
Open Science, Open Security

Scott Campbell
National Energy Research Scientific Computing Center

Lawrence Berkeley National Lab
Berkeley, CA, USA
scampbell@lbl.gov

Abstract— We propose that to address the growing problems

with complexity and data volumes in HPC security wee need to
refactor how we look at data by creating tools that not only select
data, but analyze and represent it in a manner well suited for
intuitive analysis. We propose a set of rules describing what this
means, and provide a number of production quality tools that
represent our current best effort in implementing these ideas.

Keywords—Intrusion Detection, Security, High Performance
Computing

I. INTRODUCTION
Balancing the needs of researchers with HPC site security

and stability makes practical and effective computer security in
an Open Science environment very interesting. Virtual
organizations like KBase [9] and the Materials Project [1], web
2.0 based interfaces for job submission and reporting, and more
data centric design patterns continue to change the
landscape. Given the increasing porous nature of the
environment, these changes are forcing security analysis to be
both faster and more flexible when looking at security.

For many years, the HPC security community has worked
diligently to gather large amounts of diverse data in order to
better understand not only who is logging in (or attacking) the
system(s), but also what the attackers are doing. These efforts
include network monitoring, systems logging, login analysis,
process accounting and batch job analysis. In [2] we began to
describe a more systematic way for data acquisition, focusing
principally on structural ideas and design patterns to identify
locations where high value data will be found.

The process of gathering all this data has turned us into
experts in generating vast quantities of data. In terms of
security issues as well as general systems problem solving this
has turned out to be tremendously beneficial. Not surprising is
that by itself the data does not provide much insight into
understanding attack minutia, and we have come to the painful
conclusion that getting the data is the easy part. What you do
with the data is much harder.

Similarly, knowing what sorts of questions to ask is also
more complex than it ought to be. We have observed that for
many organizations simple and well-defined techniques are not
implemented because security infrastructure does not provide
security primitives. We think of security primitives as
fundamental operations on a data set like rate of change or
variance. These primitives can be used in the application of
first principal analysis that amount to defining rules, which
describe immutable security characteristics.

Our objective here is to explicitly design and implement
tools that scale for both data volume and analytic complexity
and provide them to the security community free of charge.
We have defined a series of heuristics for this goal, and
describe efforts toward tool creation.

II. SOLUTION METHOD

A. Overview
Our method can be broken down into three parts, each

building on the one before it. Each will be briefly introduced,
then explained in greater detail.

1. DATA REDUCTION and REPRESENTATION:
Gather and normalize data without bias. Actively
filter and reduce to machine friendly form.

2. DATA ANALYSIS: Rethink analysis in terms of
first principles, and security primitives.

3. DATA ACCESS: Analysis of data needs to be
simple. If a tool can’t be part of a simple workflow,
the user will be incentivized to not use it.

After working with these rules and implementing a toolset
using these principles, we have found that some basic design
components have had to be rethought, but the results have been
quite refreshing.

B. Data Reduction and Representation
Given the volume of data generated by an average network

and system, it can be quite tempting to pre-filter what gets
passed up to analysis based on what you suspect represents the
security threat. Taking our lead from the original design of the
Bro intrusion detection system [13], we differentiate between
data and security related decision making. This discourages
filtering based on assumptions.

On first look, this runs contrary to data gathering at scale –
it is not practical to observe, analyze and store every byte,
request or user action. Instead of filtering based on presumed
threat, filtering can be done based on the ability of the data to
inform decision making, thus avoiding the introduction of
excessive bias before the analysis phase. An example of this
would be flow shunting, which is the removal of high volume
information flows after analysis identifies no threat. [7]. By
filtering based on the ability of the data to inform decision
making, you avoid the introduction of excessive bias before the
analysis phase.

This work was supported by the Director, Office of Science, Division of
Mathematical, Information, and Computational Sciences of the U.S.
Department of Energy under contract number DE-AC02-05CH11231.

Reducing data volume by abstracting can help
tremendously. The highest resolution data source for network
traffic would be a full packet network trace, but problems with
data volume and indexing/interaction make this data source
difficult to work at volume. In the absence of outrageous
hardware resources, we need to balance the typical use case for
network traces – short term high information resolution vs.
long term connection abstraction. The key here is that with
thoughtful identification of how data will be stored and used,
data volume can be reduced without excessively impacting
analysis.

Once data is identified, how it is represented (both pre and
post analysis) needs to be considered so the various
components can share data and processed results. Many tools
historically used for security analysis have an output format
that does not lend itself well to either machine reading or being
placed in an analysis toolchain.1 Output is designed for human
consumption rather than machine sharing creates a natural
stopping point for automation. The canonical example of this
would be a report that is emailed out without the results cleanly
recorded. Keeping data available in machine parsable format
allows you to both generate reports a swell as pass the results
along ad-hoc through further analysis.

C. Data Analysis
Analysis here describes interacting with the data to solve

problems. Ideally a tool encourages flexibility and exploration
from the onset, avoiding any number of issues with a fragile
and complex analysis chain. We describe the Bro IDS
application design, and why it allows maximum flexibility.
We then introduce the two concepts of first principle analysis
and security primitives.

For logging and analysis, we have chosen to use the Bro
IDS. Its design can be broken into two components. The first
is the event generator which accepts data from either a standard
pcap interface or serialized event objects from an external
source. This event generator takes data characteristics and
processes them into a series of agnostic “events”. Second is a
policy component where the event stream is interpreted and
logged by a domain-specific scripting language. This language
is used to expresses local site security policy. A particularly
useful element is how the scripting language handles events.
When an event fires, multiple handlers can be assigned to it,
allowing parallel analysis chains to be trivially created. These
parallel events are used to build the design shown in Fig. 1
which is motivated by the need to have systematic logging,
local security policy and asynchronous interaction.

The ‘Log’ level is designed with the sole purpose of
recording a log of the observed event, whether network
connection, user keystroke, or some other small unit of
information. The log provides an unbiased transcript of what
has transpired and is used for forensic analysis or later research
and experimentation.

1 An example of this would be the way that both snort and bro
represented log results in native format.

Fig. 1. Representation of event being handled by the logging, local policy
and async feed codes.

The ‘Local Policy’ is where the analysis takes place, and is
where we will be looking at introducing security primitives and
first principle analysis. The relation between these two are that
the first principle is the check on an {object,value} pair and the
security primitive is the generalized means to check that
relationship. For example you might want to know when your
site creates an order of magnitude more outbound network
connections. The assertion about site behavior is the first
principle, and the mechanism to test will be built from a set of
primitives.

An example of a security primitive would be rate of change
values for one or more objects. If some value (x) increases by
an order of magnitude, or the rate if change (d/dx) or (d2/dx2)
grows, having a notification for this built into the table
behavior would be a tremendously powerful thing. We have
prototyped this, but it is not part of our current production.

An example of first principle analysis rests on the idea that
except for a small number of well defined mechanisms like an
suid executables, a user process should not take on the identity
of a privileged account.

Fig. 2. User executing a set of commands, one (b) which moves their
location in permission space.

In the case of Fig. 2, a regular user executes a series of
commands represented as dots {a,b,...,e}. The second
command transitions from uid 1234 to uid 0, which is quite
interesting from a security perspective. The most common
way for this to occur is via a suid/sgid binary. On a well-
administered system, the set of known and expected suid
programs can be generated. This set represents permission
gateways that an average user would be expected to use in their
day-to-day work behavior.

D. Data Access
Data access is a reminder that for something to be useful, it

must be worth the time for an analyst to change their working

Log

Policy Async

Event

UID 1234

UID 0

Time

a b

c d e

habits. Since we are building tools to be used, this is a critical
point. The security landscape it littered with the remains of
visualization and analytics tools which might technically do a
better job, but do not fulfill a sort of activation energy that is
required for them to be put into use.

III. RELATED WORK
The related work can be broken into several groups. Most

HPC related security work is focused on static hardening from
an architecture and network point of view. Another set is
derived from a compliance and modeling viewpoint. In total
there was tremendous focus on highly technical component
wise problem solving.

The most relevant work was Yurcik (et al) [17], which
describes cluster security as an emergent property derived from
the aggregate interaction of the various components. This is
driven both by the diversity of architecture components, as
well as the interaction of these components with one another.
The notion that cluster security is an emergent property,
irreducible in principle to the sum of the smaller components is
totally consistent with the ideas that we are forwarding. Both
first principle analysis and the idea of security primitives can
be applied to this idea without modification. Some ideas
proposed as best practices such as high quality monitoring and
moving compute nodes off into RFC 1918 (or otherwise non-
routed) address space have become standard design as clusters
grow in size.

Two architecture related papers - McMahon and Hutchison
“An Architecture for HPC Facilities” [10] and Nowak (et al)
“Security in HPC Centers” [12] were similar enough in design
advice that they get grouped together. Both embody the
notions of static defenses – firewalls, local encryption etc.
Since these are design oriented rather than analysis documents,
there applicability is mostly in understanding design concepts.

The last paper discussed here is Pourzadi (et.al.) [14]
which focuses on a design for highly secure carrier class
clustered systems. The system would be broken out into
management and security service components. System and
network (inter)connectivity permissions would be fully
controlled via the central security server as well as correlations
with intrusion detection systems. With such an aggressively
default deny model for a system, security analysis should be
much simpler once the model for application characteristics
has been sufficiently vetted. For a single application with
limited input this might be possible, but for a site running over
a hundred basic codes being driven by custom code and
arbitrary data this seems impossible.

IV. EXAMPLES
Since we are building publicly accessible production grade

tools, the examples presented here are publicly available off of
the author’s github repository [8]. NERSC has been running
iSSHD in production for a number of years, while the Auditd
Bro-Framework and user-abstractions are still in alpha format.
Building the example programs has informed our opinions
about what works and what needs to change.

A. Instrumented SSHD
One of the first attempts at gaining some insight into user

activity involved the instrumentation and analysis of local ssh
server instances. A complete description of the architecture
and analysis used is outside the scope of this paper, but was
presented at LISA [3]. In general terms, instrumented sshd
allows for the recording and analysis of a significant portion of
user input/output, authentication data, and sshd metadata such
as port forwarding, channel creation, tunneling and remote
command execution.

From a design standpoint we have learned a tremendous
amount from the successes and failures of this project. This
has carried over into how we design and implement more
current projects. As a tool to identify attackers and
determining their corresponding success, it has proven to be
invaluable. To a large degree it provides well-structured data
for identity and various metadata operations (like port
forwarding). This follows the desire for highly normalized
output data. On the other hand the majority of content runs
across tty and non-tty channels where most analysis is still
done via regular expressions. For now user activity is not
reducible to a normalized form – it is at best semi-structured
text which does not lend itself well to machine consumption.

B. Auditd Framework
The AuditD framework is a collection of tools that collect

raw auditd kernel data. This section provides a short
description of the current implementation highlights. While
the isshd implementation was designed during our first attempt
at identifying on system user behavior, the auditd analyzer is
the first project based on the design principles mentioned in
section II. For brevity, we will focus on how the application
fulfills the design specs described here more than project
internals. A number of well written references exist describing
the design, use and configuration of the Linux Audit
Framework (auditd) including [6] and [15]

The linux audit framework provides the ability to audit
system behavior based on a series of rules that are passed to it
via the auditd service. This service allows linux kernel
auditing to log data directly into userspace. While the
ecosystem of things that live in user-space is fairly complex,
we provide a configuration for the auditd service as well as the
rule set defining user and system activities which should be
logged. This auditd configuration is fairly standard, and is
available in the source repo.

The set of auditable objects is quite formidable including
system calls, file system objects, authentication services, and a
variety of security related services. A complete listing of
available object classes is defined in the audit.h header file.
For our needs we selected a subset of system calls relating to
privilege escalation, networking, and modifications to sensitive
files. Given the inherent overhead related to monitoring
system calls, we opted for a less complete set to avoid
performance issues. Initial testing placed the overhead for an
average users activity at approximately 0.5% .

6855:5:1 SYSCALL_OBJ SYSCALL 1391192813.866 host-g 214150 32434 execve SYS_EXEC uname /bin/uname 1888710
 1888d50 188ffd0 sc sc sc sc sc sc sc sc 26589 26588 pts1 yes 0
6855:5:2 EXECVE_OBJ EXECVE 1391192813.866 host-g 214150 26589 2 %20uname%20-m
6855:5:3 PLACE_OBJ CWD 1391192813.866 host-g 214150 26589 /home/scottc NULL -1 -1 -1 -1
6855:5:4 PLACE_OBJ PATH 1391192813.866 host-g 214150 26589 NULL /bin/uname 10356738 0100755 root root
6855:5:5 PLACE_OBJ PATH 1391192813.866 host-g 214150 26589 NULL %28null%29 11665433 0100755 root root

1395458894.644 214150 host-g 32434,sc,sc,sc,sc,sc,sc,sc,sc
 6855:5:1 host-g 26589 214150 EXECVE SYS_EXEC execve uname /bin/uname NULL NULL NULL NULL (null)
 /home/sc 1888710 1888d50 188ffd0 uname -m 26588 pts1 NULL yes 0 root root

Fig. 3. Example of first two passes of normalizing for auditd data. The first is output from the host normalizer, and the second is the single line output which bro
generates as it’s permanent record and the data structure to operate on. The red part is metadata and green is the identity.

Normalizing the data and converting it from its native
human oriented format proved to be challenging. When
something auditable happens, the overall act is called an event.
These events are composed of a series of records, each as a
collection of key:value pairs called fields. Events can have
many (1-10) records, each of which has from 10-30 fields. To
address the tremendous diversity of data, groups based on
event types were created. These groups are: users, places,
who, socket, execve and internal. Each type is composed of a
single data structure built to contain the entire set of
information that we were interested in analyzing. All fields are
converted into well structured key:value pairs, with all string
type values URI encoded [4] for both ease of use and security.

An example of this processed data for the command
‘uname –a’ can be found in Fig. 3. For all auditd events, the
first entry defines the basic action (i.e. what happened), and the
remaining lines fill in additional information about the action.

Ultimately we decoupled the identity/ownership with an
event from the action and reduced the ad-hoc data structure to a
well defined key:value set collection. While action data tends
to be transient, identity is useful to track throughout the
lifetime of the session (and possibly longer). What we now
have is a set of well defined data types containing normalized
data that is both clean and associated with an identity.

The local site policy provides the ability to do detailed
analysis. Code has been provided which tracks execution,
network socket activity (creation of listeners and connections),
and the canonical example of tracking a user as they traverses
through identity space. Here the various notions of identity:
auid, uid, gid, euid, egid, fsuid, fsgid, suid, and sgid are used.
The auid is assigned on user login and remains immutable.

We now have the ability to define sets of activity and
quickly and clearly test for them in near real time across a large
production cluster. Things we can look for include unexpected
identity transitions, file permission errors, execution history
including flagging unexpected executable locations, and
mapping individual network connections to a given user on a
given system. We are implementing the second part of the
security primitives with prototyping in place for select tables.

V. CONCLUSION AND FUTURE WORK
We propose that to address the growing problems with

complexity and data volumes a number of basic changes need
to take place. Amongst these is the need to refactor how we
look at data by creating tools that not only select data, but

analyze and represent it in a manner well suited for intuitive
analysis. We propose a set of rules describing what this means,
and provide a number of examples that represent our current
best effort in implementing these ideas.

Moving forward, we are prototyping a number of changes
in the auditd analyzer that will build statistical and comparative
measures directly into data tables. This would simplify
detection of commonly desired qualities like unusualness.

REFERENCES
[1] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S.

Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. The Materials
Project: A materials genome approach to accelerating materials
innovation
Applied Physics Letters Materials, 2013, 1(1), 011002.

[2] Experiences with Intrusion Detection in High Performance Computing.
Scott Campbell, Jim Mellander. Cray User Group, 2012, Anchorage AL

[3] Campbell, Scott. "Local system security via SSHD instrumentation."
Proceedings of the 25th international conference on Large Installation
System Administration. USENIX Association, 2011.

[4] Nick Galbreath, stringencoders: A collection of high performance c-
string transformations, http://code.google.com/p/stringencoders/

[5] J. Gonzalez, V. Paxson, and N. Weaver, Shunting: A
Hardware/Software Architecture for Flexible, High-Performance
Network Intrusion Prevention, Proc. ACM CCS, October 2007.

[6] Steve Grubb, Linux Auditd Main Page,
http://people.redhat.com/sgrubb/audit/index.html

[7] J. Gonzalez, V. Paxson, and N. Weaver, Shunting: A
Hardware/Software Architecture for Flexible, High-Performance
Network Intrusion Prevention, Proc. ACM CCS, October 2007.

[8] https://github.com/set-element Repo for software referenced in work.
[9] KBase, DOE Systems Biology Knowledgebase. https://kbase.us/
[10] McMahon, Peter, and Andrew Hutchison. "A security architecture for

high performance computing facilities." (2006).
[11] Nominé, Jean-Philippe, and François Robin. "Security in HPC Centres."
[12] V. Paxson, Bro: A System for Detecting Network Intruders in Real-

Time. Proceedings of the 7th USENIX Security Symposium, San
Antonio, TX, January 1998

[13] M. Pourzandi, I. Haddad, C. Levert, M Zakrewski, and M. Dagenais, “A
New Architecture for Secure Carrier-Class Clusters,” IEEE International
Workshop on Cluster Computing, 2002.

[14] SUSE Linux Enterprise Server Security Guide, Part V, The Linux Audit
Framework.

[15] http://doc.opensuse.org/products/draft/SLES/SLES-
security_sd_draft/book.security.html

[16] Yurcik, W., Koenig, A., Meng, X. and Greenseid, J. “Cluster Security as
a Unique Problem with Emergent Properties: Issues and Techniques”.
5th LCI International Conference on Linux Clusters, Presentation, May
2004

