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Outline 

•  Intro to High Performance Computing Challenge areas for 
Plasma Physics 

– Magnetic Fusion Energy: Tokamak or other magnetically contained plasma 
for fusion energy (generally toroidally shaped) 

– Inertial Fusion Energy: Create fusion reaction using lasers and ion beams  
– Accelerators 

•  As Free-Electron Laser sources for production of very short wavelength 
light sources—creates 3D images of very small things 

•  As an Ion Beam Accelerator to study Warm Dense Matter and 
properties of materials 

•  Primary Proxy App: PIC (Particle-In-Cell) Simulations 
• Other Areas for Study: 

– Solvers for MHD and Solvers within PIC codes 
– Behavior of plasma turbulence codes 



•  Top-to-bottom exascale computer 
design is essential for efficient 
design/operation of large-scale 
experiments  

–  Typical ITER discharge can be 
estimated at 1M$  

ITER, currently under construction 
 in the South of France, aims to  
demonstrate that fusion is an energy 
source of the future 



A variety of Fusion apps are required for building 
and running the ITER 

•  Fusion program has large suite of petascale 
applications in use covering many spatial and 
temporal scales 

•  The fusion suite of parallel applications brings a 
wide array of algorithms (implicit, nonlinear fluid, 
PIC, continuum phase space) 

ITER:  $10B Reactor 

10-10 10-2 104 100 10-8 10-6 10-4 102 ωLH
-1 Ωci

-1  τA Ωce
-1 

Time in seconds for full-scale magnetic fusion interactions  

Coupled code set diagram for magnetic fusion 

Discharge time ~hour 



Next Generation Fusion Modeling hopes to 
couple the various codes  

•  Core Transport: GYRO/NEO 
•  Collisional Edge Plasma: BOUT++ 
•  MHD: M3D-C1, NIMROD 

•  Explicit PIC Modeling: GTS, 
VORPAL 

•  Wave heating, Wall interaction 

Adapted from: Scott Kruger, Tech-X 



Intense ion beams enable 
studies of warm dense 

matter, and of key physics 
for ion direct drive and 

advanced materials 
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• X-Ray Free Electron Laser 
– Tunable soft X-ray source (0.1-1.2 keV) 

•  Core electron spectroscopy 
•  Nanoscale diffraction 

– Short pulse duration (250 as – 500 fs) 
•  Ultrafast dynamics 

– Longitudinal and transverse coherence 
•  Reduces time to acquire & process diffraction data 

 

Next Generation Light Sources are being 
designed with HPC Codes 



PIC Proxies have applications to electromagnetic kinetic 
modeling of space & laboratory plasmas 
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Astrophysical shocks 

Spitkovski – U. Princeton 

Laser plasma acceleration 

Warp – LBNL 

Vorpal – Tech-X Osiris – UCLA 

Light sources/Coherent synchrotron radiation 

Beam plasma neutralization 

Warp – LBNL 

LSP – Voss S. 
Warp – LBNL 

RF cavity design 

PIC3P – SLAC 

Joule metric  
code for ASCR 

Inertial fusion/fast ignition 

VPIC – LANL 

Kemp – LLNL 

First at Petascale 
on Roadrunner 

Solar storms/Magnetic reconnection 

H3D – UCSD 

3.2 Trillion 
particles on 
200,000 cores on 
Jaguar 

VPIC – LANL 

Vay – AFRD LBNL 
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Many Proxy studies for fusion apps focus 
only on Particle-In-Cell methods 

• PIC codes are generally best scaling 
• Physics content of PIC codes is steadily increasing 
• Coupling to MHD in MFE PIC is in progress 
• Other time-scale problems are still neglected 
• PIC codes also form the basis for much of 

accelerator physics 
• Study of the general design of PIC codes can 

benefit both accelerator and fusion applications 
• A “really nice” proxy app for fusion apps would 

allow for differing pieces of plug-in physics 



Intelligent Design of Proxy Apps for PIC in 
terms of a Domain Specific Language (DSL) 
• A DSL may help to generalize efforts 

– If we can design something it can save a lot of duplicative efforts 
and help use and maintain advanced components 

• Possibilities for DSL 
– Low-level, extensions, change some or all of the MPI calls (replace 

with GPU?) under hood 
– A high-level construct (abstraction) for meshing or similar 

operations 
– Orchestrate the DSL to provide abstractions 
– Domain specific functionality should be in a human readable form at 

best, or a readable language (e.g., our Python example) 
• Key to a good proxy app is to think in terms of DSL-like kernels that 

comprise the app, and how they interact 
•  This is not much different than traditional pie-type approach to full 

code profiling 



Basics of PIC codes form a rational for an 
intelligently-designed Proxy  

•  "particle-in-cell" because plasma macro-quantities (number density, 
current density, etc.) are assigned to simulation particles 

•  Particles can live anywhere on the domain, but field and macro-
quantities are calculated only on the mesh points 

•  Steps can lead to a domain specific language/concepts 
– Integration of the equations of motion  
– Interpolation of charge and current source terms to the field mesh 
– Computation of the fields on mesh points (field solve)  
– Interpolation of the fields from the mesh to the particle locations 

•  PIC codes differ from Molecular Dynamics in use of fields on a grid 
rather than direct binary interactions, goes from N2 to N 

•  PIC codes are radically different from standard PDE solver codes 
and show real promise for the exascale 



Specific Components form the basis for the 
Proxy App Studies 

• Data Structures/Abstractions 
– Lagrangian particles: x, y, z, Vx, Vy, Vz, q, m, etc. 
– Eulerian fields and sources: Jx, Jy, Jz, Ex, Ey, Ez, 
– Bx, By, Bz on grids for electromagnetics;  
– Rho, Phi (or V) for electrostatics 

• Goal – don’t care where the particles live, e.g., in terms of the 
parallel decomposition. Want to hide this from application 
programmer  

• Methods/Functional Abstractions 
– Push particles 
– Deposit (scatter) charge or currents from particles onto grid(s) 
– Solve  fields (Can we put this into a library call?) 
– Gather forces from grids onto particles. 



Questions for hiding complexity and 
optimizing code lie in the basic design 

• Data abstraction -- Need to ask what do you want 
to do with the data –e.g., to push the particles. 
User should not care about where the particles 
live, what processor, etc. and need to conserve 
movement of data between procs 

• Grid abstraction -- fields have to live on a grid. 
How much of grid in memory, and how is it 
distributed? What do you need to pull from it? 
Maybe don't want to replicate the grid on all 
procs?  

• Functional abstraction --can you generate the 
move for a variety of different problems and let it 
(DSL combined with compiler) generate the code 
for this? 



Why can it be difficult to define a PIC DSL 

• Difference in layout of Lagrangian and/or Eulerian 
quantities in memory 

– not a hard barrier per say as layers of translations (copy) between data 
structure can be added, but usually at the expense of runtime efficiency  

• Legacy 
• Competition 
More evolved features like irregular gridding, AMR, 

complex particle pushers, deposition schemes, or 
field solvers, call for more sharing as a smaller 
fraction of developers can effectively maintain 
such codes. 

basic data structures and operations are fairly simple and thus easily reproducible 
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GTS (Gyrokinetic Tokamak Simulation) 

• GTS particles are moved along the characteristics in phase 
space 
– Gyro-averaged Vlasov equation reduced to a simple 

system of ordinary differential equations for particle push 
• Straight-field-line magnetic coordinates in toroidal geometry 

are employed (natural coordinates for tokamak) 
• As before, grid replaces the direct binary interaction 

between particles by accumulating the charge of those 
particles on the grid at every time step and solving for the 
electromagnetic field, which is then gathered back to the 
particles’ positions 



The DSL-inspired proxy can allow for more 
complicated particle movers 

• Equations of motion for the particles along the 
characteristics, slightly more complicated, same type of 
calculation: 
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Differences in Particle-In-Cell Codes 

•  Particle-in-Cell codes are used for a huge variety of applications as 
seen in intro 

– Versions at LBNL include Impact and Warp 
•  The family of codes known as GTC/GTS implements a Particle 

method to solve the Gyrokinetic Equations in Tokamaks and other 
toroidal fusion devices 

– First version of GTC was created by Zhihong Lin, UCI 
– Latter US Gyro-PIC include: 

• GTS Stephane Ethier and Weixing Wang, PPPL 
• XGC CS Chang, PPPL 

– Primary benchmark (proxy) is called GTC 
– Unfortunately, pure optimization of GTC can result in a focus on 

steps that are primarily relevant to the unusual tokamak geometry 
including gyromotion 



Proxy Apps should be combined with full 
app study in areas where codes are open 

• Proxy Apps are usually the benchmark versions of 
codes 

• Often used for procurements 
• For full optimization science, we should also 

consider the more production versions of codes 
– Typically, these can still be studied as Proxy 

Apps if the basic steps are compartmentalized 
and analyzed 



Samples of PIC Proxy Optimization 

• We have investigated various means of optimizing 
the steps of one of our gyrokinetic PIC codes 

•  Investigated use of Advanced OpenMP constructs 
•  Investigated use of PGAS (Partitioned Global 

Address Space) languages to replace MPI (allows 
for re-factoring of algorithm) 

•  In progress: studies of solver optimization for both 
Poisson solver (electrostatic) and Maxwell solvers 
(time-dependent) 



Two different hybrid models in GTS: Using 
traditional OpenMP worksharing and OpenMP tasks 

OpenMP tasks enables us to overlap MPI communication with independent 
computation and therefore the overall runtime can be reduced by the costs of 
MPI communication. 
 

NEW OpenMP Tasking Model gives a new way to achieve more parallelism from 
hybrid computation.  

Overlapping Communication with Computation using OpenMP tasks on the GTS magnetic 
fusion code, R. Preissl, A. Koniges, S. Ethier, W. Wang, N. Wichmann, Journal of Scientific 
Programming, 2011 
  



OpenMP tasking version outperforms original 
kernel, especially in larger poloidal domains 
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Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI 
process with varying domain decomposition and particles per cell. 
 
MPI communication in uses a toroidal MPI communicator (constantly 128) 
Large performance differences in the 256 MPI run compared to 2048 MPI run! 
 
Speed-Up expected to be higher on larger GTS runs with hundreds of thousands CPUs 
since MPI communication is more expensive 

256 size run 2048 size run 



CAF in GTS (+MPI) reduces lines of 
codes and speeds up application 
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New kernel using a combination of MPI, OpenMP, and CAF 
gives significant performance improvement on 130K cores 

Single-Threaded (Benchmark)      Multi-Threaded (Benchmark)           Multi Threaded (GTS)    
    

a) Classical hybrid MPI/OpenMP 
b) Extension – MPI thread teams for 

work distribution and collective 
MPI function calls 

c) Hybrid PGAS (CAF) / OpenMP 
allows ALL OpenMP threads per 
team to make communication 
calls to the thread-safe PGAS 
communication layer 

Preissl, Wichmann, Long, Shalf, Ethier, Koniges, SC11 Paper 

Requires interoperability of MPI, OpenMP, and PGAS 
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The 2-Fluid MHD Equations are a complicated 
target for development of a proxy app 
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Code Name  Developers/Major Users 
 
NIMROD  C. Sovinec, S. Kruger, D. Schnack, C. Kim, many others 
 
M3D   J. Breslau, L. Sugiyama, H. Strauss, G. Fu, J. Chen, others 
 
M3D-C1   N. Ferraro, S. Jardin, J. Breslau, J. Chen  
 
PIXIE3D  L. Chacon, others 
 
HiFi   S. Lukin, A. Glasser, others 
 

 

Note: M3D-C1 is an extension of M3D that uses 
higher-order finite elements and is fully implicit 

Several MHD Codes are in use for Magnetic 
Fusion Energy Simulations 

Slide credit: S. Jardin 



Should we have a proxy app or focus on 
solvers for MHD for tokamaks? 

~ 8-9 variables per element  (or mesh point) V, B, ρ, pe, pi 
~ 102  toroidal planes (or Fourier modes) 
è Large sparse matrix equations require low latency 
 
Codes vary in: 
•   single (big) matrix equation or several smaller equations 

•   non-linearly implicit (NK), linearly implicit, or partial implicit 

•   spectral, finite element, or finite differences in toroidal direction 

ϕ 



Using a Proxy App inspired Reduced MHD and a 2D 
solver we gauge performance of full code  

• Three iterative solvers (bj_lu, asm_ilu, asm_lu) 
and the direct solver (SuperLU) for a 256X256 
size problem 
•  SuplerLU and bj_lu has lower MPI message 
lengths 
•  the communication percentage of SuperLU is 
over half of the wall time and increases as the 
number of cores increases 
 

From: Application of PDSLin to the magnetic reconnection problem, Xuefei Yuan, Xiaoye S. Li, Ichitaro 
Yamazaki, Stephen C. Jardin, Alice E. Koniges and David E. Keyes, Comp. Sci Dis. 6, 2013. 
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Bout++: break up times in each kernel to check 
how they scale 

• Breakup by time spent: Calc scales somewhat, but 
inv, solver do not scale 
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Strong Scaling Studies show that typical problem 
sizes will not scale well beyond a few thousand 

Steady increase in 
flop count 
Extra computations in 

ghost cells  (and 
more cycles spent 
in doing these) 

Valid region 
(excluding ghost 
region) does same 
amount of work 
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Grid points/proc 
decreases with 
concurrency 

More work needed 
before designing an 
appropriate proxy 

Praveen Narayanan and Alice Koniges, Bout++ Workshop 2011 



Conclusions 

•  PIC codes are a “standard” proxy app for plasma and 
accelerator applications 

– Grouping these together into a common language (DSL-
inspired) can help to spread benefit of proxy 

– Isolating pieces of proxy for study with advanced 
programming model concepts provides important 
improvement in application performance 

• MHD codes are more difficult. Can focus on solver elements and 
build the proxy with reduced physics while retaining properties 
required of the solvers 

•  Turbulence codes are varied. May be a while to determine best 
proxy for model representation. As with CFD, stencil dependent. 

•  Thanks – Applications – Viktor Decyk UCLA, Stephane Ethier 
PPPL, Steve Jardin PPPL, Sherry Li LBNL, Jean-Luc Vay LBNL, 
X. Xu LLNL 


