Multithreaded Global Address Space Communication
Techniques for Gyrokinetic Fusion Applications on
Ultra-Scale Platforms

Robert Preissl Nathan Wichmann Bill Long
Lawrence Berkeley CRAY Inc. CRAY Inc.
National Laboratory St. Paul, MN, USA, 55101 St. Paul, MN, USA, 55101

Berkeley, CA, USA 94720 wichmann@cray.com longb@cray.com

rpreissli@lbl.gov

John Shalf
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720

jshalf@lbl.gov

ABSTRACT

We present novel parallel language constructs for the com-
munication intensive part of a magnetic fusion simulation
code. The focus of this work is the shift phase of charged
particles of a tokamak simulation code in toroidal geometry.
We introduce new hybrid PGAS/OpenMP implementations
of highly optimized hybrid MPI/OpenMP based communi-
cation kernels. The hybrid PGAS implementations use an
extension of standard hybrid programming techniques, en-
abling the distribution of high communication work loads
of the underlying kernel among OpenMP threads. Building
upon lightweight one-sided CAF (Fortran 2008) communi-
cation techniques, we also show the benefits of spreading
out the communication over a longer period of time, result-
ing in a reduction of bandwidth requirements and a more
sustained communication and computation overlap. Exper-
iments on up to 130560 processors are conducted on the
NERSC Hopper system, which is currently the largest HPC
platform with hardware support for one-sided communica-
tion and show performance improvements of 52% at highest
concurrency.

Keywords: Particle-In-Cell, Fortran 2008, Coarrays, Hy-
brid MPI/OpenMP & PGAS/OpenMP computing

1. INTRODUCTION

The path towards realizing next-generation petascale and
exascale computing is increasingly dependent on building
supercomputers with unprecedented numbers of processors
and complicated memory hierarchies. Applications and al-
gorithms need to change and adapt as node architectures

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Stephane Ethier
Princeton Plasma
Physics Laboratory
Princeton, NJ, USA, 08543
ethier@pppl.gov

Alice Koniges
Lawrence Berkeley
National Laboratory

Berkeley, CA, USA 94720

aekoniges@lbl.gov

evolve to overcome the daunting challenges posed by such
massive parallelism. To prevent the communication perfor-
mance from dominating the overall cost of these ultra-scale
systems, there is a critical need to develop innovations in al-
gorithms, parallel computing languages, and hardware sup-
port for advanced communication mechanisms. One such
innovation in communication technology is the development
of one-sided messaging methods and Partitioned Global Ad-
dress Space (PGAS) languages such as Unified Parallel C
(UPC) and Fortran 2008, which incorporates parallel fea-
tures historically identified as Coarray Fortran (CAF). PGAS
languages are able to directly reference remote memory as a
first order construct, which reduces subroutine call overhead
and enables the compiler to participate in optimization of
the communication. The one-sided messaging abstractions
of PGAS languages also open the possibility of expressing
new algorithms and communications approaches that would
otherwise be impossible, or unmaintainable using the two-
sided messaging semantics of communication libraries like
MPI'. The expression of the one-sided messaging semantics
as language constructs (Coarrays in Fortran and shared ar-
rays in UPC) improves the legibility of the code and allows
the compiler to apply communication optimizations. Hard-
ware support for PGAS constructs and one-sided messaging,
such as that provided by the recent Cray XE6 Gemini inter-
connect, is essential to realize the performance potential of
these new approaches.

Our work focuses on advanced communication optimiza-
tions for the Gyrokinetic Tokamak Simulation (GTS) [16]
code, which is a global three-dimensional Particle-In-Cell
(PIC) code to study the microturbulence and associated
transport in magnetically confined fusion plasmas of toka-
mak toroidal devices. We have created a reduced or skele-
ton application that represents the communication require-
ments of the GTS application so that we could rapidly pro-
totype and measure the performance of various communica-
tion strategies. The best strategy is then easily incorporated

'For the rest of the paper we use the term MPI when MPI-1
is intended. If we refer to the MPI one-sided extension, we
use the term MPI-2 explicitly.

p—
| DDR3 6MB L3 HT# 6MB L3
| - | I A Cach
DDR3 T @
—
. % ‘I ‘ 6MB L3
) = Cache HT3} Cache
| ¢

. to Interconnect
6 cores per die

(a) XE6 compute node with AMD “Magny Cours”

——2—d
| Gemini
) J
=
Gemini

(b) Part of the 3D torus network in the XE6

Figure 1: The Cray XE6 supercomputer incorporates AMD’s twelve-core “Magny Cours” Opteron processors
and the Gemini interconnect in a three-dimensional (3D) torus network

back into the original code, where we evaluate its benefit to
the overall scalability and performance of GTS. We focus
on Fortran 2008’s CAF extensions because Fortran is the
language used to implement the bulk of the GTS code base.

1.1 Related Work

A number of studies have investigated the simplicity and
elegance of expressing parallelism using the CAF model.
Barrett [2] studied different Coarray Fortran implementa-
tions of Finite Differencing Methods and Numrich et al. [13]
developed a Coarray enabled Multigrid solver focusing pri-
marily on programmability aspects. Bala et al. [1] demon-
strate performance improvements over MPI in a molecular
dynamics application on a legacy HPC platform (Cray T3E).
In addition, parallel linear algebra kernels for tensors (Num-
rich [12]) and matrices (Reid [15]) benefit from a Coarray-
based one-sided communication model due to a raised level
of abstraction with little or no loss of performance over MPI.

Mellor-Crummey et al. [11, 8] have proposed an alternate
design for CAF, which they call Coarray Fortran 2.0, that
adds some capabilities not present in the standard Fortran
version, but also removes some capabilities. Their CAF2.0
compiler uses a source to source translator to convert CAF
code into Fortran 90 (F90) with calls to a low-level one-sided
communication library such as GASNet [4]. Applications of
Coarray Fortran to the NAS parallel benchmarks (Coarfa et
al. [6]) and to the Sweep3D neutron transport benchmark
(Coarfa et al. [7]) show nearly equal or slightly better per-
formance than their MPI counterparts.

Our work makes the following contributions. We use a
“real world” application (GTS) to demonstrate the perfor-
mance potential of our different optimization strategies. We
created a compact skeleton application that enables rapid
comparison of alternative communication representations.
We created highly optimized hybrid MPI/OpenMP and hy-
brid PGAS/OpenMP implementations to compare compet-
ing strategies for improving the scalability and performance
of the GTS code. We demonstrate the scalability of our
new approaches on up to 126720 processing cores for the
skeleton application and on runs of the full GTS code us-
ing up to 130560 processors. The fastest overall approach
is the hybrid PGAS/OpenMP model, which attains up to
52% performance improvement over competing approaches
at the largest scale. Overall, our work is the first demon-
stration of sustainable performance improvements using a
hybrid PGAS/OpenMP model and constitutes the largest
production PGAS application demonstrated thus far on a

PGAS-enabled hardware.

1.2 Hardware Platform

The platform chosen for this study is a Cray XE6 su-
percomputer capable of scaling to over 1 million proces-
sor cores with AMD’s “Magny Cours” Opteron processors
and Cray’s proprietary “Gemini” interconnect. The basic
compute building block of our XE6 system, shown in Fig-
ure 1(a), is a node with two AMD “Magny Cours” sockets.
Each socket has two dies that each contain six cores, for
a total of 24 cores on the compute node. Each die is di-
rectly attached to a low latency, high bandwidth memory
channel such that each of the six cores on that die form
a NUMA-node that provides equal, effectively flat, access
to the directly attached memory. This makes the die (the
NUMA node) the natural compute unit for shared memory
programming. GTS currently uses a hybrid MPI/OpenMP
model that exploits this NUMA model on the node.

Figure 1(b) outlines how compute nodes on a Cray XE6
system are interconnected using the Gemini router via a
3D torus. Each Gemini connects to two compute nodes us-
ing unique and independent Network Interface Controllers
(NICs) via HyperTransport 3 (HT3) connection. Advanced
features include support for one-sided communication prim-
itives and support for atomic memory operations. This al-
lows any processing element on a node to access any mem-
ory location in the system, through appropriate program-
ming models, without the “handshakes” normally required
by most two-sided communication models.

All experiments shown in this paper are conducted on the
Hopper Cray XE6 system installed at the National Energy
Research Scientific Computing Center (NERSC), which is
comprised of 6392 nodes with 153408 processor cores and
a system theoretical peak performance of 1.288 Petaflops.
Hopper holds the 5th position on the November 2010 Top500
list of largest supercomputing sites with a reported HPL
performance of 1.05 Petaflops.

The Cray Compiler Environment (CCE) version 7.3.3 is
used to compile all of the source code for this paper. CCE
7.3.3 fully supports the Coarray feature of Fortran 2008
translating all Coarray references into instruction sequences
that access the Gemini interconnect’s hardware mechanisms
for efficient one-sided messaging.

2. THE GTS FUSION SIMULATION CODE

GTS is a general geometry PIC code developed to study
plasma microturbulence in toroidal, magnetic confinement

Figure 2: GTS field-line following grid & toroidal do-
main decomposition. Colors represent isocontours
of the quasi-two-dimensional electrostatic potential

devices called tokamaks [16]. Microturbulence is a complex,
nonlinear phenomenon that is believed to play a key role
in the confinement of energy and particles in fusion plas-
mas [9], so understanding its characteristics is of utmost im-
portance for the development of practical fusion energy. In
plasma physics, the PIC approach amounts to following the
trajectories of charged particles in both self-consistent and
externally-applied electromagnetic fields. First, the charge
density is computed at each point of a grid by accumulating
the charge of neighboring particles. This is called the scatter
phase. Prior to the calculation of the forces on each particle
from the electric field (gather phase) — we solve Poisson’s
equation to determine the electrostatic potential everywhere
on the grid, which only requires a two-dimensional solve on
each poloidal plane (cross-section of the torus geometry) due
to the quasi-two-dimensional structure of the potential. This
information is then used for moving the particles in time
according to the equations of motion (push phase), which
denotes the fourth step of the algorithm.

2.1 The GTS Parallel Model

The parallel model in the GTS application consists of
three levels: (1) GTS implements a one-dimensional domain
decomposition in the toroidal direction (the long way around
the torus). MPI is used for performing communication be-
tween the toroidal domains. Particles move from one domain
to another while they travel around the torus — which adds
another, a fifth, step to our PIC algorithm, the shift phase.
This phase is the focus of this work. It is worth mentioning
that the toroidal grid, and hence the decomposition, is lim-
ited to about 128 planes due to the long-wavelength physics
being studied. A higher toroidal resolution would only intro-
duce waves of shorter parallel wavelengths that are quickly
damped by a collisionless physical process known as Lan-
dau damping, leaving the results unchanged [9]. (2) Within
each toroidal domain we divide the particle work between
several MPI processes. All the processes within a common
toroidal domain of the one-dimensional domain decompo-
sition are linked via an intradomain MPI communicator,
while a toroidal MPI communicator links the MPI processes
with the same intradomain rank in a ringlike fashion. (3)
OpenMP compiler directives are added to most loop regions
in the code for further acceleration and for reducing the GTS
memory footprint per compute node. Hence, GTS produc-
tion runs will be conducted in a hybrid MPI/OpenMP mode,
which motivates the design of multithreaded particle shift
algorithms.

Figure 2 shows the GTS grid, which follows the field lines

g
(wp,) (e,) (mp,) (e,) (car, | [car, |
omp parallell v 1! t Jr l

ompend-l-nl--l l-llil--l VIV V¥

t A oo ot o
@ L {" o ©

l * i—) MPI processes / CAF images

time

Figure 3: Hybrid parallel programming models as
used in the particle shift algorithms

of the externally applied magnetic field as they twist around
the torus®. In the following we focus on the advantages of
using CAF instead of MPI in a communication intensive
part of GTS, the shift algorithm, and present two optimized
MPI implementations as well as our new CAF algorithm.

3. PARTICLE SHIFT ALGORITHMS IN GTS

The shift phase is the most communication intensive step
of a GTS simulation. At each time step, about 10% of the
particles inside of a toroidal domain move out through the
7left” and "right” boundaries in approximately equal num-
bers. A 1-billion particle simulation translates to about
100GB of data having to be communicated each time shift
is called.

In terms of wall clock time, the particle shift contributes
to approximately 20% of the overall GTS runtime and is ex-
pected to play an even more significant role at higher scales
— as observed in scaling experiments on Hopper. After
the push phase, i.e., once the equations of motion for the
charged particles are solved, updated coordinates of a sig-
nificant portion of particles are outside the local toroidal
domain. Consequently affected particles have to be sent to
neighboring — or in rare cases to even further — toroidal
domains. The amount of shifted particles as well as the num-
ber of traversed toroidal domains depend on the toroidal do-
main decomposition coarsening (mzetamax), the time step
(tstep), the background temperature profile influencing the
particle’s initial thermal velocity (umax) and the number of
particles per cell (micell). The distance particles can travel
along the toroidal direction in each time-step is restricted
by the spatial resolution of physical dynamics in the paral-
lel direction. For a valid simulation, particles do not travel
more than 4 ranks per time-step (realized by choosing an
appropriate time step-size).

In the following sections we will introduce two optimized
algorithms for MPI two-sided messaging and a PGAS one-
sided implementation for the particle shift phase in GTS.
The first MPI implementation extends the classical hybrid
MPI/OpenMP programming model (Figure 3(a)) as used
in GTS where MPI processes create OpenMP thread teams
for work distribution and join the team for serialized ex-
ecution such as MPI communication calls and enables the
main OpenMP thread to make collective MPI function calls

2The two cross sections demonstrate contour plots of poten-
tial fluctuations driven by Ion Temperature Gradient-Driven
Turbulence (ITGDT) [10], which is believed to cause the ex-
perimentally observed anomalous loss of particles and heat
in the core of magnetic fusion devices such as tokamaks.

while other threads perform computation (Figure 3(b)). The
hybrid PGAS/OpenMP algorithm builds on this strategy of
communicating threads, but allows all OpenMP threads per
team to make communication calls to the thread-safe PGAS
communication layer (Figure 3(c)).

3.1 The MPI multi stage shifter (MPI-ms)

MPI-ms is an optimized version of the original hybrid
MPI/OpenMP shift algorithm in GTS and models the shift
of particles to adjacent or further toroidal domains of the
tokamak in a ring-like fashion. MPI-ms is based on the
advanced MPI/OpenMP hybrid model (Figure 3(b)) and
implements a novel methodology to overlap collective MPI
communication with computation using OpenMP tasking.
MPI-ms implements a nearest neighbor communication pat-
tern, i.e., if particles need to be shifted further an additional
iteration is required to move designated particles to their fi-
nal destination®. The pseudo-code excerpt in Listing 1 high-
lights the major steps in the MPI-ms shifter routine. The
most important steps are iteratively applied for every shift
stage and correspond to the following:

(1) Each MPI process spawns multiple OpenMP threads,
which iterate through their segments of the local particle
array (p_array) and compute which particles have to be
shifted to the left and to the right, respectively (privatized
data will be merged into shared arrays before the initial
MPI process joins the OpenMP threads). This procedure is
summarized in function “dest”, which yields the number of
right- (shift_r) and left-shifted (shift_l) particles as well as
arrays (holes_r, holes_l) containing the indices of right- and
left-shifted particles in p_array. Each MPI process traverses
the whole particle array at the first shift stage and for con-
secutive stages only newly received particles are considered
in function “dest”. Note, that remaining and shifted parti-
cles in p_array are randomly distributed and a prior sorting
step would involve too much overhead. (2) Pack particles,
which have to be moved to their left- and right immediate
toroidal neighbor into send_right and send_left buffers. (3)
At every shifting stage the sum of shifted particles is com-
municated to all processes within the same toroidal com-
municator (tor_comm, limited size of 128 MPI processes) by
an allreduce call. This denotes the break condition of the
shifter, i.e., to exit the shifter if no particles from all pro-
cesses within the toroidal communicator need to be shifted
(all.eq.0). The first MPL Allreduce call can be avoided be-
cause shifts of particles happen in every iteration of GTS.
Since the packing of particles in (2) is independent of the
MPI_Allreduce call, we can overlap communication (allre-
duce) with computation (particle packing): Only the master
thread (Line 8 from Listing 1) encounters the tasking state-
ments and creates work for the thread team for deferred
execution; whereas the MPI_Allreduce call will be immedi-
ately executed, which gives us the overlap as highlighted in
Figure 3(b)*. The particle packing of right and left shifted
particles is subdivided into many tasks (each task is pack-
ing chk_size many particles) to guarantee a load balanced
computation and to enable the master thread performing

3Large scale experiments have shown that only a few parti-
cles with high initial thermal velocities are affected, crossing
more than one toroidal domain.

“Note, that the underlying MPI implementation has to sup-
port at least MPL. THREAD_FUNNELED as threading level
in order to allow the main thread make MPI calls.

do shift_stages=1,N

(1) compute right— & left—shifted particles
!$omp parallel
dest (p_array ,shift_r ,shift_1 ,holes_r ,holes_1)

!1(2) pack particle to move right and left

!$omp parallel
!$omp master
do i=1,chunks_right

!$omp task

pack(i,chk_size ,send_right ,shift_r ,holes_r)
enddo
do j=1,chunks_left

!$omp task

pack (j,chk_size ,send_left ,shift_1 ,holes_1)
enddo

!(3) communicate amount of shifted particles
if (shift_stages.ne.l)
MPLALLREDUCE(shift_r+shift_1 ,all ,tor_comm)
if(all.eq.0) { return } }
!$omp end master
!$omp end parallel

!'(4) Nonblocking receive requests
MPLIRECV (recv_left ,left_rank ,reqs_1(1),..)
MPLIRECV (recv_right ,right_rank ,reqs_2 (1) ,..)

!'(5) reorder remaining particles: fill holes

fill_holes (p-array ,holes_r ,holes_1)

!(6) send particles to right and left neighbor
MPLISEND (send_right ,right_rank ,reqs_1(2),..)
MPLISEND (send_left ,left_rank ,reqs_2(2),..)

!'(7) add received particles and reset bounds
MPLWAITALL(2,reqs_1 ,..)
!$omp parallel
add_particles (p_array ,recv_left)
MPLWAITALL (2, reqs_2 ,..)
!$omp parallel
add_particles (p_array ,recv_right)

enddo

Listing 1: Multi stage MPI shifter routine (MPI-ms)

computation (in case there are remaining tasks in the task
pool) after having finished the allreduce communication. It
is worth mentioning that in case no particles have to be
shifted no computational tasks will be created, and there-
fore no extra overhead is caused by simultaneously packing
particles and testing the break condition. This methodol-
ogy has been proven efficient to hide the costs of the col-
lective function call [14].(4) Preposte non-blocking receive
calls for particles from left and right neighbors to prevent
unexpected message costs and to maximize the potential
for communication overlap. Usage of pre-established receive
buffers (recv_left and recv_right eliminates additional MPI
function calls to communicate the number of particles being
sent, which is attached to the actual message. (5) Reorder
the particle array so that holes, which will be created due to
the shift of particles, are filled up by remaining particles. (6)
Send the packed shifting particles to the right and left neigh-
boring toroidal domain. And (7) wait for the receive calls
to complete and incorporate (using OpenMP work-sharing)
particles received from left and right neighbors to p_array.
The shifter routine involves heavy communication espe-
cially because of the particle exchange implemented using a
ring-like send & receive functionality. In addition, intense

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

computation is involved mostly because of the particle re-
ordering that occurs after particles have been shifted and
incorporated into the new toroidal domain respectively.

3.2 The MPI single stage shifter (MPI-ss)

In contrast to the previous MPI algorithm, this implemen-
tation employs a single stage shifting strategy, i.e., particles
with coordinates outside of local toroidal domains are imme-
diately sent to the processor holding the destination domain,
rather then shifting over several stages. Consequently the
allreduce call and, more importantly, additional communi-
cation and memory copying related to particles, which cross
more than one toroidal section, can be saved (in MPI-ms,
e.g., if a particle has to be moved to the second from right
domain it is first sent to the immediate right toroidal neigh-
bor and then sent from there to the final destination). The
major steps in the MPI-ss shifter, shown in Listing 2 in
pseudo code form, are:

(1) Receive requests are pre-posted for receiving particles
from each possible source process of the toroidal communica-
tor. Since particles normally traverse no more than two en-
tire toroidal domains in one time step in typical simulations
(in practice, particles do not cross more than one toroidal
section, but we allocate additional space for a few fast mov-
ing electrons), two-dimensional allocations of receive buffers
for six (= nr_dests) potential sources {rank — 3, ..,rank —
1,rank+1,..,rank+ 3} are performed (send buffers are sim-
ilarly allocated for six potential destinations). (2) New co-
ordinates of each particle in the local particle array are com-
puted. If a particle needs to be shifted it is copied into a pre-
allocated two-dimensional send buffer, which keeps records
of shifted particles for each possible destination. Function
“pack” summarizes this process. We use OpenMP work-
sharing constructs to distribute the work among the team
members. In (3) the shift of particles occurs, where the
number of shifted particles per send process is attached to
the message and denotes the first element in the send buffer.
A wait call ensures that newly received particles from the
receive buffer can be safely read. (4) and (5) All received
particles (recv_length many) are added to the particle ar-
ray. First, received particles are used to fill the positions of
shifted particles (shift many) in the particle array. This com-
putationally intensive step is parallelized using OpenMP. If
there are more received particles then shifted particles we
append the rest to p_array. Otherwise particle residing at
the end of p_array are taken to fill remaining holes.

Additional hybrid MPI/OpenMP versions for the shift
of particles were implemented. We studied different algo-
rithms, other OpenMP threading or MPI communication
techniques (e.g., MPI buffered send), the usage of MPI data
types (e.g., MPI Type_create_indexed block) to eliminate
the particle packing overhead, etc.; with no — or even neg-
ative (in case of using MPI data types) — performance im-
pacts. MPI implementations of shift have been extensively
researched in the past and MPI-ms and MPI-ss represent, to
the best of our knowledge, the most efficient message passing
algorithms.

3.3 The CAF-atomic shifter (CAF-atom)

The design of the CAF-atom single stage shifter is simi-
lar to the MPI-ss algorithm from above, but fully exploits
CAF’s one-sided messaging scheme. The novelty of this ap-

!'(1) Prepost receive requests
do i=1,nr_dests

MPLIRECV (recv_buf(i),i,req(i),tor_comm,..)
enddo

!1(2) compute shifted particles and fill
I$omp parallel
pack (p_array ,shift ,holes ,send_buf)

buffer

1(8) Send of particles to destination process
do j=1,nr_dests

MPLISEND (send_buf(j),j,req(j+i),tor_comm ,..)
enddo
MPLWAITALL (2% nr_dests ,req ,..)

I'(4) fill holes with received particles
!$omp parallel do
do m=1,min(recv_length ,shift)

p-array (holes (m))=recv_buf(src,cnt)

if (cnt.eq.recv_buf(src,0)) {cnt=1; src++}
enddo

!'(5) append remaining particles or fill holes

if (recv_length < shift) {
append_particles (p_array ,recv_buf) }
else { fill_.remaining_holes(p_array ,holes) }

Listing 2: Single stage MPI shifter routine (MPI-ss)

proach lies in the fact that a two-dimensional send buffer is
successively filled as above, but messages are sent once the
amount of particles for a specific destination image reaches
a certain threshold value. Once a buffer’s content has been
sent it can be reused and filled with new shifted particles
with the same destination. This new algorithm sends more
and smaller messages, which does not particularly result in
higher overheads due to the lower software overhead of one-
sided communication, whose semantics are fundamentally
lighter-weight than message passing [3]. This implementa-
tion differs from the previous MPI approaches where a send
buffer is filled and sent once containing all particles to be
moved. The efficiency of this is novel algorithm is based
on three factors: (a) It enables the overlap of particle work
and particle communication since particle transfers can take
place without synchronization between the sending and re-
ceiving images. (b) It turns out to be very effective for such
bandwidth limited problems to spread out the communica-
tion over a longer period of time. This is achieved by pipelin-
ing of smaller light-weight messages, which do not require
any ordering on the remote image. (c) We distribute the
computational work as well as parts of the communication
loads among OpenMP threads as shown in Figure 3(c).
Shifting particles from one source CAF image is imple-
mented as a put operation, which adds particles to a receiv-
ing queue (implemented as a one-dimensional Coarray) on
the destination image. Since access conflicts to this globally
addressable receiving buffer might frequently arise (e.g., an
image shifts particles to its right toroidal neighbor while at
the same time the latter image also receives data from its
right neighbor) we employ a mechanism for safely shifting
particles to the receiving queue Coarray. It turns out that
it is sufficient to lock, or in other words, to atomically ex-
ecute, the process of reserving an appropriate slot in the
receive queue. Once such a slot from position s + 1 to po-
sition s + size, where s denotes the last inserted particle
to the receiving queue by any image and size stands for
the number of particles to be sent to the receiving image,

11

13

15

17

19

21

23

25

12

14

16

18

20

22

24

26

28

30

32

34

!'(1) compute shifted particles and fill the
! receiving queues on destination images
!$omp parallel do schedule (dynamic,p_size/100)&
!8omp private (s_buf, buf_cnt) shared(recvQ, q_it)
do i=1,p_size
dest=compute_destination (p_array (i))
if (dest.ne.local_toroidal_domain) {
holes (shift++)=i
s_buf(dest,buf_cnt(dest)++)=p_array (i)
if (buf_cnt(dest).eq.sb_size)
q-start=afadd (q_it [dest],sb_size)
recvQ (qg_start:q_start+sb_size —1)[dest] &
=s_buf(dest ,1:sb_size)
buf_cnt(dest)=0 } }
enddo

!(2) shift remaining particles
empty_s_buffers (s_buf)
!$omp end parallel

!1(8) sync with images from same toroidal domain
sync images ([my_shift_neighbors])

I'(4) fill holes with received particles

length recvQ=q_it —1

!$omp parallel do

do m=1,min(length_recvQ , shift)
p-array (holes (m))=recvQ (m)

enddo

!1'(5) append remaining particles or fill holes

if (length_-recvQ-—min(length_recvQ ,shift).gt.0) {
append_particles (p_array ,recvQ) }

else { fill_.remaining_holes (p_array ,holes) }

Listing 3: CAF-atom shifter routine

is securely (i.e., avoiding data races) given, the sending im-
age can start and complete its particle shift at any time.
Besides the negligible overhead involved in the atomicity,
required to safely reserve a slot in the receive queue, this
new CAF algorithm enables to fully unleash the CAF im-
ages until the particles in the receiving queue are added to
the local particle array and completion of any communica-
tion can be ensured. The process of claiming the required
space in the receive queue on the remote destination image
is performed by a Cray intrinsic global atomic memory oper-
ation, which, unlike other functions, cannot be interrupted
by the system and can allow multiple images or threads to
safely modify the same variable under certain conditions.
Global Atomic Memory Operations (global AMOs) are sup-
ported on Cray Compute Node Linux (Cray CNL) compute
nodes and use the network interface to access variables in
memory on Cray XE machines (when compiling with Cray
CCE starting from version 7.3.0). Thus, hardware support
ensuring a fast and safe execution is given for those critical
operations. Listing 3 outlines the major steps of this multi-
threaded CAF algorithm with global AMOs in pseudo code
form using CAF and F90 array notation:

(1) Each CAF image creates multiple threads, which op-
erate on their designated portion of the particle array and
extract particles moving out of their current toroidal do-
main. The OpenMP “dynamic” scheduling option is used
to divide p_size many particles of the particle array into
chunks of size p_size/100, which enables a dynamic assign-
ment of iterations to OpenMP threads at runtime. Moving
particles are copied into a privatized send buffer (s_buf) and
later transmitted to a shared (one per CAF image) receive

z ;===== a_it ait
41 >|® x l
— 1.) afadd(q_it[5],6) v
Send Buffer i > EEEE {2.) PUT: uuuuuull.
'II":raegzsé L > DI Receive Queue
8)\11:—__ Image 5
BN ooooon

Figure 4: Shift of particles in CAF-atom

buffer. The position of those shifting particles will be held
in a privatized buffer holes, which will be merged into a
shared buffer before the OpenMP threads join. We main-
tain the two dimensionality of the send buffer, as discussed
in the the MPI-ss approach, which enables a single stage
shift algorithm. Consequently, each thread created from a
CAF image assigns each moving particle to a correspond-
ing set of particles based on its destination. If a thread’s
send buffer counter (buf-cnt) for a specific destination im-
age dest indicates that the specific buffer is fully filled (i.e.,
a certain threshold size limit sb_size is reached; Line 10),
a global AMO — in detail, a global atomic fetch and
add operation: “afadd” — is executed (Line 11), which
updates the remote, shared accessible queue iterator (git)
on image dest by adding the number of moving particles
to the queue iterator and returns the former value of the
queue iterator (return value is held in ¢ start). The sending
thread then launches a CAF put operation (Lines 12/13) to
transfer sb_size many particles to image’s dest shared receiv-
ing queue (recv@) starting from position ¢ start to position
g-start+sb_size-1. Due to the one-sided nature of the put
operation, the sending thread does not need to wait for any
acknowledgement from the destination image. As soon as
the data is sent it resets the send buffer counter for the des-
tination image dest and starts adding new moving particles
to the send buffer. No handshake for transmitting moving
particles between the sending image’s thread and destina-
tion image is necessary.

Figure 4 illustrates an example scenario during the execu-
tion of CAF-atom, where the send buffer (shown for image
6 / OpenMP thread 3) can hold up to six particles (i.e.,
sb_size = 6) for each possible send destination (images 3,4,5
to the left and images 7,8,9 to the right). After inserting the
6" particle designated for destination image 5 the buffer for
this destination is fully filled (buf-cnt(5)=6) and thread 3 of
image 6 reserves a slot at the remote receive queue to safely
transfer the 6 moving particles. Assuming no particle has
been shifted yet to image 5 by any neighboring image, the
global “afadd” AMO executed on the remote queue iterator
(g_it) shifts the iterator six positions to the right (i.e., sets
it to 7) and returns 1 as the old value for the position of the
queue iterator. This thread safe AMO enables the OpenMP
thread now to put the six moving particles to the receive
queue of image 5, which execution can be deferred until a
particle will be sent to the same destination image again;
i.e., until it is safe to overwrite particles from the same send
buffer location.

Experiments to determine optimal buffer size threshold
values carried out for several problem sizes suggest 500 <
sb_size < 1000 as optimal values for singlethreaded runs
of CAF-atom. A too small setting of sb_size causes extra
remote atomic operations and other communication over-

head that would be difficult to amortize. For a very large
buffer size threshold value, respectively, we would concen-
trate shifting particles into fewer, more intensive messages
rather than spreading them out. Adding OpenMP threads,
however, adds an additional layer of complexity, which can
cause contention for the access to the network adapter due
to the high frequency of communication operations when
using the sb_size settings from above. This reveals that the
PGAS communication library is thread safe, but contains
thread serialized code regions, which are a focus of current
research at Cray. Hence, optimal values for sb_size depend
on the number of OpenMP threads used and will be set at
runtime. Optimal values for sb_size are roughly the optimal
value for the singlethreaded run multiplied by the number
of threads, which keeps the accesses to the network adapter
per CAF image balanced, no matter how many threads are
used.

In addition, experiments have shown that the more flexi-
ble OpenMP dynamic scheduling clause is effectively mini-
mizing the load imbalance (moving particles are not evenly

distributed in the particle array) among the OpenMP threads.

(2) If there are remaining particles of any thread’s send
buffer for any destination image, we reuse the global atomic
fetch and add operation described in (1) for safely inserting
particles on a remote image’s receiving queue. (3) Besides
the required remote AMOs preventing access conflicts no
synchronization between the images has been performed yet.
Now we need to synchronize between the local image and
all other images, which can theoretically add particles to
an image’s receiving queue. This ensures that all images
passing this synchronization statements have finished their
work from (1) and (2) and all send buffers are flushed®. The
array my_shift_ neighbors stores the global CAF indices of
images within reach of the local images, i.e., as discussed
before in the MPI-ss algorithm it is an array with six entries.
The total number of received particles (length_recv@) is the
local queue length (note, q_it equals ¢ it[THIS_IMAGE()]®),
which has been successively updated by neighboring images.
Adding received particles to the local particle array happens
in (4) and (5), which is analogous to (4) and (5) in MPI-ss.

For simplicity Coarrays in Listing 3 have been accessed by
a one-dimensional value (dest). In practice, a codimension
of 2 is required to represent a poloidal and a toroidal com-
ponent serving as an analogon to the poloidal and toroidal
MPI communicators.

This algorithm fully exploits the one-sided messaging na-
ture of CAF. That is, launching an a priori unknown number
of send operations as implemented in both CAF algorithms
(it is not known in advance how many particles will be mov-
ing) is beyond MPI’s philosophy, which employs a two-sided
messaging scheme. On the contrary, less synchronization
implies a significantly higher risk for dead locks, race con-
ditions or other similar non deterministic events as experi-
enced in the development of our CAF algorithms. As for
implementing an MPI-2 algorithm similar to the CAF ver-
sions, the complexity required to implement remote atomic-

5"Executing “sync images” implies execution of “sync mem-
ory”, which guarantees to other images that the image ex-
ecuting “sync images” has completed all preceding accesses
to Coarray data.

5The integer function THIS IMAGE() returns the image’s
index between 1 and the number of images.

ity (enables the messages pipelining of the CAF algorithms)
in MPI-2 one-sided, in addition to several other semantic
limitations [5], is prohibitive.

It has to be taken into account that the used global AMOs
are Cray intrinsic operations, but this work should make the
case to include them into the Fortran standard. A similar
CAF algorithm to the CAF-atom approach exists, which
follows the same strategy of distributing computational and
communication loads among OpenMP threads as presented
in Listing 3, but uses “lock” and “unlock” statements to en-
sure safe updates of the receive queue iterator and therefore
protects the receive queue from any write conflicts. Ex-
periments have shown that the less elegant version using
“locks” exhibits slightly longer stall cycles, which results in
an overhead of 5% to the overall runtime compared to the
CAF-atom approach. However, the “locks” and the associ-
ated lock types are part of the base Fortran 2008 standard
and ensure a portable implementation.

3.4 Other CAF particle shift algorithms

We explored additional algorithms that extend the set of
CAF particle shifters, but do not include them in the final
analysis due to suboptimal performance. We briefly touch
on them because we learned as much from these negative
results as we did from the successful implementations.

First, in order to compare the performance of CAF and
MPI communication for the specific communication require-
ments in GTS, we implemented a CAF shifter following ex-
actly the MPI-ms algorithm but having CAF put operations
instead of MPI function calls. In experiments using more
than 4K processors we observed that the manually imple-
mented CAF analogue to MPIL_Allreduce did not perform as
well as the MPI implementation. This clearly motivates the
inclusion of optimized collective intrinsic subroutines to the
next Fortran standard, which are currently under develop-
ment. Aside from those missing collective communication
intrinsics we found that the CAF one-sided messaging per-
formance was nearly indistinguishable from the MPI-ms im-
plementation, which makes this approach not advantageous
for the usage in GTS.

We also explored an alternative implementation that in-
troduces a spatial sort of the particles using a fast incremen-
tal sorting technique to reduce the memory footprint and im-
prove the spatial locality of the particle list to improve per-
formance. In this approach we sorted the particle array in a)
particles staying within the local toroidal domain followed by
b) particles leaving the domain to the left and by c) particles,
which will move to the right — no matter how far they have
to drift. The fast particle sorting mechanism was based on
the quicksort algorithm, which converges faster than a full
gsort(), because the particle array only needs to be par-
tially ordered. Thus, this algorithm implements a multi
stage shifting strategy and breaks until the particle array
only contains “non moving” particles. The remaining steps
are similar to the MPI-ms algorithm (except for the MPI
communication replaced by CAF put operations). By using
the F90 array access notation the portion of particles mov-
ing to the left and to the right respectively can be directly
accessed in the particle array — thus no send buffers are re-
quired, which reduces the memory footprint. Unfortunately
this implementation exhibited poor performance due to the
sorting preprocessing step, and because CAF put operations
of the form receive(l : size)[dest] = p_array(start : end)

600.00

<9-CAF-atom

500.00 - <=#MPI-ms
“®-MPI-ss

400.00

300.00

200.00 ¢

Time in Seconds

100.00

0.00 t f
1600 2880 5760 11520 23040 46080 92160 131072

Number of CAF images / MPI procesess
(a) 1 OpenMP thread per instance

100
<4-CAF-atom

83 - =«MPI-ms
“®-MPI-ss

67

50

33

Time in Seconds

17

1600 2880 5760 11520 21120
Number of CAF images / MPI processes

(b) 6 OpenMP threads per instance

Figure 5: Weak scaling benchmarks of the CAF shifter (CAF-atom) and two MPI shifter (MPI-ms, MPI-ss)
implementations with no (a) and full (6 OpenMP threads per NUMA node) OpenMP support (b)

could not be properly vectorized for message aggregation by
the current compiler implementation, which is currently be-
ing fixed. The inability of the compiler to vectorize this put
operation made the performance of this approach impracti-
cally slow for integration to the GTS application.

All particle shift algorithms are part of a stand alone
benchmark suite simulating different particle shift strategies
based on an artificial particle array with similar properties
as the one in GTS. Having this compact application enables
us to run straightforward scaling test in terms of machine
and problem size on any available HPC platform.

4. ANALYSIS

We evaluated the performance of our advanced CAF parti-
cle shifter (CAF-atom) and compare it to the best available
MPI algorithms (MPI-ms, MPI-ss) on the Cray XE6 sys-
tem at NERSC. GTS production runs will be conducted in
a hybrid distributed / shared memory mode with a maxi-
mum number of OpenMP threads per NUMA node because
of optimal memory utilization and performance. Hence,
scaling studies of our CAF algorithm and the MPI shifter
implementations run with a constant setup of 6 OpenMP
threads per instance”. In addition, we are interested in the
performance characteristics in regard to varying number of
OpenMP threads (i.e., keeping the number of instances con-
stant per experiment) to analyze the quality of the OpenMP
support and to gain insights for further optimization poten-
tial concerning software and hardware.

First, we executed the standalone communication bench-
mark that we created to rapidly evaluate different imple-
mentations, and then we compare the performance with
the new communication methods incorporated back into the
GTS code to verify that the performance observed in the
standalone benchmark will benefit the full application. The
shifter benchmark is implemented using data structures and
interfaces that are identical to the full GTS code, to en-
sure the testing conditions (i.e., placement of instances and
network load characteristics) are consistent across different
implementations. This enables clean and consistent com-
parisons to be made between the presented algorithms that
are also very easy to incorporate back into the original code.

"In the following, we will refer to the CAF images running
CAF-atom or the MPI processes executing MPI-ms or MPI-
ss as “instances”.

The artificially generated data accurately simulates the par-
ticle shift phase using the same domain topology, same num-
ber of particles per instance, shift load size (that is, the num-
ber of particles being moved per shift iteration) and range of
moving particles as occurring in GTS production runs. All
the data presented in this section was collected at increas-
ing processor scales based on a weak scaling strategy, (i.e.,
keeping the number of particles constant at each instance
as we scale up the parallelism). Each experiment is based
on a (64/z) domain decomposition, i.e., using 64 toroidal
domains, each having z = i/64 poloidal domains, where i
denotes the number of instances in the actual run. It is
worth mentioning that at each shift stage an instance with
rank ¢ communicates with an instance with rank ¢ + x due
due to toroidal communicator setup in the GTS initializa-
tion phase, which initializes MPI processes® with successive
ranks if they have equal toroidal communicator identifiers.
In case of running with several OpenMP threads per in-
stance, the physical distance on the network between two
neighboring instances increases dependent on the number of
OpenMP threads used. A change of the instance’s rank or-
der would have a positive effect on the performance of the
particle shift phase, but would cause a too high overhead
for other PIC steps in GTS, which mainly operate on the
poloidal communicator.

Figure 5 presents the wallclock runtime of the CAF-atom
shifter implementation (dashed line) described in section 3.3
and of the MPI shift algorithms introduced in sections 3.1
(MPI-ms) and 3.2 (MPI-ss), running with no OpenMP sup-
port (Figure 5(a)) and full (i.e., 6 OpenMP threads per in-
stance, on each NUMA node) OpenMP support (Figure 5(b)).
Data for the singlethreaded experiments was collected for
concurrencies ranging from 1600 up to 131072 processor
cores. For the multithreaded runs we run on 9600 up to
126720 processor cores on the Cray XE6 machine. All run-
time numbers presented in Figure 5 are based on weak scal-
ing experiments using the shifter benchmark suite where
each instance stores an initial set of 1500K particles from
which 10% are moved to immediate neighbors (5% to each
of the two adjacent neighbors) and 1% to the next but one di-
rect toroidal neighbor domain. All three shift routines were

8We only replace the existing MPI communication kernel
by a new algorithm using Coarrays and leave the rest of
the physics simulation code unchanged, which still has MPI
function calls in it.

140

12
T 100
§ O~---.___§* —_—
& 80 ~ssailL
=1 ity T
B ——
ué 60 - -~
= 40
& “9-CAF-atom
20 “#~MPI-ms
“@-MPI-ss
1 2 3 6

Number of OpenMP threads

Figure 6: 21120 instances of CA F-atom,MPI-ms and
MPI-ss with increasing number of OpenMP threads

executed 100 times in this experiment and simulate a con-
stant “micell per processor” ratio’, thus keeping the size of
the particle array constant per instance in each experiment
with varying processor counts. We can observe in both tests
— for the singlethreaded and the multithreaded runs of the
shifter benchmark suite — a steady increase in runtime for
shifting particles in a torus with increasing concurrencies,
whereas one would expect a flat line along the x-axis for weak
scaling experiments. This motivates to optimize this com-
munication intense GTS step to enable higher concurrencies
as planned to model future nuclear fusion devices. Figure 5
shows that in both cases the CAF implementation substan-
tially outperforms the best MPI implementations, despite
the extensive work in profiling and optimization of the com-
munication layer of the GTS code. At the largest scale in
the singlethreaded experiment (131K processors) 100 parti-
cle shift iterations with the CAF-atom algorithm take 233.7
seconds as opposed to 380.2 seconds for 100 calls to MPI-
ms and 482.9 seconds when MPI-ss is used. We see slightly
better CAF performance for low concurrencies (< 23K pro-
cessors) within the singlethreaded runs, but the differences
become much more apparent at higher concurrencies. For
the multithreaded runs of the shifter benchmark suite we
see performance improvements of CAF over the optimized
MPI algorithms already starting from lowest concurrencies,
which become more significant at largest scale (21120%6 pro-
cessor cores), where 100 shift iterations take 55.5 seconds for
CAF-atom compared to 89.4 seconds for MPI-ms and 87.6
seconds for MPI-ss — each running instance of the code is
equipped with 6 OpenMP threads per instance. This results
in a 58% speed-up of the CAF implementation over the best
multithreaded MPI shifter algorithm on largest scale.

A portion of the benefit comes from the lower overhead of
Global Address Space communication since the initiator in-
stance always provides complete information describing the
data transfer to be performed as opposed to transfers us-
ing MPI [3]. The Cray Fortran 2008 compiler can schedule
data transfers asynchronously, which is fully exploited in the
CAF-atom particle shift algorithm. For the AMO-controlled
injection of particles in CAF-atom, the data transfers are
always asynchronous from the perspective of the receiving
instance. Hence, by exploiting the opportunities that the
CAF one-sided communication models offers, we can decou-

9In GTS micell denotes the number of particles per cell and
needs to be increased for varying processor scales to insure
weak scaling experiments.

60 T 60 T
1024 CAF images #1024 MPI processes

50 | ®21120 CAF images 50 | ®21120 MPI processes
— 40 — 40
2 2
830 830
5 =)
s 20 < 20
g g
& &
@ 10 @ 10 7.

0 0
-10 -10

2 3 6 2 3 6
OpenMP threads per NUMA node OpenMP threads per NUMA node

(a) CAF-atom core-idling (b) MPI-ms core-idling

Figure 7: OpenMP scaling tests using 6144 and
126720 processor cores, respectively, with always 1
instance per NUMA node. The vertical axis de-
notes the speed-up compared to a singlethreaded
run (thus, 5 idle cores per die)

ple synchronization from data transfers. By building upon
the previous observation of a more light-weight communica-
tion model, we also prove that sending more frequent smaller
messages enables the CAF approach to outperform the mes-
sage passing implementations due to the enhanced commu-
nication and computation overlap as well as the better net-
work bandwidth utilization. Employing a similar strategy
of transmitting smaller more frequent messages is not prac-
tical in MPI and would require significant efforts in MPI-2,
which would obscure semantics and science due to its se-
mantic limitations [5].

In order to analyze the quality of the OpenMP support,
for the next experiments we keep the number of instances
constant and vary the number of OpenMP threads each in-
stance creates. Figure 6 shows the performance of CAF-
atom, MPI-ms and MPI-ss running with a constant num-
ber of 21120 instances where OpenMP threads are succes-
sively added, — starting from 1 OpenMP thread going up
to 6 OpenMP threads per instance — which requires in-
creasing machine resources. For each OpenMP threading
level the CAF particle shift algorithm significantly outper-
forms both optimized MPI implementations. For each algo-
rithm we observe runtime improvements as we scale up the
number of OpenMP threads, which is related to OpenMP
worksharing constructs, but also related to increasing sys-
tem resources (e.g. more memory per instance) with higher
OpenMP threading levels. However, imperfect OpenMP
scaling requires further investigation.

In Figure 7 we perform a similar test as the one from
above, but always place just one instance on the NUMA
node and increase the number of OpenMP threads. These
experiments involve the idling of processor cores (if num-
ber of OpenMP threads per instance # 6) and guarantees
that the same system resources are used for each run. Fig-
ure 7(a) shows the achieved speed-up of the CAF-atom par-
ticle shifter with increasing OpenMP threading support for
two different scenarios: running CAF-atom on small (1024
instances) and large scale (21120 instances). In each case, we
run CAF-atom 100 times on a particle array of size 1500K
and vary the sb_size threshold value (i.e., the critical value
for the number of particles per send buffer entry to initi-
ate a transfer) based on the number of OpenMP threads

per instance — we set sb_size = 512% “number of OpenMP
threads per instance”. The latter ensures a steady message
injection rate per compute node over time. The height of
each bar shown in Figure 7(a) denotes the speed-up using
{2, 3,6} OpenMP threads per instance compared to the sin-
glethreaded execution, which leaves 5 compute cores idle per
NUMA node. With the maximum number of 6 OpenMP
threads we observe a speed-up of 53% with 1024 instances,
but a slow down of 9% with 21120 CAF instances. Note, that
the shift of particles is highly communication bound, espe-
cially on large scale — analysis on high concurrencies have
shown that around 80% of the runtime is due to communica-
tion. The fact that the achieved speed-up is higher of what
can solely be gained through pure computation workload
distribution encourages the extended multithreaded com-
munication model implemented in the CAF-atom particle
shifter. However the negative speed-up for runs on largest
scale shows that the successfully applied message injection
rate regulation is not sufficient to achieve better performance
with increasing OpenMP threads. At larger concurrencies
we suspect that contention in the communication fabric in-
hibits our ability to inject messages at a higher rate. Higher
concurrencies also imply additional instances per toroidal
plane since the number of toroidal planes has to be constant.
This results in larger physical distances between sending and
receiving instances on the network and therefore enhanced
traffic. Thus, we see no advantage from running with multi-
ple threads, and in fact slow down because the PGAS com-
munication library is “thread safe”, but not “thread optimal”
due to thread critical regions for message transfers. Fig-
ure 7(b) reveals the relatively low speed-up achieved due to
OpenMP threading in case of the MPI-ms particle shifter
running with 1024 and 21120 instances, respectively. The
measured speed-up with 6 OpenMP threads compared to
the singlethreaded execution denotes to 23% for the small
scale test and to 10% for the large scale scenario.

We then took CAF-atom and one of the two-sided multi-
threaded particle shift algorithms MPI-ms to be re-integrated
with the full GTS application code. Figure 8 shows the
runtime for the particle shift phase in GTS with the new
CAF-atom shifter in comparison to using MPI-ms as MPI
implementation for a range of problem sizes. Timings from
Figure 8 are from weak scaling experiments using 6 OpenMP
threads per instance where each instance stores 750K parti-
cles, which corresponds to a “micell per processor” ratio in
GTS of 0.0781. Such a ratio is typical of most GTS produc-
tion simulations. Various fusion device sizes are studied by
varying the number of instances in a weak scaling fashion. A
32K processor simulation with this particle array size would
allow the simulation of a large tokamak. Figure 8 shows the
duration of the shift PIC step in five different runs of GTS
with 100 time steps (i.e., 100 shifter function calls for each
experiment) as the number of instances per poloidal plane
is varied. The number of toroidal domains is constant and
set to 64, as is the case for all evaluated problem configu-
rations. Each GTS experiment uses a total number of 6%
{1024, 2048, 5440, 10880, 21760} processing cores on the
Cray XE6.

Figure 8 demonstrates that for running GTS in produc-
tion mode on up to 130560 processors the CA F-atom particle
shift algorithm clearly outperforms the MPI-ms shifter im-
plementation at each level of concurrency. At largest scale
100 executions of the CAF-atom shifter take 36.1 seconds

60.00
“9-CAF-atom /

50.00
“&=MPI-ms /

40.00

30.00

20.00

Time in Seconds

10.00

0.00
1024 2048 5440 10880 21760
Number of CAF images / MPI procesess

Figure 8: Weak scaling GTS experiments with CAF-
atom & MPI-ms as particle shift algorithms (6
OpenMP threads per instance)

compared to 54.7 seconds when using MPI-ms — result-
ing in a 52% speed-up. Figure 8 confirms that the stan-
dalone shifter communication benchmark correctly predicts
the performance benefits of the particle shift phase for the
full application code.

5. CONCLUSIONS

New programming model techniques that enable effective
use of highest-end computing platforms are critical for the
path to exascale. In this paper we show that a hybrid
PGAS/OpenMP approach can cleverly exploit hardware-
supported interconnect technologies and enable the devel-
opment of highly optimized algorithms. To the best of our
knowledge, this work presents a first documented use of
PGAS techniques to speed up a “real world” application on
more than 100000 cores. We show that effective use of a
first generation Cray-supported interconnect yields signifi-
cant performance gains for the communication intensive par-
ticle shift routine of a hybrid MPI/OpenMP magnetic fusion
simulation code. Using one-sided semantics enables the per-
formance improvements because of the inherent advantages
of a one-sided model to allow data transfers to take place
without synchronization between the sending and receiving
images. In our application, the shift of charged particles
between neighboring toroidal computational domains in the
PIC process was originally implemented in MPI/OpenMP,
and has been intensely studied and optimized over a number
of years. We show significant performance advantages using
a novel hybrid PGAS/OpenMP communication algorithm,
which distributes the computational as well as the communi-
cation work load among OpenMP threads. By sending more
frequent smaller messages to adjacent toroidal domains —
which is in contrast to the favored strategy of message pass-
ing algorithms of using message aggregation and large bulk
transfers — we successfully reduce network contention by
spreading out the intense communication over time. We
also use the concept of building a skeleton application to
quickly evaluate different programming models as an effi-
cient means of comparing different formulations. Evaluation
in a benchmark suite on up to 126720 processing cores and
experiments with the “real world” simulation code using up
to 130560 processors on a Cray XE6 platform show that the
performance of the particle shift phase can be improved by
58% in our benchmarking experiments and by 52% in the
physics application at largest scale.

6.
1]

[11]

[12]

[13]

REFERENCES

Piotr Bala, Terry Clark, and Scott L. Ridgway.
Application of Pfortran and Co-Array Fortran in the
parallelization of the GROMOS96 molecular dynamics
module. Scientific Programming, 9:61-68, January
2001.

Richard Barrett. Co-Array Fortran Experiences with
Finite Differencing Methods, 2006. 48th Cray User
Group meeting, Lugano, Italy, May 2006.

Christian Bell, Dan Bonachea, Rajesh Nishtala, and
Katherine Yelick. Optimizing bandwidth limited
problems using one-sided communication and overlap.
In Proceedings of the 20th International Conference on
Parallel and Distributed Processing, IPDPS’06,

page 84, Washington, DC, USA, 2006. IEEE
Computer Society.

Dan Bonachea. GASNet Specification, v1.1. Technical
Report UCB/CSD-02-1207, University of California at
Berkeley, Berkeley, CA, USA, 2002.

Dan Bonachea and Jason Duell. Problems with using
MPI 1.1 and 2.0 as compilation targets for parallel
language implementations. International Journal of
High Performance Computing and Networking,
1:91-99, August 2004.

Cristian Coarfa, Yuri Dotsenko, Jason Eckhardt, and
John Mellor-Crummey. Co-array Fortran performance
and potential: An NPB experimental study. In 16th
International Workshop on Languages and Compilers
for Parallel Computing, LCPC, pages 2—4.
Springer-Verlag, Oct 2003.

Cristian Coarfa, Yuri Dotsenko, and John
Mellor-Crummey. Experiences with Sweep3D
implementations in Co-array Fortran. The Journal of
Supercomputing, 36:101-121, May 2006.

Yuri Dotsenko, Cristian Coarfa, and John
Mellor-Crummey. A Multi-Platform Co-Array Fortran
Compiler. In Proceedings of the 13th International
Conference on Parallel Architectures and Compilation
Techniques, PACT ’04, pages 29—40, Washington, DC,
USA, 2004. IEEE Computer Society.

S. Ethier, W. M. Tang, R. Walkup, and L. Oliker.
Large-scale gyrokinetic particle simulation of
microturbulence in magnetically confined fusion
plasmas. IBM Journal of Research and Development,
52(1/2):105-115, 2008.

J. N. Leboeuf, V. E. Lynch, B. A. Carreras, J. D.
Alvarez, and L. Garcia. Full torus Landau fluid
calculations of ion temperature gradient-driven
turbulence in cylindrical geometry. Physics of
Plasmas, 7(12):5013-5022, 2000.

John Mellor-Crummey, Laksono Adhianto, William
N. Scherer III, and Guohua Jin. A new vision for
Coarray Fortran. In Proceedings of the 3rd Conference
on Partitioned Global Address Space Programming
Models, PGAS ’09, pages 5:1-5:9, New York, NY,
USA, 2009. ACM.

Robert W. Numrich. Parallel numerical algorithms
based on tensor notation and Co-Array Fortran
syntax. Parallel Computing, 31:588-607, June 2005.
Robert W. Numrich, John Reid, and Kim Kieun.
Writing a Multigrid Solver Using Co-array Fortran. In
Proceedings of the 4th International Workshop on

(14]

(15]

(16]

Applied Parallel Computing, Large Scale Scientific and
Industrial Problems, PARA 98, pages 390-399,
London, UK, 1998. Springer-Verlag.

Robert Preissl, Alice Koniges, Stephan Ethier,
Weixing Wang, and Nathan Wichmann. Overlapping
communication with computation using OpenMP
tasks on the GTS magnetic fusion code. Scientific
Programming, 18:139-151, August 2010.

John Reid. Co-array Fortran for Full and Sparse
Matrices. In Proceedings of the 6th International
Conference on Applied Parallel Computing Advanced
Scientific Computing, PARA ’02, pages 61—, London,
UK, 2002. Springer-Verlag.

W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee,

S. Ethier, J. L. V. Lewandowski, G. Rewoldt, T. S.
Hahm, and J. Manickam. Gyrokinetic Simulation of
Global Turbulent Transport Properties in Tokamak
Experiments. Physics of Plasmas, 13, 2006.

