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I A commodity Linux cluster at NERSC serving HEP
and NS projects

I 1GbE and 10GbE interconnect
I In continuous operation since 1996
I ~1500 compute cores on ~200 nodes
I Over 750 TB shared GPFS storage in 17 filesystems
I Over 650 TB of XRootD storage
I Supports SL5 and SL6 environments
I Projects “buy in” to PDSF and the UGE share tree is

adjusted accordingly

PDSF at NERSC
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I PDSF has a broad user base (including non-CERN
and non-LHC projects)

I Current projects include ALICE, ATLAS, CUORE,
Daya Bay, IceCube, KamLAND, Majorana, and STAR

I Prior projects include BaBaR, CDF, Planck, SNO,
and SNFactory

PDSF Workloads
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I PDSF must support multiple applications for
multiple projects

I Many are only tested or certified on one Linux
distribution release

I Projects have their own communities with different
requirements and recommendations

I Simultaneously satisfying the certification
constraints of all these projects is challenging

I We need a way to provide customized
environments for each project

I Our answer is CHOS

The Challenge
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I CHOS (“CHroot OS”) is a software package which
provides a mechanism for simultaneously
supporting multiple Linux environments on a single
Linux system

I Users choose the tree (e.g., SL 6, SL 5, Debian 6)
best suited to their application

I CHOS was written by Shane Canon and has been in
use on PDSF since 2004.

What is CHOS?
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Other solutions
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Dynamic Provisioning
I Reboot nodes into an appropriate bare-metal OS

prior to each job
I We must maintain multiple bare-metal boot

environments
I Jobs requiring different environments can’t share a

node

Dynamic Provisioning
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I Maintaining multiple boot environments is a
non-trivial undertaking

I We must keep configuration in accordance with
site policy

I Install security patches
I Maintain configuration and packages for all services

(e.g., shared filesystems, batch system,
monitoring)

I Nodes will be leaving and joining shared services
(including parallel filesystems) with each reboot

Boot Environments
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Full virtualization (e.g., KVM)
I Jobs requiring different environments can now

share a node
I We still must maintain multiple boot environments
I If we run one job per core on a 100-node cluster

with 24 cores per node, we will have 2400 VMs to
manage

I Each VM mounts and unmounts parallel filesystems
I Each VM will be joining and leaving shared services

with each reboot
I Shared services (including filesystems) must

maintain state for all these VMs

Full Virtualization
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Containers (e.g., OpenVZ, LXC)

I Jobs requiring different environments can share a
node

I We still must maintain multiple boot environments
I 2400 containers are almost as hard to manage as

2400 VMs
I http://openvz.org/
I http://lxc.sf.net/

Containers

10



What about a simple “chroot”?

I Minimal overhead
I No support daemons
I Serious usability issues

I chroot is a privileged operation
I Poor scalability

I We must maintain access to all shared filesystems
within each chroot

I Maintaining many environments requires many
mounts or a symlink farm

chroot
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The CHOS Solution
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CHOS provides the simplicity of the chroot solution, but
adds important features.

I Users can manually change environments
I This is as simple as running

“env CHOS=debian5 chos”
I PAM integration

I CHOSes a user into the correct environment upon
login

I Batch system integration
I Tested with SGE/UGE and TORQUE+Moab/Maui

I Only one chroot directory is needed

The CHOS solution
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I CHOS fulfills most of the use cases for
virtualization in HPC with minimal administrative
overhead and negligible performance impact

I Users do not interact directly with the “base” OS
I CHOS provides a seamless user experience

I Users manipulate only one file ($HOME/.chos), and
the desired environment is automatically activated
for all interactive and batch work

The CHOS solution
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I Consider an application written and tested for
Debian 5 that we want to run on a Scientific Linux
6 HPC system

I We could recompile and test for SL6
I Or, we could run inside a Debian 5 CHOS

environment
I From the application’s point of view, we are

running a Debian 5 userland on an SL6 kernel

An example
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I We can support software requiring invasive
changes (e.g., swapping stock EL RPMs for
customized versions)

I We can support software which only runs on (or is
only certified on) Enterprise Linux X.y

I We can provide persistent software stacks
I We can provide reproducible environments for

repeatable production runs
I This allows us to validate prior computations.
I This is a strong selling point for VMs. CHOS

provides similar flexibility with less overhead.

User Benefits
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I The base OS is sysadmin-friendly
I It can be updated at will.
I We can maintain a minimalist design methodology.
I The PDSF base OS image is less than 300 MB

I This includes support for GPFS, CVMFS, and
monitoring daemons

I No support daemons are required for CHOS

Sysadmin Benefits
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I No privileged processes need to run in CHOS
I No setuid bits are required
I CHOS is exclusively for user applications

I CHOS environments can live on shared filesystems
I CHOS environments share the same kernel

I User applications rarely care which kernel version is
under the hood

I Most kernel interfaces have remained been stable
enough for our needs

I Small and understandable codebase
I ~2000 lines (excluding build system)

Sysadmin Benefits
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I Must arrange for access to required privileged
functionality

I Setuid binaries are generally unavailable in CHOS
I Must port to new kernels as needed
I Must provide user documentation and training

Requirements
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I CHOS creates a symbolic link at /proc/chos/link
with a contextual target

I The CHOS kernel module maps PIDs to CHOS link
targets

I New processes inherit the CHOS target from
parents

Under the Hood
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I The “chos” utility triggers an environment switch:
1. The requested environment name is written to

/proc/chos/setchos
2. /proc/chos/link is mapped to the desired

environment path
3. The user is chrooted into /chos/

I /chos/ contains shared directories, and multiple
links pointing through /proc/chos/link

Under the Hood
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/chos/ when CHOS is not set:

/chos/bin → /proc/chos/link/bin → /bin/
/chos/etc → /proc/chos/link/etc → /etc/
/chos/lib → /proc/chos/link/lib → /lib/
/chos/usr → /proc/chos/link/usr → /usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/local/ # Mountpoint for the real root tree

/chos/

22



/chos/ when CHOS is sl6:

/chos/bin → /proc/chos/link/bin → /os/sl6/bin/
/chos/etc → /proc/chos/link/etc → /os/sl6/etc/
/chos/lib → /proc/chos/link/lib → /os/sl6/lib/
/chos/usr → /proc/chos/link/usr → /os/sl6/usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/local/ # Mountpoint for the real root tree

/chos/
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/chos/ when CHOS is deb5:

/chos/bin → /proc/chos/link/bin → /os/deb5/bin/
/chos/etc → /proc/chos/link/etc → /os/deb5/etc/
/chos/lib → /proc/chos/link/lib → /os/deb5/lib/
/chos/usr → /proc/chos/link/usr → /os/deb5/usr/
/chos/proc → /local/proc/
/chos/tmp → /local/tmp/
/chos/var → /local/var/
/chos/dev/ # Common device nodes
/chos/local/ # Mountpoint for the real root tree

/chos/
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I CHOS has been in production on PDSF since 2004.
Current environments are:

I SL 5.3
I SL 6.2

I In the past, we supported:
I SL 4.4 (32-bit and 64-bit)
I SL 3.0.2
I Fedora Core 2
I Red Hat 9
I Red Hat 8
I Red Hat 7.3
I Red Hat 7.2
I Red Hat 6.2

CHOS on PDSF

25



I CHOS is an active project distributed under a
modified BSD license

I Want to use CHOS on your system or for a project?
We can help.

I The code is publicly available on GitHub:
I Contributions and collaborations are welcome
I https://github.com/scanon/chos/

Active Development
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I Build a secure mechanism for users to provide
their own CHOS environments

I Provide scripts to help prepare a filesystem
hierarchy for use with CHOS

I Simplify the build, deployment, and configuration
process

I Explore and possibly adapt techniques used by LXC

Future plans
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1. User configures workstation to properly run an
application

2. User runs CHOS helper scripts to transform the
workstation’s file tree into a CHOS environment

3. User transfers this CHOS environment to an HPC
system

4. User selects that environment to launch the
application in production

A Future Use Case
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I This would allow user communities to support their
own computing environments

I Sysadmins focus on the base OS, core services,
filesystems, monitoring, and batch system

A Future Use Case
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I CHOS enables us to concurrently support multiple
Linux environments on a single Linux system

I Rich computing environments for users
I Lean, maintainable base OS for sysadmins
I PAM and batch system integration provide a

seamless user experience
I CHOS has been in production on PDSF for over

eight years
I CHOS is under active development, with new

features on the horizon
I Alternatives to virtualization exist, and CHOS is one

of them

Summary
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I Original CHOS paper:
I http://indico.cern.ch/getFile.py/access?contribId=476

&sessionId=10&resId=1&materialId=paper&confId=0

I PDSF CHOS User documentation:
I http://www.nersc.gov/users/computational-systems/

pdsf/software-and-tools/chos/

Additional Resources
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Questions?
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