
Fusion Mini/Proxy Apps and NPBs 1

Miniapps and Proxy Apps for
Fusion/Plasma Physics and Practical

Programming Studies using NPBs

Alice Koniges, Jean-Luc Vay, Rebecca Yuan
(LBNL)

Viktor Decyk, (UCLA)
Stephane Ethier and Weixing Wang (PPPL)

Berkeley UPC Group

FROM: Using Application Proxies for Co-design of Future HPC
Computer Systems and Applications

SC12 Full Day Tutorial

Michael A. Heroux, Alice E. Koniges, David F. Richards,

Richard F. Barrett, Thomas Brunner

Fusion Mini/Proxy Apps and NPBs 2

Value of Proxy Apps

Processor
Generator
(Tensilica)

COMPACT APPS SKELETON APPS

Application-optimized
processor implementation

Base CPU

Apps
Datapaths

OCD

Timer

FPU Extended Registers

Cache

ITERATE

EXPERIMENT (ITER) MODELING CODES

BIG

small

+

PROGRAMMING
MODELS

APPLIED
MATH Apply and Benchmark

Fusion Mini/Proxy Apps and NPBs 3

We will study examples of Compact and
Skeleton Apps Relevant to Fusion

•  Example Compact App: PIC Electrostatic, GTC_simple

–  Reduced I/O, No diagnostics, Possible reduced physics and
dimensionality

•  Example Skeleton App: Shifter

BIG

small

Fusion Mini/Proxy Apps and NPBs 4

Fusion Energy* is the answer to our
energy future

•  One gallon of sea water same energy as 300 gallons gasoline
•  Fifty cups of water equals 2 tons of coal
•  Fusion power plant produces no climate changing gases
•  Dramatically lower radioactive bi-products than fission plants
•  No danger of runaway reaction or core melt down
•  Two major approaches: Magnetic and Inertial, each with own issues
•  Simulation is key to saving big $$ per discharge/shot
•  Extreme range of time/space scale for magnetic fusion is challenging

–  e.g., there are 14 orders of magnitude difference between the electron
cyclotron and discharge time scales

10-10 10-2 104 100 10-8 10-6 10-4 102

ωLH
-1

Ωci
-1 τA Ωce

-1

sec
tdischarge

*still have not figured out exactly how

Fusion Mini/Proxy Apps and NPBs 5

•  Top-to-bottom exascale computer
design is essential for efficient
design/operation of large-scale
experiments

–  Typical ITER discharge can be
estimated at 1M$

ITER, currently under construction
 in the South of France, aims to
demonstrate that fusion is an energy
source of the future

Fusion Mini/Proxy Apps and NPBs 6

Magnetic fusion codes control instabilities and other
plasma phenomena critical to ITER

	
 “sawtooth	
 oscilla,ons”	

Disrup,ons	
 caused	
 by	
 short	

wave-­‐length	
 modes	
 interac,ng	

with	
 helical	
 structures.	
 Mass	
 redistribu,on	

a=er	
 pellet	
 injec,on	

Edge	
 Localized	
 Modes	

Disrup,on	
 forces,	

RE,	
 and	
 heat	
 loads	

during	
 	
 disrup,on	

Interac,on	
 of	
 high-­‐
energy	
 par,cles	
 with	

global	
 modes	
 Slide: Steve Jardin, PPPL

Fusion Mini/Proxy Apps and NPBs 7

The exascale machine design for fusion
must enable a multiphysics approach

•  Achieving exascale, may not mean just scale current codes
•  Exascale machines must be sufficiently well-balanced to handle

phenomena on a variety of scales through ingenious use of
heterogeneous architectures and interconnects, and storage facilities
to support real design studies

–  GPU’s accelerating FE quadrature in MHD codes
–  Novel programming languages such as CAF using fast on-node

communication patterns in PIC routines
–  Fault-tolerant-aware numerical algorithms for 100,000’s of cores
–  Integrated simulations at many scales connected and tested via

simulator glue

Fusion Mini/Proxy Apps and NPBs 8

A representative suite of tokamak models
includes a variety of temporal and spatial

discretization schemes
•  Core Transport: GYRO/NEO
•  Collisional Edge Plasma: BOUT++
•  MHD: M3D-C1, NIMROD

•  Explicit PIC Modeling: GTS,
VORPAL

•  Wave heating, Wall
interaction

Adapted from: Scott Kruger, Tech-X

Fusion Mini/Proxy Apps and NPBs 9

What is the most common proxy app
for fusion? Answer: PIC Codes

Hot central plasma: nearly completely ionized,
magnetic lines lie on flux surfaces, 3D
turbulence embedded in 1D transport

Cooler edge plasma: atomic physics important,
magnetic lines terminate on material surfaces, 3D
turbulence embedded in 2D transport

Material walls, embedded hydrogenic species,
recycling

● Coupling on short time scales
●  Inter-processor and in-memory

communication
●  Implicit coupling

Adapted from: Scott Kruger, Tech-X

Fusion Mini/Proxy Apps and NPBs 10

Modeling of a plasmas – possibilities)

•  PLASMA: Collection of a large number of interacting charged
particles

–  Particles mathematically described by
-  Lagrangian approach: evolution of singularities

  Klimontovitch eq.
-  Eulerian approach: evolution of an incompressible fluid

  in phase-space: Boltzmann/Fokker-Planck eq. (collisions), Vlasov eq. (no
collisions)

  in real space: fluid/MHD eq.

–  Interactions mathematically described by
-  Lagrangian approach: sum from all singularities, instantaneous or with

 retardation
-  Eulerian approach: fields

  instantaneous: Poisson
  with retardation: Maxwell

Vay – AFRD LBNL

Fusion Mini/Proxy Apps and NPBs 11

•  In summary, the modeling of a plasma implies the modeling of

interacting

•  The numerical integration leads to further splitting
–  Partial differential equations: finite-differences/volumes/elements, Monte-

Carlo, semi-Lagrangian,
–  Time integration: explicit/implicit,
–  Direct interaction: direct summation, multipole expansion (tree-codes),
–  …

Modeling of a plasmas - classification (2)

x"

v"

x"

y"

x"

y"

a collection of particles! fluid cells in phase-space! fluid cells in configuration space!

or! or!

directly! or through a field!

Vay – AFRD LBNL

Fusion Mini/Proxy Apps and NPBs 12

Modeling of a plasmas

•  All these methods have in common that they must update the status
of N quantities (particle/fluid/field quantities) from time t to time t+Δt

•  One of the most scalable methods of plasma modeling is PIC Codes,
and thus is the basis for Exascale-aiming Proxy Apps

•  PIC codes differ in the basic equation they are solving, the grid,
solver methods, etc.

•  We will consider both a simple geometry electrostatic PIC code, and
a complex toroidal geometry PIC code

Fusion Mini/Proxy Apps and NPBs 13

The Particle-in-Cell (PIC) method for
Plasma Simulation

•  "particle-in-cell" because plasma macro-quantities(
number density, current density, etc.) are assigned to simulation
particles (i.e., the particle weighting)

•  Particles can live anywhere on the domain, but field and macro-
quantities are calculated only on the mesh points

•  Inter-particle forces of less than a grid cell are smoothed
–  Particles are like clouds, because they can pass through each other

•  Basic steps:
–  Integration of the equations of motion.
–  Interpolation of charge and current source terms to the field mesh.
–  Computation of the fields on mesh points (field solve)
–  Interpolation of the fields from the mesh to the particle locations.

•  PIC codes differ from Molecular Dynamics in use of fields on a grid
rather than direct binary interactions

–  This also adds the requirement of a field solve

Fusion Mini/Proxy Apps and NPBs 14

δx
δy

Push	
 par)cles	
)me	

Deposit	
 charge/current	

Newton-­‐Lorentz	

Par)cle-­‐In-­‐Cell	
 workflow	

Plasma=collec)on	
 of	
 interac)ng	

charged	
 par)cles	

Field	
 solve	

Poisson/Maxwell	

Gather	
 forces	

Vay – AFRD LBNL

Fusion Mini/Proxy Apps and NPBs 15

δx
δy

Push	
 par)cles	
)me	

Deposit	
 charge/current	

Newton-­‐Lorentz	

Par)cle-­‐In-­‐Cell	
 workflow	

Plasma=collec)on	
 of	
 interac)ng	

charged	
 par)cles	

Field	
 solve	

Poisson/Maxwell	

Gather	
 forces	
 Deposit	
 charge/current	

Vay – AFRD LBNL

Fusion Mini/Proxy Apps and NPBs 16

δx
δy

Par)cle-­‐In-­‐Cell	
 workflow	

Deposit	
 charge/current	

Push	
 par)cles	
)me	

Clouds of
particles

Newton-­‐Lorentz	

Plasma=collec)on	
 of	
 interac)ng	

charged	
 par)cles	

Field	
 solve	

Poisson/Maxwell	

Gather	
 forces	

Vay – AFRD LBNL

Fusion Mini/Proxy Apps and NPBs 17

δx
δy

Par)cle-­‐In-­‐Cell	
 workflow	

Deposit	
 charge/current	

Push	
 par)cles	
)me	

Gather	
 forces	

Newton-­‐Lorentz	

Field	
 solve	

Poisson/Maxwell	

Clouds of
particles

Plasma=collec)on	
 of	
 interac)ng	

charged	
 par)cles	

Absorp)on/Emission	

+	
 absorp)on/emission	
 (injec)on,	
 loss	
 at	
 walls,	
 secondary	
 emission,	
 ioniza)on,	
 etc),	

poten)al/fields	

Filtering	
 Filtering	

charge/currents	

+	
 filtering	
 (charge,currents	
 and/or	
 poten)al,fields).	

Add	
 external	
 forces	

+	
 external	
 forces	
 (accelerator	
 laQce	
 elements),	

Vay – AFRD LBNL

Fusion Mini/Proxy Apps and NPBs 18

•  Classic Textbooks:
–  Plasma Physics via Computer Simulation by C. K. Birdsall and A. B.

Langdon
–  Computer Simulation Using Particles by R. W. Hockney and J. W.

Eastwood

Fusion Mini/Proxy Apps and NPBs 19

A Simple Electrostatic Plasma Code
Viktor K. Decyk, UCLA

•  Calculate charge density on a mesh from particles
–  Scatter Operation is use to distribute a particles charge onto nearby

grid locations

•  Solve Poisson’s Equation (this is what makes it “electrostatic”)

•  Advance the particles’ co-ordinates using Newton’s Law (force to
move comes from the Electric Field, Newton’s Law calculates
velocity

–  Gather Operation (from interpolation) is used to get the approximate
field value at the particle’s location

Fusion Mini/Proxy Apps and NPBs 20

From Viktor Decyk UCLA PIC Bootcamp

Fusion Mini/Proxy Apps and NPBs 21

€

dvi

dt
=
qi

mi

E
s
≈
v
i
(t + Δt /2) − v

i
(t − Δt /2)

Δt
=
qi

mi

E
s
(t)

€

dx
i

dt
≈
x
i
(t + Δt) − x

i
(t)

Δt
= v

i
(t + Δt)

Particle Push step uses equations of motion. Here, we see a typical
Time-difference of eqns of motion: second order leap-frog scheme

Solution is explicit time advance:

Particle-in-Cell codes

€

v
i
(t + Δt /2) = v

i
(t − Δt /2) +

qi

mi

E
s
(x

i
(t))Δt

€

x
i
(t + Δt /2) = x

i
(t) + v

i
(t + Δt /2)Δt

Note: time step should resolve plasma frequency

Fusion Mini/Proxy Apps and NPBs 22

Main data structures in Fortran

real, dimension(4,np) :: part ! particle array

real, dimension(nx+2,ny+1) :: qe ! charge density array

real, dimension(2,nx+2,ny+1) :: fxye ! electric field array

real :: wke, we ! kinetic, potential energies

Main iteration loop (C function names):

Charge Deposit

1. (cgpost2l) Deposit charge: update qe

2. (caguard2l) Add guard cells: update qe

Field Solver

3. (cwfft2rx) Transform charge to fourier space: update qe

4. (cpois22) Calculate force/charge in fourier space: update fxye, we

5. (cwfft2r2) Transform force to real space: update fxye

Particle Push

6. (ccguard2l) Copy guard cells with standard procedure: updates fxye

7. (cgpush2l) Push particles: update part, wke

Particle Sort

8. (cdsortp2yl) Occasionally sort particles by cell: update part

2D Electrostatic Skeleton PIC code: pic2

• Fortran and C versions available

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 23

The two most important procedures are:

Particle Push: cgpush2l

Charge Deposit: cgpost2l

Challenges in optimizing PIC codes

• Low computational intensity (2-3 FLOPs/memory access)

• 2D Electrostatic code has 55 FLOPs/particle update (11 for deposit, 34 for push)

• Memory access is largely irregular (gather/scatter pattern)

Particle-in-Cell Codes

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 24

Particle coordinates are stored in grid units, so that

if there are Nx grid points, the x coordinate lies within 0 < x < Nx.

The particle data is stored in the array part, where

 part[n][0] = position x of particle n

 part[n][1] = position y of particle n

 part[n][2] = velocity vx of particle n

 part[n][3] = velocity vy of particle n

This code uses bi-linear interpolation, involving 4 nearest cells to the particle coordinate

The integer part of the coordinate indicates the leftmost cell the particle is in. The

difference between the cell and the actual coordinate is the interpolation weight.

Particle-in-Cell Codes

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 25

 for (j = 0; j < nop; j++) { procedure cgpush2l

/* find nearest cells and interpolation weights */

 nn = part[idimp*j];

 mm = part[1+idimp*j];

 dxp = part[idimp*j] - (float) nn;

 dyp = part[1+idimp*j] - (float) mm;

 nn = 2*nn;

 mm = nxv2*mm;

 amx = 1.0 - dxp;

 mp = mm + nxv2;

 amy = 1.0 - dyp;

 np = nn + 2;

/* interpolate to find acceleration */

 dx = dyp*(dxp*fxy[np+mp] + amx*fxy[nn+mp])

 + amy*(dxp*fxy[np+mm] + amx*fxy[nn+mm]);

 dy = dyp*(dxp*fxy[1+np+mp] + amx*fxy[1+nn+mp])

 + amy*(dxp*fxy[1+np+mm] + amx*fxy[1+nn+mm]);

/* calculate new velocity */

 vx = part[2+idimp*j];

 vy = part[3+idimp*j];

 dx = vx + qtm*dx;

 dy = vy + qtm*dy;

/* calculate average kinetic energy */

 vx += dx;

 vy += dy;

 sum1 += vx*vx + vy*vy;

 part[2+idimp*j] = dx;

 part[3+idimp*j] = dy;

/* calculate new position */

 dx = part[idimp*j] + dx*dt;

 dy = part[1+idimp*j] + dy*dt;

 }

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 26

 for (j = 0; j < nop; j++) { procedure cgpost2l

/* find nearest cells and interpolation weights */

 nn = part[idimp*j];

 mm = part[1+idimp*j];

 dxp = qm*(part[idimp*j] - (float) nn);

 dyp = part[1+idimp*j] - (float) mm;

 mm = nxv*mm;

 amx = qm - dxp;

 mp = mm + nxv;

 amy = 1.0 - dyp;

 np = nn + 1;

/* deposit charge */

 q[np+mp] += dxp*dyp;

 q[nn+mp] += amx*dyp;

 q[np+mm] += dxp*amy;

 q[nn+mm] += amx*amy;

 }

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 27

Challenges in parallelizing PIC codes

• With domain decomposition, keeping field data and particle data together

Particle push is easier, all particles are independent

For charge deposit, we can have data collisions in accumulating density

• Two different particles can attempt to update the same density location simultaneously

Particle-in-Cell Codes

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 28

2D Electrostatic PIC codes are contained in the file pic2.tar.gz

• Fortran and C versions both exist.

Particles are initialized with a uniform distribution in space, and a gaussian distribution

in velocity space. The number of grids must be a power of 2.

The only diagnostic is field, kinetic and total energy. The initial and final values are

printed out. Total energy should be approximately conserved.

The important inputs to the code are the following:

indx = exponent which determines length in x direction, where nx=2**indx

indy = exponent which determines length in y direction, where ny=2**indy

npx = initial number of particles distributed in x direction

npy = initial number of particles distributed in y direction

tend = time at end of simulation, in units of plasma frequency

dt = time interval between successive calculations, total number of steps = tend/dt

vtx/vty/vtz = thermal velocity of electrons in x/y/z direction

sortime = number of time steps between electron sorting

Particle-in-Cell Codes

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 29

The initial values are set in the code to be:

indx = 9; indy = 9; npx = 3072; npy = 3072; sortime = 50

tend = 10.0, dt = 0.1; vtx = vty = vtz = 1.0

The main programs are either pic2.f or pic2.f

The procedures are in the files, push2.f or push2.c

The Makefile is set up to use gcc and gfortran with Linux.

Executing make will compile both programs, fpic2 and cpic2

You can also compile just one or the other, for example by executing

make cpic2

Timings for the important procedures are calculated using the unix gettimeofday function.

More information about the mathematics behind these PIC codes are contained in the file

ESModels.pdf

Particle-in-Cell Codes

Tuesday, January 10, 2012

Fusion Mini/Proxy Apps and NPBs 30

Differences in Particle-In-Cell Codes

•  Particle-in-Cell codes are used for a wide variety of applications
•  The family of codes known as GTC/GTS implements a Particle

method to solve the Gyrokinetic Equations in Tokamaks and other
toroidal fusion devices

•  The first version of GTC was created by Zhihong Lin, currently of
UCI. Versions of this code are released to the public

–  http://phoenix.ps.uci.edu/GTC/index.php
•  Latter versions and important extensions include:

–  GTS Stephane Ethier and Weixing Wang, PPPL
–  XGC CS Chang, PPPL
–  Versions based outside of US

•  The principal steps of GTC most often optimized by computer
scientists are very similar

•  Computer scientists generally work on a version of GTC obtainable
from PPPL with permission or the version available by Lin

Fusion Mini/Proxy Apps and NPBs 31

GTS (Gyrokinetic Tokamak Simulation)

•  GTS (Gyrokinetic Tokamak Simulation), uses PIC and the
simulation particles are moved along the characteristics in phase
space. This reduces the complex gyro-averaged Vlasov equation, a
5-dimensional partial differential equation, to a simple system of
ordinary differential equations.

•  Straight-field-line magnetic coordinates in toroidal geometry are
employed since they are the natural coordinates for describing the
tokamak magnetic equilibrium field

–  accurate time-stepping -- even when a relatively low order method,
such as second-order Runge-Kutta, is employed.

•  In PIC, a grid replaces the direct binary interaction between
particles by accumulating the charge of those particles on the grid
at every time step and solving for the electromagnetic field, which
is then gathered back to the particles’ positions.

Fusion Mini/Proxy Apps and NPBs 32

Some of the complexity of GTC/GTS is due
to the coordinate system for toriodal

magnetic fusion devices

Fusion Mini/Proxy Apps and NPBs 33

A Primary use of GTC: Turbulence in
Fusion Plasmas

•  Turbulence is believed to be the mechanism for cross-field
transport in magnetically confined plasmas:

–  Size and cost of a fusion reactor determined by particle and energy
confinement time and fusion self-heating.

•  Plasma turbulence is a complex nonlinear phenomenon:
–  Large time and spatial scale separations similar to fluid turbulence.
–  Self-consistent electromagnetic fields: many-body problem
–  Strong nonlinear wave-particle interactions: kinetic effects.
–  Importance of plasma spatial inhomogeneities, coupled with

complex confining magnetic fields, as drivers for microinstabilities
and the ensuing plasma turbulence.

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 34

The Gyrokinetic Toroidal Code
GTC

•  Description:
–  Particle-in-cell code (PIC)
–  Developed by Zhihong Lin (now at UC Irvine)
–  Non-linear gyrokinetic simulation of microturbulence [Lee, 1983]
–  Fully self-consistent
–  Uses magnetic field line following coordinates (ψ,θ,ζ) [Boozer, 1981]
–  Guiding center Hamiltonian [White and Chance, 1984]
–  Non-spectral Poisson solver [Lin and Lee, 1995]
–  Low numerical noise algorithm (δf method)
–  Full torus (global) simulation

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 35

Gyrokinetic approximation for
low frequency modes	

•  Gyrokinetic ordering

•  Gyro-motion: guiding center drifts + charged ring
•  Gyrophase-averaged 5D kinetic (Vlasov) equation

1~

1~~~ //

ρ

ρφρω

⊥

<<
Ω
k

kT
e

L

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 36

Recall our basic particle-in-cell (PIC)
method: now adapt for gyrokinetic

•  Particles sample distribution function (markers).
•  The particles interact via a grid, on which the potential is

calculated from deposited charges.

The PIC Steps
•  “SCATTER”, or deposit,

charges on the grid (nearest
neighbors)

•  Solve Poisson equation
•  “GATHER” forces on each

particle from potential
•  Move particles (PUSH)
•  Repeat…

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 37

The particle moving equations are more
complicated for Gyrokinetic PIC

•  Equations of motion for the particles along the
characteristics:

–  We solve ODEs instead of PDEs

ff

f
fm

q
m
q

dt
d

m
q

dt
d

m
q

dt
d

j

k
j

jj

/with w

v
1B̂

R
x̂B̂

R
w

B̂
R

v

B̂
R

-B̂vR

,R||

0

0

||

 ||

δ

µ

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
⋅

∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛−⋅×
∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛
Ω

−=

⋅
∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛−=

⎟
⎠

⎞
⎜
⎝

⎛ ×
∂

Ψ∂
⎟
⎠

⎞
⎜
⎝

⎛
Ω

=

Adapted from Ethier

Fusion Mini/Proxy Apps and NPBs 38

Charge Deposition for charged rings:
4-point average method

Classic PIC 4-Point Average GK
(W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 39

A field solve is still required, and various
methods may be used. Example:

Poisson Equation Solver
•  Done in real space (iterative solver)
•  Four or eight-point average method

() ()

potential averaged-gyrophase
 second theis ~ where

4~
2

Φ

−=Φ−Φ ei
D

nneπ
λ
τ

[Z. Lin and W. W. Lee, Phys.Rev. E 52, 5646--5652 (November 1995).]

Ethier

Fusion Mini/Proxy Apps and NPBs 40

GTC mesh and geometry:
Field-line following coordinates

Saves a factor of
about 100 in CPU
time

Ψ	

(Ψ,α,ζ) ⇒ α = θ - ζ/q

ζ

θ

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 41

Domain Decomposition

•  Domain decomposition:
–  each MPI process holds a toroidal section
–  each particle is assigned to a processor according to its position

•  Initial memory allocation is done locally on each processor to
maximize efficiency

•  Communication between domains is done with MPI calls (runs on
most parallel computers)

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 42

Summary: there are 3 Levels of Parallelism
in GTC and GTS

•  1-D domain decomposition in the symmetric, toroidal (MPI). Each
MPI process in charge of a toroidal domain with both particles and
fields. Particles moved from one domain to another while they
traveled around the torus. All communications was one-way traffic
to avoid congestion.

•  Second level of parallelism: Within each toroidal domain, divide the
particles between several MPI processes, but each process keeps
a copy of all the fields on a single toroidal plane. A “particle-
domain” communicator links the MPI processes within a toroidal
domain of the original 1D domain decomposition, while a “toroidal-
domain” communicator links in a ring-like fashion all the MPI
processes with the same intra-domain rank.

•  Third level of parallelism at the loop level using OpenMP compiler
directives

Fusion Mini/Proxy Apps and NPBs 43

Efficient Communications

STEP 1 STEP 2

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 44

2nd Level of Parallelism:
Loop-level

MPI_init

MPI process MPI process MPI process MPI process

MPI_finalize

OpenMP
Loop

OpenMP
Loop

Start
threads

Merge
threads

Ethier PPPL

Fusion Mini/Proxy Apps and NPBs 45

Part II How to use proxy apps – Case study:
NAS Parallel Benchmarks

Fusion Mini/Proxy Apps and NPBs 46

Hardware Trends are forcing changes in
programming models

•  Future performance increases rely on increasing concurrency
(number of cores/processors/GPUs, etc)

•  Energy restrictions negate increases in processor speed
•  Data movement is the most significant component of energy use
•  Memory per floating point unit suffers a reduction

Proxy apps allow us to consider different programming models
•  Control over layout and locality to minimize data movement
•  What is the parallel execution model?
•  How do we communicate?
•  How do we share data on increasingly non-uniform memory

architectures
•  How can programming models make this easier?

Fusion Mini/Proxy Apps and NPBs 47

Programming Models are Changing to
Accommodate the Architectural Changes

What do we need to define?
•  Shared Memory (includes globally addressable memory models)

–  Processes (or threads) communicate through memory addresses
accessible to each

•  Distributed memory
–  Processes move data from one address space to another via

sending and receiving messages
•  Parallel programming models are expressed:

–  In libraries callable from conventional languages (MPI)
–  In languages compiled by their own special compilers (UPC)
–  In structured comments that modify the behavior of a conventional

compiler (OpenMP)
–  New ideas or “natural ways” to parallel program (CnC)

•  Hybrid Models combine various models

Fusion Mini/Proxy Apps and NPBs 48

The eight NAS parallel benchmarks (NPBs) have
been written in various languages including

hybrid (MZ or Multizone) for three
MG Multigrid Approximate the solution to a three-

dimensional discrete Poisson equation using
the V-cycle multigrid method

CG Conjugate
Gradient

Estimate smallest eigenvalue of sparse SPD
matrix using the inverse iteration with the
conjugate gradient method

FT Fast Fourier
Transform

Solve a three-dimensional PDE using the
fast Fourier transform (FFT)

IS Integer Sort Sort small integers using the bucket sort
algorithm

EP Embarrassingly
Parallel

Generate independent Gaussian
random variates using the
Marsaglia polar method

BT
SP
LU

Block Tridiagonal
Scalar Pentadiag
Lower/Upper

Solve a system of PDEs using 3 different
algorithms

MZ

Fusion Mini/Proxy Apps and NPBs 49

We will consider three different
programming model implements of NPBs

•  UPC (Unified Parallel C) is a PGAS (Partitioned Global Address
Space) Language
–  A number of threads working independently in a SPMD fashion
–  Number of threads specified at compile-time or run-time depending

how program is written. NPBs use static threads (compile time).
•  MPI (Message Passing Interface)
•  Hybrid (Mulit-zone for NPBs) includes implementations with MPI

+OpenMP
–  MPI+OpenMP is most common hybrid programming mode
–  Many variations of number of threads vs. MPI processes

Fusion Mini/Proxy Apps and NPBs 50

Partitioned Global Address Space (PGAS)
Languages

•  Defining PGAS principle: extended memory model
1)  The Global Address Space: a special memory area that allows any

task to read or write memory anywhere in the system
2)  It is Partitioned to allow an efficient implementation of distributed

objects (“symmetric heap”)

05/19/09, Author:
Rolf Rabenseifner

A distributed object in the global address space Global	

address	
 	

space	

(“shared”)	

Task-­‐	

individual	

(“private”)	

address	
 	

space	

Task	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 5	

two objects in
private area:

no direct
exchange of

data
is possible x

a statement on any task may
transfer data between shared

objects located on different tasks

a statement executed
on the task hosting the

private entity „x“

local accesses
are fastest

remote access

Author: Rolf Rabenseifner, HLRS

Fusion Mini/Proxy Apps and NPBs 51

The PGAS Languages

•  PGAS (Partitioned Global Address Space) languages attempt to
combine the convenience of the global view of data with
awareness of data locality, for performance

–  Co-Array Fortran, an extension to Fortran-90)
§  SPMD – Single program, multiple data
§  Replicated to a number of images
§  Variables declared as co-arrays are accessible by another image through a

set of array subscripts, delimited by [] and mapped to image indices by the
usual rule

–  UPC (Unified Parallel C), an extension to C
§  UPC is an extension of C (not C++) with shared and local addresses
§  Introduces Shared keyword in type declarations
§  processes are called threads in UPC
§  Global address space: thread may directly read/write remote data

–  Various newer PGAS Languages including Chapel, X10, etc.

Fusion Mini/Proxy Apps and NPBs 52

MPI and Threads

•  MPI describes parallelism between processes (with
separate address spaces)

•  Thread parallelism provides a shared-memory model
within a process

•  OpenMP and Pthreads are common but different models
–  OpenMP provides convenient features for loop-level

parallelism
–  Pthreads provide more complex and dynamic approaches
–  OpenMP 3.0 (which adds task parallelism) adds some of

these capabilities to OpenMP
•  MPI combined with OpenMP is the most common current

means of adapting for heterogenous architecures
–  Doesn’t always work
–  Is not able to deal with NUMA on the nodes

Fusion Mini/Proxy Apps and NPBs 53

Within the MPI-OpenMP hybrid model, there are
variants depending on system and application

Which programming
model is fastest?

Background

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

3) Mixed model

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

2) Fully hybrid

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

1) MPI everywhere

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI everywhere?

Fully hybrid
MPI & OpenMP?

In - between?
(Mixed model)

? Historically hybrid
programming can be
slower than pure
MPI

Node Interconnect

Socket 1

Multi-core
CPU

SMP node SMP node

Socket 2

Multi-core
CPU

Socket 1

Multi-core
CPU

Socket 2

Multi-core
CPU

Foreground

Rolf Rabenseifner, HLRS

Fusion Mini/Proxy Apps and NPBs 54

New Models MPI + x or ?

•  We are considering new programming models that combine MPI
with another language such as UPC or CAF in addition to the
standard hybrid method of MPI+OpenMP

•  There are also a large number of new languages for example:
–  Intels’s CnC or Concurrent Collections

§  Invites users to rethink their problem into 2 pieces:
–  Data dependence and control dependence

–  Microsoft’s parallel language suites including:
§  Axum, Parallel Patterns Library

–  OpenCL
§  A framework for writing parallel programs on heterogeneous

–  OpenACC
§  Application Program Interface describes a collection of compiler directives to

specify loops and regions of code in standard C, C++ and Fortran to be offloaded
from a host CPU to an attached accelerator, providing portability across
operating systems, host CPUs and accelerators.

•  Also, most current languages (OpenMP, MPI, etc) are looking at
what changes should be made for architecture evolution

Fusion Mini/Proxy Apps and NPBs 55

The NAS MZ benchmarks allow us to explore
Multi-Level Parallelism in Applications

•  Extract additional Parallelism in case of Limited coarse grain
Parallelism

z1

z2

z3

z4

P1

P2

P3

P4

Coarse Grain Parallelism:
Subdomains z1, z2, z3, z4 are
mapped onto MPI Processes P1,
P2, P3, and P4

T0 T1 T2 T0 T1 T2

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing
OpenMP on loop-level

T0 T1 T2 T0 T1 T2

Adapted from Gabriele Jost, Supersmith, gjost@supersmith.com

Fusion Mini/Proxy Apps and NPBs 56

Coarse Grain Load-Balancing

•  Improve Load-Balance
–  Restrict #MPI Processes
–  Exploit loop level parallelism instead

4 MPI Processes:
Load-Imbalance because of
difference in subdomain size

2 MPI Processes:
Balanced load by assigning z1, z3
to P1 and z2, z4 to P2.

Fine Grain Parallelism:
Each MPI Process runs
multi-threaded, employing
OpenMP on loop-level

z1

z2

z3

z4

P1

T1 T0 T2 T0 T1 T2 T3 T4 T5 T3 T4 T5

P2

From: Gabriele Jost, Supersmith, gjost@supersmith.com

Fusion Mini/Proxy Apps and NPBs 57

 Fine Grain Load-Balancing

•  Improve Load-Balance on Fine Grain
–  Assign more threads to MPI Process with high workload

Coarse Grain Parallelism:
Load-Imbalance because of
difference in subdomain size

Fine Grain Parallelism:
Assign 4 threads to P1, P2
Assign 2 threads to P3, P4

z1

z2

z3

z4

P1

T1 T0 T0 T0 T1 T2 T3 T1

P2

P3

P4

Gabriele Jost, Supersmith, gjost@supersmith.com

Fusion Mini/Proxy Apps and NPBs 58

The Multi-Zone NAS Parallel Benchmarks
combine MPI and OpenMP

•  Multi-zone versions of the NAS
Parallel Benchmarks LU, BT, and
SP were developed by dividing the
discretization mesh into a two-
dimensional tiling of three-
dimensional zones

•  Same kernel solvers in the multi-
zone code Kernel Solvers: LU/SP/BG

Exchange of Boundary Values

Initialization

NAS Parallel Benchmarks, Multi-Zone Versions,
NAS-03-010 (PDF-128KB) for BT-MZ, SP-MZ, LU-
MZ. Rob F. Van der Wijngaart, Haoqiang Jin

Fusion Mini/Proxy Apps and NPBs 59

•  Aggregate sizes:
–  Class C: 480 x 320 x 28 grid points
–  Class D: 1632 x 1216 x 34 grid points
–  Class E: 4224 x 3456 x 92 grid points

•  BT-MZ: (Block-tridiagonal Solver)
–  #Zones: 256 (C), 1024 (D), 4096 (E)
–  Size of the zones varies widely:

•  large/small about 20
•  requires multi-level parallelism to achieve a good load-balance

•  LU-MZ: (Lower-Upper Symmetric Gauss Seidel Solver)
–  #Zones: 16 (C, D, and E)
–  Size of the zones identical:

•  no load-balancing required
•  limited parallelism on outer level

•  SP-MZ: (Scalar-Pentadiagonal Solver)
–  #Zones: 256 (C), 1024 (D), 4096 (E)
–  Size of zones identical

•  no load-balancing required

Multi-zone Benchmark Characteristics

Load-­‐balanced	
 on	
 MPI	

level:	
 Pure	
 MPI	
 should	

perform	
 best	

Pure	
 MPI:	
 Load-­‐
balancing	
 problems!	

Good	
 candidate	
 for	

MPI+OpenMP	

Limited	
 MPI	

Parallelism:	

à	
 MPI+OpenMP	

increases	

Parallelism	

Expectations:

Adapted from Gabriele Jost, Supersmith, gjost@supersmith.com

Fusion Mini/Proxy Apps and NPBs 60

BT-MZ based on MPI/OpenMP

call omp_set_numthreads (weight)
do step = 1, itmax

 call exch_qbc(u, qbc, nx,…)

 do zone = 1, num_zones

 if (iam .eq.pzone_id(zone))
then

 call comp_rhs(u,rsd,…)
 call x_solve (u, rhs,…)

 call y_solve (u, rhs,…)

 call z_solve (u, rhs,…)

 call add (u, rhs,….)

 end if

 end do

end do

 ...

call mpi_send/recv

Coarse-grain MPI Parallelism
subroutine x_solve (u, rhs,
!$OMP PARALLEL DEFAUL(SHARED)

!$OMP& PRIVATE(i,j,k,isize...)

isize = nx-1

!$OMP DO

 do k = 2, nz-1

 do j = 2, ny-1

 …..

 call lhsinit (lhs, isize)

 do i = 2, nx-1

 lhs(m,i,j,k)= ..

 end do

 call matvec ()

 call matmul ()…..

 end do

 end do

end do

!$OMP END DO nowait

!$OMP END PARALLEL

Fine-grain OpenMP Parallelism

Adapted from Gabriele Jost, Supersmith, gjost@supersmith.com

Fusion Mini/Proxy Apps and NPBs 61

The NPBs in UPC are also useful for
studying various PGAS issues

•  Using customized communication to avoid hot-spots
–  UPC Collectives do not support certain useful communication patterns

•  Blocking vs. Non-Blocking (Asynchronous) communication
–  In FT and IS using non-blocking gave significantly worse performance
–  In MG using non-blocking gave small improvement

•  Benefits of message aggregation depends on the arch./interconnect
•  UPC – Shared Memory Programming studied in FT and IS

–  Less communication but reduced memory utilization

Data from Filip Blagojevic

0

0.2

0.4

0.6

0.8

1

1.2

UPC MPI UPC MPI UPC MPI UPC MPI UPC MPI UPC MPI UPC MPI UPC MPI

EP CG IS MG FT LU BT SP

Execution Time Normalized to MPI (64 Cores) - Ranger

Comm

Fence

Other

Fusion Mini/Proxy Apps and NPBs 62

Class D NPBs have been run recently on two
PF/s class machines at LRZ and LBL

Property SuperMuc Hopper
Peak Performance 3.19 PF/s (#4) 1.28 PF/s (#16)
Number of Cores 147,456 153,216
Clock Speed 2.7 (3.5 Turbo) GHz 2.1 GHz

Interconnect Infiniband FDR10 Gemini in 3D torus
Total Memory 288 TBytes 217 TBytes

MG.D 1024 cores
Machine name and
Complier

Speed for 5
runs

No
Flags

Message
Aggregation

Message
Aggregation +
Strided Comm

Hopper with Cray UPC Avg Gops/s 433.68 440.97 (+ 2%) 456.10 (+ 5%)

SuperMUC with Berkeley UCP Avg Gops/s 891.70 1034.5 (+16%) 1041.4 (+ 17%)

Hopper with Cray UPC SD Gops/s 3.55 12.93 6.61

SuperMUC with Berkeley UCP SD Gops/s 32.6 54.2 72.4

SuperMUC data from Reinhold Bader, LRZ

Fusion Mini/Proxy Apps and NPBs 63

NPB can used to study scalability as well
machine and complier effects

256 512 1024 2048

160

80

40

20

Number of cores

R
un

 T
im

e
(s

)
LU.D NPB

For MG.D the 2X faster
cores on SuperMuc
compared to Hopper gave
2X reduction in run time
but for LU.D the reduction
is only 1.5X

SuperMUC data from Reinhold Bader, LRZ

Fusion Mini/Proxy Apps and NPBs 64

Some comments for hands-on

Fusion Mini/Proxy Apps and NPBs 65

README – UPC
on Cray XE6-Hopper: UPC / PGI

Initialization: module load bupc

Interactive PBS shell grab two nodes:
In the SC tutorial
 qsub -q special qsub -I -V -q interactive -l mppwidth=48

Again to the working directory:
 cd $PBS_O_WORKDIR

Compilation:

Parallel Execution:

Fusion Mini/Proxy Apps and NPBs 66

README – UPC
on Cray XE6-Hopper: Cray UPC

Initialization: module switch PrgEnv-pgi PrgEnv-cray

Interactive PBS shell:
In the SC tutorial
 qsub -q special qsub -I -V -q interactive -l mppwidth=48

Again to the working directory:
 cd $PBS_O_WORKDIR

Compilation:

Parallel Execution:

