power
 - Implicit parallelism discovery
 - More transistors, but not faster serial processors

- Chip density is continuing increase ~2x every 2 years
- Clock speed is not
- Number of processor cores may double instead
- Power is under control, no longer growing

Office of Science

- Number of cores per chip will double every two years
- Clock speed will not increase (possibly decrease)
- Need to deal with systems with millions of concurrent threads
- Need to deal with inter-chip parallelism as well as intra-chip parallelism
- Your take-away:
 - Future performance increases in computing are going to come from exploiting parallelism in applications

00	9		Activity Monitor		
) 🕖 🤒				
Quit Process Inspect Sample Process					
PID	Process Name	User	% CPU	Threads 🔻	
0	kernel_task	root	7.1	70	
85310	Google Chrome	ragerber	0.4	27	
83188	🥹 Firefox	ragerber	40.7	25	
265	Dropbox	ragerber	0.1	17	
85319	Shockwave Flash (Chrome Plug-In Host)	ragerber	1.0	16	
150	prl_disp_service	root	0.0	15	
50	fseventsd	root	0.0	14	
62	InterCheck	root	0.0	13	
40154	ITunes	ragerber	3.4	13	
215	🔹 Finder	ragerber	0.1	9	
05221			0.0	0	

NERSC CPU Clock Frequency

U.S. DEPARTMENT OF

National Energy Research Scientific Computing Center