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Course materials 
In addition to these slides, C++ API header files, a set of exercises, 
and solutions, we provide: 

OpenCL C     1.2 Reference Card 

OpenCL C++ 1.2 Reference Card 

 

These cards will help you keep 
track of the  API as you do the 
exercises: 

 

https://www.khronos.org/files/ope
ncl-1-2-quick-reference-card.pdf  

 

The v1.2 spec is also very readable 
and recommended to have on-hand: 

 

https://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf  
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AN INTRODUCTION TO OPENCL 



Industry Standards for Programming 

Heterogeneous Platforms 

OpenCL – Open Computing Language 
 

Open, royalty-free standard for portable, parallel programming of 
heterogeneous parallel computing CPUs, GPUs, and other processors 

 

CPUs 
Multiple cores driving 
performance increases 

GPUs 
Increasingly general 

purpose data-parallel 
computing 

Graphics 
APIs and 
Shading 

Languages 

Multi-
processor 

programming – 
e.g. OpenMP 

Emerging 
Intersection 

Heterogeneous 
Computing 



The origins of OpenCL 

AMD 

ATI 

NVIDIA 

Intel 

Apple 

Merged, needed 

commonality 

across products 

GPU vendor – 

wants to steal 

market share 

from CPU 

CPU vendor – 

wants to steal 

market share 

from GPU 

Was tired of recoding for 

many core, GPUs. 

Pushed vendors to 

standardize. 

Wrote a rough draft 

straw man API 

Khronos Compute 

group formed 

ARM 

Nokia 

IBM 

Sony 

Qualcomm 

Imagination 

TI 

Third party names are the property of their owners. 

+ many 

more 



OpenCL: From cell phone to 

supercomputer 

• OpenCL Embedded profile for 
mobile and embedded silicon 
– Relaxes some data type and 

precision requirements 

– Avoids the need for a separate 
“ES” specification 

• Khronos APIs provide 
computing support for 
imaging & graphics 
– Enabling advanced applications 

in, e.g., Augmented Reality 

• OpenCL will enable parallel 
computing in new markets 
– Mobile phones, cars, avionics 

 

A camera phone with GPS 

processes images to 

recognize buildings and 

landmarks and provides 

relevant data from internet 



OpenCL Platform Model 

• One Host and one or more OpenCL Devices 

– Each OpenCL Device is composed of one or more 
Compute Units 

• Each Compute Unit is divided into one or more Processing Elements 

• Memory divided into host memory and device memory 

Processing 

Element 

OpenCL Device 

… 
… 

… 

… 
… … 

… 
… 

… … 
… 

… 
… … 

… 

Host 

Compute Unit 



The BIG idea behind OpenCL 
• Replace loops with functions (a kernel) executing at each 

point in a problem domain 
– E.g., process a 1024x1024 image with one kernel invocation per 

pixel or 1024x1024=1,048,576 kernel executions 

Traditional loops OpenCL 

void  

mul(const  int n, 

    const     float *a, 

    const     float *b, 

                  float *c) 

{ 

  int i; 

  for (i = 0; i < n; i++) 

    c[i] = a[i] * b[i]; 

} 

__kernel void 

mul(__global const float *a, 

       __global const  float *b, 

       __global             float *c) 

{ 

  int id = get_global_id(0); 

  c[id] = a[id] * b[id]; 

} 

// execute over n work-items 



An N-dimensional domain of work-items 
• Global Dimensions: 

– 1024x1024 (whole problem space) 

• Local Dimensions: 
– 128x128 (work-group, executes together) 

• Choose the dimensions (1, 2, or 3) that are 

“best” for your algorithm 

1024 

1
0
2
4
 

Synchronization between 

work-items possible only 

within work-groups: 

barriers and memory fences 

Cannot synchronize 

between work-groups 

within a kernel 



OpenCL Memory model 
• Private Memory 

– Per work-item 

• Local Memory 
– Shared within a 

 work-group 

• Global Memory 
/Constant Memory 
– Visible to all 

 work-groups 

• Host memory 
– On the CPU 

Memory management is explicit:  

You are responsible for moving data from 

 host → global → local and back 



Context and Command-Queues 

• Context:  
– The environment within which kernels 

execute and in which synchronization 
and memory management is defined.  

• The context includes: 
– One or more devices 

– Device memory  

– One or more command-queues 

• All commands for a device (kernel 
execution, synchronization, and 
memory operations) are submitted 
through a command-queue.   

• Each command-queue points to a 
single device within a context. 

Queue 

Context 

  

Device 

Device Memory 



Execution model (kernels) 

• OpenCL execution model … define a problem 
domain and execute an instance of a kernel for 
each point in the domain 

__kernel void times_two( 

    __global float* input, 

    __global float* output) 

{ 

   int i = get_global_id(0); 

   output[i] = 2.0f * input[i]; 

} 

get_global_id(0) 
10 

Input 

Output 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 



__kernel void  

horizontal_reflect(read_only image2d_t src, 

                   write_only image2d_t dst)  

{ 

  int x = get_global_id(0);  // x-coord   

  int y = get_global_id(1);  // y-coord   

  int width = get_image_width(src);   

  float4 src_val = read_imagef(src, sampler,  

                       (int2)(width-1-x, y));   

  write_imagef(dst, (int2)(x, y), src_val); 

} 

Building Program Objects 
• The program object encapsulates: 

– A context 

– The program source or binary, and 

– List of target devices and build 
options 

• The build process to create a 
program object: 

 

OpenCL uses runtime 

compilation … because 

in general you don’t 

know the details of the 

target device when you 

ship the program 

 

Compile for 

GPU 

Compile for 

CPU 

GPU 

code 

CPU 

code 

cl::Program program(context, KernelSource, true); 



Example: vector addition 

• The “hello world” program of data parallel 

programming is a program to add two vectors 

  

C[i] = A[i] + B[i] for i=0 to N-1 

 

• For the OpenCL solution, there are two parts 

– Kernel code 

– Host code 



Vector Addition - Kernel 

__kernel void vadd(  __global const float *a, 

         __global const float *b, 

         __global            float *c) 

 { 

     int gid = get_global_id(0); 

     c[gid]  = a[gid] + b[gid]; 

 } 

 



Exercise 1: Running the Vector Add kernel 

• Goal:  
– To inspect and verify that you can run an OpenCL kernel 

• Procedure:  
– Take the Vadd program we provide you. It will run a simple kernel to 

add two vectors together.  

– Look at the host code and identify the API calls in the host code. 
Compare them against the API descriptions on the OpenCL C++ 
reference card. 

• Expected output: 
– A message verifying that the program completed successfully 

1. ssh -X train#@carver.nersc.gov (and enter supplied password) 

2. ssh -X dirac# (and enter supplied password) 

3. cp -r ~simonmcs/OpenCL_exercises ~ 

4. module unload pgi 

5. module load gcc-sl6 

6. module load cuda/5.5 

7. cd OpenCL_exercises/Exercises/Exercise01 

8. make; ./vadd (etc) 

http://carver.nersc.gov/


UNDERSTANDING THE HOST 

PROGRAM 



Vector Addition – Host 

• The host program is the code that runs on the host to: 
– Setup the environment for the OpenCL program 

– Create and manage kernels 

• 5 simple steps in a basic host program: 
1. Define the platform … platform = devices+context+queues 

2. Create and Build the program (dynamic library for kernels) 

3. Setup memory objects 

4. Define the kernel (attach arguments to kernel function) 

5. Submit commands … transfer memory objects and execute 
kernels 

As we go over the next set of slides, cross 

reference  content on the slides to your reference 

card.  This will help you get used to the reference 

card and how to pull information from the card and 

express it in code.  



The C++ Interface 

• Khronos has defined a common C++ header file 
containing a high level interface to OpenCL, cl.hpp 

• This interface is dramatically easier to work with1 

• Key features: 

– Uses common defaults for the  platform and command-
queue, saving the programmer from extra coding for the 
most common use cases 

– Simplifies the basic API by bundling key parameters with 
the objects rather than requiring verbose and repetitive 
argument lists 

– Ability to “call” a kernel from the host, like a regular 
function 

– Error checking can be performed with C++ exceptions 
1 especially for C++ programmers… 



C++ Interface: 

setting up the host program 

• Enable OpenCL API Exceptions. Do this before 
including the header file 
#define __CL_ENABLE_EXCEPTIONS 

 

• Include key header files … both standard and custom 
#include <CL/cl.hpp>   // Khronos C++ Wrapper API 

#include <cstdio>         // C style IO (e.g. printf) 

#include <iostream>    // C++ style IO 

#include <vector>        // C++ vector types 

 

• Define key namespaces 
using namespace cl; 

using namespace std; 
For information about C++, see 

the appendix: 

“C++ for C programmers”. 



1. Create a context and queue 

• Grab a context using a device type: 
cl::Context Context(CL_DEVICE_TYPE_DEFAULT); 

 

• Create a command queue for the first 

device in the context: 

cl::CommandQueue queue(context); 



Commands and Command-Queues 

• Commands include: 
– Kernel executions 

– Memory object management 

– Synchronization 

• The only way to submit 
commands to a device is 
through a command-queue.   

• Each command-queue 
points to a single device 
within a context.  

• Multiple command-queues 
can feed a single device. 
– Used to define independent 

streams of commands that 
don’t require synchronization 

 

 

Queue Queue 

Context 

  

GPU 

  

CPU 



Command-Queue execution details 

• Command queues can be configured in 

different ways to control how commands 

execute 

• In-order queues: 
– Commands are enqueued and complete in the order 

they appear in the program (program-order) 

• Out-of-order queues: 
– Commands are enqueued in program-order but can 

execute (and hence complete) in any order. 

• Execution of commands in the command-

queue are guaranteed to be completed at 

synchronization points 
– Discussed later 

Queue Queue 

Context 

  

GPU 

  

CPU 



2. Create and Build the program 

• Define source code for the kernel-program either as a 

string literal (great for toy programs) or read it from a 

file (for real applications). 

 

• Create the program object and compile to create a 

“dynamic library” from which specific kernels can be 

pulled: 

 

 

cl::Program program(context, KernelSource, true); 

“true” tells OpenCL to build 

(compile/link) the program object 

KernelSource is a string … either statically set in the host program 

or returned from a function that loads the kernel code form a file. 



3. Setup Memory Objects 
• For vector addition we need 3 memory objects, one each 

for input vectors A and B, and one for the output vector C 

 

• Create input vectors and assign values on the host: 
std::vector<float> h_a(LENGTH), h_b(LENGTH), h_c(LENGTH); 

for (i = 0; i < length; i++) { 

    h_a[i] = rand() / (float)RAND_MAX; 

    h_b[i] = rand() / (float)RAND_MAX; 

} 

 

• Define OpenCL device buffers and copy from host buffers: 
cl::Buffer d_a(context, begin(h_a), end(h_a), true); 

cl::Buffer d_b(context, begin(h_b), end(h_b), true); 

cl::Buffer d_c(context, CL_MEM_WRITE_ONLY, sizeof(float)*count); 

 
 



What do we put in device memory? 

• Memory Objects:  
– A handle to a reference-counted region of global 

memory. 

• There are two kinds of memory object 
– Buffer object:  

• Defines a linear collection of bytes. 

• The contents of buffer objects are fully exposed within kernels 
and can be accessed using pointers 

– Image object:  
• Defines a two- or three-dimensional region of memory. 

• Image data can only be accessed with read and write functions, 
i.e. these are opaque data structures.  The read functions use a 
sampler. 

 

 

 

Used when interfacing with a graphics API such as 

OpenGL.  We won’t use image objects in this tutorial. 



Creating and manipulating buffers 
• Buffers are declared on the host as object type: 

cl::Buffer 

 

• Arrays in host memory hold your original host-side 

data: 

std::vector<float> h_a, h_b; 

 

• Create the device-side buffer (d_a), assign read 

only memory to hold the host array (h_a) and copy 

it into device memory: 

cl::Buffer  d_a(context, begin(h_a), end(h_a), true); 
 

Stipulates that this is 

a read-only buffer 

Start_iterator and end_iterator for the 

container holding host side object 



Creating and manipulating buffers 

 

• The last argument sets the read/write access to 

the Buffer by the device . true means “read only” 

while false (the default) means “read/write”.   
 

• Submit command to copy the device buffer back to 

host memory in array “h_c”: 

cl::copy(queue, d_c, begin(h_c), end(h_c)); 

 

• Can also copy host memory to device buffers: 

cl::copy(queue, begin(h_c), end(h_c), d_c); 

 



4. Define the kernel 

• Create a kernel functor for the kernels you want 

to be able to call in the program: 

 

auto vadd =    cl::make_kernel 

                       <cl::Buffer, cl::Buffer, cl::Buffer>    

                      (program, “vadd”); 

 

 

 

• This means you can ‘call’ the kernel as a ‘function’ 

in your host code to enqueue the kernel. 

Must match the pattern of 

arguments to the kernel. 

A previously created 

“program object” serving as 

a dynamic library of kernels 

The name of the function 

used for the kernel 



5. Enqueue commands 
• Specify global and local dimensions 

– cl::NDRange global(1024) 

– Cl::NDRange local(64) 

– If you don’t specify a local dimension, it is assumed as 

cl::NullRange, and the runtime picks a size for you 

 

• Enqueue the kernel for execution (note: non-blocking): 

 

vadd(cl::EnqueueArgs(queue, global), d_a, d_b, d_c); 

 

• Read back result (as a blocking operation). We use an in-

order queue to assure the previous commands are 

completed before the read can begin 

 

cl::copy(queue, begin(h_c), end(h_c), d_c); 



 

// Create buffers 

// True indicates CL_MEM_READ_ONLY 

// False indicates CL_MEM_READ_WRITE 

 

d_a = Buffer(context,begin(h_a),end(h_a),true); 

d_b = Buffer(context,begin(h_b),end(h_b),true); 

d_c = Buffer(context,begin(h_c),end(h_c),false); 

 

// Enqueue the kernel 

vadd(EnqueueArgs( 

        queue,  

        NDRange(count)), 

         d_a, d_b, d_c, count); 

 

copy(queue, d_c, begin(h_c), end(h_c)); 

} 

#define N 1024 

using namespace cl; 

int main(void) { 

vector<float> h_a(N), h_b(N), h_c(N); 

// initialize these host vectors… 

Buffer d_a, d_b, d_c; 

 

Context  context( 

              CL_DEVICE_TYPE_DEFAULT); 

CommandQueue queue(context); 

 

Program  program( 

    context, 

    loadprogram(“vadd.cl”), true); 

 

// Create the kernel functor 

auto vadd = make_kernel 

        <Buffer, Buffer, Buffer, int>   

        (program, “vadd”); 

 

C++ interface: The vadd host program 



Exercise 2: Chaining vector add kernels 

• Goal:  
– To verify that you understand manipulating kernel invocations and buffers 

in OpenCL 

• Procedure:  
– Start with your VADD program in C++  

– Add additional buffer objects and assign them to vectors defined on the 
host (see the provided vadd programs for examples of how to do this) 

– Chain vadds … e.g. C=A+B;  D=C+E;  F=D+G. 

– Read back the final result and verify that it is correct 

• Expected output: 
– A message to standard output verifying that the chain of vector additions 

produced the correct result. 

As you modify vadd to chain vadd kernels, you’ll need to 

create additional buffers: 
Buffer(context,begin(h_a),end(h_a),true); 

And enqueue additional kernels: 
vadd(EnqueueArgs(queue, NDRange(count)), d_a, d_b, d_c, count); 

 



UNDERSTANDING THE KERNEL 

PROGRAM 



Working with Kernels (C++) 

• The kernels are where all the action is in an OpenCL 
program. 

• Steps to using kernels: 
1. Load kernel source code into a program object from a 

file 

2. Make a kernel functor from a function within the 
program 

3. Initialize device memory 

4. Call the kernel functor, specifying memory objects 
and global/local sizes 

5. Read results back from the device 

• Note the kernel function argument list must match 
the kernel definition on the host. 



Create a kernel 
• Kernel code: 

– A string in the host code (“toy codes”). 

– Loaded from a file as a string or binary. 

 

• Compile for the default devices within the default Context 
program.build(); 

 

 

 

• Define the kernel functor from a function within the 
program – allows us to ‘call’ the kernel to enqueue it as if 
it were just another function 

 

auto vadd = make_kernel<Buffer, Buffer, Buffer, int>  

                       (program, “vadd”); 

 

 

The build step can be carried out by specifying 

true in the program constructor. If you need to 

specify build flags you must specify false in the 

constructor and use this method instead. 

 



Advanced: get info about the kernel 

 

• Advanced: if you want to query information about a 
kernel, you will need to create a kernel object: 
   Kernel ko_vadd(program, “vadd”); 

 

• E.g. get default size of local dimension (size of a Work-
Group) 

 
::size_t local = 

           ko_vadd.getWorkGroupInfo 

           <CL_KERNEL_WORK_GROUP_SIZE> 

         (Device::getDefault()); 

 

We can use any work-group-info parameter from table 5.15 in the 

OpenCL 1.2 specification. The function will return the appropriate type. 



Call (enqueue) the kernel 

• Enqueue the kernel for execution with buffer 

objects d_a, d_b and d_c and their length, 

count: 
 

vadd( 

         EnqueueArgs(queue,   NDRange(count), NDRange(local)), 

          d_a, d_b, d_c, count); 

We can include any arguments from the clEnqueueNDRangeKernel 

function including Event wait lists and the command queue options 



Exercise 3: The D = A + B + C problem 

• Goal: 

– To verify that you understand how to control the 
argument definitions for a kernel.   

– To verify that you understand the host/kernel interface. 

• Procedure:  

– Start with your VADD program.   

– Modify the kernel so it adds three vectors together. 

– Modify the host code to define three vectors and 
associate them with relevant kernel arguments. 

– Read back the final result and verify that it is correct. 

• Expected output: 

– Test your result and verify that it is correct.  Print a 
message to that effect on the screen.  



We have now covered the basic 

platform runtime APIs in OpenCL 

arg [0] 

value 

arg [1] 

value 

arg [2] 

value 

arg [0] 

value 

arg [1] 

value 

arg [2] 

value 

In 

Order 

Queue 

Out of 

Order 

Queue 

GPU 

Context 

__kernel void 

dp_mul(global const float *a, 

       global const float *b, 

       global float *c) 

{ 

  int id = get_global_id(0); 

  c[id] = a[id] * b[id]; 

} 

dp_mul 

CPU program binary 

dp_mul 

GPU program binary 

Programs 

arg[0] value 

arg[1] value 

arg[2] value 

Buffers Images 
In 

Order 

Queue 

Out of 

Order 

Queue 

Compute Device 

  

GPU 

  

CPU 

dp_mul 

Programs Kernels Memory Objects Command Queues 



INTRODUCTION TO OPENCL 

KERNEL PROGRAMMING 



OpenCL C kernel language 

• Derived from ISO C99 

– A few restrictions: no recursion, function pointers, 

functions in C99 standard headers ... 

– Preprocessing directives defined by C99 are 

supported (#include etc.) 

 

• Built-in data types 

– Scalar and vector data types, pointers 

– Data-type conversion functions: 

• convert_type<_sat><_roundingmode>  

– Image types: image2d_t, image3d_t and sampler_t 



Vector Types 
• The OpenCL C kernel programming language provides a set of 

vector instructions: 
– These are portable between different vector instruction sets 

• These instructions support vector lengths of 2, 4, 8, and 16 … 
for example: 
– char2, ushort4, int8, float16,  … 

• Vector literal 

int4 vi0 = (int4) (2, 3, -7, -7; 

int4 vi1 = (int4) (0, 1, 2, 3); 

2 3 -7 -7 

0 1 2 3 



Vector Types 
• The OpenCL C kernel programming language provides a set of 

vector instructions: 
– These are portable between different vector instruction sets 

• These instructions support vector lengths of 2, 4, 8, and 16 … 
for example: 
– char2, ushort4, int8, float16,  … 

• Vector literal 

int4 vi0 = (int4) (2, 3, -7, -7; 

int4 vi1 = (int4) (0, 1, 2, 3); 

2 3 -7 -7 

0 1 2 3 

• Vector ops 

vi0 += vi1; 

vi0 = abs(vi0); 

2 3 -7 -7 

0 1 2 3 

2 4 -5 -4 

+ 

2 4 5 4 



data conversions  

float4 f;   // a vector of 4 floats 

 

//truncate (rtz) floats to generate ints.  Results   

//implementation defined for f > INT_MAX, NaN etc 

int4 i1 = convert_int4(f); 

 

// Same as above (rtz) but for values > INT_MAX clamp  

// to INT_MAX, values < INT_MIN clamp to INT_MIN.  

// NaN  0.  

int4 i2 = convert_int4_sat( f ); 

 

// round the floats to the nearest integer  

int4 i3 = convert_int4_rte( f ); 
 

• Data-type conversion functions: 

– convert_type[_sat][_roundingmode]  



OpenCL C Language Highlights 
• Function qualifiers 

– __kernel qualifier declares a function as a kernel 
• I.e. makes it visible to host code so it can be enqueued 

– Kernels can call other kernel-side functions 
 

• Address space qualifiers 

– __global, __local, __constant, __private 

– Pointer kernel arguments must be declared with an address space qualifier 
 

• Work-item functions 

– uint get_work_dim()  … number of dimensions in use (1,2, or 3) 

– size_t get_global_id(uint n) … global work-item ID in dim “n” 

– size_t get_local_id(uint n)  …  work-item ID in dim “n” inside work-group 

– size_t get_group_id(uint n) … ID of work-group in dim “n” 

– size_t get_global_size(uint n) … num of work-item in dim “n” 

– size_t get_local_size(uint n) … num of work-item in work group in dim “n” 
 

• Synchronization functions 

– Barriers - all work-items within a work-group must execute the barrier 
function before any work-item can continue 

– Memory fences - provides ordering between memory operations 



OpenCL C Language Restrictions 

• Pointers to functions are not allowed 

• Pointers to pointers allowed within a kernel, 
but not as an argument to a kernel invocation 

• Bit-fields are not supported 

• Variable length arrays and structures are not 
supported 

• Recursion is not supported (yet!) 

• Double types are optional in OpenCL v1.2, but 
the key word is reserved 

   (note: most implementations support double) 



Matrix multiplication: sequential code 

void mat_mul(int Mdim, int Ndim, int Pdim, 

                        float *A, float *B, float *C) 

{ 

    int i, j, k; 

    for (i = 0; i < Ndim; i++) { 

        for (j = 0; j < Mdim; j++) { 

            for (k = 0; k < Pdim; k++) {  

                // C(i, j) = sum(over k) A(i,k) * B(k,j) 

                C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j]; 

            } 

        } 

    } 

} 

We calculate C=AB, dimA = (N x P), dimB=(P x M), dimC=(N x M) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each 

element of C 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k; 

    for (i = 0; i < Order; i++) { 

        for (j = 0; j < Order; j++) { 

            for (k = 0; k < Order; k++) {  

                // C(i, j) = sum(over k) A(i,k) * B(k,j) 

                C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

            } 

        } 

    } 

} 

We calculate C=AB, dimA = (N x N), dimB=(N x N), dimC=(N x N) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each 

element of C 

Let’s make it easier and 

specialize to square 

matrices 



Matrix multiplication performance 

• Serial C code on CPU (single core). 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

using the gcc compiler. 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system. 

 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k; 

    for (i = 0; i < Order; i++) { 

        for (j = 0; j < Order; j++) { 

            for (k = 0; k < Order; k++) {  

                // C(i, j) = sum(over k) A(i,k) * B(k,j) 

                C[i* Order + j] += A[i* Order + k] * B[k* Order + j]; 

            } 

        } 

    } 

} 



Exercise 4: Write a matrix multiply kernel 

• Goal: 
– To verify that you understand how to convert an array based serial 

code into an OpenCL kernel. 

• Procedure:  
– Start with the provided serial matrix multiply code. 

– Copy it into a file (mmul.cl) and convert it into a kernel callable from 
OpenCL where each work-item computes an element of the result 
matrix 

• Expected output: 
– None … we just want you to write the code and we’ll discuss the 

results as a group. 

Hints: 

__kernel to mark your kernel which much be a void function 

__global to mark global memory objects 

int gid = get_global_id(DIM);  //DIM is 0, 1 or 2 for dimension in NDRange 



Matrix multiplication: OpenCL kernel (1/2) 

void mat_mul(int Mdim, int Ndim, int Pdim, 

                         float *A, float *B, float *C) 

{ 

    int i, j, k; 

    for (i = 0; i < Order; i++) { 

        for (j = 0; j < Order; j++) { 

            // C(i, j) = sum(over k) A(i,k) * B(k,j) 

            for (k = 0; k < Order; k++) {   

                C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

            } 

        } 

    } 

} 

__kernel void mat_mul( 

                  const int Order, 

                  __global float *A, __global float *B, __global float *C) 

Mark as a kernel function and 

specify memory qualifiers 



__kernel void mat_mul( 

                const int Order, 

                __global float *A, __global float *B, __global float *C) 

{            

    int i, j, k; 

    for (i = 0; i < Order; i++) { 

        for (j = 0; j < Order; j++) { 

            for (k = 0; k < Order; k++) {  

                // C(i, j) = sum(over k) A(i,k) * B(k,j) 

                C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

            } 

        } 

    } 

} 

Matrix multiplication: OpenCL kernel (2/2) 

i = get_global_id(0); 

j = get_global_id(1); 

Remove outer loops and set 

work-item co-ordinates 

 

 



__kernel void mmul( 

   const int Order, 

   __global float *A, 

   __global float *B, 

   __global float *C) 

Matrix multiplication: OpenCL kernel improved 

{ 

  int k; 

  int i = get_global_id(0); 

  int j = get_global_id(1); 

  float tmp = 0.0f; 

  for (k = 0; k < Order; k++)  

   tmp += A[i*Order+k]*B[k*Order+j]; 

  } 

  C[i*Order+j] += tmp; 

} 

Rearrange a bit and use a local scalar for intermediate C element 

values (a common optimization in Matrix Multiplication functions)  



Building programs 

• To use a kernel, you must: 

1. build the program object containing the kernel 

• Specify the kernel source in the program object 

constructor. 

• We provide a utility function to load the source from a 

file (or you can specify the source as a string) 

cl::Program program(context, util::loadProgram("matmul1.cl")); 

2. Compile the program object 

• You can compile the program with the constructor by 

specifying the last argument as “true”: 
cl::Program program(context, util::loadProgram("matmul1.cl"),true); 

How do you recover compiler messages should there be 

compile-time errors in your kernel? 



Compiler error messages (1/2) 
• You need to use an explicit build step so you can recover the error and query 

the system to fetch the compiler messages. 

1. Do NOT build the program with the constructor (i.e. do not set the last 
argument in the program constructor to true). 

cl::Program program(context, util::loadProgram("matmul1.cl")); 

2. Explicitly build the program within a try block to catch the error exception: 

 
 try 

       { 

           program.build(); 

       } 

       catch (cl::Error error) 

       { 

          // If it was a build error then show the error 

          if (error.err() == CL_BUILD_PROGRAM_FAILURE) 

           { 

               ///   recover compiler message (see the next slide) 

           } 

           throw error; 

       } 



Compiler error messages (2/2) 
• Compiled code is connected to the device … so we need a 

handle to reference the device 

       std::vector<cl::Device> devices; 

       devices = context.getInfo<CL_CONTEXT_DEVICES>(); 

• In our programming, we’ve been using the default device 

which is the first one (devices[0]). 

• We need to query the program object to get the “BuildInfo” 

       std::string built =  program.getBuildInfo       

                     <CL_PROGRAM_BUILD_LOG>(devices[0]); 

• Now we can output the error compiler message  

         std::cerr << built << "\n"; 



Compiler error messages: Complete Example 

      cl::Program program(context, util::loadProgram("matmul1.cl")); 

       try 

       { 

           program.build(); 

       } 

       catch (cl::Error error) 

       { 

          // If it was a build error then show the error 

          if (error.err() == CL_BUILD_PROGRAM_FAILURE) 

           { 

               std::vector<cl::Device> devices; 

               devices = context.getInfo<CL_CONTEXT_DEVICES>(); 

               std::string built =  program.getBuildInfo     

                                        <CL_PROGRAM_BUILD_LOG>(devices[0]); 

               std::cerr << built << "\n"; 

           } 

           throw error; 

       } 



Exercise 5: The C = A * B problem 

• Goal: 
– To verify that you understand how to write a host 

program. 

• Procedure:  
– Using the VADD host program and serial matrix 

multiply programs  as your guide, write a host 
program to call your matrix multiplication kernel.    

– Copy the result matrix back to the host and verify 
output (using the functions we provided in the serial 
program). 

• Expected output: 
– Test your result and verify that it is correct.  Output 

the runtime and the MFLOPS.  



Matrix multiplication host program 
#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

    sz = N * N; 

    std::vector<float> h_A(sz);  

    std::vector<float> h_B(sz);      

    std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

   cl::Context context(DEVICE); 

   cl::Program program(context, 

        util::loadProgram("matmul1.cl“,  

        true)); 

cl::CommandQueue queue(context); 

 

auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 

 

  d_A   = cl::Buffer(context, begin(h_A),  

                                           end(h_A), true); 

  d_B   = cl::Buffer(context, begin(h_B),  

                                           end(h_B), true); 

  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 

 

  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N,N)), N,  
                             d_A,  d_B,  d_C); 

 

  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 

 

   // Timing and check results (not shown) 
} 



Matrix multiplication performance 

• Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 

observe completely different results should you 

run these tests on your own system. 

 



UNDERSTANDING THE OPENCL 

MEMORY HIERARCHY 

 



OpenCL Memory model 
• Private Memory 

– Per work-item 

• Local Memory 
– Shared within a 

 work-group 

• Global/Constant 
Memory 
– Visible to all 

 work-groups 

• Host memory 
– On the CPU 

Memory management is explicit:  

You are responsible for moving data from 

 host → global → local and back 



The Memory Hierarchy 

Private memory 
O(10) words/WI 

 

Local memory 
O(1-10) KBytes/WG 

 

Global memory 
O(1-10) GBytes 

 

Host memory 
O(1-100) GBytes 

Private memory 
O(2-3) words/cycle/WI 

 

Local memory 
O(10) words/cycle/WG 

 

Global memory 
O(100-200) GBytes/s 

 

Host memory 
O(1-100) GBytes/s 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011 

Bandwidths Sizes 

Managing the memory hierarchy is one of the most important 
things to get right to achieve good performance 

 



Optimizing matrix multiplication 
• MM cost determined by FLOPS and memory movement: 

– 2*n3 = O(n3) FLOPS 

– Operates on 3*n2 = O(n2) numbers 

• To optimize matrix multiplication, we must ensure that for 

every memory access we execute as many FLOPS as 

possible. 

• Outer product algorithms are faster, but for pedagogical 

reasons, let’s stick to the simple dot-product algorithm. 

 

 

 

• We will work with work-item/work-group sizes and the 

memory model to optimize matrix multiplication 

 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



Optimizing matrix multiplication 

• There may be significant overhead to manage work-items 

and work-groups. 

• So let’s have each work-item compute a full row of C 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 

• And with an eye towards future optimizations, let’s collect 

work-items into work-groups with 64 work-items per work-

group  



Exercise 6: C = A * B (1 row per work-item) 

• Goal: 
– To give you experience managing the number of work-

items per workgroup. 

• Procedure:  
– Start from you last matrix multiplication program.  

Modify it so each work-item handles an entire row of the 
matrix. 

• Expected output: 
– Test your result and verify that it is correct.  Output the 

runtime and the MFLOPS.  

cl::EnqueueArgs() is used with the kernel functor to control how a kernel is 

enqueued.   There are many overloaded forms … the one you’ll need is:  

 

cl::EnqueueArgs(NDRange Global, NDRange Local) 

 

Where “global” and “local” are (N), (N,N), or (N,N,N) depending on the 

dimensionality of the NDRange index space. 



An N-dimension domain of work-items 

• Global Dimensions: 1024 (1D) 

 Whole problem space (index space) 

• Local Dimensions:  64 (work-items per work-group) 

 Only 1024/64 = 16 work-groups in total 

 

• Important implication: we will have a lot fewer 
work-items per work-group (64) and work-
groups (16). Why might this matter? 

1
0
2
4
 

6
4
 



__kernel void mmul( 

   const int Order, 

   __global float *A, 

   __global float *B, 

   __global float *C) 

Matrix multiplication: One work item per row of C 

{ 

  int j, k; 

  int i = get_global_id(0); 

  float tmp; 

  for (j = 0; j < Order; j++) { 

       tmp = 0.0f; 

       for (k = 0; k < Order; k++)  

           tmp += A[i*Order+k]*B[k*Order+j]; 

       } 

       C[i*Order+j] += tmp; 

   } 

} 



Mat. Mul. host program (1 row per work-item) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

  sz = N * N; 

  std::vector<float> h_A(sz);  

  std::vector<float> h_B(sz);      

  std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

 cl::Context context(DEVICE); 

 cl::Program program(context, 

    util::loadProgram("mmulCrow.cl“,  

        true)); 

cl::CommandQueue queue(context); 

 

auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 

 

  d_A   = cl::Buffer(context, begin(h_A),  

                                           end(h_A), true); 

  d_B   = cl::Buffer(context, begin(h_B),  

                                           end(h_B), true); 

  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 

 

  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 

                             cl::Ndrange(64)),  
                             N, d_A,  d_B,  d_C); 

 

  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 

 

   // Timing and check results (not shown) 
} 



Mat. Mul. host program (1 row per work-item) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

  sz = N * N; 

  std::vector<float> h_A(sz);  

  std::vector<float> h_B(sz);      

  std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

 cl::Context context(DEVICE); 

 cl::Program program(context, 

    util::loadProgram("mmulCrow.cl“,  

        true)); 

cl::CommandQueue queue(context); 

 

auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 

 

  d_A   = cl::Buffer(context, begin(h_A),  

                                           end(h_A), true); 

  d_B   = cl::Buffer(context, begin(h_B),  

                                           end(h_B), true); 

  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 

 

  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 

                             cl::Ndrange(64)),  
                             N, d_A,  d_B,  d_C); 

 

  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 

 

   // Timing and check results (not shown) 
} 

Changes to host program: 
1. 1D ND Range set to 

number of rows in the C 

matrix 

2. Local Dimension set to 64 

(which gives us 16 work-

groups which matches the 

GPU’s number of compute 

units). 

Third party names are the property of their owners. 



Matrix multiplication performance 

• Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 

may observe completely different results should 

you run these tests on your own system. 

This has started to help. 



Optimizing matrix multiplication 

• Notice that, in one row of C, each element reuses the same 

row of A. 

• Let’s copy that row of A into private memory of the work-

item that’s (exclusively) using it to avoid the overhead of 

loading it from global memory for each C(i,j) computation. 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 

work-item 



Private Memory 

• A work-items private memory: 
– A very scarce resource, only a few tens of 32-bit 

words per Work-Item at most (on a GPU) 

– If you use too much it spills to global memory or 
reduces the number of Work-Items that can be 
run at the same time, potentially harming 
performance* 

– Think of these like registers on the CPU 

• How do you create and manage private 
memory? 
– Declare statically inside your kernel 

* Occupancy on a GPU 



Exercise 7: C = A * B (Row of A in private memory) 

• Goal: 
– To give you experience working with private memory. 

• Procedure:  
– Start from you last matrix multiplication program (the 

row-based method).  Modify it so each work item copies 
A from global to private memory to reduce traffic into 
global memory. 

• Expected output: 
– Test your result and verify that it is correct.  Output the 

runtime and the MFLOPS.  

Private memory can be allocated statically inside a kernel 

… so just declare any arrays you need.    

You can use normal loads and stores inside a kernel to 

move data between private and global address spaces. 



__kernel void mmul( 

   const int Order, 

   __global float *A, 

   __global float *B, 

   __global float *C) 

{ 

  int j, k; 

  int i = get_global_id(0); 

  float tmp;   

  float Awrk[1024]; 

 

Matrix multiplication: (Row of A in private memory) 

for (k = 0; k < Pdim; k++) 

      Awrk[k] = A[i*Ndim+k]; 

 

  for (j = 0; j < Order; j++) { 

       tmp = 0.0f; 

       for (k = 0; k < Order; k++)  

           tmp += Awrk[k]*B[k*Order+j]; 

       } 

       C[i*Order+j] += tmp; 

   } 

} 



__kernel void mmul( 

   const int Order, 

   __global float *A, 

   __global float *B, 

   __global float *C) 

{ 

  int j, k; 

  int i = get_global_id(0); 

  float tmp;  

  float Awrk[1024]; 

 

 

Matrix multiplication: (Row of A in private memory) 

for (k = 0; k < Pdim; k++) 

      Awrk[k] = A[i*Ndim+k]; 

 

  for (j = 0; j < Order; j++) { 

       tmp = 0.0f; 

       for (k = 0; k < Order; k++)  

           tmp += Awrk[k]*B[k*Order+j]; 

       } 

       C[i*Order+j] += tmp; 

   } 

} 

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory) 

Copy a row of A 

into private 

memory from 

global memory 

before we start 

with the matrix 

multiplications. 

Setup a work array for A in 

private memory* 



Mat. Mul. host program (Row of A in private memory) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

  sz = N * N; 

  std::vector<float> h_A(sz);  

  std::vector<float> h_B(sz);      

  std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

 cl::Context context(DEVICE); 

 cl::Program program(context, 

    util::loadProgram("mmulCrow.cl“,  

        true)); 

cl::CommandQueue queue(context); 

 

auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 

 

  d_A   = cl::Buffer(context, begin(h_A),  

                                           end(h_A), true); 

  d_B   = cl::Buffer(context, begin(h_B),  

                                           end(h_B), true); 

  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 

 

  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 

                             cl::Ndrange(64)),  
                             N, d_A,  d_B,  d_C); 

 

  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 

 

   // Timing and check results (not shown) 
} 

Host program unchanged from last exercise 



Matrix multiplication performance 

• Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

Device is Tesla® M2090 GPU from 

NVIDIA® with a max of 16 

compute units, 512 PEs 

Device is Intel® Xeon® CPU, 

E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 

observe completely different results should you run 

these tests on your own system. 

Big impact! 



Optimizing matrix multiplication 

• We already noticed that, in one row of C, each element 

uses the same row of A 

• Each work-item in a work-group also uses the same columns 

of B 

• So let’s store the B columns in local memory (which is 

shared by the work-items in the work-group) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 

work-item Local memory for each 

work-group 



Local Memory 

• How do you create and manage local memory? 
– Create and Allocate local memory on the host 

• cl::LocalSpaceArg  localmem = cl::Local(sizeof(float) * N); 
 

– Setup the kernel to receive local memory blocks 
• auto foo = cl::make_kernel<int, cl::Buffer, cl::LocalSpaceArg>(program, “bar”); 

 

– Mark kernel arguments that are from local memory as __local 
 

– Your kernels are responsible for transferring data between Local and 
Global/Constant memories … there are built-in functions to help 
(async_work_group_copy(), async_workgroup_strided_copy(), etc) 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011 

• A work-group’s shared memory 
– Typically 10’s of KBytes per Compute Unit* 

– Use Local Memory to hold data that can be  
reused by all the work-items in a work-group 

– As multiple Work-Groups may be running on each Compute Unit 
(CU), only a fraction of the total Local Memory size may be 
available to each Work-Group 



Local Memory performance hints 

• Local Memory doesn’t always help… 

– CPUs don’t have special hardware for it 

– This can mean excessive use of Local Memory might 

slow down kernels on CPUs 

– GPUs now have effective on-chip caches which can 

provide much of the benefit of Local Memory but 

without programmer intervention 

– Access patterns to Local Memory affect performance 

in a similar way to accessing Global Memory 

• Have to think about things like coalescence & bank conflicts 

– So, your mileage may vary! 



Memory Consistency 

• OpenCL uses a relaxed consistency memory model; i.e.  

– The state of memory visible to a work-item is not guaranteed to be 

consistent across the collection of work-items at all times. 

• Within a work-item: 

– Memory has load/store consistency to the work-item’s private view of 

memory, i.e. it sees its own reads and writes correctly 

• Within a work-group: 

– Local memory is consistent between work-items at a barrier. 

• Global memory is consistent within a work-group at a 

barrier, but not guaranteed across different work-groups!! 

– This is a common source of bugs! 

• Consistency of memory shared between commands (e.g. 

kernel invocations) is enforced by synchronization (barriers, 

events, in-order queue)  



Work-Item Synchronization 

• Within a work-group 

void barrier() 
– Takes optional flags 

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE 

– A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier() 

– Corollary: If a barrier() is inside a branch, then the branch must be 
taken by either: 

• ALL work-items in the work-group, OR 

• NO work-item in the work-group 

 

• Across work-groups 
– No guarantees as to where and when a particular work-group will be 

executed relative to another work-group 

– Cannot exchange data, or have barrier-like synchronization 
between two different work-groups! (Critical issue!) 

– Only solution: finish the kernel and start another 

 

Ensure correct order of memory operations 

to local or global memory (with flushes or 

queuing a memory fence) 



Exercise 8: C=A*B, share B column between work-items 

• Goal: 
– To give you experience working with local memory. 

• Procedure:  
– Start from you last matrix multiplication program (the row-based method 

using private memory).  Modify it so each work group copies a column of B 
into local memory and shares it between work-items in a work-group.   

• Expected output: 
– Verify that your result is correct.  Output the runtime and the MFLOPS.  

Tell the kernel an argument is local 

__local 
 

Find a work-item’s ID within a work-group and size of a work-group: 

 int iloc  = get_local_id(0); 

 int nloc = get_local_size(0); 
 

Work items copy global into local data, so you need to synchronize them 

barrier(CLK_LOCAL_MEM_FENCE); 
 

Allocate local memory on the host and pass it into the kernel 
cl::LocalSpaceArg localmem = cl::Local(sizeof(float) * N); 

auto rowcol = cl::make_kernel<int, cl::Buffer, cl::LocalSpaceArg>(program, “mmul”); 



__kernel void mmul( 

        const int Order, 

   __global float *A, 

   __global float *B, 

   __global float *C, 

   __local   float *Bwrk) 

{ 

  int j, k; 

  int i       = get_global_id(0); 

 

  int iloc  = get_local_id(0); 

  int nloc = get_local_size(0); 

  

 float tmp;   

  float Awrk[1024]; 

 

Matrix multiplication: B column shared between work-items 

for (k = 0; k < Pdim; k++) 

      Awrk[k] = A[i*Ndim+k]; 

 

  for (j = 0; j < Order; j++) { 

 

      for (k=iloc; k< Order; k+=nloc) 

         Bwrk[k] = B[k* Order +j]; 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

       tmp = 0.0f; 

       for (k = 0; k < Order; k++)  

           tmp += Awrk[k]*B[k*Order+j]; 

       } 

       C[i*Order+j] += tmp; 

   } 

} 



__kernel void mmul( 

        const int Order, 

   __global float *A, 

   __global float *B, 

   __global float *C, 

   __local   float *Bwrk) 

{ 

  int j, k; 

  int i       = get_global_id(0); 

 

  int iloc  = get_local_id(0); 

  int nloc = get_local_size(0); 

  

 float tmp;   

  float Awrk[1024]; 

 

for (k = 0; k < Pdim; k++) 

      Awrk[k] = A[i*Ndim+k]; 

 

  for (j = 0; j < Order; j++) { 

 

     for (k=iloc; k< Order; k+=nloc) 

         Bwrk[k] = B[k* Order +j]; 

     barrier(CLK_LOCAL_MEM_FENCE); 

 

       tmp = 0.0f; 

       for (k = 0; k < Order; k++)  

           tmp += Awrk[k]*B[k*Order+j]; 

       } 

       C[i*Order+j] += tmp; 

   } 

} 
Pass a work array in local memory to hold a 

column of B.  All the work-items do the copy 

“in parallel” using a cyclic loop distribution 

(hence why we need iloc and nloc)  

Matrix multiplication: B column shared between work-items 



Mat. Mul. host program (Share a column of B within a work-group) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

  sz = N * N; 

  std::vector<float> h_A(sz);  

  std::vector<float> h_B(sz);      

  std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

 cl::Context context(DEVICE); 

 cl::Program program(context, 

    util::loadProgram("mmulCrow.cl“,  

        true)); 

cl::CommandQueue queue(context); 
 

auto mmul = cl::make_kernel 

        <int, cl::Buffer, cl::Buffer, cl::Buffer, 

         cl::LocalSpaceArg > (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 

  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 

  d_C   = cl::Buffer(context,  

              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 

 

  cl::LocalSpaceArg Bwrk = 

                    cl::Local(sizeof(float) * Pdim); 
 

  mmul(cl::EnqueueArgs( queue,  

                 cl::NDRange(N),  cl::Ndrange(64)),  

                  N, d_A,  d_B,  d_C, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 

} 



Mat. Mul. host program (Share a column of B within a work-group) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

  sz = N * N; 

  std::vector<float> h_A(sz);  

  std::vector<float> h_B(sz);      

  std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

 cl::Context context(DEVICE); 

 cl::Program program(context, 

    util::loadProgram("mmulCrow.cl“,  

        true)); 

cl::CommandQueue queue(context); 
 

auto mmul = cl::make_kernel 

        <int, cl::Buffer, cl::Buffer, cl::Buffer, 

         cl::LocalSpaceArg > (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 

  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 

  d_C   = cl::Buffer(context,  

              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 

 

  cl::LocalSpaceArg Bwrk = 

                    cl::Local(sizeof(float) * Pdim); 
 

  mmul(cl::EnqueueArgs( queue,  

                 cl::NDRange(N),  cl::Ndrange(64)),  

                  N, d_A,  d_B,  d_C, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 

} 

Change host program to pass 

local memory to kernels.  

• Add an arg of type 

LocalSpaceArg is needed.  

• Allocate the size of local 

memory 

• Update argument list in 

kernel functor 



Matrix multiplication performance 

• Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

C row per work-item, A private, B local 10,047.5 8,181.9 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 

observe completely different results should you run 

these tests on your own system. 



HIGH PERFORMANCE OPENCL 



Execution Model: How do kernels execute? 

Queued 

Complete 

Submitted 

Ready 

Running 

Ended 

Launch 

Submit 

Start 

End 

Complete 

Enqueue 

Transitions 

observable 

from the 

host 

program 

Kernel moves to the 

device and once 

prerequisites are 

met, launched 

Kernel placed in queue 

Work-groups are placed into a 

virtual work-pool 

Work-groups execute in any order 

from the  work-pool 

All the work-groups for a kernel have 

finished 

Host and other kernels are notified 



High Performance OpenCL 

• A good OpenCL program is 
optimized for high throughput … 
work-groups are scheduled from 
the work-pool and stream 
through the device, hopefully  
without observable stalls. 

 

• By having more work than 
processing elements, you can 
hide memory latencies and 
keep all the hardware busy. 

 

• Instruction overhead minimized 
… work-groups broken down 
into collections that execute 
together in “SIMD mode” from a 
single stream of instructions.  
(Warp for NVIDIA, Wavefront for 
AMD) 



Work-item divergence 
• What happens when work-items branch? 

• Work-items are gathered into collections that run together on the 
hardware (This is the concept of a “Warp” from CUDA). 

• The hardware runs this collection in a SIMD data parallel model with all 
the work-items starting together from the same program address. 

• Each work-item has its own instruction address counter and register 
state 

– Each work-item is free to branch and execute independently (diverge) 

– Provide the MIMD abstraction 

• Branch behavior 

– Each branch will be executed serially 

– Work-items not following the current branch will be disabled (masked) 

95 

A warp 

Start Branch1 Branch2 Branch3 Converge 

Time 



Keep the processing elements (PE) busy 

• You need uniform execution of the work-items scheduled to 

execute together.  Avoid divergent control flows. 

• Occupancy: a measure of the fraction of time during a 

computation when the PE’s are busy.  Goal is to keep this 

number high (well over 50%). 

• Pay attention to the number of work-items and work-group sizes 

– Rule of thumb:  On a modern GPU you want at least 4 work-items 

per PE in a Compute Unit 

– More work-items are better, but diminishing returns, and there is 

an upper limit 

• Each work item consumes PE finite resources (registers etc) 



Use the Memory Hierarchy effectively 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011 

• Organize your computation so it puts the most frequently used data 

in faster memory … optimized of course around the available size.   



Optimization issues 
• Efficient access to memory 

– Memory coalescing 
• Ideally get work-item i to access data[i] and work-item j to access 

data[j] at the same time etc. 

– Memory alignment 
• Padding arrays to keep everything aligned to multiples of 16, 32 or 

64 bytes 

• Registers per Work-Item– ideally low and a nice divisor of 
the number of hardware registers per Compute Unit 

– E.g. 32,768 on M2050 GPUs 

– These are statically allocated and shared between all Work-
Items and Work-Groups assigned to each Compute Unit 

– Four Work-Groups of 1,024 Work-Items each would result in 
just 8 registers per Work-Item! Typically aim for 16-32 
registers per Work-Item 



Memory layout is critical to 

performance 

• “Structure of Arrays vs. Array of Structures” 
problem: 

 struct { float x, y, z, a; } Point; 

 

• Structure of Arrays (SoA) suits memory 
coalescence on GPUs 

 

 

 

• Array of Structures (AoS) may suit cache 
hierarchies on CPUs 

 

x x x x … y y y y … z z z z … a a a a … 

x y z a … x y z a … x y z a … x y z a … 

Adjacent work-items 

like to access 

adjacent memory 

Individual work-

items like to access 

adjacent memory 



Portable performance in OpenCL 
• Don’t optimize too much for any one platform, e.g. 

– Don’t write specifically for certain warp/wavefront sizes etc 

– Be careful not to max out specific sizes of local/global memory 

– OpenCL’s vector data types have varying degrees of support – faster 
on some devices, slower on others 

– Some devices have caches in their memory hierarchies, some don’t, 
and it can make a big difference to your performance without you 
realizing 

– Choosing the allocation of Work-Items to Work-Groups and 
dimensions on your kernel launches 

– Performance differences between unified vs. disjoint host/global 
memories 

– Double precision performance varies considerably from device to 
device 

 

• Recommend trying your code on several different platforms to see 
what happens (profiling is good!) 
– At least two different GPUs (ideally different vendors!) and at least 

one CPU 

 



Consider our matrix multiplication example 

• So far, we’ve used matrix multiplication to explore the 

memory hierarchy, but we haven’t really thought about 

what the algorithm needs to run REALLY fast? 

• To make this fast, you need to break the problem down 

into chunks that do lots of work for sub problems that fit in 

fast memory (OpenCL local memory). 

 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k; 

    for (i = 0; i < Order; i++) { 

        for (j = 0; j < Order; j++) { 

            for (k = 0; k < Order; k++) {  

                  C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

            } 

        } 

    } 

} 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k; 

    for (i = 0; i < Order; i++)  

        for (j = 0; j < Order; j++)  

            for (k = 0; k < Order; k++)   

                  C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

} 

Let’s get rid of all 

those ugly brackets 

Let’s get rid of all 

those ugly brackets 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k;    

    int NB=Order/block_size; // assume Order%block_size=0 

    for (ib = 0; ib < NB; ib++)  

        for (i=ib*NB;i<(ib+1)*NB;i++) 

           for (jb = 0; jb < NB; jb++)  

                for (j=jb*NB;j<(jb+1)*NB;j++) 

                    for (kb = 0; kb < NB; kb++)  

                          for (k=kb*NB;k<(kb+1)*NB;k++) 

                                 C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

  

}  

Break each loop 

into chunks with a 

size chosen to 

match the size of 

your fast memory 

Break each loop 

into chunks with a 

size chosen to 

match the size of 

your fast memory 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k;    

    int NB=Order/block_size; // assume Order%block_size=0 

    for (ib = 0; ib < NB; ib++)  

           for (jb = 0; jb < NB; jb++)  

                    for (kb = 0; kb < NB; kb++)  

        for (i=ib*NB;i<(ib+1)*NB;i++) 

                 for (j=jb*NB;j<(jb+1)*NB;j++) 

                           for (k=kb*NB;k<(kb+1)*NB;k++) 

                                 C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

  

}  

Rearrange loop nest to 

move loops over blocks 

“out” and leave loops 

over a single block 

together 

Rearrange loop nest to 

move loops over blocks 

“out” and leave loops 

over a single block 

together 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k;    

    int NB=Order/block_size; // assume Order%block_size=0 

    for (ib = 0; ib < NB; ib++)  

           for (jb = 0; jb < NB; jb++)  

                    for (kb = 0; kb < NB; kb++)  

        for (i=ib*NB;i<(ib+1)*NB;i++) 

                 for (j=jb*NB;j<(jb+1)*NB;j++) 

                           for (k=kb*NB;k<(kb+1)*NB;k++) 

                                 C[i*Order+j] += A[i*Order+k] * B[k*Order+j]; 

  

}  

This is just a local matrix 

multiplication of a single block 

This is just a local matrix 

multiplication of a single block 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k;    

    int NB=Order/block_size; // assume Order%block_size=0 

    for (ib = 0; ib < NB; ib++)  

           for (jb = 0; jb < NB; jb++)  

                    for (kb = 0; kb < NB; kb++)  

                          sgemm(C, A, B, ….)       // Cib,jb += Aib,kb*Bkb,jb 

}  

Note: sgemm is the name of the level three BLAS routine to multiply two matrices 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C) 

{ 

    int i, j, k;    

    int NB=Order/block_size; // assume Order%block_size=0 

    for (ib = 0; ib < NB; ib++)  

           for (jb = 0; jb < NB; jb++)  

                    for (kb = 0; kb < NB; kb++)  

                          sgemm(C, A, B, ….)       // Cib,jb += Aib,kb*Bkb,jb 

}  

= + x 

A(ib,:) B(:,jb) C(ib,jb) C(ib,jb) 



Exercise 9: The C = A * B Competition 

• Goal: 
– To see who can get the best performance from their 

matrix multiplication program. 

• Procedure:  
– Start from which ever matrix multiplication program you 

choose. 

– Make it fast.  But TEST OUTPUT …. You must get correct 
results. 

– Remember … block your algorithms to exploit the 
natural execution widths of your hardware, make good 
use of local and private memory. 

• Expected output: 
– Test your result and verify that it is correct.  Output the 

runtime and the MFLOPS.  



Blocked matrix multiply: kernel 
#define blksz 16 

__kernel void mmul( 

                const unsigned int N, 

                __global float* A, 

                __global float* B, 

                __global float* C, 

                __local  float* Awrk, 

                __local  float* Bwrk) 

{ 

   int kloc, Kblk; 

   float Ctmp=0.0f; 

 

   //  compute element C(i,j) 

   int i = get_global_id(0); 

   int j = get_global_id(1); 

 

   // Element C(i,j) is in block C(Iblk,Jblk) 

   int Iblk = get_group_id(0); 

   int Jblk = get_group_id(1); 

 

   // C(i,j) is element C(iloc, jloc)  

   //  of block C(Iblk, Jblk) 

   int iloc = get_local_id(0); 

   int jloc = get_local_id(1); 

   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 

  int Abase = Iblk*N*blksz;        int Ainc  = blksz; 

  int Bbase = Jblk*blksz;    int Binc  = blksz*N; 

 

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk) 

  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 

  { 

      //Load A(Iblk,Kblk) and B(Kblk,Jblk). 

      //Each work-item loads a single element of the two  

      //blocks which are shared with the entire work-group 

 

      Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc]; 

      Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      #pragma unroll 

      for(kloc=0; kloc<blksz; kloc++) 

         Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

      Abase += Ainc;       Bbase += Binc; 

   } 

   C[j*N+i] = Ctmp; 

} 



Blocked matrix multiply: kernel 
#define blksz 16 

__kernel void mmul( 

                const unsigned int N, 

                __global float* A, 

                __global float* B, 

                __global float* C, 

                __local  float* Awrk, 

                __local  float* Bwrk) 

{ 

   int kloc, Kblk; 

   float Ctmp=0.0f; 

 

   //  compute element C(i,j) 

   int i = get_global_id(0); 

   int j = get_global_id(1); 

 

   // Element C(i,j) is in block C(Iblk,Jblk) 

   int Iblk = get_group_id(0); 

   int Jblk = get_group_id(1); 

 

   // C(i,j) is element C(iloc, jloc)  

   //  of block C(Iblk, Jblk) 

   int iloc = get_local_id(0); 

   int jloc = get_local_id(1); 

   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 

  int Abase = Iblk*N*blksz;        int Ainc  = blksz; 

  int Bbase = Jblk*blksz;    int Binc  = blksz*N; 

 

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk) 

  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 

  { 

      //Load A(Iblk,Kblk) and B(Kblk,Jblk). 

      //Each work-item loads a single element of the two  

      //blocks which are shared with the entire work-group 

 

      Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc]; 

      Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      #pragma unroll 

      for(kloc=0; kloc<blksz; kloc++) 

         Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

      Abase += Ainc;       Bbase += Binc; 

   } 

   C[j*N+i] = Ctmp; 

} 

Load A and B blocks, 

wait for all work-

items to finish 

Wait for everyone to finish before 

going to next iteration of Kblk loop. 

It’s getting the indices 

right that makes this hard 



#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

  sz = N * N; 

  std::vector<float> h_A(sz);  

  std::vector<float> h_B(sz);      

  std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

 cl::Context context(DEVICE); 

 cl::Program program(context, 

    util::loadProgram("mmulCrow.cl“,  

        true)); 

 

cl::CommandQueue queue(context); 

 

auto mmul = cl::make_kernel 

        <int, cl::Buffer, cl::Buffer, cl::Buffer, 

         cl::LocalSpaceArg, cl::LocalSpaceArg >  

                                            (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 

  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 

  d_C   = cl::Buffer(context,  

              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 
 

  cl::LocalSpaceArg Awrk = 

                    cl::Local(sizeof(float) * N); 

 cl::LocalSpaceArg Bwrk = 

                    cl::Local(sizeof(float) * N); 

  mmul(cl::EnqueueArgs( queue,  

                 cl::NDRange(N,N),  cl::NDRange(16,16)),  

                  N, d_A,  d_B,  d_C, Awrk, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 

} 

Blocked matrix multiply: Host 



#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 

{  // declarations (not shown) 

  sz = N * N; 

  std::vector<float> h_A(sz);  

  std::vector<float> h_B(sz);      

  std::vector<float> h_C(sz);  

 

 cl::Buffer d_A, d_B, d_C;  

 

// initialize matrices  and setup 

// the problem (not shown) 

 

 cl::Context context(DEVICE); 

 cl::Program program(context, 

    util::loadProgram("mmulCrow.cl“,  

        true)); 

 

cl::CommandQueue queue(context); 

 

auto mmul = cl::make_kernel 

        <int, cl::Buffer, cl::Buffer, cl::Buffer, 

         cl::LocalSpaceArg, cl::LocalSpaceArg >  

                                            (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 

  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 

  d_C   = cl::Buffer(context,  

              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 
 

  cl::LocalSpaceArg Awrk = 

                    cl::Local(sizeof(float) * 16*16); 

 cl::LocalSpaceArg Bwrk = 

                    cl::Local(sizeof(float) * 16*16); 

  mmul(cl::EnqueueArgs( queue,  

                 cl::NDRange(N,N),  cl::NDRange(16,16)),  

                  N, d_A,  d_B,  d_C, Awrk, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 

} 

Blocked matrix multiply: Host 

One work-item per element of the C matrix organized into 16 by 16 blocks.   

Setup local memory 

with blocks of A and B 

(16 by 16) that should 

fit in local memory.   



Matrix multiplication performance 

• Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

C row per work-item, A private, B local 10,047.5 8,181.9 

Block oriented approach using local   119304.6 

Device is Tesla® M2090 GPU from 

NVIDIA® with a max of 16 compute 

units, 512 PEs 

Device is Intel® Xeon® CPU, E5649 

@ 2.53GHz 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 

different results should you run these tests on your own system. 

CuBLAS performance 283366.4 MFLOPS 



Matrix multiplication performance (CPU) 

• Matrices are stored in global memory. 

Case MFLOPS 

CPU 

Sequential C (not OpenCL, compiled /O3) 224.4 

C(i,j) per work-item, all global 841.5 

C row per work-item, all global 869.1 

C row per work-item, A row private 1038.4 

C row per work-item, A private, B local 3984.2 

Block oriented approach using local (blksz=8) 7482.5 

Block oriented approach using local (blksz=16) 12271.3  

Block oriented approach using local (blksz=32) 16268.8 

Intel MKL SGEMM 63780.6 

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel 

compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 

different results should you run these tests on your own system. 



SYNCHRONIZATION IN OPENCL 



Consider N-dimensional domain of work-items 

• Global Dimensions: 
– 1024x1024 (whole problem space) 

• Local Dimensions: 
– 128x128 (work-group, executes together) 

Synchronization: when multiple units of execution (e.g. work-items) are 
brought to a known point in their execution.   Most common example is a 
barrier … i.e. all units of execution “in scope” arrive at the barrier before 
any proceed.  

1024 

1
0
2
4
 

Synchronization between 

work-items possible only 

within work-groups: 

barriers and memory fences 

Cannot synchronize 

between work-groups 

within a kernel 



Work-Item Synchronization 

• Within a work-group 

void barrier() 
– Takes optional flags 

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE 

– A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier() 

– Corollary: If a barrier() is inside a branch, then the branch must be 
taken by either: 

• ALL work-items in the work-group, OR 

• NO work-item in the work-group 

 

• Across work-groups 
– No guarantees as to where and when a particular work-group will be 

executed relative to another work-group 

– Cannot exchange data, or have barrier-like synchronization 
between two different work-groups! (Critical issue!) 

– Only solution: finish the kernel and start another 

 

Ensure correct order of memory operations 

to local or global memory (with flushes or 

queuing a memory fence) 



Where might we need 

synchronization? 

• Consider a reduction … reduce a set of 

numbers to a single value 

– E.g. find sum of all elements in an array 

• Sequential code 

 int reduce(int Ndim, int *A) 

{ 

  int sum = 0; 

  for(int i = 0; i < Ndim; i++) 

    sum += A[i]; 

} 



Simple parallel reduction 

• A reduction can be carried out in three steps: 
1. Each work-item sums its private values into a local array 

indexed by the work-item’s local id 

2. When all the work-items have finished, one work-item sums 
the local array into an element of a global array (indexed by 
work-group id). 

3. When all work-groups have finished the kernel execution, 
the global array is summed on the host. 

 

• Note: this is a simple reduction that is straightforward to 
implement.  More efficient reductions do the work-group 
sums in parallel on the device rather than on the host.  
These more scalable reductions are considerably more 
complicated to implement. 

 

 



A simple program that uses a reduction 

Numerical Integration 

Mathematically, we know that 

we can approximate the integral 

as a sum of rectangles. 

 

Each rectangle has width and 

height at the middle of interval. 

4.0 

2.0 

1.0 
X 

0.0 



Numerical integration source code 
The serial Pi program 

static long num_steps = 100000; 

double step; 

void main() 

{ 

  int i; double x, pi, sum = 0.0; 

 

  step = 1.0/(double) num_steps; 

 

  for (i = 0; i < num_steps; i++) { 

    x = (i+0.5)*step; 

    sum = sum + 4.0/(1.0+x*x); 

  } 

  pi = step * sum; 

} 



Numerical integration source code 
The serial Pi program 

static long num_steps = 100000; 

float step; 

void main() 

{ 

  int i; float x, pi, sum = 0.0; 

 

  step = 1.0f/(float) num_steps; 

 

  for (i = 0; i < num_steps; i++) { 

    x = (i+0.5f)*step; 

    sum = sum + 4.0/(1.0+x*x); 

  } 

  pi = step * sum; 

} 

Let’s do this with 

float just to keep 

GPUs happy. 



Exercise 10: The Pi program 
• Goal:  

– To understand synchronization between work-items in 
the OpenCL C kernel programming language. 

– To get more practice writing kernel and host code. 

• Procedure:  
– Start with the provided serial program to estimate Pi 

through numerical integration 

– Write a kernel and host program to compute the 
numerical integral using OpenCL 

– Note: You will need to implement a reduction 

• Expected output: 
– Output result plus an estimate of the error in the result 

– Report the runtime 

Hint: you will want each work-item to do many iterations of the loop, i.e. don’t 

create one work-item per loop iteration. To do so would make the reduction so 

costly that performance would be terrible.  



The Pi program: kernel 
void reduce(   __local  float*,  

                      __global float*);                     

 

__kernel void pi(                                           

   const int          niters,                               

   const float        step_size,                            

   __local  float*    local_sums,                           

   __global float*    partial_sums)                         

{                                                           

   int num_wrk_items  = get_local_size(0);                  

   int local_id       = get_local_id(0);                    

   int group_id       = get_group_id(0);                    

   float x, accum = 0.0f;                               

   int i,istart,iend;                                       

    

   istart =   (group_id * num_wrk_items  

                                 + local_id) * niters; 

   iend   = istart+niters;  

 

   for(i= istart; i<iend; i++){  

       x = (i+0.5f)*step_size;    

       accum += 4.0f/(1.0f+x*x);   

   }  

  

 

    

   local_sums[local_id] = accum; 

   barrier(CLK_LOCAL_MEM_FENCE); 

    

   reduce(local_sums, partial_sums);                   

} 

 

void reduce(      __local  float*    local_sums,                           

                         __global float*    partial_sums)                         

{                                                           

   int num_wrk_items  = get_local_size(0);                  

   int local_id       = get_local_id(0);                    

   int group_id       = get_group_id(0);                    

    

   float sum;      int i;                                       

    

   if (local_id == 0) {                       

      sum = 0.0f;                             

         for (i=0; i<num_wrk_items; i++) {         

          sum += local_sums[i];              

      }                                      

        partial_sums[group_id] = sum;          

   } 

} 



The Pi program: Host (1/2) 
// various include files (not shown) 

#define INSTEPS (512*512*512) 

#define ITERS (262144) 

 

int main(void) 

{ 

   float *h_psum;   

   int in_nsteps = INSTEPS;    

   int niters = ITERS;  

   int nsteps; 

   float step_size; 

   ::size_t nwork_groups; 

   ::size_t max_size, work_group_size = 8; 

   float pi_res; 

   cl::Buffer d_partial_sums; 

 

  cl::Context context(DEVICE); 

  cl::Program program(context, util::loadProgram("pi_ocl.cl"), true); 

  cl::CommandQueue queue(context); 

  cl::Kernel ko_pi(program, "pi"); 

  

  std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>(); 

  cl::Device device = devices[0]; 

This host program is more 

complicated than the others 

since we query the system to 

find the best match between the 

total number of integration 

steps and the preferred work-

group size. 



The Pi program: Host (2/2) 
  // Get the devices preferred work group size 

 work_group_size = ko_pi.getWorkGroupInfo<CL_KERNEL_WORK_GROUP_SIZE>(device); 
 

   auto pi = cl::make_kernel<int, float, cl::LocalSpaceArg, cl::Buffer>(program, "pi"); 
 

  // Set num. of work groups, num. of steps, and the step size based on the work group size 

  nwork_groups = in_nsteps/(work_group_size*niters); 

  if ( nwork_groups < 1) { 

   nwork_groups = device.getInfo<CL_DEVICE_MAX_COMPUTE_UNITS>(); 

   work_group_size=in_nsteps / (nwork_groups*niters); 

  } 

  nsteps = work_group_size * niters * nwork_groups;  step_size = 1.0f/static_cast<float>(nsteps); 

  std::vector<float> h_psum(nwork_groups); 
 

  d_partial_sums = cl::Buffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * nwork_groups); 

 

  pi(cl::EnqueueArgs(queue, cl::NDRange(nwork_groups * work_group_size), 

  cl::NDRange(work_group_size)), niters,step_size, 

  cl::Local(sizeof(float) * work_group_size),d_partial_sums); 

  

 cl::copy(queue, d_partial_sums, begin(h_psum), end(h_psum)); 
 

  // complete the sum and compute final integral value 

  for (unsigned int i = 0, pi_res=0.0f; i< nwork_groups; i++) pi_res += h_psum[i] * step_size; 

} 



SOME CONCLUDING REMARKS 



Conclusion 
• OpenCL has widespread industrial support 

 

• OpenCL defines a platform-API/framework for heterogeneous 
computing, not just GPGPU or CPU-offload programming 

 

• OpenCL has the potential to deliver portably performant code; 
but it has to be used correctly 

 

• The latest C++ and Python APIs makes developing OpenCL 
programs much simpler than before 

 

• The future is clear: 

– OpenCL is the only parallel programming standard that enables 
mixing task parallel and data parallel code in a single program while 
load balancing across ALL of the platform’s available resources. 

 



Other important related trends 
• OpenCL’s Standard Portable Intermediate 

Representation (SPIR) 
– Based on LLVM’s IR 

– Makes interchangeable front- and back-ends 
straightforward 

 

• OpenCL 2.0 
– Adding High Level Model (HLM) 

– Lots of other improvements 

 

• For the latest news on SPIR and new OpenCL 
versions see: 
– http://www.khronos.org/opencl/  

Third party names are the property of their owners. 

http://www.khronos.org/opencl/
http://www.khronos.org/opencl/


Resources: 

https://www.khronos.org/opencl/ 

OpenCL Programming Guide:  

Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and 

James Fung, 2011  

 

Heterogeneous Computing with OpenCL 

Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry 

and Dana Schaa, 2011 

 



Other OpenCL resources 

• New OpenCL user group 

– http://comportability.org 

– Forums 

– Downloaded examples 

– Training 

– Launched SC’12 in November 

– ACTION: register and become part of the 

community!! 

 

 



Thank you for coming! 





VECTOR OPERATIONS WITHIN 

KERNELS 

Appendix A 



Before we continue... 

• The OpenCL device compilers are good at 
auto-vectorizing your code 

– Adjacent work-items may be packed to 
produce vectorized code 

• By using vector operations the compiler 
may not optimize as successfully 

• So think twice before you explicitly 
vectorize your OpenCL kernels, you might 
end up hurting performance! 



Vector operations 
• Modern microprocessors include vector units: 

Functional units that carry out operations on blocks of numbers 

• For example, x86 CPUs have over the years introduced 
MMX, SSE, and AVX instruction sets … 
characterized in part by their widths (e.g. SSE operates on 128 
bits at a time, AVX 256 bits etc) 

• To gain full performance from these processors it is 
important to exploit these vector units 

• Compilers can sometimes automatically exploit vector 
units. 
Experience over the years has shown, however, that you all too 
often have to code vector operations by hand. 

• Example using 128 bit wide SSE: 

 
#include "xmmintrin.h "     // vector intrinsics from gcc for SSE (128 bit wide) 

 

__m128 ramp = _mm_setr_ps(0.5, 1.5, 2.5, 3.5);   // pack 4 floats into vector register 

__m128 vstep = _mm_load1_ps(&step);      // pack step into each of r 32 bit slots in a vector register 

__m128 xvec; = _mm_mul_ps(ramp,vstep);   // multiple corresponding 32 bit floats and assign to xvec 

Third party names are the property of their owners. 



Vector intrinsics challenges 

• Requires an assembly code style of programming: 
– Load into registers 

– Operate with register operands to produce values in another 
vector register 

• Non portable 
– Change vector instruction set (even from the same vendor) 

and code must be re-written. Compilers might treat them 
differently too 

• Consequences: 
– Very few programmers are willing to code with intrinsics 

– Most programs only exploit vector instructions that the 
compiler can automatically generate – which can be hit or miss 

– Most programs grossly under exploit available performance. 

 
Solution: a  high level portable vector instruction set … 

which is precisely what OpenCL provides.  

 



Vector Types 

• The OpenCL C kernel programming language 
provides a set of vector instructions: 
– These are portable between different vector 

instruction sets 

• These instructions support vector lengths of 2, 4, 
8, and 16 … for example: 
– char2, ushort4, int8, float16, double2, … 

• Properties of these types include: 
– Endian safe 

– Aligned at vector length 

– Vector operations (elementwise) and built-in 
functions 

 Remember, double (and hence vectors 

of double) are optional in OpenCL 



Vector Operations 

• Vector literal 

• Vector components 

• Vector ops 

int4 vi0 = (int4) -7; 

int4 vi1 = (int4) (0, 1, 2, 3); 

vi0.lo = vi1.hi; 

int8 v8 = (int8) (vi0, vi1.s01, vi1.odd); 

vi0 += vi1; 

vi0 = abs(vi0); 

-7 -7 -7 -7 

0 1 2 3 

2 3 -7 -7 

2 3 -7 -7 0 1 1 3 

2 3 -7 -7 

0 1 2 3 

2 4 -5 -4 

+ 

2 4 5 4 



Using vector operations 

• You can convert a scalar loop into a vector loop using 
the following steps: 

– Based on the width of your vector instruction set and 
your problem, choose the number of values you can pack 
into a vector register (the width):   

• E.g. for a 128 bit wide SSE instruction set and float data (32 bit), 
you can pack four values (128 bits =4*32 bits) into a vector 
register 

– Unroll the loop to match your width (in our example, 4) 

– Set up the loop preamble and postscript. For example, if 
the number of loop iterations doesn’t evenly divide the 
width, you’ll need to cover the extra iterations in a loop 
postscript or pad your vectors in a preamble 

– Replace instructions in the body of the loop with their 
vector instruction counter parts 

 Third party names are the property of their owners. 



Vector instructions example 
• Scalar loop: 

for (i = 0; i < 34; i++) x[i] = y[i] * y[i]; 

• Width for a 128-bit SSE is 128/32=4 

• Unroll the loop, then add postscript and premable as 
needed: 
NLP = 34+2; x[34]=x[35]=y[34]=y[35]=0.0f // preamble to zero pad arrays 

for (i = 0; i < NLP; i = i + 4) { 

  x[i] = y[i] * y[i];  x[i+1] = y[i+1] * y[i*1]; 

  x[i+2] = y[i+2] * y[i*2];  x[i+3] = y[i+3] * y[i*3]; 

} 

• Replace unrolled loop with associated vector instructions: 
float4 x4[DIM], y4[DIM]; 
// DIM set to hold 34 values extended to multiple of 4 (36) 

float4 zero = {0.0f, 0.0f, 0.0f, 0.0f}; 

NLP = 34 % 4 + 1 // 9 values … to cover the fact 34 isn’t a multiple of 4 

x4[NLP-1] = 0.0f; y4[NLP-1] = 0.0f; // zero pad arrays 

 

for (i = 0; i < NLP; i++) x4[i] = y4[i] * y4[i]; // actual vector operations 

Third party names are the property of their owners. 



Exercise A: The vectorized Pi program 
• Goal:  

– To understand the vector instructions in the kernel 
programming language 

• Procedure:  
– Start with your best Pi program 

– Unroll the loops 4 times.  Verify that the program still 
works 

– Use vector instructions in the body of the loop  

• Expected output: 
– Output result plus an estimate of the error in the result 

– Report the runtime and compare vectorized and scalar 
versions  of the program 

– You could try running this on the CPU as well as the 
GPU… 



THE OPENCL EVENT MODEL 

Appendix B 



OpenCL Events 
• An event is an object that communicates the status 

of commands in OpenCL … legal values for an event: 
– CL_QUEUED: command has been enqueued.  

– CL_SUBMITTED: command has been submitted to 
the compute device 

– CL_RUNNING: compute device is executing the command 

– CL_COMPLETE: command has completed 

– ERROR_CODE: a negative value indicates an error 
condition occurred.  

• Can query the value of an event from the host … for 
example to track the progress of a command. 

 

cl_int clGetEventInfo ( 

          cl_event event,    cl_event_info param_name, 

          size_t param_value_size, void *param_value, 

          size_t *param_value_size_ret) 

Examples: 

• CL_EVENT_CONTEXT 
• CL_EVENT_COMMAND_EXECUTION_STATUS 

• CL_EVENT_COMMAND_TYPE 



Generating and consuming events 
• Consider the command to enqueue a kernel.  The last three 

arguments optionally expose events (NULL otherwise). 

 

cl_int clEnqueueNDRangeKernel ( 

  cl_command_queue command_queue,      

  cl_kernel kernel, 

  cl_uint work_dim, 

  const size_t *global_work_offset,      

  const size_t *global_work_size, 

  const size_t *local_work_size, 

  cl_uint num_events_in_wait_list, 

  const cl_event *event_wait_list, 

  cl_event *event) 
 

Pointer to an event object 

generated by this command 

Array of pointers to the events 

being waited upon … Command 

queue and events must share a 

context. 

Number of events this command 

is waiting to complete before 

executing 



Event: basic event usage 

• Events can be used to impose order 
constraints on kernel execution. 

• Very useful with out-of-order queues. 

cl_event    k_events[2]; 

  

err = clEnqueueNDRangeKernel(commands, kernel1, 1,  

         NULL, &global, &local, 0, NULL, &k_events[0]); 

  

err = clEnqueueNDRangeKernel(commands, kernel2, 1,  

         NULL, &global, &local, 0, NULL, &k_events[1]); 

  

err = clEnqueueNDRangeKernel(commands, kernel3, 1, 

         NULL, &global, &local, 2, k_events, NULL); 

Enqueue two 

kernels that 

expose events 

Wait to execute 

until two previous 

events complete 



OpenCL synchronization: queues & events 
• Events connect command invocations. Can be used to synchronize 

executions inside out-of-order queues or between queues 

• Example: 2 queues with 2 devices 
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Kernel 2 waits for 

an event from 

Kernel 1 and does 

not start until the 

results are ready 



Why Events? Won’t a barrier do? 

• A barrier defines a synchronization 
point … commands following a 
barrier wait to execute until all 
prior enqueued commands complete 
cl_int clEnqueueBarrier(cl_command_queue 
queue) 

• Events provide fine grained control 
… this can really matter with an 
out-of-order queue. 

• Events work between commands in 
the different queues … as long as 
they share a context 

• Events convey more information 
than a barrier … provide info on 
state of a command, not just 
whether it’s complete or not. 

Queue Queue 

Context 

  

GPU 

  

CPU 

Event 



Barriers between queues: clEnqueueBarrier doesn’t work 

clEnqueueNDRangeKernel() 

clEnqueueWriteBuffer() 

clEnqueueWriteBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueReadBuffer() 

clEnqueueReadBuffer() 

clEnqueueWriteBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueReadBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueWriteBuffer() 

clEnqueueWriteBuffer() 

clEnqueueReadBuffer() 

clEnqueueReadBuffer() 

clEnqueueWriteBuffer() 
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clEnqueueReadBuffer() 
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clEnqueueReadBuffer() 
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clEnqueueNDRangeKernel() 

clEnqueueReadBuffer() 

clEnqueueNDRangeKernel() 



Barriers between queues: this works! 

clEnqueueNDRangeKernel() 

clEnqueueWriteBuffer() 

clEnqueueWriteBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueReadBuffer() 

clEnqueueReadBuffer() 

clEnqueueWriteBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueReadBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueWriteBuffer() 
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clEnqueueReadBuffer() 

clEnqueueWriteBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueReadBuffer() 

clEnqueueNDRangeKernel() 
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clEnqueueBarrier() 

clEnqueueWaitForEvent(event) 
clEnqueueMarker(event) 

clEnqueueNDRangeKernel() 
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clEnqueueReadBuffer() 

clEnqueueReadBuffer() 

clEnqueueWriteBuffer() 

clEnqueueNDRangeKernel() 

clEnqueueReadBuffer() 

clEnqueueNDRangeKernel() 



Host generated events influencing execution of 

commands: User events 

• “user code” running on a host thread can 
generate event objects 
cl_event clCreateUserEvent(cl_context context, cl_int *errcode_ret) 

• Created with value CL_SUBMITTED. 

• It’s just another event to enqueued commands. 

• Can set the event to one of the legal event 
values 
cl_int clSetUserEventStatus(cl_event event, cl_int 
execution_status) 

• Example use case: Queue up block of commands 
that wait on user input to finalize state of 
memory objects before proceeding. 



Command generated events influencing 

execution of host code 

• A thread running on the host can pause 
waiting on a list of events to complete. This 
can be done with the function: 

cl_int clWaitForEvents( 

 cl_uint num_events, 

 const cl_event *event_list) 

 

• Example use case: Host code waiting for an 
event to complete before extracting 
information from the event. 

Number of events to wait on 

An array of pointers 

to event object 



Profiling with Events 

• OpenCL is a performance oriented language … Hence 
performance analysis is an essential part of OpenCL 
programming. 

• The OpenCL specification defines a portable way to 
collect profiling data.  

• Can be used with most commands placed on the 
command queue … includes: 

– Commands to read, write, map or copy memory objects 

– Commands to enqueue kernels, tasks, and native kernels 

– Commands to Acquire or Release OpenGL objects 

• Profiling works by turning an event into an opaque 
object to hold timing data.   

 

 



Using the Profiling interface 
• Profiling is enabled when a queue is created with the 

CL_QUEUE_PROFILING_ENABLE  flag  set.    

• When profiling is enabled, the following function is used 
to extract the timing data 

cl_int clGetEventProfilingInfo( 

 cl_event event, 

 cl_profiling_info param_name, 

 size_t param_value_size, 

 void *param_value, 

 size_t *param_value_size_ret) 

Expected and 

actual size of 

profiling data. 

Profiling data 

to query (see 

next slide) 

Pointer to 

memory to 

hold results 



cl_profiling_info values 

• CL_PROFILING_COMMAND_QUEUED 

– the device time in nanoseconds when the command is 
enqueued in a command-queue by the host. (cl_ulong) 

• CL_PROFILING_COMMAND_SUBMIT 

– the device time in nanoseconds when the command is 
submitted to compute device. (cl_ulong) 

• CL_PROFILING_COMMAND_START 

– the device time in nanoseconds when the command 
starts execution on the device. (cl_ulong) 

• CL_PROFILING_COMMAND_END 

– the device time in nanoseconds when the command has 
finished execution on the device. (cl_ulong) 

 



Profiling Examples (C) 

cl_event prof_event; 

cl_command_queue comm;  

 

comm = clCreateCommandQueue( 

       context, device_id,  

      CL_QUEUE_PROFILING_ENABLE,  

       &err); 

  

err = clEnqueueNDRangeKernel( 

          comm, kernel,  

          nd, NULL, global, NULL,  

          0, NULL, prof_event); 

  

clFinish(comm); 

err = clWaitForEvents(1, &prof_event ); 

  

 

cl_ulong start_time, end_time; 

size_t return_bytes; 

  

err = clGetEventProfilingInfo( 

  prof_event, 

   
CL_PROFILING_COMMAND_QUEUED, 

   sizeof(cl_ulong),   

   &start_time, 

   &return_bytes); 

  

err = clGetEventProfilingInfo( 

   prof_event, 

   
CL_PROFILING_COMMAND_END, 

   sizeof(cl_ulong),  

   &end_time, 

   &return_bytes); 

 

run_time =(double)(end_time - start_time); 

 

 



Events inside Kernels … Async. copy 

// A, B, C kernel args … global  buffers.   

// Bwrk is a local buffer 

 

for(k=0;k<Pdim;k++) 

    Awrk[k] = A[i*Ndim+k];   

 

for(j=0;j<Mdim;j++){ 

    event_t ev_cp  = async_work_group_copy(  

        (__local float*) Bwrk, (__global float*) B, 

        (size_t) Pdim, (event_t) 0);  

  

    wait_group_events(1, &ev_cp); 

  

    for(k=0, tmp= 0.0;k<Pdim;k++)  

           tmp  += Awrk[k] *  Bwrk[k];  

    C[i*Ndim+j] = tmp;  

} 
 

• Compute a row of C = A * B 

– 1 A column per work-item 

– Work group shares rows of B 

Start an async. copy 

for row of B returning 

an event to track 

progress. 

Wait for async. copy to 

complete before 

proceeding. 

Compute element of C 

using A from private 

memory and B from 

local memory. 



Events and the C++ interface 

(for profiling) 
• Enqueue the kernel with a returned event 

Event event = vadd( EnqueueArgs(commands, 
       NDRange(count), NDRange(local)), a_in, b_in, 
c_out, count); 

 

• What for the command attached to the event to 
complete 
event.wait(); 

• Extract timing data from the event: 
  cl_ulong ev_start_time = 

   event.getProfilingInfo<CL_PROFILING_COMMAND_START>();  

 

  cl_ulong ev_end_time = 

   event.getProfilingInfo<CL_PROFILING_COMMAND_END>(); 

 



C++ FOR C PROGRAMMERS 

Appendix C 



C++ for C programmers 

• This Appendix shows and highlights some of 

the basic features and principles of C++. 

 

• It is intended for the working C programmer. 

 

• The C++ standards: 

– ISO/ANSI Standard 1998 (revision 2003) 

– ISO/ANSI Standard 2011 (aka C++0x or C++11)  

 



Comments, includes, and variable 

definitions 
• Single line comments: 

 // this is a C++ comment 

 

• C includes are prefixed with “c”: 

 #include <cstdio> 

 

• I/O from keyboard and to console 

 #include <iosteam> 

 int a;  // variables can be declared inline 

 std::cin >> a;  // input integer to a 

 std::cout << a; // outputs ‘a’ to console 

 

 



Namespaces 

• Definitions and variables can be scoped with namespaces. 
 :: is used to dereference. 

• Using namespace opens names space into current scope. 

• Default namespace is std. 

 

 #include <iostream> // definitions in std namespace 

 

 namespace foo { 

            int id(int x) { return x; } 

          }; 

 

 int x = foo::id(10); 

 using namespace std; 

 cout << x; // no need to prefix with std:: 

 



References in C++ …  

a safer way to do pointers 
• References are non-null pointers.  Since they can’t be NULL, you 

don’t have to check for NULL value all the time (as you do with 
C) 

• For example, in C we need to write:  

      int foo(int * x)  {  

       if (x != NULL) return *x; 

       else return 0; 

   } 

• In C++ we could write: 

       int foo(int & x)  {  

            return x; 

   } 

• Note that in both cases the memory address of x is passed (i.e. 
by reference) and not the value! 

 



New/Delete Memory allocation 

• C++ provides safe(r) memory allocation 

• new  and delete operator are defined for 
each type, including user defined types. No 
need to multiple by sizeof(type) as in C. 

     int * x = new int; 

     delete x; 

• For multi element allocation (i.e. arrays) we 
must use delete[]. 

     int * array = new int[100]; 

     delete[] array; 

 

 



Overloading 

• C++ allows functions to have the same name but 
with different argument types. 

 

     int add(int x, int y) { 

     return x+y; 

   } 

   float add(float x, float y) { 

     return x+y; 

   } 

   float  f = add(10.4f, 5.0f); 

   // calls the float version of add 

   int i = add(100,20);             

   // calls the int version of add 



Classes (and structs) 
• C++ classes are an extension of C structs (and unions) that 

can functions (called member functions) as well as data. 

The keyword “const” can be applied to member functions such as getX() to state that 
the particular member function will not modify the internal state of the object, i.e it 
will not cause any visual effects to someone owning a pointer to the said object. This 
allows for the compiler to report errors if this is not the case, better static analysis, 
and to optimize uses of the object , i.e. promote it to a register or set of registers.  

 

 class Vector { 

    private: 

       int x_, y_, z_ ; 

    public: 

        Vector (int x, int y, int z) : x_(x), y_(y), z_(z) {} // constructor 

       

       ~Vector // destructor 

         {              

             cout << “vector destructor”;          

         }  

        int getX() const { return x_; } // access member function 

        …        

   }; 



More information about constructors 
• Consider the constructor from the previous slide … 

Vector (int x, int y, int z): x_(x), y_(y), z_(z) {} 

• C++ member data local to a class (or struct) can be initialized using 
the noation 
: data_name(initializer_name), ... 

• Consider the following two semantically equivalent structs in which 
the constructor sets the data member x_ to the input value x: 

 

 

 

 

 

• Case B must use a temporary to read the value of x, while this is not 
so for Case A. This is due to C’s definition of local stack allocation. 

• This turns out to be very import in C++11 with its memory model 
which states that an object is said to exist once inside the body of the 
constructor and hence thread safety becomes an issue, this is not the 
case for the constructor initalization list (case A). This means that 
safe double locking and similar idioms can be implemented using this 
approach. 

struct Foo 

{ 

  int x_; 

  Foo(int x) : x_(x) {} 

} 

struct Foo 

{ 

  int x_; 

  Foo(int x) { x_ = x; } 

} 

A B 



Classes (and structs) continued 

• Consider the following block where we construct an 
object (the vector “v”), use it and then reach the 
end of the block 

 
{ 

   Vector v(10,20,30);  

   // vector {x_ = 10, y_ = 20 , z_ = 30} 

   // use v 

} // at this point v’s destructor would be called! 

 

• Note that at the end of the block, v is no longer 
accessible and hence can be destroyed.  At this point, 
the destructor for v is called. 

 



Classes (and structs) continued 

• There is a lot more to classes, e.g. 

inheritance but it is all based on this 

basic notion. 

 

• The previous examples adds no additional 

data or overhead to a traditional C 

struct, it has just improved software 

composibility. 

 

 

 

 



Function objects 

• Function application operator can be 

overloaded to define functor classes 

 
   struct Functor 

   { 

       int operator() (int x) { return x*x; } 

   }; 

 

 Functor f(); // create an object of type Functor 

 int value = f(10); // call the operator() 

 



Template functions 

• Don’t want to write the same function many times 
for different types? 

• Templates allow functions to be parameterized with 
a type(s). 

 
 template<typename T> 

    T add(T x, T y) { return x+y; } 

 

    float  f = add<float>(10.4f, 5.0f); // float version 

    int i = add<int>(100,20);           // int version 

 

• You can use the templatized type, T, inside the 
template function 

 



Template classes 

• Don’t want to write the same class many times 
for different types? 

• Templates allow class to be parameterized 
with a type(s) too. 
template <typename T> 

    class Square 

    { 

      T operator() (T x) { return x*x; } 

    }; 

    Square<int> f_int();  

    int value = f_int(10);  

 

 

 

 

 



C++11 defines a function template 

• C++ function objects can be stored in the templated class 
std::function.    The following header defines the class 
std::function 

 #include <functional> 

 

• We can define a C++ function object (e.g. functor) and 
then store it in the tempated class std::function 

 
struct Functor 

   { 

       int operator() (int x) { return x*x; } 

   }; 

   std::function<int (int)> square(Functor()); 

 



C++ function template: example 1 

The header <functional> just defines the template std::function. This 
can be used to warp standard functions or function objects, e.g.: 

int foo(int x)  { return x; }  // standard function 

std::function<int (int)> foo_wrapper(foo); 

  

struct Foo // function object 

{ 

  void operator()(int x)   

    { return x;} 

}; 

 std::function<int (int)> foo_functor(Foo()); 

 

foo_functor and 
foo_wrapper are 
basically the same but 
one is using a standard 
C like function, while 
the other is using a 
function object 



C++ function template: example 2 
What is the point of function objects?  Well they can of course 
contain local state, which functions cannot, they can also contain 
member functions and so on. A silly example might be: 

struct Foo // function object 

{        int y_; 

         Foo() : y_(100) {} 

  

        void operator()(int x)      

          { return x+100; } 

}; 

  

std::function<int (int)> add100(Foo()); 

// function that adds 100 to its argument 

 



MEMORY COALESCENCE:  
MATRIX MULTIPLICATION CASE STUDY 

Appendix D 



Performance issues with matrix 

multiplication 

• Consider the following version of the 

blocked matrix multiplication kernel from 

exercise 9. 



Blocked matrix multiply: kernel 
#define blksz 16 

__kernel void mmul( 

                const unsigned int N, 

                __global float* A, 

                __global float* B, 

                __global float* C, 

                __local  float* Awrk, 

                __local  float* Bwrk) 

{ 

   int kloc, Kblk; 

   float Ctmp=0.0f; 

 

   //  compute element C(i,j) 

   int i = get_global_id(0); 

   int j = get_global_id(1); 

 

   // Element C(i,j) is in block C(Iblk,Jblk) 

   int Iblk = get_group_id(0); 

   int Jblk = get_group_id(1); 

 

   // C(i,j) is element C(iloc, jloc)  

   //  of block C(Iblk, Jblk) 

   int iloc = get_local_id(0); 

   int jloc = get_local_id(1); 

   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 

  int Abase = Iblk*N*blksz;        int Ainc  = blksz; 

  int Bbase = Jblk*blksz;    int Binc  = blksz*N; 

 

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk) 

  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 

  { 

      //Load A(Iblk,Kblk) and B(Kblk,Jblk). 

      //Each work-item loads a single element of the two  

      //blocks which are shared with the entire work-group 

 

      Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc]; 

      Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      #pragma unroll 

      for(kloc=0; kloc<blksz; kloc++) 

         Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

      Abase += Ainc;       Bbase += Binc; 

   } 

   C[j*N+i] = Ctmp; 

} 



Blocked matrix multiply: kernel (performance bug) 
#define blksz 16 

__kernel void mmul( 

                const unsigned int N, 

                __global float* A, 

                __global float* B, 

                __global float* C, 

                __local  float* Awrk, 

                __local  float* Bwrk) 

{ 

   int kloc, Kblk; 

   float Ctmp=0.0f; 

 

   //  compute element C(i,j) 

   int i = get_global_id(0); 

   int j = get_global_id(1); 

 

   // Element C(i,j) is in block C(Iblk,Jblk) 

   int Iblk = get_group_id(0); 

   int Jblk = get_group_id(1); 

 

   // C(i,j) is element C(iloc, jloc)  

   //  of block C(Iblk, Jblk) 

   int iloc = get_local_id(0); 

   int jloc = get_local_id(1); 

   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 

  int Abase = Iblk*N*blksz;        int Ainc  = blksz; 

  int Bbase = Jblk*blksz;    int Binc  = blksz*N; 

 

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk) 

  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 

  { 

      //Load A(Iblk,Kblk) and B(Kblk,Jblk). 

      //Each work-item loads a single element of the two  

      //blocks which are shared with the entire work-group 

 

      Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc]; 

      Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      #pragma unroll 

      for(kloc=0; kloc<blksz; kloc++) 

         Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

      Abase += Ainc;       Bbase += Binc; 

   } 

   C[j*N+i] = Ctmp; 

} 

Note that the pattern of indices 

loaded differ from the 

patterned used. 

 

This mistake means that the 

memory is not coalesced.  

Performance was around 

76695.8  MFLOPS on an NVIDIA 

M2090 GPU.  We were expecting 

almost twice that many FLOPS. 



Blocked matrix multiply: kernel (fixed) 
#define blksz 16 

__kernel void mmul( 

                const unsigned int N, 

                __global float* A, 

                __global float* B, 

                __global float* C, 

                __local  float* Awrk, 

                __local  float* Bwrk) 

{ 

   int kloc, Kblk; 

   float Ctmp=0.0f; 

 

   //  compute element C(i,j) 

   int i = get_global_id(0); 

   int j = get_global_id(1); 

 

   // Element C(i,j) is in block C(Iblk,Jblk) 

   int Iblk = get_group_id(0); 

   int Jblk = get_group_id(1); 

 

   // C(i,j) is element C(iloc, jloc)  

   //  of block C(Iblk, Jblk) 

   int iloc = get_local_id(0); 

   int jloc = get_local_id(1); 

   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 

  int Abase = Iblk*N*blksz;        int Ainc  = blksz; 

  int Bbase = Jblk*blksz;    int Binc  = blksz*N; 

 

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk) 

  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 

  { 

      //Load A(Iblk,Kblk) and B(Kblk,Jblk). 

      //Each work-item loads a single element of the two  

      //blocks which are shared with the entire work-group 

 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 

      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      #pragma unroll 

      for(kloc=0; kloc<blksz; kloc++) 

         Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

      Abase += Ainc;       Bbase += Binc; 

   } 

   C[j*N+i] = Ctmp; 

} 

We fixed this by making sure 

the pattern of indices on the 

load matched the later block 

of code where we used these 

arrays.  

 

With that small change, the 

performance on an NVIDIA 

M2090 GPU hit the expected 

value of around 119304.6 

MGFLOPS. 



Performance issues with matrix 

multiplication 
• This is a good object lesson on the importance of 

paying attention to memory coalescence.    

• How did I make this mistake? Getting the indices right 
in this code was tough.  I developed my code on a 
CPU.  On a CPU, the effect was not apparent … I got 
the expected performance with the memory 
coalescence  bug when running on a CPU.  IT only 
shows up on the GPU. 

• This points to the importance of exploring a range of 
platforms during the debug and optimization phase of 
software development. 

• Still, after making the change on my CPU, the 
performance went from 9.8 GFLOPS to 12 GFLOPS.   


