
HPX	Applica+ons	and	Performance	Adapta+on		
Alice	Koniges1,	Jayashree	Ajay	Candadai2,	Hartmut	Kaiser3,	Kevin	Huck4,	Jeremy	Kemp5,	Thomas	Heller6,	MaHhew	

Anderson2,	Andrew	Lumsdaine2,	Adrian	Serio3,	Michael	Wolf7,	Bryce	Adelstein	Lelbach1,	Ron	Brightwell7,	Thomas	Sterling2	
	1Berkeley	Lab,	2Indiana	University,	3Louisiana	State	University,	4University	of	Oregon,		
5University	of	Houston,	6Friedrich-Alexander	University,	7Sandia	Na+onal	Laboratories	

The	HPX	run+me	system	is	a	cri+cal	component	of	the	DOE	XPRESS	(eXascale	PRogramming	Environment	and	System	So@ware)	project	and	other	projects	world-wide.	We	are	exploring	a	set	of	innova+ons	in	execu+on	models,	programming	models	and	
methods,	run+me	and	opera+ng	system	so@ware,	adap+ve	scheduling	and	resource	management	algorithms,	and	instrumenta+on	techniques	to	achieve	unprecedented	efficiency,	scalability,	and	programmability	in	the	context	of	billion-way	parallelism.	
A	number	of	applica+ons	have	been	implemented	to	drive	system	development	and	quan+ta+ve	evalua+on	of	the	HPX	system	implementa+on	details	and	opera+onal	efficiencies	and	scalabili+es.		

Performance	Adapta/on,	Legacy	Applica/ons,	and	Summary	

Summary

Exascale programming models and runtime
systems are at a critical juncture in development.

Systems based on light-weight tasks and data
dependence are an excellent method for extracting
parallelism and achieving performance.

HPX is emerging as an important new path with
support from US Department of Energy, the
National Science Foundation, the Bavarian
Research Foundation, and the European Horizon
2020 Programme.

Application performance of HPX codes on very
recent architectures, including current and
prototypical next-generation Cray-Intel machines,
is very good.

For some applications, the performance using HPX
is significantly better than standard MPI +
OpenMP implementations.

Performance adaptation using APEX provides
significant energy savings with no performance
change.

We have shown that legacy applications using
OpenMP can run under the HPX runtime system
effectively.

Figures: Concurrency views of LULESH (HPX-5), as observed and adapted by APEX. The left image is an
unmodified execution, while the right image is a runtime power-capped (220W per-node) execution, with equal
execution times. (8000 subdomains, 643 elements per subdomain on 8016 cores of Edison, 334 nodes, 24 cores per
node). Concurrency throttling by APEX resulted in 12.3% energy savings with no performance change.

APEX : Performance Adaptation
HPX runtime implementations are
integrated with APEX (Autonomic
Performance Environment for
Exascale), a feedback/control library
for performance measurement and
runtime adaptation. APEX
Introspection observes the application,
runtime, OS and hardware to maintain
the APEX state, while the Policy
Engine enforces policy rules to adapt,
constrain or otherwise modify
application behavior.

APEX Introspection

APEX Policy Engine

APEX State RCR
Toolkit

Application

HPX

Synchronous Asynchronous

Triggered Periodic

events

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 50 100 150 200 250 300 350
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

C
on

cu
rre

nc
y

Po
w

er

Sample period

advanceDomainaction
SBN3sendsaction

probehandler
progresshandler

joinhandler
other

PosVelsendsaction
MonoQsendsaction

SBN3resultaction
PosVelresultaction
SBN1sendsaction

rendezvousgethandler

MonoQresultaction
initDomainaction
finiDomainaction

thread cap
power

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 50 100 150 200 250 300 350
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

C
on

cu
rre

nc
y

Po
w

er

Sample period

advanceDomainaction
SBN3sendsaction

probehandler
progresshandler

joinhandler

other
SBN3resultaction

MonoQsendsaction
PosVelresultaction
MonoQresultaction

PosVelsendsaction
rendezvousgethandler

initDomainaction
thread cap

power

Applica/ons	and	Characteris/c	Behavior	
–  LULESH:	(Livermore	Unstructured	Lagrangian	Explicit	Shock	Hydrodynamics)	For	

details	see	Deep	Dive	to	right.	

–  Mini-ghost:	A	mini-app	for	exploring	boundary	exchange	strategies	using	stencil	
computa+ons	in	scien+fic	parallel	compu+ng.	Implemented	by	decomposing	the	spa+al	
domain,	inducing	a	“halo	exchange”	of	process-owned	boundary	data.	

–  N-Body	Code:	An	event	driven	constraint	based	execu+on	model	using	the	Barnes-
Hut	algorithm	where	the	par+cles	are	grouped	by	a	hierarchy	of	cube	structures	using	a	
recursive	algorithm.	It	uses	an	adap+ve	octree	data	structure	to	compute	center	of	mass	
and	force	on	each	of	the	cubes	with	resultant	O(N	logN)	computa+onal	complexity	
making	use	of	LibGeoDecomp,	an	auto-parallelizing	library.	

–  PIC:	Two	3D	par+cle-in-cell	(PIC)	codes	–	GTC	and	PICSAR.	The	gyrokine+c	toroidal	code	
(GTC)	was	developed	to	study	turbulent	transport	in	magne+c	confinement	fusion	
plasmas.	It	models	the	interac+ons	between	fields	and	par+cles	by	solving	the	5D	gyro-
averaged	kine+c	equa+on	coupled	to	the	Poisson	equa+on.	PICSAR	is	a	mini-app	with	the	
key	func+onali+es	of	PIC	accelerator	codes,	including	a	Maxwell	solver	using	an	arbitrary	
order	finite-difference	scheme	(staggered/centered),	a	par+cle	pusher	using	the	Boris	
algorithm,	and	an	energy	conserving	field	gathering	with	high	order	par+cle	shape	
factors.	

–  miniTri:		A	newly	developed	triangle	enumera+on-based	data	analy+cs	miniapp.		
miniTri	mimics	the	computa+on	requirements	of	an	important	set	of	data	science	
applica+ons,	not	well	represented	by	tradi+onal	graph	search	benchmarks	such	as	
Graph500.		An	asynchronous	HPX-based	approach	enables	our	linear	algebra-based	
implementa+on	of	miniTri	to	be	significantly	more	memory	efficient,	allowing	us	to	
process	much	larger	graphs.	

–  CMA:	(Climate	Mini-App)	For	details	see	Deep	Dive	to	right.	

–  Kernels:	Various	computa+onal	kernels,	such	as	matrix	transpose	and	fast	mul+pole	
algorithms,	which	are	used	to	explore	features	of	HPX	and	compare	to	other	approaches.	

	

LULESH (Deep Dive)
LULESH solves the Sedov blast wave problem. In three
dimensions, the problem is spherically-symmetric and the code
solves the problem in a parallelepiped region. In the figure,
symmetric boundary conditions are imposed on the colored faces
such that the normal components of the velocities are always zero;
free boundary conditions are imposed on the remaining boundaries.

The LULESH algorithm is implemented as a hexahedral mesh-
based code with two centerings. Element centering stores
thermodynamic variables such as energy and pressure. Nodal
centering stores kinematics values such as positions and
velocities. The simulation is run via time integration using a
Lagrange leapfrog algorithm. There are three main computational
phases within each time step: advance node quantities, advance
element quantities, and calculate time constraints. There are three
communication patterns, each regular, static, and uniform: face
adjacent, 26 neighbor, and 13 neighbor communications,
illustrated below:

[1] LULESH is available from: https://codesign.llnl.gov/lulesh.php

[2] Karlin I, Bhatele A, Keasler J, Chamberlain BL, Cohen J, DeVito Z, et
al. Exploring Traditional and Emerging Parallel Programming Models
using a Proxy Application. In: Proc. of the 27-th IEEE International
Parallel and Distributed Processing Symposium (IPDPS); 2013.

CMA (Deep Dive)
The climate mini-app (CMA) models the performance
profile of an atmospheric "dynamic core" (dycore) for
non-hydrostatic flows. The codes use a conservative finite-
volume discretization on an adaptively-refined cubed-
sphere grid. An implicit-explicit (IMEX) time integrator
combines a vertical implicit operator (which is FLOP-
bound) with a horizontal explicit operator (which is
bandwidth-bound). There are three major sources of load
imbalance in the code:
•  The number of iterations required to perform the non-

linear vertical solves will vary across the grid.
•  Exchanges across the boundaries of the six panels of

the cubed sphere are more computationally expensive
than intra-panel exchanges.

•  The adaptively refined mesh will add and removed
refined regions as the simulation evolves.

Figures: Left image shows an example of an adaptively
refined cubed-sphere grid used in climate codes. Right
image shows vorticity dynamics for a climate test problem
with AMR.

The mini app is implemented using the Chombo adaptive
mesh refinement (AMR) framework, and has both an MPI
+OMP and HPX backend. The mini-app is being used to
explore performance on multi-core architectures (e.g. Xeon
Phi) and to explore the benefits of using HPX for finite-
volume AMR codes to combat dynamic load imbalance.

Edison

Funding by DOE Office of Science through grants: DE-SC0008714, DE-SC0008809, DE-AC04-94AL85000, DE-SC0008596, DE-SC0008638, and DE-AC02-05CH11231, by National Science Foundation
through grants: CNS-1117470, AST-1240655, CCF-1160602, IIS-1447831, and ACI-1339782, and by Friedrich-Alexander-University Erlangen-Nuremberg through grant: H2020-EU.1.2.2. 671603.

Results	Showing	Benefits	of	HPX	

N-Body	using	LibGeoDecomp	MiniGhost	Weak	Scaling	

	

Babbage

CMA	Strong	Scaling	on	KNC	

Reduction of communication in GTCX (GTC with HPX added)
compared to original GTC (upper image) is shown.

GTCX	Communica+on	Reduc+on	

	

Top: HPX-5 weak-scaling LULESH performance on 256 core cluster.
Bottom: HPX-5 weak scaling LULESH performance on Edison up to
14000 cores. ISIR and PWC are HPX-5 network back-ends. Lower
values are better and we demonstrate developing 27k+ core scaling.

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0.7"

0.8"

0.9"

1"

0" 2000" 4000" 6000" 8000" 10000" 12000" 14000" 16000" 18000" 20000" 22000" 24000" 26000" 28000"

Tim
e%p

er
%ite

ra
*o

n%(
s)%

Cores%

MPI" HPX2PWC" HPX2ISIR"

0"

0.05"

0.1"

0.15"

0.2"

(SMP)"8" 27" 64" 125" 216"

0m
e"p

er
"cy

cle
"(s
)"

cores"

MPI" HPX=PWC"

LULESH	Weak	Scaling	

	

NERSC’s	Edison,	a	Cray	XC30	using	the	Aries	
interconnect	and	Intel	Xeon	processors	with	a	
peak	performance	of	more	than	2	petaflops.	

NERSC’s	Babbage	machine	uses	the	Intel	Xeon	
Phi™	coprocessor	(codenamed	“Knights	
Corner”),	which	combines	many	Intel	CPU	
cores	onto	a	single	chip.	Knights	Corner	is	
available	in	mul+ple	configura+ons,	delivering	
up	to	61	cores,	244	threads,	and	1.2	teraflops	
of	performance.	

Matrix	Transpose	Kernel	

	

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 28

Example 1: Matrix Transpose

Higher is Better

Edison

HPX-3	blocked	implementa+on	
faster	on	NERSC	produc+on	Edison			

HPX-3	is	drama+cally	beHer	than	
both	MPI	and	OpenMP	on	Babbage	

HPX by example
25.10.2014 | Thomas Heller (thomas.heller@cs.fau.de) | FAU 29

Example 1: Matrix Transpose

Babbage

Higher is Better

Background	Info	

High Performance ParalleX
(HPX)

* The HPX runtime system reifies the ParalleX execution model to
support large-scale irregular applications:
 - Localities
 - Active Global Address Space (AGAS)
 - ParalleX Processes
 - Complexes (ParalleX Threads and Thread Management)
 - Parcel Transport and Parcel Management
 - Local Control Objects (LCOs)
* Sits between the application and OS
* Portable interface: C++11/14 (HPX-3 only), XPI
 - Comprehensive suite of parallel C++ algorithms (HPX-3 only)
* Automatic distributed garbage collection in AGAS (HPX-3 only)
* Flexible set of execution and scheduling policies
* Performance counter framework (HPX-3 only)

STARVATION

LATENCY

OVERHEAD

WAITING FOR
CONTENTION

ENERGY

RELIABILITY

ParalleX
Execution

model
SLOWER

Application

Domain Lib(s)

HPX

 OS / Network

Supercomputer

XPI

ParalleX EM

HPX avoids the use of locks and/or barriers in
parallel computation through the use of LCOs, which
are lightweight synchronization objects used by
threads as a control mechanism. Reads and writes on
LCOs are globally atomic and require no other
synchronization mechanism.

HPX has optimized transports built on top of Photon
(HPX-5 Only) and other communication libraries
* Two-sided Isend/Irecv transport (ISIR)
* Pre-posts irecvs to reduce probe overhead
* One-sided Put-With-Command/Completion (PWC)
* Local/remote notifications for RDMA operations
* RDMA communication optimizations using
 Photon: turn large puts into gets, buffer coalescing

[3] Thomas Sterling, Daniel Kogler, Matthew Anderson, and
Maciej Brodowicz. SLOWER: A performance model for Exascale
computing. Supercomputing Frontiers and Innovations, 1:42–57,
September 2014.
[4] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-Lelbach,
Adrian Serio, Dietmar Fey, HPX – A Task Based Programming
Model in a Global Address Space, PGAS 2014: The 8th
International Conference on Partitioned Global Address Space
Programming Models (2014).

ISIR

Global Address
Space

 Parcel Transport

LCOs Threads

PWC

OS/Network P
er

fo
rm

an
ce

 C
ou

nt
er

s
(H

P
X

-3
 o

nl
y)

Memory Models and Transport

Network

Global Address SpaceMemory Memory

Translation
Cache

AGAS

PGAS/
AGAS

Parcel/GAS Transport

HPX supports three memory
models: Symmetric Multi-
Processing (SMP, no global
memory), a Partitioned Global
Address Space (PGAS), an
Active Global Address Space
(AGAS).

HPX Architecture

LCOs

APPLICATION
LAYER

Lulesh LibPXGL

N-Body
ADCIRC LibGeoDecomp

GLOBAL ADDRESS SPACE

Source

Node Address

Dest

Source directly converts a virtual address
into a node/address pair and sends a
message to the Dest

PGAS AGAS
PARCELS

PROCESSES

SCHEDULER

Worker
threads

ISIR PWC (HPX-5 only)

OPERATING SYSTEM

HARDWARE

Cores

NETWORK

NETWORK LAYER

FMM

Note: BlueGeneQ, NVIDIA and AMD GPUs, Windows, and Android support are currently only supported by HPX-3

ParalleX Execution Model

HPX-5 is the High Performance ParalleX runtime library
from Indiana University. The HPX-5 interface and C99
library implementation is guided by the ParalleX execution
model (http://hpx.crest.iu.edu).
HPX-3 is the C++11/14 implementation of ParalleX
execution model from Louisiana State University (http://
stellar-group.org/libraries/hpx/).

* Lightweight multi-threading
 - Divides work into smaller tasks
 - Increases concurrency
* Message-driven computation
 - Move work to data
 - Keeps work local, stops blocking
* Constraint-based synchronization
 - Declarative criteria for work
 - Event driven
 - Eliminates global barriers
* Data-directed execution
 - Merger of flow control and data structure
* Shared name space
 - Global address space
 - Simplifies random gathers

Legacy Application Support
OMPTX is an HPX implementation of the
Intel OpenMP runtime, enabling existing
OpenMP applications to execute with HPX.

Within a node, performance achieved for
OpenMP programs using OMPTX is
comparable to using the Intel OpenMP
Runtime. For example, below we show
speedup for a blocking LU decomposition
benchmark using the optimal block size for
each implementation. These results were
obtained with a dual-socket Ivy Bridge
processor at LSU.

0

5

10

15

20

2 4 5 8 10 16 20 40

S
pe

ed
up

Number of Threads

LU Decomposition Speedup
(Matrix Size 8192x8192)

Intel OpenMP (BS=128)

OMPTX (BS=128)

HPX (BS=256)

