
CHOS in Production
Multiple Linux Environments on PDSF at NERSC

Larry Pezzaglia

National Energy Research Scientific Computing Center
Lawrence Berkeley National Laboratory

April 2012

I A commodity Linux cluster at NERSC serving HEP
and NS projects

I 1GbE and 10GbE interconnect
I In continuous operation since 1996
I ~1500 compute cores on ~200 nodes
I Over 750 TB shared GPFS storage in 17 filesystems
I Over 650 TB of XRootD storage
I Supports SL5 and SL6 environments
I Projects “buy in” to PDSF and the UGE share tree is

adjusted accordingly

PDSF at NERSC

2

I PDSF has a broad user base (including non-CERN
and non-LHC projects)

I Current projects include ALICE, ATLAS, CUORE,
Daya Bay, IceCube, KamLAND, Majorana, and STAR

I Prior projects include BaBaR, CDF, Planck, SNO,
and SNFactory

PDSF Workloads

3

I PDSF must support multiple applications for
multiple projects

I Many are only tested or certified on one Linux
distribution release

I Projects have their own communities with different
requirements and recommendations

I Simultaneously satisfying the certification
constraints of all these projects is challenging

I We need a way to provide customized
environments for each project

I Our answer is CHOS

The Challenge

4

I CHOS (“CHroot OS”) is a software package which
provides a mechanism for simultaneously
supporting multiple Linux environments on a single
Linux system

I Users choose the tree (e.g., SL 6, SL 5, Debian 6)
best suited to their application

I CHOS was written by Shane Canon and has been in
use on PDSF since 2004.

What is CHOS?

5

Other solutions

6

Dynamic Provisioning
I Reboot nodes into an appropriate bare-metal OS

prior to each job
I We must maintain multiple bare-metal boot

environments
I Jobs requiring different environments can’t share a

node

Dynamic Provisioning

7

I Maintaining multiple boot environments is a
non-trivial undertaking

I We must keep configuration in accordance with
site policy

I Install security patches
I Maintain configuration and packages for all services

(e.g., shared filesystems, batch system,
monitoring)

I Nodes will be leaving and joining shared services
(including parallel filesystems) with each reboot

Boot Environments

8

Full virtualization (e.g., KVM)
I Jobs requiring different environments can now

share a node
I We still must maintain multiple boot environments
I If we run one job per core on a 100-node cluster

with 24 cores per node, we will have 2400 VMs to
manage

I Each VM mounts and unmounts parallel filesystems
I Each VM will be joining and leaving shared services

with each reboot
I Shared services (including filesystems) must

maintain state for all these VMs

Full Virtualization

9

Containers (e.g., OpenVZ, LXC)

I Jobs requiring different environments can share a
node

I We still must maintain multiple boot environments
I 2400 containers are almost as hard to manage as

2400 VMs
I http://openvz.org/
I http://lxc.sf.net/

Containers

10

What about a simple “chroot”?

I Minimal overhead
I No support daemons
I Serious usability issues

I chroot is a privileged operation
I Poor scalability

I We must maintain access to all shared filesystems
within each chroot

I Maintaining many environments requires many
mounts or a symlink farm

chroot

11

The CHOS Solution

12

CHOS provides the simplicity of the chroot solution, but
adds important features.

I Users can manually change environments
I This is as simple as running

“env CHOS=debian5 chos”
I PAM integration

I CHOSes a user into the correct environment upon
login

I Batch system integration
I Tested with SGE/UGE and TORQUE+Moab/Maui

I Only one chroot directory is needed

The CHOS solution

13

I CHOS fulfills most of the use cases for
virtualization in HPC with minimal administrative
overhead and negligible performance impact

I Users do not interact directly with the “base” OS
I CHOS provides a seamless user experience

I Users manipulate only one file ($HOME/.chos), and
the desired environment is automatically activated
for all interactive and batch work

The CHOS solution

14

I Consider an application written and tested for
Debian 5 that we want to run on a Scientific Linux
6 HPC system

I We could recompile and test for SL6
I Or, we could run inside a Debian 5 CHOS

environment
I From the application’s point of view, we are

running a Debian 5 userland on an SL6 kernel

An example

15

I We can support software requiring invasive
changes (e.g., swapping stock EL RPMs for
customized versions)

I We can support software which only runs on (or is
only certified on) Enterprise Linux X.y

I We can provide persistent software stacks
I We can provide reproducible environments for

repeatable production runs
I This allows us to validate prior computations.
I This is a strong selling point for VMs. CHOS

provides similar flexibility with less overhead.

User Benefits

16

I The base OS is sysadmin-friendly
I It can be updated at will.
I We can maintain a minimalist design methodology.
I The PDSF base OS image is less than 300 MB

I This includes support for GPFS, CVMFS, and
monitoring daemons

I No support daemons are required for CHOS

Sysadmin Benefits

17

I No privileged processes need to run in CHOS
I No setuid bits are required
I CHOS is exclusively for user applications

I CHOS environments can live on shared filesystems
I CHOS environments share the same kernel

I User applications rarely care which kernel version is
under the hood

I Most kernel interfaces have remained been stable
enough for our needs

I Small and understandable codebase
I ~2000 lines (excluding build system)

Sysadmin Benefits

18

I Must arrange for access to required privileged
functionality

I Setuid binaries are generally unavailable in CHOS
I Must port to new kernels as needed
I Must provide user documentation and training

Requirements

19

I CHOS creates a symbolic link at /proc/chos/link
with a contextual target

I The CHOS kernel module maps PIDs to CHOS link
targets

I New processes inherit the CHOS target from
parents

Under the Hood

20

I The “chos” utility triggers an environment switch:
1. The requested environment name is written to

/proc/chos/setchos
2. /proc/chos/link is mapped to the desired

environment path
3. The user is chrooted into /chos/

I /chos/ contains shared directories, and multiple
links pointing through /proc/chos/link

Under the Hood

21

/chos/ when CHOS is not set:

/chos/bin → /proc/chos/link/bin → /bin/
/chos/etc → /proc/chos/link/etc → /etc/
/chos/lib → /proc/chos/link/lib → /lib/
/chos/usr → /proc/chos/link/usr → /usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/local/ # Mountpoint for the real root tree

/chos/

22

/chos/ when CHOS is sl6:

/chos/bin → /proc/chos/link/bin → /os/sl6/bin/
/chos/etc → /proc/chos/link/etc → /os/sl6/etc/
/chos/lib → /proc/chos/link/lib → /os/sl6/lib/
/chos/usr → /proc/chos/link/usr → /os/sl6/usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/local/ # Mountpoint for the real root tree

/chos/

23

/chos/ when CHOS is deb5:

/chos/bin → /proc/chos/link/bin → /os/deb5/bin/
/chos/etc → /proc/chos/link/etc → /os/deb5/etc/
/chos/lib → /proc/chos/link/lib → /os/deb5/lib/
/chos/usr → /proc/chos/link/usr → /os/deb5/usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/local/ # Mountpoint for the real root tree

/chos/

24

I CHOS has been in production on PDSF since 2004.
Current environments are:

I SL 5.3
I SL 6.2

I In the past, we supported:
I SL 4.4 (32-bit and 64-bit)
I SL 3.0.2
I Fedora Core 2
I Red Hat 9
I Red Hat 8
I Red Hat 7.3
I Red Hat 7.2
I Red Hat 6.2

CHOS on PDSF

25

I CHOS is an active project distributed under a
modified BSD license

I Want to use CHOS on your system or for a project?
We can help.

I The code is publicly available on GitHub:
I Contributions and collaborations are welcome
I https://github.com/scanon/chos/

Active Development

26

I Build a secure mechanism for users to provide
their own CHOS environments

I Provide scripts to help prepare a filesystem
hierarchy for use with CHOS

I Simplify the build, deployment, and configuration
process

I Explore and possibly adapt techniques used by LXC

Future plans

27

1. User configures workstation to properly run an
application

2. User runs CHOS helper scripts to transform the
workstation’s file tree into a CHOS environment

3. User transfers this CHOS environment to an HPC
system

4. User selects that environment to launch the
application in production

A Future Use Case

28

I This would allow user communities to support their
own computing environments

I Sysadmins focus on the base OS, core services,
filesystems, monitoring, and batch system

A Future Use Case

29

I CHOS enables us to concurrently support multiple
Linux environments on a single Linux system

I Rich computing environments for users
I Lean, maintainable base OS for sysadmins
I PAM and batch system integration provide a

seamless user experience
I CHOS has been in production on PDSF for over

eight years
I CHOS is under active development, with new

features on the horizon
I Alternatives to virtualization exist, and CHOS is one

of them

Summary

30

I Original CHOS paper:
I http://indico.cern.ch/getFile.py/access?contribId=476

&sessionId=10&resId=1&materialId=paper&confId=0

I PDSF CHOS User documentation:
I http://www.nersc.gov/users/computational-systems/

pdsf/software-and-tools/chos/

Additional Resources

31

Questions?

	Introduction
	CHOS Overview
	Other solutions
	CHOS
	An Example
	Under The Hood
	CHOS on PDSF

