
Proxy Design and Optimization in
Fusion and Accelerator Physics

Alice Koniges
Lawrence Berkeley National Laboratory/NERSC

with selected results from some members of the
NERSC Petascale Postdoc Program

Praveen Narayanan, Robert Preissl, Xuefei Yuan
SIAM Conference on Computational Science and

Engineering, Boston Feb. 25, 2013

Outline

•  Intro to High Performance Computing Challenge areas for
Plasma Physics

– Magnetic Fusion Energy: Tokamak or other magnetically contained plasma
for fusion energy (generally toroidally shaped)

– Inertial Fusion Energy: Create fusion reaction using lasers and ion beams
– Accelerators

•  As Free-Electron Laser sources for production of very short wavelength
light sources—creates 3D images of very small things

•  As an Ion Beam Accelerator to study Warm Dense Matter and
properties of materials

•  Primary Proxy App: PIC (Particle-In-Cell) Simulations
• Other Areas for Study:

– Solvers for MHD and Solvers within PIC codes
– Behavior of plasma turbulence codes

•  Top-to-bottom exascale computer
design is essential for efficient
design/operation of large-scale
experiments

–  Typical ITER discharge can be
estimated at 1M$

ITER, currently under construction
 in the South of France, aims to
demonstrate that fusion is an energy
source of the future

A variety of Fusion apps are required for building
and running the ITER

•  Fusion program has large suite of petascale
applications in use covering many spatial and
temporal scales

•  The fusion suite of parallel applications brings a
wide array of algorithms (implicit, nonlinear fluid,
PIC, continuum phase space)

ITER: $10B Reactor

10-10 10-2 104 100 10-8 10-6 10-4 102 ωLH
-1 Ωci

-1 τA Ωce
-1

Time in seconds for full-scale magnetic fusion interactions

Coupled code set diagram for magnetic fusion

Discharge time ~hour

Next Generation Fusion Modeling hopes to
couple the various codes

•  Core Transport: GYRO/NEO
•  Collisional Edge Plasma: BOUT++
•  MHD: M3D-C1, NIMROD

•  Explicit PIC Modeling: GTS,
VORPAL

•  Wave heating, Wall interaction

Adapted from: Scott Kruger, Tech-X

Intense ion beams enable
studies of warm dense

matter, and of key physics
for ion direct drive and

advanced materials

ION BEAM BUNCH"

Exiting beam
available for
measurement	

TARGET"

• X-Ray Free Electron Laser
– Tunable soft X-ray source (0.1-1.2 keV)

•  Core electron spectroscopy
•  Nanoscale diffraction

– Short pulse duration (250 as – 500 fs)
•  Ultrafast dynamics

– Longitudinal and transverse coherence
•  Reduces time to acquire & process diffraction data

Next Generation Light Sources are being
designed with HPC Codes

PIC Proxies have applications to electromagnetic kinetic
modeling of space & laboratory plasmas

8

Astrophysical shocks

Spitkovski – U. Princeton

Laser plasma acceleration

Warp – LBNL

Vorpal – Tech-X Osiris – UCLA

Light sources/Coherent synchrotron radiation

Beam plasma neutralization

Warp – LBNL

LSP – Voss S.
Warp – LBNL

RF cavity design

PIC3P – SLAC

Joule metric
code for ASCR

Inertial fusion/fast ignition

VPIC – LANL

Kemp – LLNL

First at Petascale
on Roadrunner

Solar storms/Magnetic reconnection

H3D – UCSD

3.2 Trillion
particles on
200,000 cores on
Jaguar

VPIC – LANL

Vay – AFRD LBNL

Outline

•  Intro to High Performance Computing Challenge areas for
Plasma Physics

– Magnetic Fusion Energy: Tokamak or other magnetically contained plasma
for fusion energy (generally toroidally shaped)

– Inertial Fusion Energy: Create fusion reaction using lasers and ion beams
– Accelerators

•  As Free-Electron Laser sources for production of very short wavelength
light sources—creates 3D images of very small things

•  As an Ion Beam Accelerator to study Warm Dense Matter and
properties of materials

•  Primary Proxy App: PIC (Particle-In-Cell) Simulations
• Other Areas for Study:

– Solvers for MHD and Solvers within PIC codes
– Behavior of plasma turbulence codes

Many Proxy studies for fusion apps focus
only on Particle-In-Cell methods

• PIC codes are generally best scaling
• Physics content of PIC codes is steadily increasing
• Coupling to MHD in MFE PIC is in progress
• Other time-scale problems are still neglected
• PIC codes also form the basis for much of

accelerator physics
• Study of the general design of PIC codes can

benefit both accelerator and fusion applications
• A “really nice” proxy app for fusion apps would

allow for differing pieces of plug-in physics

Intelligent Design of Proxy Apps for PIC in
terms of a Domain Specific Language (DSL)
• A DSL may help to generalize efforts

– If we can design something it can save a lot of duplicative efforts
and help use and maintain advanced components

• Possibilities for DSL
– Low-level, extensions, change some or all of the MPI calls (replace

with GPU?) under hood
– A high-level construct (abstraction) for meshing or similar

operations
– Orchestrate the DSL to provide abstractions
– Domain specific functionality should be in a human readable form at

best, or a readable language (e.g., our Python example)
• Key to a good proxy app is to think in terms of DSL-like kernels that

comprise the app, and how they interact
•  This is not much different than traditional pie-type approach to full

code profiling

Basics of PIC codes form a rational for an
intelligently-designed Proxy

•  "particle-in-cell" because plasma macro-quantities (number density,
current density, etc.) are assigned to simulation particles

•  Particles can live anywhere on the domain, but field and macro-
quantities are calculated only on the mesh points

•  Steps can lead to a domain specific language/concepts
– Integration of the equations of motion
– Interpolation of charge and current source terms to the field mesh
– Computation of the fields on mesh points (field solve)
– Interpolation of the fields from the mesh to the particle locations

•  PIC codes differ from Molecular Dynamics in use of fields on a grid
rather than direct binary interactions, goes from N2 to N

•  PIC codes are radically different from standard PDE solver codes
and show real promise for the exascale

Specific Components form the basis for the
Proxy App Studies

• Data Structures/Abstractions
– Lagrangian particles: x, y, z, Vx, Vy, Vz, q, m, etc.
– Eulerian fields and sources: Jx, Jy, Jz, Ex, Ey, Ez,
– Bx, By, Bz on grids for electromagnetics;
– Rho, Phi (or V) for electrostatics

• Goal – don’t care where the particles live, e.g., in terms of the
parallel decomposition. Want to hide this from application
programmer

• Methods/Functional Abstractions
– Push particles
– Deposit (scatter) charge or currents from particles onto grid(s)
– Solve fields (Can we put this into a library call?)
– Gather forces from grids onto particles.

Questions for hiding complexity and
optimizing code lie in the basic design

• Data abstraction -- Need to ask what do you want
to do with the data –e.g., to push the particles.
User should not care about where the particles
live, what processor, etc. and need to conserve
movement of data between procs

• Grid abstraction -- fields have to live on a grid.
How much of grid in memory, and how is it
distributed? What do you need to pull from it?
Maybe don't want to replicate the grid on all
procs?

• Functional abstraction --can you generate the
move for a variety of different problems and let it
(DSL combined with compiler) generate the code
for this?

Why can it be difficult to define a PIC DSL

• Difference in layout of Lagrangian and/or Eulerian
quantities in memory

– not a hard barrier per say as layers of translations (copy) between data
structure can be added, but usually at the expense of runtime efficiency

• Legacy
• Competition
More evolved features like irregular gridding, AMR,

complex particle pushers, deposition schemes, or
field solvers, call for more sharing as a smaller
fraction of developers can effectively maintain
such codes.

basic data structures and operations are fairly simple and thus easily reproducible

δx
δy

Push	 par)cles)me	

Deposit	 charge/current	

Newton-‐Lorentz	

Par)cle-‐In-‐Cell	 workflow	

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Field	 solve	
Poisson/Maxwell	

Gather	 forces	

Vay – AFRD LBNL

δx
δy

Push	 par)cles)me	

Deposit	 charge/current	

Newton-‐Lorentz	

Par)cle-‐In-‐Cell	 workflow	

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Field	 solve	
Poisson/Maxwell	

Gather	 forces	 Deposit	 charge/current	

Vay – AFRD LBNL

δx
δy

Par)cle-‐In-‐Cell	 workflow	

Deposit	 charge/current	

Push	 par)cles)me	

Clouds of
particles

Newton-‐Lorentz	

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Field	 solve	
Poisson/Maxwell	

Gather	 forces	

Vay – AFRD LBNL

δx
δy

Par)cle-‐In-‐Cell	 workflow	

Deposit	 charge/current	

Push	 par)cles)me	

Gather	 forces	

Newton-‐Lorentz	

Field	 solve	
Poisson/Maxwell	

Clouds of
particles

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Absorp)on/Emission	

+	 absorp)on/emission	 (injec)on,	 loss	 at	 walls,	 secondary	 emission,	 ioniza)on,	 etc),	

poten)al/fields	
Filtering	 Filtering	

charge/currents	

+	 filtering	 (charge,currents	 and/or	 poten)al,fields).	

Add	 external	 forces	

+	 external	 forces	 (accelerator	 laQce	 elements),	

Vay – AFRD LBNL

€

dvi

dt
=
qi

mi

E
s
≈
v
i
(t + Δt /2) − v

i
(t − Δt /2)

Δt
=
qi

mi

E
s
(t)

€

dx
i

dt
≈
x
i
(t + Δt) − x

i
(t)

Δt
= v

i
(t + Δt)

Particle Push step uses equations of motion. Here, we see a typical
Time-difference of eqns of motion: second order leap-frog scheme

Solution is explicit time advance:

PIC Proxy should allow for different types
of push steps according to physics

€

v
i
(t + Δt /2) = v

i
(t − Δt /2) +

qi

mi

E
s
(x

i
(t))Δt

€

x
i
(t + Δt /2) = x

i
(t) + v

i
(t + Δt /2)Δt

Decyk UCLA

GTS (Gyrokinetic Tokamak Simulation)

• GTS particles are moved along the characteristics in phase
space
– Gyro-averaged Vlasov equation reduced to a simple

system of ordinary differential equations for particle push
• Straight-field-line magnetic coordinates in toroidal geometry

are employed (natural coordinates for tokamak)
• As before, grid replaces the direct binary interaction

between particles by accumulating the charge of those
particles on the grid at every time step and solving for the
electromagnetic field, which is then gathered back to the
particles’ positions

The DSL-inspired proxy can allow for more
complicated particle movers

• Equations of motion for the particles along the
characteristics, slightly more complicated, same type of
calculation:

ff

f
fm

q
m
q

dt
d

m
q

dt
d

m
q

dt
d

j

k
j

jj

/with w

v
1B̂

R
x̂B̂

R
w

B̂
R

v

B̂
R

-B̂vR

,R||

0

0

||

 ||

δ

µ

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
⋅

∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛−⋅×
∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛
Ω

−=

⋅
∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛−=

⎟
⎠

⎞
⎜
⎝

⎛ ×
∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛
Ω

=

Differences in Particle-In-Cell Codes

•  Particle-in-Cell codes are used for a huge variety of applications as
seen in intro

– Versions at LBNL include Impact and Warp
•  The family of codes known as GTC/GTS implements a Particle

method to solve the Gyrokinetic Equations in Tokamaks and other
toroidal fusion devices

– First version of GTC was created by Zhihong Lin, UCI
– Latter US Gyro-PIC include:

• GTS Stephane Ethier and Weixing Wang, PPPL
• XGC CS Chang, PPPL

– Primary benchmark (proxy) is called GTC
– Unfortunately, pure optimization of GTC can result in a focus on

steps that are primarily relevant to the unusual tokamak geometry
including gyromotion

Proxy Apps should be combined with full
app study in areas where codes are open

• Proxy Apps are usually the benchmark versions of
codes

• Often used for procurements
• For full optimization science, we should also

consider the more production versions of codes
– Typically, these can still be studied as Proxy

Apps if the basic steps are compartmentalized
and analyzed

Samples of PIC Proxy Optimization

• We have investigated various means of optimizing
the steps of one of our gyrokinetic PIC codes

•  Investigated use of Advanced OpenMP constructs
•  Investigated use of PGAS (Partitioned Global

Address Space) languages to replace MPI (allows
for re-factoring of algorithm)

•  In progress: studies of solver optimization for both
Poisson solver (electrostatic) and Maxwell solvers
(time-dependent)

Two different hybrid models in GTS: Using
traditional OpenMP worksharing and OpenMP tasks

OpenMP tasks enables us to overlap MPI communication with independent
computation and therefore the overall runtime can be reduced by the costs of
MPI communication.

NEW OpenMP Tasking Model gives a new way to achieve more parallelism from
hybrid computation.

Overlapping Communication with Computation using OpenMP tasks on the GTS magnetic
fusion code, R. Preissl, A. Koniges, S. Ethier, W. Wang, N. Wichmann, Journal of Scientific
Programming, 2011

OpenMP tasking version outperforms original
kernel, especially in larger poloidal domains

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

'()*+," -..,+/01+" 2)..)3456.+" '+3/7+18"

9)
:
+"
;<
+1
="

!"#$%&"&'()*$%>"?"%"!(+,&-%./")*

9@<A)34"

B,)4)3@."

!"

#!"

$!!"

$#!"

%!!"

%#!"

&'()*+" ,--+*./0*" 1(--(2345-*" &*2.6*07"

8(
9
*"
:;
*0
<"

!"#$%&"&'()*$%=">"$?"!(+,&-%./")*

8@;A(23"

B+(3(2@-"

Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI
process with varying domain decomposition and particles per cell.

MPI communication in uses a toroidal MPI communicator (constantly 128)
Large performance differences in the 256 MPI run compared to 2048 MPI run!

Speed-Up expected to be higher on larger GTS runs with hundreds of thousands CPUs
since MPI communication is more expensive

256 size run 2048 size run

CAF in GTS (+MPI) reduces lines of
codes and speeds up application

2
8

MPI

CAF

0
5

10
15
20
25

CAF MPI

Ti
m

e
[s

ec
]

Sending of particle array
(7x100000)

CAF = CoArray Fortran

New kernel using a combination of MPI, OpenMP, and CAF
gives significant performance improvement on 130K cores

Single-Threaded (Benchmark) Multi-Threaded (Benchmark) Multi Threaded (GTS)

a) Classical hybrid MPI/OpenMP
b) Extension – MPI thread teams for

work distribution and collective
MPI function calls

c) Hybrid PGAS (CAF) / OpenMP
allows ALL OpenMP threads per
team to make communication
calls to the thread-safe PGAS
communication layer

Preissl, Wichmann, Long, Shalf, Ethier, Koniges, SC11 Paper

Requires interoperability of MPI, OpenMP, and PGAS

Outline

•  Intro to High Performance Computing Challenge areas for
Plasma Physics

– Magnetic Fusion Energy: Tokamak or other magnetically contained plasma
for fusion energy (generally toroidally shaped)

– Inertial Fusion Energy: Create fusion reaction using lasers or ion beams
– Accelerators

•  As Free-Electron Laser sources for production of very short wavelength
light sources—creates 3D images of very small things

•  As an Ion Beam Accelerator to study Warm Dense Matter and
properties of materials

•  Primary Proxy App: PIC (Particle-In-Cell) Simulations
• Other Areas for Study:

– Solvers for MHD and Solvers within PIC codes
– Behavior of plasma turbulence codes

The 2-Fluid MHD Equations are a complicated
target for development of a proxy app

∂n
∂t
+∇•(nV) = 0 continuity

∂B
∂t

= −∇×E ∇iB = 0 µ0J =∇×B Maxwell

nMi (
∂V
∂t

+V•∇V)+∇p = J×B−∇iGV +µ∇
2V momentum

E+V×B =ηJ + 1
ne
J×B−∇pe() Ohm's law

3
2
∂pe
∂t

+∇i 3
2
peV

%

&
'

(

)
*= −pe∇iV+ηJ

2 −∇iqe +QΔ
+ SFe electron energy

3
2
∂pi
∂t

+∇i 3
2
piV

%

&
'

(

)
*= −pi∇iV+µ ∇V

2
−∇iqi −QΔ

+ SFi ion energy

Resistive MH
2-

Idea

flui
D

d

l MHD

 MHD

number density
magnetic field
current density
electric field

mass densityi

n

nM ρ≡

Β
J
E

fluid velocity
electron pressure
ion pressure

electron charge

e

i

e i

p
p
p p p
e
≡ +

V

0

,

viscosity
resistivity

heat fluxes
equipartition
permeability

 Fusion powerFe i

Q

S

µ

η

µ
Δ

i eq ,q

Code Name Developers/Major Users

NIMROD C. Sovinec, S. Kruger, D. Schnack, C. Kim, many others

M3D J. Breslau, L. Sugiyama, H. Strauss, G. Fu, J. Chen, others

M3D-C1 N. Ferraro, S. Jardin, J. Breslau, J. Chen

PIXIE3D L. Chacon, others

HiFi S. Lukin, A. Glasser, others

Note: M3D-C1 is an extension of M3D that uses
higher-order finite elements and is fully implicit

Several MHD Codes are in use for Magnetic
Fusion Energy Simulations

Slide credit: S. Jardin

Should we have a proxy app or focus on
solvers for MHD for tokamaks?

~ 8-9 variables per element (or mesh point) V, B, ρ, pe, pi
~ 102 toroidal planes (or Fourier modes)
è Large sparse matrix equations require low latency

Codes vary in:
•  single (big) matrix equation or several smaller equations

•  non-linearly implicit (NK), linearly implicit, or partial implicit

•  spectral, finite element, or finite differences in toroidal direction

ϕ

Using a Proxy App inspired Reduced MHD and a 2D
solver we gauge performance of full code

• Three iterative solvers (bj_lu, asm_ilu, asm_lu)
and the direct solver (SuperLU) for a 256X256
size problem
•  SuplerLU and bj_lu has lower MPI message
lengths
•  the communication percentage of SuperLU is
over half of the wall time and increases as the
number of cores increases

From: Application of PDSLin to the magnetic reconnection problem, Xuefei Yuan, Xiaoye S. Li, Ichitaro
Yamazaki, Stephen C. Jardin, Alice E. Koniges and David E. Keyes, Comp. Sci Dis. 6, 2013.

Outline

•  Intro to High Performance Computing Challenge areas for
Plasma Physics

– Magnetic Fusion Energy: Tokamak or other magnetically contained plasma
for fusion energy (generally toroidally shaped)

– Inertial Fusion Energy: Create fusion reaction using lasers or ion beams
– Accelerators

•  As Free-Electron Laser sources for production of very short wavelength
light sources—creates 3D images of very small things

•  As an Ion Beam Accelerator to study Warm Dense Matter and
properties of materials

•  Primary Proxy App: PIC (Particle-In-Cell) Simulations
• Other Areas for Study:

– Solvers for MHD and Solvers within PIC codes
– Behavior of plasma turbulence codes

Bout++: break up times in each kernel to check
how they scale

• Breakup by time spent: Calc scales somewhat, but
inv, solver do not scale

1

10

100

1000

4096 8192 16384 32768 65536

Wall
Calc
Inv
Comm
Solver

Strong Scaling Studies show that typical problem
sizes will not scale well beyond a few thousand

Steady increase in
flop count
Extra computations in

ghost cells (and
more cycles spent
in doing these)

Valid region
(excluding ghost
region) does same
amount of work

8

8

4
4
4
4

Grid points/proc
decreases with
concurrency

More work needed
before designing an
appropriate proxy

Praveen Narayanan and Alice Koniges, Bout++ Workshop 2011

Conclusions

•  PIC codes are a “standard” proxy app for plasma and
accelerator applications

– Grouping these together into a common language (DSL-
inspired) can help to spread benefit of proxy

– Isolating pieces of proxy for study with advanced
programming model concepts provides important
improvement in application performance

• MHD codes are more difficult. Can focus on solver elements and
build the proxy with reduced physics while retaining properties
required of the solvers

•  Turbulence codes are varied. May be a while to determine best
proxy for model representation. As with CFD, stencil dependent.

•  Thanks – Applications – Viktor Decyk UCLA, Stephane Ethier
PPPL, Steve Jardin PPPL, Sherry Li LBNL, Jean-Luc Vay LBNL,
X. Xu LLNL

