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SUMMARY: While pseudo-spectral methods have been popular in the early PIC codes, the finite-difference time-domain method has become dominant with the rise of massively parallel computing owing
to its locality advantage that lends to message passing that is limited to neighboring processors. Recently, a novel parallelization strategy was proposed [1] that takes advantage of the local nature of
Maxwell equations that has the potential to combine pseudo-spectral accuracy with finite-difference favorable parallel scaling. In this talk, we will present the latest developments in the implementation
of spectral-based solvers in Warp and discuss our latest findings.
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Scaling Study

Arbitrary Order FDTD+PSTD Enables Tunable Solver

Ultimate flexibility is provided by runtime auto-tuning

FDTD converges to PSTD when order goes to infinity FDTD converges to Strong scaling of Warp’s spectral PIC solver on a test problem of a 4,096x4,096 2-D Strong scaling of the Parallel Pseudo-Spectral Solver

plasma with periodic boundary conditions and 64 macroparticles/cell

based on domain decompositions vs. A global

of order of accuracy vs locality and multi-level

PSTD when order goes to infinity

and PSATD when time step goes to zero.
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