
OpenCL:

A Hands-on Introduction

Tim Mattson

Intel Corp.

Alice Koniges

Berkeley Lab/NERSC

Simon McIntosh-Smith

University of Bristol

Acknowledgements: This content is based on slides produced by Tom Deakin and Simon

which were based on slides by Tim and Simon with help from Ben Gaster (Qualcomm) .

Agenda

Lectures Exercises

An Introduction to OpenCL Logging in and running the Vadd program

Understanding Host programs Chaining Vadd kernels together

Kernel programs The D = A + B + C problem

Writing Kernel Programs Matrix Multiplication

Lunch

Working with the OpenCL memory model Several ways to Optimize matrix

multiplication

High Performance OpenCL Matrix multiplication optimization contest

Synchronization in OpenCL The Pi Program (reduction)

Closing Comments

Course materials
In addition to these slides, C++ API header files, a set of exercises,
and solutions, we provide:

OpenCL C 1.2 Reference Card

OpenCL C++ 1.2 Reference Card

These cards will help you keep
track of the API as you do the
exercises:

https://www.khronos.org/files/ope
ncl-1-2-quick-reference-card.pdf

The v1.2 spec is also very readable
and recommended to have on-hand:

https://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf

https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/files/opencl-1-2-quick-reference-card.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.2.pdf

AN INTRODUCTION TO OPENCL

Industry Standards for Programming

Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general

purpose data-parallel
computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

The origins of OpenCL

AMD

ATI

NVIDIA

Intel

Apple

Merged, needed

commonality

across products

GPU vendor –

wants to steal

market share

from CPU

CPU vendor –

wants to steal

market share

from GPU

Was tired of recoding for

many core, GPUs.

Pushed vendors to

standardize.

Wrote a rough draft

straw man API

Khronos Compute

group formed

ARM

Nokia

IBM

Sony

Qualcomm

Imagination

TI

Third party names are the property of their owners.

+ many

more

OpenCL: From cell phone to

supercomputer

• OpenCL Embedded profile for
mobile and embedded silicon
– Relaxes some data type and

precision requirements

– Avoids the need for a separate
“ES” specification

• Khronos APIs provide
computing support for
imaging & graphics
– Enabling advanced applications

in, e.g., Augmented Reality

• OpenCL will enable parallel
computing in new markets
– Mobile phones, cars, avionics

A camera phone with GPS

processes images to

recognize buildings and

landmarks and provides

relevant data from internet

OpenCL Platform Model

• One Host and one or more OpenCL Devices

– Each OpenCL Device is composed of one or more
Compute Units

• Each Compute Unit is divided into one or more Processing Elements

• Memory divided into host memory and device memory

Processing

Element

OpenCL Device

…
…

…

…
… …

…
…

… …
…

…
… …

…

Host

Compute Unit

The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each

point in a problem domain
– E.g., process a 1024x1024 image with one kernel invocation per

pixel or 1024x1024=1,048,576 kernel executions

Traditional loops OpenCL

void

mul(const int n,

 const float *a,

 const float *b,

 float *c)

{

 int i;

 for (i = 0; i < n; i++)

 c[i] = a[i] * b[i];

}

__kernel void

mul(__global const float *a,

 __global const float *b,

 __global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

}

// execute over n work-items

An N-dimensional domain of work-items
• Global Dimensions:

– 1024x1024 (whole problem space)

• Local Dimensions:
– 128x128 (work-group, executes together)

• Choose the dimensions (1, 2, or 3) that are

“best” for your algorithm

1024

1
0
2
4

Synchronization between

work-items possible only

within work-groups:

barriers and memory fences

Cannot synchronize

between work-groups

within a kernel

OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global Memory
/Constant Memory
– Visible to all

 work-groups

• Host memory
– On the CPU

Memory management is explicit:

You are responsible for moving data from

 host → global → local and back

Context and Command-Queues

• Context:
– The environment within which kernels

execute and in which synchronization
and memory management is defined.

• The context includes:
– One or more devices

– Device memory

– One or more command-queues

• All commands for a device (kernel
execution, synchronization, and
memory operations) are submitted
through a command-queue.

• Each command-queue points to a
single device within a context.

Queue

Context

Device

Device Memory

Execution model (kernels)

• OpenCL execution model … define a problem
domain and execute an instance of a kernel for
each point in the domain

__kernel void times_two(

 __global float* input,

 __global float* output)

{

 int i = get_global_id(0);

 output[i] = 2.0f * input[i];

}

get_global_id(0)
10

Input

Output

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

__kernel void

horizontal_reflect(read_only image2d_t src,

 write_only image2d_t dst)

{

 int x = get_global_id(0); // x-coord

 int y = get_global_id(1); // y-coord

 int width = get_image_width(src);

 float4 src_val = read_imagef(src, sampler,

 (int2)(width-1-x, y));

 write_imagef(dst, (int2)(x, y), src_val);

}

Building Program Objects
• The program object encapsulates:

– A context

– The program source or binary, and

– List of target devices and build
options

• The build process to create a
program object:

OpenCL uses runtime

compilation … because

in general you don’t

know the details of the

target device when you

ship the program

Compile for

GPU

Compile for

CPU

GPU

code

CPU

code

cl::Program program(context, KernelSource, true);

Example: vector addition

• The “hello world” program of data parallel

programming is a program to add two vectors

C[i] = A[i] + B[i] for i=0 to N-1

• For the OpenCL solution, there are two parts

– Kernel code

– Host code

Vector Addition - Kernel

__kernel void vadd(__global const float *a,

 __global const float *b,

 __global float *c)

 {

 int gid = get_global_id(0);

 c[gid] = a[gid] + b[gid];

 }

Exercise 1: Running the Vector Add kernel

• Goal:
– To inspect and verify that you can run an OpenCL kernel

• Procedure:
– Take the Vadd program we provide you. It will run a simple kernel to

add two vectors together.

– Look at the host code and identify the API calls in the host code.
Compare them against the API descriptions on the OpenCL C++
reference card.

• Expected output:
– A message verifying that the program completed successfully

1. ssh -X train#@carver.nersc.gov (and enter supplied password)

2. ssh -X dirac# (and enter supplied password)

3. cp -r ~simonmcs/OpenCL_exercises ~

4. module unload pgi

5. module load gcc-sl6

6. module load cuda/5.5

7. cd OpenCL_exercises/Exercises/Exercise01

8. make; ./vadd (etc)

http://carver.nersc.gov/

UNDERSTANDING THE HOST

PROGRAM

Vector Addition – Host

• The host program is the code that runs on the host to:
– Setup the environment for the OpenCL program

– Create and manage kernels

• 5 simple steps in a basic host program:
1. Define the platform … platform = devices+context+queues

2. Create and Build the program (dynamic library for kernels)

3. Setup memory objects

4. Define the kernel (attach arguments to kernel function)

5. Submit commands … transfer memory objects and execute
kernels

As we go over the next set of slides, cross

reference content on the slides to your reference

card. This will help you get used to the reference

card and how to pull information from the card and

express it in code.

The C++ Interface

• Khronos has defined a common C++ header file
containing a high level interface to OpenCL, cl.hpp

• This interface is dramatically easier to work with1

• Key features:

– Uses common defaults for the platform and command-
queue, saving the programmer from extra coding for the
most common use cases

– Simplifies the basic API by bundling key parameters with
the objects rather than requiring verbose and repetitive
argument lists

– Ability to “call” a kernel from the host, like a regular
function

– Error checking can be performed with C++ exceptions
1 especially for C++ programmers…

C++ Interface:

setting up the host program

• Enable OpenCL API Exceptions. Do this before
including the header file
#define __CL_ENABLE_EXCEPTIONS

• Include key header files … both standard and custom
#include <CL/cl.hpp> // Khronos C++ Wrapper API

#include <cstdio> // C style IO (e.g. printf)

#include <iostream> // C++ style IO

#include <vector> // C++ vector types

• Define key namespaces
using namespace cl;

using namespace std;
For information about C++, see

the appendix:

“C++ for C programmers”.

1. Create a context and queue

• Grab a context using a device type:
cl::Context Context(CL_DEVICE_TYPE_DEFAULT);

• Create a command queue for the first

device in the context:

cl::CommandQueue queue(context);

Commands and Command-Queues

• Commands include:
– Kernel executions

– Memory object management

– Synchronization

• The only way to submit
commands to a device is
through a command-queue.

• Each command-queue
points to a single device
within a context.

• Multiple command-queues
can feed a single device.
– Used to define independent

streams of commands that
don’t require synchronization

Queue Queue

Context

GPU

CPU

Command-Queue execution details

• Command queues can be configured in

different ways to control how commands

execute

• In-order queues:
– Commands are enqueued and complete in the order

they appear in the program (program-order)

• Out-of-order queues:
– Commands are enqueued in program-order but can

execute (and hence complete) in any order.

• Execution of commands in the command-

queue are guaranteed to be completed at

synchronization points
– Discussed later

Queue Queue

Context

GPU

CPU

2. Create and Build the program

• Define source code for the kernel-program either as a

string literal (great for toy programs) or read it from a

file (for real applications).

• Create the program object and compile to create a

“dynamic library” from which specific kernels can be

pulled:

cl::Program program(context, KernelSource, true);

“true” tells OpenCL to build

(compile/link) the program object

KernelSource is a string … either statically set in the host program

or returned from a function that loads the kernel code form a file.

3. Setup Memory Objects
• For vector addition we need 3 memory objects, one each

for input vectors A and B, and one for the output vector C

• Create input vectors and assign values on the host:
std::vector<float> h_a(LENGTH), h_b(LENGTH), h_c(LENGTH);

for (i = 0; i < length; i++) {

 h_a[i] = rand() / (float)RAND_MAX;

 h_b[i] = rand() / (float)RAND_MAX;

}

• Define OpenCL device buffers and copy from host buffers:
cl::Buffer d_a(context, begin(h_a), end(h_a), true);

cl::Buffer d_b(context, begin(h_b), end(h_b), true);

cl::Buffer d_c(context, CL_MEM_WRITE_ONLY, sizeof(float)*count);

What do we put in device memory?

• Memory Objects:
– A handle to a reference-counted region of global

memory.

• There are two kinds of memory object
– Buffer object:

• Defines a linear collection of bytes.

• The contents of buffer objects are fully exposed within kernels
and can be accessed using pointers

– Image object:
• Defines a two- or three-dimensional region of memory.

• Image data can only be accessed with read and write functions,
i.e. these are opaque data structures. The read functions use a
sampler.

Used when interfacing with a graphics API such as

OpenGL. We won’t use image objects in this tutorial.

Creating and manipulating buffers
• Buffers are declared on the host as object type:

cl::Buffer

• Arrays in host memory hold your original host-side

data:

std::vector<float> h_a, h_b;

• Create the device-side buffer (d_a), assign read

only memory to hold the host array (h_a) and copy

it into device memory:

cl::Buffer d_a(context, begin(h_a), end(h_a), true);

Stipulates that this is

a read-only buffer

Start_iterator and end_iterator for the

container holding host side object

Creating and manipulating buffers

• The last argument sets the read/write access to

the Buffer by the device . true means “read only”

while false (the default) means “read/write”.

• Submit command to copy the device buffer back to

host memory in array “h_c”:

cl::copy(queue, d_c, begin(h_c), end(h_c));

• Can also copy host memory to device buffers:

cl::copy(queue, begin(h_c), end(h_c), d_c);

4. Define the kernel

• Create a kernel functor for the kernels you want

to be able to call in the program:

auto vadd = cl::make_kernel

 <cl::Buffer, cl::Buffer, cl::Buffer>

 (program, “vadd”);

• This means you can ‘call’ the kernel as a ‘function’

in your host code to enqueue the kernel.

Must match the pattern of

arguments to the kernel.

A previously created

“program object” serving as

a dynamic library of kernels

The name of the function

used for the kernel

5. Enqueue commands
• Specify global and local dimensions

– cl::NDRange global(1024)

– Cl::NDRange local(64)

– If you don’t specify a local dimension, it is assumed as

cl::NullRange, and the runtime picks a size for you

• Enqueue the kernel for execution (note: non-blocking):

vadd(cl::EnqueueArgs(queue, global), d_a, d_b, d_c);

• Read back result (as a blocking operation). We use an in-

order queue to assure the previous commands are

completed before the read can begin

cl::copy(queue, begin(h_c), end(h_c), d_c);

// Create buffers

// True indicates CL_MEM_READ_ONLY

// False indicates CL_MEM_READ_WRITE

d_a = Buffer(context,begin(h_a),end(h_a),true);

d_b = Buffer(context,begin(h_b),end(h_b),true);

d_c = Buffer(context,begin(h_c),end(h_c),false);

// Enqueue the kernel

vadd(EnqueueArgs(

 queue,

 NDRange(count)),

 d_a, d_b, d_c, count);

copy(queue, d_c, begin(h_c), end(h_c));

}

#define N 1024

using namespace cl;

int main(void) {

vector<float> h_a(N), h_b(N), h_c(N);

// initialize these host vectors…

Buffer d_a, d_b, d_c;

Context context(

 CL_DEVICE_TYPE_DEFAULT);

CommandQueue queue(context);

Program program(

 context,

 loadprogram(“vadd.cl”), true);

// Create the kernel functor

auto vadd = make_kernel

 <Buffer, Buffer, Buffer, int>

 (program, “vadd”);

C++ interface: The vadd host program

Exercise 2: Chaining vector add kernels

• Goal:
– To verify that you understand manipulating kernel invocations and buffers

in OpenCL

• Procedure:
– Start with your VADD program in C++

– Add additional buffer objects and assign them to vectors defined on the
host (see the provided vadd programs for examples of how to do this)

– Chain vadds … e.g. C=A+B; D=C+E; F=D+G.

– Read back the final result and verify that it is correct

• Expected output:
– A message to standard output verifying that the chain of vector additions

produced the correct result.

As you modify vadd to chain vadd kernels, you’ll need to

create additional buffers:
Buffer(context,begin(h_a),end(h_a),true);

And enqueue additional kernels:
vadd(EnqueueArgs(queue, NDRange(count)), d_a, d_b, d_c, count);

UNDERSTANDING THE KERNEL

PROGRAM

Working with Kernels (C++)

• The kernels are where all the action is in an OpenCL
program.

• Steps to using kernels:
1. Load kernel source code into a program object from a

file

2. Make a kernel functor from a function within the
program

3. Initialize device memory

4. Call the kernel functor, specifying memory objects
and global/local sizes

5. Read results back from the device

• Note the kernel function argument list must match
the kernel definition on the host.

Create a kernel
• Kernel code:

– A string in the host code (“toy codes”).

– Loaded from a file as a string or binary.

• Compile for the default devices within the default Context
program.build();

• Define the kernel functor from a function within the
program – allows us to ‘call’ the kernel to enqueue it as if
it were just another function

auto vadd = make_kernel<Buffer, Buffer, Buffer, int>

 (program, “vadd”);

The build step can be carried out by specifying

true in the program constructor. If you need to

specify build flags you must specify false in the

constructor and use this method instead.

Advanced: get info about the kernel

• Advanced: if you want to query information about a
kernel, you will need to create a kernel object:
 Kernel ko_vadd(program, “vadd”);

• E.g. get default size of local dimension (size of a Work-
Group)

::size_t local =

 ko_vadd.getWorkGroupInfo

 <CL_KERNEL_WORK_GROUP_SIZE>

 (Device::getDefault());

We can use any work-group-info parameter from table 5.15 in the

OpenCL 1.2 specification. The function will return the appropriate type.

Call (enqueue) the kernel

• Enqueue the kernel for execution with buffer

objects d_a, d_b and d_c and their length,

count:

vadd(

 EnqueueArgs(queue, NDRange(count), NDRange(local)),

 d_a, d_b, d_c, count);

We can include any arguments from the clEnqueueNDRangeKernel

function including Event wait lists and the command queue options

Exercise 3: The D = A + B + C problem

• Goal:

– To verify that you understand how to control the
argument definitions for a kernel.

– To verify that you understand the host/kernel interface.

• Procedure:

– Start with your VADD program.

– Modify the kernel so it adds three vectors together.

– Modify the host code to define three vectors and
associate them with relevant kernel arguments.

– Read back the final result and verify that it is correct.

• Expected output:

– Test your result and verify that it is correct. Print a
message to that effect on the screen.

We have now covered the basic

platform runtime APIs in OpenCL

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

In

Order

Queue

Out of

Order

Queue

GPU

Context

__kernel void

dp_mul(global const float *a,

 global const float *b,

 global float *c)

{

 int id = get_global_id(0);

 c[id] = a[id] * b[id];

}

dp_mul

CPU program binary

dp_mul

GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order

Queue

Out of

Order

Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

INTRODUCTION TO OPENCL

KERNEL PROGRAMMING

OpenCL C kernel language

• Derived from ISO C99

– A few restrictions: no recursion, function pointers,

functions in C99 standard headers ...

– Preprocessing directives defined by C99 are

supported (#include etc.)

• Built-in data types

– Scalar and vector data types, pointers

– Data-type conversion functions:

• convert_type<_sat><_roundingmode>

– Image types: image2d_t, image3d_t and sampler_t

Vector Types
• The OpenCL C kernel programming language provides a set of

vector instructions:
– These are portable between different vector instruction sets

• These instructions support vector lengths of 2, 4, 8, and 16 …
for example:
– char2, ushort4, int8, float16, …

• Vector literal

int4 vi0 = (int4) (2, 3, -7, -7;

int4 vi1 = (int4) (0, 1, 2, 3);

2 3 -7 -7

0 1 2 3

Vector Types
• The OpenCL C kernel programming language provides a set of

vector instructions:
– These are portable between different vector instruction sets

• These instructions support vector lengths of 2, 4, 8, and 16 …
for example:
– char2, ushort4, int8, float16, …

• Vector literal

int4 vi0 = (int4) (2, 3, -7, -7;

int4 vi1 = (int4) (0, 1, 2, 3);

2 3 -7 -7

0 1 2 3

• Vector ops

vi0 += vi1;

vi0 = abs(vi0);

2 3 -7 -7

0 1 2 3

2 4 -5 -4

+

2 4 5 4

data conversions

float4 f; // a vector of 4 floats

//truncate (rtz) floats to generate ints. Results

//implementation defined for f > INT_MAX, NaN etc

int4 i1 = convert_int4(f);

// Same as above (rtz) but for values > INT_MAX clamp

// to INT_MAX, values < INT_MIN clamp to INT_MIN.

// NaN  0.

int4 i2 = convert_int4_sat(f);

// round the floats to the nearest integer

int4 i3 = convert_int4_rte(f);

• Data-type conversion functions:

– convert_type[_sat][_roundingmode]

OpenCL C Language Highlights
• Function qualifiers

– __kernel qualifier declares a function as a kernel
• I.e. makes it visible to host code so it can be enqueued

– Kernels can call other kernel-side functions

• Address space qualifiers

– __global, __local, __constant, __private

– Pointer kernel arguments must be declared with an address space qualifier

• Work-item functions

– uint get_work_dim() … number of dimensions in use (1,2, or 3)

– size_t get_global_id(uint n) … global work-item ID in dim “n”

– size_t get_local_id(uint n) … work-item ID in dim “n” inside work-group

– size_t get_group_id(uint n) … ID of work-group in dim “n”

– size_t get_global_size(uint n) … num of work-item in dim “n”

– size_t get_local_size(uint n) … num of work-item in work group in dim “n”

• Synchronization functions

– Barriers - all work-items within a work-group must execute the barrier
function before any work-item can continue

– Memory fences - provides ordering between memory operations

OpenCL C Language Restrictions

• Pointers to functions are not allowed

• Pointers to pointers allowed within a kernel,
but not as an argument to a kernel invocation

• Bit-fields are not supported

• Variable length arrays and structures are not
supported

• Recursion is not supported (yet!)

• Double types are optional in OpenCL v1.2, but
the key word is reserved

 (note: most implementations support double)

Matrix multiplication: sequential code

void mat_mul(int Mdim, int Ndim, int Pdim,

 float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Ndim; i++) {

 for (j = 0; j < Mdim; j++) {

 for (k = 0; k < Pdim; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

 }

 }

 }

}

We calculate C=AB, dimA = (N x P), dimB=(P x M), dimC=(N x M)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each

element of C

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Order; i++) {

 for (j = 0; j < Order; j++) {

 for (k = 0; k < Order; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

 }

 }

 }

}

We calculate C=AB, dimA = (N x N), dimB=(N x N), dimC=(N x N)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each

element of C

Let’s make it easier and

specialize to square

matrices

Matrix multiplication performance

• Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

using the gcc compiler.

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Order; i++) {

 for (j = 0; j < Order; j++) {

 for (k = 0; k < Order; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i* Order + j] += A[i* Order + k] * B[k* Order + j];

 }

 }

 }

}

Exercise 4: Write a matrix multiply kernel

• Goal:
– To verify that you understand how to convert an array based serial

code into an OpenCL kernel.

• Procedure:
– Start with the provided serial matrix multiply code.

– Copy it into a file (mmul.cl) and convert it into a kernel callable from
OpenCL where each work-item computes an element of the result
matrix

• Expected output:
– None … we just want you to write the code and we’ll discuss the

results as a group.

Hints:

__kernel to mark your kernel which much be a void function

__global to mark global memory objects

int gid = get_global_id(DIM); //DIM is 0, 1 or 2 for dimension in NDRange

Matrix multiplication: OpenCL kernel (1/2)

void mat_mul(int Mdim, int Ndim, int Pdim,

 float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Order; i++) {

 for (j = 0; j < Order; j++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 for (k = 0; k < Order; k++) {

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

 }

 }

 }

}

__kernel void mat_mul(

 const int Order,

 __global float *A, __global float *B, __global float *C)

Mark as a kernel function and

specify memory qualifiers

__kernel void mat_mul(

 const int Order,

 __global float *A, __global float *B, __global float *C)

{

 int i, j, k;

 for (i = 0; i < Order; i++) {

 for (j = 0; j < Order; j++) {

 for (k = 0; k < Order; k++) {

 // C(i, j) = sum(over k) A(i,k) * B(k,j)

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

 }

 }

 }

}

Matrix multiplication: OpenCL kernel (2/2)

i = get_global_id(0);

j = get_global_id(1);

Remove outer loops and set

work-item co-ordinates

__kernel void mmul(

 const int Order,

 __global float *A,

 __global float *B,

 __global float *C)

Matrix multiplication: OpenCL kernel improved

{

 int k;

 int i = get_global_id(0);

 int j = get_global_id(1);

 float tmp = 0.0f;

 for (k = 0; k < Order; k++)

 tmp += A[i*Order+k]*B[k*Order+j];

 }

 C[i*Order+j] += tmp;

}

Rearrange a bit and use a local scalar for intermediate C element

values (a common optimization in Matrix Multiplication functions)

Building programs

• To use a kernel, you must:

1. build the program object containing the kernel

• Specify the kernel source in the program object

constructor.

• We provide a utility function to load the source from a

file (or you can specify the source as a string)

cl::Program program(context, util::loadProgram("matmul1.cl"));

2. Compile the program object

• You can compile the program with the constructor by

specifying the last argument as “true”:
cl::Program program(context, util::loadProgram("matmul1.cl"),true);

How do you recover compiler messages should there be

compile-time errors in your kernel?

Compiler error messages (1/2)
• You need to use an explicit build step so you can recover the error and query

the system to fetch the compiler messages.

1. Do NOT build the program with the constructor (i.e. do not set the last
argument in the program constructor to true).

cl::Program program(context, util::loadProgram("matmul1.cl"));

2. Explicitly build the program within a try block to catch the error exception:

 try

 {

 program.build();

 }

 catch (cl::Error error)

 {

 // If it was a build error then show the error

 if (error.err() == CL_BUILD_PROGRAM_FAILURE)

 {

 /// recover compiler message (see the next slide)

 }

 throw error;

 }

Compiler error messages (2/2)
• Compiled code is connected to the device … so we need a

handle to reference the device

 std::vector<cl::Device> devices;

 devices = context.getInfo<CL_CONTEXT_DEVICES>();

• In our programming, we’ve been using the default device

which is the first one (devices[0]).

• We need to query the program object to get the “BuildInfo”

 std::string built = program.getBuildInfo

 <CL_PROGRAM_BUILD_LOG>(devices[0]);

• Now we can output the error compiler message

 std::cerr << built << "\n";

Compiler error messages: Complete Example

 cl::Program program(context, util::loadProgram("matmul1.cl"));

 try

 {

 program.build();

 }

 catch (cl::Error error)

 {

 // If it was a build error then show the error

 if (error.err() == CL_BUILD_PROGRAM_FAILURE)

 {

 std::vector<cl::Device> devices;

 devices = context.getInfo<CL_CONTEXT_DEVICES>();

 std::string built = program.getBuildInfo

 <CL_PROGRAM_BUILD_LOG>(devices[0]);

 std::cerr << built << "\n";

 }

 throw error;

 }

Exercise 5: The C = A * B problem

• Goal:
– To verify that you understand how to write a host

program.

• Procedure:
– Using the VADD host program and serial matrix

multiply programs as your guide, write a host
program to call your matrix multiplication kernel.

– Copy the result matrix back to the host and verify
output (using the functions we provided in the serial
program).

• Expected output:
– Test your result and verify that it is correct. Output

the runtime and the MFLOPS.

Matrix multiplication host program
#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("matmul1.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),

 end(h_A), true);

 d_B = cl::Buffer(context, begin(h_B),

 end(h_B), true);

 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N,N)), N,
 d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may

observe completely different results should you

run these tests on your own system.

UNDERSTANDING THE OPENCL

MEMORY HIERARCHY

OpenCL Memory model
• Private Memory

– Per work-item

• Local Memory
– Shared within a

 work-group

• Global/Constant
Memory
– Visible to all

 work-groups

• Host memory
– On the CPU

Memory management is explicit:

You are responsible for moving data from

 host → global → local and back

The Memory Hierarchy

Private memory
O(10) words/WI

Local memory
O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory
O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory
O(1-100) GBytes/s

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

Bandwidths Sizes

Managing the memory hierarchy is one of the most important
things to get right to achieve good performance

Optimizing matrix multiplication
• MM cost determined by FLOPS and memory movement:

– 2*n3 = O(n3) FLOPS

– Operates on 3*n2 = O(n2) numbers

• To optimize matrix multiplication, we must ensure that for

every memory access we execute as many FLOPS as

possible.

• Outer product algorithms are faster, but for pedagogical

reasons, let’s stick to the simple dot-product algorithm.

• We will work with work-item/work-group sizes and the

memory model to optimize matrix multiplication

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Optimizing matrix multiplication

• There may be significant overhead to manage work-items

and work-groups.

• So let’s have each work-item compute a full row of C

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

• And with an eye towards future optimizations, let’s collect

work-items into work-groups with 64 work-items per work-

group

Exercise 6: C = A * B (1 row per work-item)

• Goal:
– To give you experience managing the number of work-

items per workgroup.

• Procedure:
– Start from you last matrix multiplication program.

Modify it so each work-item handles an entire row of the
matrix.

• Expected output:
– Test your result and verify that it is correct. Output the

runtime and the MFLOPS.

cl::EnqueueArgs() is used with the kernel functor to control how a kernel is

enqueued. There are many overloaded forms … the one you’ll need is:

cl::EnqueueArgs(NDRange Global, NDRange Local)

Where “global” and “local” are (N), (N,N), or (N,N,N) depending on the

dimensionality of the NDRange index space.

An N-dimension domain of work-items

• Global Dimensions: 1024 (1D)

 Whole problem space (index space)

• Local Dimensions: 64 (work-items per work-group)

 Only 1024/64 = 16 work-groups in total

• Important implication: we will have a lot fewer
work-items per work-group (64) and work-
groups (16). Why might this matter?

1
0
2
4

6
4

__kernel void mmul(

 const int Order,

 __global float *A,

 __global float *B,

 __global float *C)

Matrix multiplication: One work item per row of C

{

 int j, k;

 int i = get_global_id(0);

 float tmp;

 for (j = 0; j < Order; j++) {

 tmp = 0.0f;

 for (k = 0; k < Order; k++)

 tmp += A[i*Order+k]*B[k*Order+j];

 }

 C[i*Order+j] += tmp;

 }

}

Mat. Mul. host program (1 row per work-item)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("mmulCrow.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),

 end(h_A), true);

 d_B = cl::Buffer(context, begin(h_B),

 end(h_B), true);

 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),

 cl::Ndrange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Mat. Mul. host program (1 row per work-item)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("mmulCrow.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),

 end(h_A), true);

 d_B = cl::Buffer(context, begin(h_B),

 end(h_B), true);

 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),

 cl::Ndrange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Changes to host program:
1. 1D ND Range set to

number of rows in the C

matrix

2. Local Dimension set to 64

(which gives us 16 work-

groups which matches the

GPU’s number of compute

units).

Third party names are the property of their owners.

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You

may observe completely different results should

you run these tests on your own system.

This has started to help.

Optimizing matrix multiplication

• Notice that, in one row of C, each element reuses the same

row of A.

• Let’s copy that row of A into private memory of the work-

item that’s (exclusively) using it to avoid the overhead of

loading it from global memory for each C(i,j) computation.

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each

work-item

Private Memory

• A work-items private memory:
– A very scarce resource, only a few tens of 32-bit

words per Work-Item at most (on a GPU)

– If you use too much it spills to global memory or
reduces the number of Work-Items that can be
run at the same time, potentially harming
performance*

– Think of these like registers on the CPU

• How do you create and manage private
memory?
– Declare statically inside your kernel

* Occupancy on a GPU

Exercise 7: C = A * B (Row of A in private memory)

• Goal:
– To give you experience working with private memory.

• Procedure:
– Start from you last matrix multiplication program (the

row-based method). Modify it so each work item copies
A from global to private memory to reduce traffic into
global memory.

• Expected output:
– Test your result and verify that it is correct. Output the

runtime and the MFLOPS.

Private memory can be allocated statically inside a kernel

… so just declare any arrays you need.

You can use normal loads and stores inside a kernel to

move data between private and global address spaces.

__kernel void mmul(

 const int Order,

 __global float *A,

 __global float *B,

 __global float *C)

{

 int j, k;

 int i = get_global_id(0);

 float tmp;

 float Awrk[1024];

Matrix multiplication: (Row of A in private memory)

for (k = 0; k < Pdim; k++)

 Awrk[k] = A[i*Ndim+k];

 for (j = 0; j < Order; j++) {

 tmp = 0.0f;

 for (k = 0; k < Order; k++)

 tmp += Awrk[k]*B[k*Order+j];

 }

 C[i*Order+j] += tmp;

 }

}

__kernel void mmul(

 const int Order,

 __global float *A,

 __global float *B,

 __global float *C)

{

 int j, k;

 int i = get_global_id(0);

 float tmp;

 float Awrk[1024];

Matrix multiplication: (Row of A in private memory)

for (k = 0; k < Pdim; k++)

 Awrk[k] = A[i*Ndim+k];

 for (j = 0; j < Order; j++) {

 tmp = 0.0f;

 for (k = 0; k < Order; k++)

 tmp += Awrk[k]*B[k*Order+j];

 }

 C[i*Order+j] += tmp;

 }

}

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

Copy a row of A

into private

memory from

global memory

before we start

with the matrix

multiplications.

Setup a work array for A in

private memory*

Mat. Mul. host program (Row of A in private memory)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("mmulCrow.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),

 end(h_A), true);

 d_B = cl::Buffer(context, begin(h_B),

 end(h_B), true);

 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),

 cl::Ndrange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Host program unchanged from last exercise

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

Device is Tesla® M2090 GPU from

NVIDIA® with a max of 16

compute units, 512 PEs

Device is Intel® Xeon® CPU,

E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may

observe completely different results should you run

these tests on your own system.

Big impact!

Optimizing matrix multiplication

• We already noticed that, in one row of C, each element

uses the same row of A

• Each work-item in a work-group also uses the same columns

of B

• So let’s store the B columns in local memory (which is

shared by the work-items in the work-group)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each

work-item Local memory for each

work-group

Local Memory

• How do you create and manage local memory?
– Create and Allocate local memory on the host

• cl::LocalSpaceArg localmem = cl::Local(sizeof(float) * N);

– Setup the kernel to receive local memory blocks
• auto foo = cl::make_kernel<int, cl::Buffer, cl::LocalSpaceArg>(program, “bar”);

– Mark kernel arguments that are from local memory as __local

– Your kernels are responsible for transferring data between Local and
Global/Constant memories … there are built-in functions to help
(async_work_group_copy(), async_workgroup_strided_copy(), etc)

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

• A work-group’s shared memory
– Typically 10’s of KBytes per Compute Unit*

– Use Local Memory to hold data that can be
reused by all the work-items in a work-group

– As multiple Work-Groups may be running on each Compute Unit
(CU), only a fraction of the total Local Memory size may be
available to each Work-Group

Local Memory performance hints

• Local Memory doesn’t always help…

– CPUs don’t have special hardware for it

– This can mean excessive use of Local Memory might

slow down kernels on CPUs

– GPUs now have effective on-chip caches which can

provide much of the benefit of Local Memory but

without programmer intervention

– Access patterns to Local Memory affect performance

in a similar way to accessing Global Memory

• Have to think about things like coalescence & bank conflicts

– So, your mileage may vary!

Memory Consistency

• OpenCL uses a relaxed consistency memory model; i.e.

– The state of memory visible to a work-item is not guaranteed to be

consistent across the collection of work-items at all times.

• Within a work-item:

– Memory has load/store consistency to the work-item’s private view of

memory, i.e. it sees its own reads and writes correctly

• Within a work-group:

– Local memory is consistent between work-items at a barrier.

• Global memory is consistent within a work-group at a

barrier, but not guaranteed across different work-groups!!

– This is a common source of bugs!

• Consistency of memory shared between commands (e.g.

kernel invocations) is enforced by synchronization (barriers,

events, in-order queue)

Work-Item Synchronization

• Within a work-group

void barrier()
– Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be
taken by either:

• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Across work-groups
– No guarantees as to where and when a particular work-group will be

executed relative to another work-group

– Cannot exchange data, or have barrier-like synchronization
between two different work-groups! (Critical issue!)

– Only solution: finish the kernel and start another

Ensure correct order of memory operations

to local or global memory (with flushes or

queuing a memory fence)

Exercise 8: C=A*B, share B column between work-items

• Goal:
– To give you experience working with local memory.

• Procedure:
– Start from you last matrix multiplication program (the row-based method

using private memory). Modify it so each work group copies a column of B
into local memory and shares it between work-items in a work-group.

• Expected output:
– Verify that your result is correct. Output the runtime and the MFLOPS.

Tell the kernel an argument is local

__local

Find a work-item’s ID within a work-group and size of a work-group:

 int iloc = get_local_id(0);

 int nloc = get_local_size(0);

Work items copy global into local data, so you need to synchronize them

barrier(CLK_LOCAL_MEM_FENCE);

Allocate local memory on the host and pass it into the kernel
cl::LocalSpaceArg localmem = cl::Local(sizeof(float) * N);

auto rowcol = cl::make_kernel<int, cl::Buffer, cl::LocalSpaceArg>(program, “mmul”);

__kernel void mmul(

 const int Order,

 __global float *A,

 __global float *B,

 __global float *C,

 __local float *Bwrk)

{

 int j, k;

 int i = get_global_id(0);

 int iloc = get_local_id(0);

 int nloc = get_local_size(0);

 float tmp;

 float Awrk[1024];

Matrix multiplication: B column shared between work-items

for (k = 0; k < Pdim; k++)

 Awrk[k] = A[i*Ndim+k];

 for (j = 0; j < Order; j++) {

 for (k=iloc; k< Order; k+=nloc)

 Bwrk[k] = B[k* Order +j];

 barrier(CLK_LOCAL_MEM_FENCE);

 tmp = 0.0f;

 for (k = 0; k < Order; k++)

 tmp += Awrk[k]*B[k*Order+j];

 }

 C[i*Order+j] += tmp;

 }

}

__kernel void mmul(

 const int Order,

 __global float *A,

 __global float *B,

 __global float *C,

 __local float *Bwrk)

{

 int j, k;

 int i = get_global_id(0);

 int iloc = get_local_id(0);

 int nloc = get_local_size(0);

 float tmp;

 float Awrk[1024];

for (k = 0; k < Pdim; k++)

 Awrk[k] = A[i*Ndim+k];

 for (j = 0; j < Order; j++) {

 for (k=iloc; k< Order; k+=nloc)

 Bwrk[k] = B[k* Order +j];

 barrier(CLK_LOCAL_MEM_FENCE);

 tmp = 0.0f;

 for (k = 0; k < Order; k++)

 tmp += Awrk[k]*B[k*Order+j];

 }

 C[i*Order+j] += tmp;

 }

}
Pass a work array in local memory to hold a

column of B. All the work-items do the copy

“in parallel” using a cyclic loop distribution

(hence why we need iloc and nloc)

Matrix multiplication: B column shared between work-items

Mat. Mul. host program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("mmulCrow.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

 <int, cl::Buffer, cl::Buffer, cl::Buffer,

 cl::LocalSpaceArg > (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);

 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

 d_C = cl::Buffer(context,

 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Bwrk =

 cl::Local(sizeof(float) * Pdim);

 mmul(cl::EnqueueArgs(queue,

 cl::NDRange(N), cl::Ndrange(64)),

 N, d_A, d_B, d_C, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)

}

Mat. Mul. host program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("mmulCrow.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

 <int, cl::Buffer, cl::Buffer, cl::Buffer,

 cl::LocalSpaceArg > (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);

 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

 d_C = cl::Buffer(context,

 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Bwrk =

 cl::Local(sizeof(float) * Pdim);

 mmul(cl::EnqueueArgs(queue,

 cl::NDRange(N), cl::Ndrange(64)),

 N, d_A, d_B, d_C, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)

}

Change host program to pass

local memory to kernels.

• Add an arg of type

LocalSpaceArg is needed.

• Allocate the size of local

memory

• Update argument list in

kernel functor

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may

observe completely different results should you run

these tests on your own system.

HIGH PERFORMANCE OPENCL

Execution Model: How do kernels execute?

Queued

Complete

Submitted

Ready

Running

Ended

Launch

Submit

Start

End

Complete

Enqueue

Transitions

observable

from the

host

program

Kernel moves to the

device and once

prerequisites are

met, launched

Kernel placed in queue

Work-groups are placed into a

virtual work-pool

Work-groups execute in any order

from the work-pool

All the work-groups for a kernel have

finished

Host and other kernels are notified

High Performance OpenCL

• A good OpenCL program is
optimized for high throughput …
work-groups are scheduled from
the work-pool and stream
through the device, hopefully
without observable stalls.

• By having more work than
processing elements, you can
hide memory latencies and
keep all the hardware busy.

• Instruction overhead minimized
… work-groups broken down
into collections that execute
together in “SIMD mode” from a
single stream of instructions.
(Warp for NVIDIA, Wavefront for
AMD)

Work-item divergence
• What happens when work-items branch?

• Work-items are gathered into collections that run together on the
hardware (This is the concept of a “Warp” from CUDA).

• The hardware runs this collection in a SIMD data parallel model with all
the work-items starting together from the same program address.

• Each work-item has its own instruction address counter and register
state

– Each work-item is free to branch and execute independently (diverge)

– Provide the MIMD abstraction

• Branch behavior

– Each branch will be executed serially

– Work-items not following the current branch will be disabled (masked)

95

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Keep the processing elements (PE) busy

• You need uniform execution of the work-items scheduled to

execute together. Avoid divergent control flows.

• Occupancy: a measure of the fraction of time during a

computation when the PE’s are busy. Goal is to keep this

number high (well over 50%).

• Pay attention to the number of work-items and work-group sizes

– Rule of thumb: On a modern GPU you want at least 4 work-items

per PE in a Compute Unit

– More work-items are better, but diminishing returns, and there is

an upper limit

• Each work item consumes PE finite resources (registers etc)

Use the Memory Hierarchy effectively

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

• Organize your computation so it puts the most frequently used data

in faster memory … optimized of course around the available size.

Optimization issues
• Efficient access to memory

– Memory coalescing
• Ideally get work-item i to access data[i] and work-item j to access

data[j] at the same time etc.

– Memory alignment
• Padding arrays to keep everything aligned to multiples of 16, 32 or

64 bytes

• Registers per Work-Item– ideally low and a nice divisor of
the number of hardware registers per Compute Unit

– E.g. 32,768 on M2050 GPUs

– These are statically allocated and shared between all Work-
Items and Work-Groups assigned to each Compute Unit

– Four Work-Groups of 1,024 Work-Items each would result in
just 8 registers per Work-Item! Typically aim for 16-32
registers per Work-Item

Memory layout is critical to

performance

• “Structure of Arrays vs. Array of Structures”
problem:

 struct { float x, y, z, a; } Point;

• Structure of Arrays (SoA) suits memory
coalescence on GPUs

• Array of Structures (AoS) may suit cache
hierarchies on CPUs

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items

like to access

adjacent memory

Individual work-

items like to access

adjacent memory

Portable performance in OpenCL
• Don’t optimize too much for any one platform, e.g.

– Don’t write specifically for certain warp/wavefront sizes etc

– Be careful not to max out specific sizes of local/global memory

– OpenCL’s vector data types have varying degrees of support – faster
on some devices, slower on others

– Some devices have caches in their memory hierarchies, some don’t,
and it can make a big difference to your performance without you
realizing

– Choosing the allocation of Work-Items to Work-Groups and
dimensions on your kernel launches

– Performance differences between unified vs. disjoint host/global
memories

– Double precision performance varies considerably from device to
device

• Recommend trying your code on several different platforms to see
what happens (profiling is good!)
– At least two different GPUs (ideally different vendors!) and at least

one CPU

Consider our matrix multiplication example

• So far, we’ve used matrix multiplication to explore the

memory hierarchy, but we haven’t really thought about

what the algorithm needs to run REALLY fast?

• To make this fast, you need to break the problem down

into chunks that do lots of work for sub problems that fit in

fast memory (OpenCL local memory).

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Order; i++) {

 for (j = 0; j < Order; j++) {

 for (k = 0; k < Order; k++) {

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

 }

 }

 }

}

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 for (i = 0; i < Order; i++)

 for (j = 0; j < Order; j++)

 for (k = 0; k < Order; k++)

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

}

Let’s get rid of all

those ugly brackets

Let’s get rid of all

those ugly brackets

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 int NB=Order/block_size; // assume Order%block_size=0

 for (ib = 0; ib < NB; ib++)

 for (i=ib*NB;i<(ib+1)*NB;i++)

 for (jb = 0; jb < NB; jb++)

 for (j=jb*NB;j<(jb+1)*NB;j++)

 for (kb = 0; kb < NB; kb++)

 for (k=kb*NB;k<(kb+1)*NB;k++)

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

}

Break each loop

into chunks with a

size chosen to

match the size of

your fast memory

Break each loop

into chunks with a

size chosen to

match the size of

your fast memory

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 int NB=Order/block_size; // assume Order%block_size=0

 for (ib = 0; ib < NB; ib++)

 for (jb = 0; jb < NB; jb++)

 for (kb = 0; kb < NB; kb++)

 for (i=ib*NB;i<(ib+1)*NB;i++)

 for (j=jb*NB;j<(jb+1)*NB;j++)

 for (k=kb*NB;k<(kb+1)*NB;k++)

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

}

Rearrange loop nest to

move loops over blocks

“out” and leave loops

over a single block

together

Rearrange loop nest to

move loops over blocks

“out” and leave loops

over a single block

together

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 int NB=Order/block_size; // assume Order%block_size=0

 for (ib = 0; ib < NB; ib++)

 for (jb = 0; jb < NB; jb++)

 for (kb = 0; kb < NB; kb++)

 for (i=ib*NB;i<(ib+1)*NB;i++)

 for (j=jb*NB;j<(jb+1)*NB;j++)

 for (k=kb*NB;k<(kb+1)*NB;k++)

 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

}

This is just a local matrix

multiplication of a single block

This is just a local matrix

multiplication of a single block

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 int NB=Order/block_size; // assume Order%block_size=0

 for (ib = 0; ib < NB; ib++)

 for (jb = 0; jb < NB; jb++)

 for (kb = 0; kb < NB; kb++)

 sgemm(C, A, B, ….) // Cib,jb += Aib,kb*Bkb,jb

}

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)

{

 int i, j, k;

 int NB=Order/block_size; // assume Order%block_size=0

 for (ib = 0; ib < NB; ib++)

 for (jb = 0; jb < NB; jb++)

 for (kb = 0; kb < NB; kb++)

 sgemm(C, A, B, ….) // Cib,jb += Aib,kb*Bkb,jb

}

= + x

A(ib,:) B(:,jb) C(ib,jb) C(ib,jb)

Exercise 9: The C = A * B Competition

• Goal:
– To see who can get the best performance from their

matrix multiplication program.

• Procedure:
– Start from which ever matrix multiplication program you

choose.

– Make it fast. But TEST OUTPUT …. You must get correct
results.

– Remember … block your algorithms to exploit the
natural execution widths of your hardware, make good
use of local and private memory.

• Expected output:
– Test your result and verify that it is correct. Output the

runtime and the MFLOPS.

Blocked matrix multiply: kernel
#define blksz 16

__kernel void mmul(

 const unsigned int N,

 __global float* A,

 __global float* B,

 __global float* C,

 __local float* Awrk,

 __local float* Bwrk)

{

 int kloc, Kblk;

 float Ctmp=0.0f;

 // compute element C(i,j)

 int i = get_global_id(0);

 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)

 int Iblk = get_group_id(0);

 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)

 // of block C(Iblk, Jblk)

 int iloc = get_local_id(0);

 int jloc = get_local_id(1);

 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B

 int Abase = Iblk*N*blksz; int Ainc = blksz;

 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

 for (Kblk = 0; Kblk<Num_BLK; Kblk++)

 {

 //Load A(Iblk,Kblk) and B(Kblk,Jblk).

 //Each work-item loads a single element of the two

 //blocks which are shared with the entire work-group

 Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];

 Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll

 for(kloc=0; kloc<blksz; kloc++)

 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;

 }

 C[j*N+i] = Ctmp;

}

Blocked matrix multiply: kernel
#define blksz 16

__kernel void mmul(

 const unsigned int N,

 __global float* A,

 __global float* B,

 __global float* C,

 __local float* Awrk,

 __local float* Bwrk)

{

 int kloc, Kblk;

 float Ctmp=0.0f;

 // compute element C(i,j)

 int i = get_global_id(0);

 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)

 int Iblk = get_group_id(0);

 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)

 // of block C(Iblk, Jblk)

 int iloc = get_local_id(0);

 int jloc = get_local_id(1);

 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B

 int Abase = Iblk*N*blksz; int Ainc = blksz;

 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

 for (Kblk = 0; Kblk<Num_BLK; Kblk++)

 {

 //Load A(Iblk,Kblk) and B(Kblk,Jblk).

 //Each work-item loads a single element of the two

 //blocks which are shared with the entire work-group

 Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];

 Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll

 for(kloc=0; kloc<blksz; kloc++)

 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;

 }

 C[j*N+i] = Ctmp;

}

Load A and B blocks,

wait for all work-

items to finish

Wait for everyone to finish before

going to next iteration of Kblk loop.

It’s getting the indices

right that makes this hard

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("mmulCrow.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

 <int, cl::Buffer, cl::Buffer, cl::Buffer,

 cl::LocalSpaceArg, cl::LocalSpaceArg >

 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);

 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

 d_C = cl::Buffer(context,

 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Awrk =

 cl::Local(sizeof(float) * N);

 cl::LocalSpaceArg Bwrk =

 cl::Local(sizeof(float) * N);

 mmul(cl::EnqueueArgs(queue,

 cl::NDRange(N,N), cl::NDRange(16,16)),

 N, d_A, d_B, d_C, Awrk, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)

}

Blocked matrix multiply: Host

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)

 sz = N * N;

 std::vector<float> h_A(sz);

 std::vector<float> h_B(sz);

 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup

// the problem (not shown)

 cl::Context context(DEVICE);

 cl::Program program(context,

 util::loadProgram("mmulCrow.cl“,

 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

 <int, cl::Buffer, cl::Buffer, cl::Buffer,

 cl::LocalSpaceArg, cl::LocalSpaceArg >

 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);

 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);

 d_C = cl::Buffer(context,

 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Awrk =

 cl::Local(sizeof(float) * 16*16);

 cl::LocalSpaceArg Bwrk =

 cl::Local(sizeof(float) * 16*16);

 mmul(cl::EnqueueArgs(queue,

 cl::NDRange(N,N), cl::NDRange(16,16)),

 N, d_A, d_B, d_C, Awrk, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)

}

Blocked matrix multiply: Host

One work-item per element of the C matrix organized into 16 by 16 blocks.

Setup local memory

with blocks of A and B

(16 by 16) that should

fit in local memory.

Matrix multiplication performance

• Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Block oriented approach using local 119304.6

Device is Tesla® M2090 GPU from

NVIDIA® with a max of 16 compute

units, 512 PEs

Device is Intel® Xeon® CPU, E5649

@ 2.53GHz

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely

different results should you run these tests on your own system.

CuBLAS performance 283366.4 MFLOPS

Matrix multiplication performance (CPU)

• Matrices are stored in global memory.

Case MFLOPS

CPU

Sequential C (not OpenCL, compiled /O3) 224.4

C(i,j) per work-item, all global 841.5

C row per work-item, all global 869.1

C row per work-item, A row private 1038.4

C row per work-item, A private, B local 3984.2

Block oriented approach using local (blksz=8) 7482.5

Block oriented approach using local (blksz=16) 12271.3

Block oriented approach using local (blksz=32) 16268.8

Intel MKL SGEMM 63780.6

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel

compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely

different results should you run these tests on your own system.

SYNCHRONIZATION IN OPENCL

Consider N-dimensional domain of work-items

• Global Dimensions:
– 1024x1024 (whole problem space)

• Local Dimensions:
– 128x128 (work-group, executes together)

Synchronization: when multiple units of execution (e.g. work-items) are
brought to a known point in their execution. Most common example is a
barrier … i.e. all units of execution “in scope” arrive at the barrier before
any proceed.

1024

1
0
2
4

Synchronization between

work-items possible only

within work-groups:

barriers and memory fences

Cannot synchronize

between work-groups

within a kernel

Work-Item Synchronization

• Within a work-group

void barrier()
– Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE

– A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier()

– Corollary: If a barrier() is inside a branch, then the branch must be
taken by either:

• ALL work-items in the work-group, OR

• NO work-item in the work-group

• Across work-groups
– No guarantees as to where and when a particular work-group will be

executed relative to another work-group

– Cannot exchange data, or have barrier-like synchronization
between two different work-groups! (Critical issue!)

– Only solution: finish the kernel and start another

Ensure correct order of memory operations

to local or global memory (with flushes or

queuing a memory fence)

Where might we need

synchronization?

• Consider a reduction … reduce a set of

numbers to a single value

– E.g. find sum of all elements in an array

• Sequential code

 int reduce(int Ndim, int *A)

{

 int sum = 0;

 for(int i = 0; i < Ndim; i++)

 sum += A[i];

}

Simple parallel reduction

• A reduction can be carried out in three steps:
1. Each work-item sums its private values into a local array

indexed by the work-item’s local id

2. When all the work-items have finished, one work-item sums
the local array into an element of a global array (indexed by
work-group id).

3. When all work-groups have finished the kernel execution,
the global array is summed on the host.

• Note: this is a simple reduction that is straightforward to
implement. More efficient reductions do the work-group
sums in parallel on the device rather than on the host.
These more scalable reductions are considerably more
complicated to implement.

A simple program that uses a reduction

Numerical Integration

Mathematically, we know that

we can approximate the integral

as a sum of rectangles.

Each rectangle has width and

height at the middle of interval.

4.0

2.0

1.0
X

0.0

Numerical integration source code
The serial Pi program

static long num_steps = 100000;

double step;

void main()

{

 int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i = 0; i < num_steps; i++) {

 x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Numerical integration source code
The serial Pi program

static long num_steps = 100000;

float step;

void main()

{

 int i; float x, pi, sum = 0.0;

 step = 1.0f/(float) num_steps;

 for (i = 0; i < num_steps; i++) {

 x = (i+0.5f)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

Let’s do this with

float just to keep

GPUs happy.

Exercise 10: The Pi program
• Goal:

– To understand synchronization between work-items in
the OpenCL C kernel programming language.

– To get more practice writing kernel and host code.

• Procedure:
– Start with the provided serial program to estimate Pi

through numerical integration

– Write a kernel and host program to compute the
numerical integral using OpenCL

– Note: You will need to implement a reduction

• Expected output:
– Output result plus an estimate of the error in the result

– Report the runtime

Hint: you will want each work-item to do many iterations of the loop, i.e. don’t

create one work-item per loop iteration. To do so would make the reduction so

costly that performance would be terrible.

The Pi program: kernel
void reduce(__local float*,

 __global float*);

__kernel void pi(

 const int niters,

 const float step_size,

 __local float* local_sums,

 __global float* partial_sums)

{

 int num_wrk_items = get_local_size(0);

 int local_id = get_local_id(0);

 int group_id = get_group_id(0);

 float x, accum = 0.0f;

 int i,istart,iend;

 istart = (group_id * num_wrk_items

 + local_id) * niters;

 iend = istart+niters;

 for(i= istart; i<iend; i++){

 x = (i+0.5f)*step_size;

 accum += 4.0f/(1.0f+x*x);

 }

 local_sums[local_id] = accum;

 barrier(CLK_LOCAL_MEM_FENCE);

 reduce(local_sums, partial_sums);

}

void reduce(__local float* local_sums,

 __global float* partial_sums)

{

 int num_wrk_items = get_local_size(0);

 int local_id = get_local_id(0);

 int group_id = get_group_id(0);

 float sum; int i;

 if (local_id == 0) {

 sum = 0.0f;

 for (i=0; i<num_wrk_items; i++) {

 sum += local_sums[i];

 }

 partial_sums[group_id] = sum;

 }

}

The Pi program: Host (1/2)
// various include files (not shown)

#define INSTEPS (512*512*512)

#define ITERS (262144)

int main(void)

{

 float *h_psum;

 int in_nsteps = INSTEPS;

 int niters = ITERS;

 int nsteps;

 float step_size;

 ::size_t nwork_groups;

 ::size_t max_size, work_group_size = 8;

 float pi_res;

 cl::Buffer d_partial_sums;

 cl::Context context(DEVICE);

 cl::Program program(context, util::loadProgram("pi_ocl.cl"), true);

 cl::CommandQueue queue(context);

 cl::Kernel ko_pi(program, "pi");

 std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();

 cl::Device device = devices[0];

This host program is more

complicated than the others

since we query the system to

find the best match between the

total number of integration

steps and the preferred work-

group size.

The Pi program: Host (2/2)
 // Get the devices preferred work group size

 work_group_size = ko_pi.getWorkGroupInfo<CL_KERNEL_WORK_GROUP_SIZE>(device);

 auto pi = cl::make_kernel<int, float, cl::LocalSpaceArg, cl::Buffer>(program, "pi");

 // Set num. of work groups, num. of steps, and the step size based on the work group size

 nwork_groups = in_nsteps/(work_group_size*niters);

 if (nwork_groups < 1) {

 nwork_groups = device.getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>();

 work_group_size=in_nsteps / (nwork_groups*niters);

 }

 nsteps = work_group_size * niters * nwork_groups; step_size = 1.0f/static_cast<float>(nsteps);

 std::vector<float> h_psum(nwork_groups);

 d_partial_sums = cl::Buffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * nwork_groups);

 pi(cl::EnqueueArgs(queue, cl::NDRange(nwork_groups * work_group_size),

 cl::NDRange(work_group_size)), niters,step_size,

 cl::Local(sizeof(float) * work_group_size),d_partial_sums);

 cl::copy(queue, d_partial_sums, begin(h_psum), end(h_psum));

 // complete the sum and compute final integral value

 for (unsigned int i = 0, pi_res=0.0f; i< nwork_groups; i++) pi_res += h_psum[i] * step_size;

}

SOME CONCLUDING REMARKS

Conclusion
• OpenCL has widespread industrial support

• OpenCL defines a platform-API/framework for heterogeneous
computing, not just GPGPU or CPU-offload programming

• OpenCL has the potential to deliver portably performant code;
but it has to be used correctly

• The latest C++ and Python APIs makes developing OpenCL
programs much simpler than before

• The future is clear:

– OpenCL is the only parallel programming standard that enables
mixing task parallel and data parallel code in a single program while
load balancing across ALL of the platform’s available resources.

Other important related trends
• OpenCL’s Standard Portable Intermediate

Representation (SPIR)
– Based on LLVM’s IR

– Makes interchangeable front- and back-ends
straightforward

• OpenCL 2.0
– Adding High Level Model (HLM)

– Lots of other improvements

• For the latest news on SPIR and new OpenCL
versions see:
– http://www.khronos.org/opencl/

Third party names are the property of their owners.

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

Resources:

https://www.khronos.org/opencl/

OpenCL Programming Guide:

Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and

James Fung, 2011

Heterogeneous Computing with OpenCL

Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry

and Dana Schaa, 2011

Other OpenCL resources

• New OpenCL user group

– http://comportability.org

– Forums

– Downloaded examples

– Training

– Launched SC’12 in November

– ACTION: register and become part of the

community!!

Thank you for coming!

VECTOR OPERATIONS WITHIN

KERNELS

Appendix A

Before we continue...

• The OpenCL device compilers are good at
auto-vectorizing your code

– Adjacent work-items may be packed to
produce vectorized code

• By using vector operations the compiler
may not optimize as successfully

• So think twice before you explicitly
vectorize your OpenCL kernels, you might
end up hurting performance!

Vector operations
• Modern microprocessors include vector units:

Functional units that carry out operations on blocks of numbers

• For example, x86 CPUs have over the years introduced
MMX, SSE, and AVX instruction sets …
characterized in part by their widths (e.g. SSE operates on 128
bits at a time, AVX 256 bits etc)

• To gain full performance from these processors it is
important to exploit these vector units

• Compilers can sometimes automatically exploit vector
units.
Experience over the years has shown, however, that you all too
often have to code vector operations by hand.

• Example using 128 bit wide SSE:

#include "xmmintrin.h " // vector intrinsics from gcc for SSE (128 bit wide)

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5); // pack 4 floats into vector register

__m128 vstep = _mm_load1_ps(&step); // pack step into each of r 32 bit slots in a vector register

__m128 xvec; = _mm_mul_ps(ramp,vstep); // multiple corresponding 32 bit floats and assign to xvec

Third party names are the property of their owners.

Vector intrinsics challenges

• Requires an assembly code style of programming:
– Load into registers

– Operate with register operands to produce values in another
vector register

• Non portable
– Change vector instruction set (even from the same vendor)

and code must be re-written. Compilers might treat them
differently too

• Consequences:
– Very few programmers are willing to code with intrinsics

– Most programs only exploit vector instructions that the
compiler can automatically generate – which can be hit or miss

– Most programs grossly under exploit available performance.

Solution: a high level portable vector instruction set …

which is precisely what OpenCL provides.

Vector Types

• The OpenCL C kernel programming language
provides a set of vector instructions:
– These are portable between different vector

instruction sets

• These instructions support vector lengths of 2, 4,
8, and 16 … for example:
– char2, ushort4, int8, float16, double2, …

• Properties of these types include:
– Endian safe

– Aligned at vector length

– Vector operations (elementwise) and built-in
functions

 Remember, double (and hence vectors

of double) are optional in OpenCL

Vector Operations

• Vector literal

• Vector components

• Vector ops

int4 vi0 = (int4) -7;

int4 vi1 = (int4) (0, 1, 2, 3);

vi0.lo = vi1.hi;

int8 v8 = (int8) (vi0, vi1.s01, vi1.odd);

vi0 += vi1;

vi0 = abs(vi0);

-7 -7 -7 -7

0 1 2 3

2 3 -7 -7

2 3 -7 -7 0 1 1 3

2 3 -7 -7

0 1 2 3

2 4 -5 -4

+

2 4 5 4

Using vector operations

• You can convert a scalar loop into a vector loop using
the following steps:

– Based on the width of your vector instruction set and
your problem, choose the number of values you can pack
into a vector register (the width):

• E.g. for a 128 bit wide SSE instruction set and float data (32 bit),
you can pack four values (128 bits =4*32 bits) into a vector
register

– Unroll the loop to match your width (in our example, 4)

– Set up the loop preamble and postscript. For example, if
the number of loop iterations doesn’t evenly divide the
width, you’ll need to cover the extra iterations in a loop
postscript or pad your vectors in a preamble

– Replace instructions in the body of the loop with their
vector instruction counter parts

 Third party names are the property of their owners.

Vector instructions example
• Scalar loop:

for (i = 0; i < 34; i++) x[i] = y[i] * y[i];

• Width for a 128-bit SSE is 128/32=4

• Unroll the loop, then add postscript and premable as
needed:
NLP = 34+2; x[34]=x[35]=y[34]=y[35]=0.0f // preamble to zero pad arrays

for (i = 0; i < NLP; i = i + 4) {

 x[i] = y[i] * y[i]; x[i+1] = y[i+1] * y[i*1];

 x[i+2] = y[i+2] * y[i*2]; x[i+3] = y[i+3] * y[i*3];

}

• Replace unrolled loop with associated vector instructions:
float4 x4[DIM], y4[DIM];
// DIM set to hold 34 values extended to multiple of 4 (36)

float4 zero = {0.0f, 0.0f, 0.0f, 0.0f};

NLP = 34 % 4 + 1 // 9 values … to cover the fact 34 isn’t a multiple of 4

x4[NLP-1] = 0.0f; y4[NLP-1] = 0.0f; // zero pad arrays

for (i = 0; i < NLP; i++) x4[i] = y4[i] * y4[i]; // actual vector operations

Third party names are the property of their owners.

Exercise A: The vectorized Pi program
• Goal:

– To understand the vector instructions in the kernel
programming language

• Procedure:
– Start with your best Pi program

– Unroll the loops 4 times. Verify that the program still
works

– Use vector instructions in the body of the loop

• Expected output:
– Output result plus an estimate of the error in the result

– Report the runtime and compare vectorized and scalar
versions of the program

– You could try running this on the CPU as well as the
GPU…

THE OPENCL EVENT MODEL

Appendix B

OpenCL Events
• An event is an object that communicates the status

of commands in OpenCL … legal values for an event:
– CL_QUEUED: command has been enqueued.

– CL_SUBMITTED: command has been submitted to
the compute device

– CL_RUNNING: compute device is executing the command

– CL_COMPLETE: command has completed

– ERROR_CODE: a negative value indicates an error
condition occurred.

• Can query the value of an event from the host … for
example to track the progress of a command.

cl_int clGetEventInfo (

 cl_event event, cl_event_info param_name,

 size_t param_value_size, void *param_value,

 size_t *param_value_size_ret)

Examples:

• CL_EVENT_CONTEXT
• CL_EVENT_COMMAND_EXECUTION_STATUS

• CL_EVENT_COMMAND_TYPE

Generating and consuming events
• Consider the command to enqueue a kernel. The last three

arguments optionally expose events (NULL otherwise).

cl_int clEnqueueNDRangeKernel (

 cl_command_queue command_queue,

 cl_kernel kernel,

 cl_uint work_dim,

 const size_t *global_work_offset,

 const size_t *global_work_size,

 const size_t *local_work_size,

 cl_uint num_events_in_wait_list,

 const cl_event *event_wait_list,

 cl_event *event)

Pointer to an event object

generated by this command

Array of pointers to the events

being waited upon … Command

queue and events must share a

context.

Number of events this command

is waiting to complete before

executing

Event: basic event usage

• Events can be used to impose order
constraints on kernel execution.

• Very useful with out-of-order queues.

cl_event k_events[2];

err = clEnqueueNDRangeKernel(commands, kernel1, 1,

 NULL, &global, &local, 0, NULL, &k_events[0]);

err = clEnqueueNDRangeKernel(commands, kernel2, 1,

 NULL, &global, &local, 0, NULL, &k_events[1]);

err = clEnqueueNDRangeKernel(commands, kernel3, 1,

 NULL, &global, &local, 2, k_events, NULL);

Enqueue two

kernels that

expose events

Wait to execute

until two previous

events complete

OpenCL synchronization: queues & events
• Events connect command invocations. Can be used to synchronize

executions inside out-of-order queues or between queues

• Example: 2 queues with 2 devices

GPU

CPU

GPU

CPU

Time Time

Kernel 1

Kernel 2

E
n
q
u
e
u
e
 K

e
rn

e
l
1

E
n
q
u
e
u
e
 K

e
rn

e
l
2

Kernel 2 starts

before the results

from Kernel 1 are

ready

Kernel 1

Kernel 2

E
n
q
u
e
u
e
 K

e
rn

e
l
1

E
n
q
u
e
u
e
 K

e
rn

e
l
2

Kernel 2 waits for

an event from

Kernel 1 and does

not start until the

results are ready

Why Events? Won’t a barrier do?

• A barrier defines a synchronization
point … commands following a
barrier wait to execute until all
prior enqueued commands complete
cl_int clEnqueueBarrier(cl_command_queue
queue)

• Events provide fine grained control
… this can really matter with an
out-of-order queue.

• Events work between commands in
the different queues … as long as
they share a context

• Events convey more information
than a barrier … provide info on
state of a command, not just
whether it’s complete or not.

Queue Queue

Context

GPU

CPU

Event

Barriers between queues: clEnqueueBarrier doesn’t work

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

1st Command Queue 2nd Command Queue

clEnqueueBarrier() clEnqueueBarrier()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

Barriers between queues: this works!

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

1st Command Queue 2nd Command Queue

clEnqueueBarrier()

clEnqueueWaitForEvent(event)
clEnqueueMarker(event)

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

clEnqueueWriteBuffer()

clEnqueueWriteBuffer()

clEnqueueReadBuffer()

clEnqueueReadBuffer()

clEnqueueWriteBuffer()

clEnqueueNDRangeKernel()

clEnqueueReadBuffer()

clEnqueueNDRangeKernel()

Host generated events influencing execution of

commands: User events

• “user code” running on a host thread can
generate event objects
cl_event clCreateUserEvent(cl_context context, cl_int *errcode_ret)

• Created with value CL_SUBMITTED.

• It’s just another event to enqueued commands.

• Can set the event to one of the legal event
values
cl_int clSetUserEventStatus(cl_event event, cl_int
execution_status)

• Example use case: Queue up block of commands
that wait on user input to finalize state of
memory objects before proceeding.

Command generated events influencing

execution of host code

• A thread running on the host can pause
waiting on a list of events to complete. This
can be done with the function:

cl_int clWaitForEvents(

 cl_uint num_events,

 const cl_event *event_list)

• Example use case: Host code waiting for an
event to complete before extracting
information from the event.

Number of events to wait on

An array of pointers

to event object

Profiling with Events

• OpenCL is a performance oriented language … Hence
performance analysis is an essential part of OpenCL
programming.

• The OpenCL specification defines a portable way to
collect profiling data.

• Can be used with most commands placed on the
command queue … includes:

– Commands to read, write, map or copy memory objects

– Commands to enqueue kernels, tasks, and native kernels

– Commands to Acquire or Release OpenGL objects

• Profiling works by turning an event into an opaque
object to hold timing data.

Using the Profiling interface
• Profiling is enabled when a queue is created with the

CL_QUEUE_PROFILING_ENABLE flag set.

• When profiling is enabled, the following function is used
to extract the timing data

cl_int clGetEventProfilingInfo(

 cl_event event,

 cl_profiling_info param_name,

 size_t param_value_size,

 void *param_value,

 size_t *param_value_size_ret)

Expected and

actual size of

profiling data.

Profiling data

to query (see

next slide)

Pointer to

memory to

hold results

cl_profiling_info values

• CL_PROFILING_COMMAND_QUEUED

– the device time in nanoseconds when the command is
enqueued in a command-queue by the host. (cl_ulong)

• CL_PROFILING_COMMAND_SUBMIT

– the device time in nanoseconds when the command is
submitted to compute device. (cl_ulong)

• CL_PROFILING_COMMAND_START

– the device time in nanoseconds when the command
starts execution on the device. (cl_ulong)

• CL_PROFILING_COMMAND_END

– the device time in nanoseconds when the command has
finished execution on the device. (cl_ulong)

Profiling Examples (C)

cl_event prof_event;

cl_command_queue comm;

comm = clCreateCommandQueue(

 context, device_id,

 CL_QUEUE_PROFILING_ENABLE,

 &err);

err = clEnqueueNDRangeKernel(

 comm, kernel,

 nd, NULL, global, NULL,

 0, NULL, prof_event);

clFinish(comm);

err = clWaitForEvents(1, &prof_event);

cl_ulong start_time, end_time;

size_t return_bytes;

err = clGetEventProfilingInfo(

 prof_event,

CL_PROFILING_COMMAND_QUEUED,

 sizeof(cl_ulong),

 &start_time,

 &return_bytes);

err = clGetEventProfilingInfo(

 prof_event,

CL_PROFILING_COMMAND_END,

 sizeof(cl_ulong),

 &end_time,

 &return_bytes);

run_time =(double)(end_time - start_time);

Events inside Kernels … Async. copy

// A, B, C kernel args … global buffers.

// Bwrk is a local buffer

for(k=0;k<Pdim;k++)

 Awrk[k] = A[i*Ndim+k];

for(j=0;j<Mdim;j++){

 event_t ev_cp = async_work_group_copy(

 (__local float*) Bwrk, (__global float*) B,

 (size_t) Pdim, (event_t) 0);

 wait_group_events(1, &ev_cp);

 for(k=0, tmp= 0.0;k<Pdim;k++)

 tmp += Awrk[k] * Bwrk[k];

 C[i*Ndim+j] = tmp;

}

• Compute a row of C = A * B

– 1 A column per work-item

– Work group shares rows of B

Start an async. copy

for row of B returning

an event to track

progress.

Wait for async. copy to

complete before

proceeding.

Compute element of C

using A from private

memory and B from

local memory.

Events and the C++ interface

(for profiling)
• Enqueue the kernel with a returned event

Event event = vadd(EnqueueArgs(commands,
 NDRange(count), NDRange(local)), a_in, b_in,
c_out, count);

• What for the command attached to the event to
complete
event.wait();

• Extract timing data from the event:
 cl_ulong ev_start_time =

 event.getProfilingInfo<CL_PROFILING_COMMAND_START>();

 cl_ulong ev_end_time =

 event.getProfilingInfo<CL_PROFILING_COMMAND_END>();

C++ FOR C PROGRAMMERS

Appendix C

C++ for C programmers

• This Appendix shows and highlights some of

the basic features and principles of C++.

• It is intended for the working C programmer.

• The C++ standards:

– ISO/ANSI Standard 1998 (revision 2003)

– ISO/ANSI Standard 2011 (aka C++0x or C++11)

Comments, includes, and variable

definitions
• Single line comments:

 // this is a C++ comment

• C includes are prefixed with “c”:

 #include <cstdio>

• I/O from keyboard and to console

 #include <iosteam>

 int a; // variables can be declared inline

 std::cin >> a; // input integer to a

 std::cout << a; // outputs ‘a’ to console

Namespaces

• Definitions and variables can be scoped with namespaces.
 :: is used to dereference.

• Using namespace opens names space into current scope.

• Default namespace is std.

 #include <iostream> // definitions in std namespace

 namespace foo {

 int id(int x) { return x; }

 };

 int x = foo::id(10);

 using namespace std;

 cout << x; // no need to prefix with std::

References in C++ …

a safer way to do pointers
• References are non-null pointers. Since they can’t be NULL, you

don’t have to check for NULL value all the time (as you do with
C)

• For example, in C we need to write:

 int foo(int * x) {

 if (x != NULL) return *x;

 else return 0;

 }

• In C++ we could write:

 int foo(int & x) {

 return x;

 }

• Note that in both cases the memory address of x is passed (i.e.
by reference) and not the value!

New/Delete Memory allocation

• C++ provides safe(r) memory allocation

• new and delete operator are defined for
each type, including user defined types. No
need to multiple by sizeof(type) as in C.

 int * x = new int;

 delete x;

• For multi element allocation (i.e. arrays) we
must use delete[].

 int * array = new int[100];

 delete[] array;

Overloading

• C++ allows functions to have the same name but
with different argument types.

 int add(int x, int y) {

 return x+y;

 }

 float add(float x, float y) {

 return x+y;

 }

 float f = add(10.4f, 5.0f);

 // calls the float version of add

 int i = add(100,20);

 // calls the int version of add

Classes (and structs)
• C++ classes are an extension of C structs (and unions) that

can functions (called member functions) as well as data.

The keyword “const” can be applied to member functions such as getX() to state that
the particular member function will not modify the internal state of the object, i.e it
will not cause any visual effects to someone owning a pointer to the said object. This
allows for the compiler to report errors if this is not the case, better static analysis,
and to optimize uses of the object , i.e. promote it to a register or set of registers.

 class Vector {

 private:

 int x_, y_, z_ ;

 public:

 Vector (int x, int y, int z) : x_(x), y_(y), z_(z) {} // constructor

 ~Vector // destructor

 {

 cout << “vector destructor”;

 }

 int getX() const { return x_; } // access member function

 …

 };

More information about constructors
• Consider the constructor from the previous slide …

Vector (int x, int y, int z): x_(x), y_(y), z_(z) {}

• C++ member data local to a class (or struct) can be initialized using
the noation
: data_name(initializer_name), ...

• Consider the following two semantically equivalent structs in which
the constructor sets the data member x_ to the input value x:

• Case B must use a temporary to read the value of x, while this is not
so for Case A. This is due to C’s definition of local stack allocation.

• This turns out to be very import in C++11 with its memory model
which states that an object is said to exist once inside the body of the
constructor and hence thread safety becomes an issue, this is not the
case for the constructor initalization list (case A). This means that
safe double locking and similar idioms can be implemented using this
approach.

struct Foo

{

 int x_;

 Foo(int x) : x_(x) {}

}

struct Foo

{

 int x_;

 Foo(int x) { x_ = x; }

}

A B

Classes (and structs) continued

• Consider the following block where we construct an
object (the vector “v”), use it and then reach the
end of the block

{

 Vector v(10,20,30);

 // vector {x_ = 10, y_ = 20 , z_ = 30}

 // use v

} // at this point v’s destructor would be called!

• Note that at the end of the block, v is no longer
accessible and hence can be destroyed. At this point,
the destructor for v is called.

Classes (and structs) continued

• There is a lot more to classes, e.g.

inheritance but it is all based on this

basic notion.

• The previous examples adds no additional

data or overhead to a traditional C

struct, it has just improved software

composibility.

Function objects

• Function application operator can be

overloaded to define functor classes

 struct Functor

 {

 int operator() (int x) { return x*x; }

 };

 Functor f(); // create an object of type Functor

 int value = f(10); // call the operator()

Template functions

• Don’t want to write the same function many times
for different types?

• Templates allow functions to be parameterized with
a type(s).

 template<typename T>

 T add(T x, T y) { return x+y; }

 float f = add<float>(10.4f, 5.0f); // float version

 int i = add<int>(100,20); // int version

• You can use the templatized type, T, inside the
template function

Template classes

• Don’t want to write the same class many times
for different types?

• Templates allow class to be parameterized
with a type(s) too.
template <typename T>

 class Square

 {

 T operator() (T x) { return x*x; }

 };

 Square<int> f_int();

 int value = f_int(10);

C++11 defines a function template

• C++ function objects can be stored in the templated class
std::function. The following header defines the class
std::function

 #include <functional>

• We can define a C++ function object (e.g. functor) and
then store it in the tempated class std::function

struct Functor

 {

 int operator() (int x) { return x*x; }

 };

 std::function<int (int)> square(Functor());

C++ function template: example 1

The header <functional> just defines the template std::function. This
can be used to warp standard functions or function objects, e.g.:

int foo(int x) { return x; } // standard function

std::function<int (int)> foo_wrapper(foo);

struct Foo // function object

{

 void operator()(int x)

 { return x;}

};

 std::function<int (int)> foo_functor(Foo());

foo_functor and
foo_wrapper are
basically the same but
one is using a standard
C like function, while
the other is using a
function object

C++ function template: example 2
What is the point of function objects? Well they can of course
contain local state, which functions cannot, they can also contain
member functions and so on. A silly example might be:

struct Foo // function object

{ int y_;

 Foo() : y_(100) {}

 void operator()(int x)

 { return x+100; }

};

std::function<int (int)> add100(Foo());

// function that adds 100 to its argument

MEMORY COALESCENCE:
MATRIX MULTIPLICATION CASE STUDY

Appendix D

Performance issues with matrix

multiplication

• Consider the following version of the

blocked matrix multiplication kernel from

exercise 9.

Blocked matrix multiply: kernel
#define blksz 16

__kernel void mmul(

 const unsigned int N,

 __global float* A,

 __global float* B,

 __global float* C,

 __local float* Awrk,

 __local float* Bwrk)

{

 int kloc, Kblk;

 float Ctmp=0.0f;

 // compute element C(i,j)

 int i = get_global_id(0);

 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)

 int Iblk = get_group_id(0);

 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)

 // of block C(Iblk, Jblk)

 int iloc = get_local_id(0);

 int jloc = get_local_id(1);

 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B

 int Abase = Iblk*N*blksz; int Ainc = blksz;

 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

 for (Kblk = 0; Kblk<Num_BLK; Kblk++)

 {

 //Load A(Iblk,Kblk) and B(Kblk,Jblk).

 //Each work-item loads a single element of the two

 //blocks which are shared with the entire work-group

 Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];

 Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll

 for(kloc=0; kloc<blksz; kloc++)

 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;

 }

 C[j*N+i] = Ctmp;

}

Blocked matrix multiply: kernel (performance bug)
#define blksz 16

__kernel void mmul(

 const unsigned int N,

 __global float* A,

 __global float* B,

 __global float* C,

 __local float* Awrk,

 __local float* Bwrk)

{

 int kloc, Kblk;

 float Ctmp=0.0f;

 // compute element C(i,j)

 int i = get_global_id(0);

 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)

 int Iblk = get_group_id(0);

 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)

 // of block C(Iblk, Jblk)

 int iloc = get_local_id(0);

 int jloc = get_local_id(1);

 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B

 int Abase = Iblk*N*blksz; int Ainc = blksz;

 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

 for (Kblk = 0; Kblk<Num_BLK; Kblk++)

 {

 //Load A(Iblk,Kblk) and B(Kblk,Jblk).

 //Each work-item loads a single element of the two

 //blocks which are shared with the entire work-group

 Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];

 Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll

 for(kloc=0; kloc<blksz; kloc++)

 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;

 }

 C[j*N+i] = Ctmp;

}

Note that the pattern of indices

loaded differ from the

patterned used.

This mistake means that the

memory is not coalesced.

Performance was around

76695.8 MFLOPS on an NVIDIA

M2090 GPU. We were expecting

almost twice that many FLOPS.

Blocked matrix multiply: kernel (fixed)
#define blksz 16

__kernel void mmul(

 const unsigned int N,

 __global float* A,

 __global float* B,

 __global float* C,

 __local float* Awrk,

 __local float* Bwrk)

{

 int kloc, Kblk;

 float Ctmp=0.0f;

 // compute element C(i,j)

 int i = get_global_id(0);

 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)

 int Iblk = get_group_id(0);

 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)

 // of block C(Iblk, Jblk)

 int iloc = get_local_id(0);

 int jloc = get_local_id(1);

 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B

 int Abase = Iblk*N*blksz; int Ainc = blksz;

 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

 for (Kblk = 0; Kblk<Num_BLK; Kblk++)

 {

 //Load A(Iblk,Kblk) and B(Kblk,Jblk).

 //Each work-item loads a single element of the two

 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];

 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll

 for(kloc=0; kloc<blksz; kloc++)

 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;

 }

 C[j*N+i] = Ctmp;

}

We fixed this by making sure

the pattern of indices on the

load matched the later block

of code where we used these

arrays.

With that small change, the

performance on an NVIDIA

M2090 GPU hit the expected

value of around 119304.6

MGFLOPS.

Performance issues with matrix

multiplication
• This is a good object lesson on the importance of

paying attention to memory coalescence.

• How did I make this mistake? Getting the indices right
in this code was tough. I developed my code on a
CPU. On a CPU, the effect was not apparent … I got
the expected performance with the memory
coalescence bug when running on a CPU. IT only
shows up on the GPU.

• This points to the importance of exploring a range of
platforms during the debug and optimization phase of
software development.

• Still, after making the change on my CPU, the
performance went from 9.8 GFLOPS to 12 GFLOPS.

