Storage at a Distance

Jason HickNERSC Storage Systems Group

What is storage at a distance?

- Data is not local to the user/resource
- Processing and workflow needs are near real-time
 - Don't want to wait until data transfer is complete
 - Need to see results, make adjustments, and try again
- Network will become part of the instruments
 - Telescopes and their data
 - Sequencers and their genome data
 - Light sources and their data
- Is there an architecture/protocol that is necessary today for successfully providing storage at a distance?

- 2 -

- Ethernet vs. IB
- ROCE vs. RDMA vs. IP

Use case 1: Instruments (beam lines)

Shift work (24hr coverage)

Scientists fly in and use the instrument

Instrument "shot"

 Data ingest, normally locally due to pure bandwidth needs (10's of GB/sec)

View the data real-time

Adjust the instrument and redo

Post analysis phase

- Computationally intensive
- Potentially I/O intensive

Science DMZ Background (Eli Dart)

- The data mobility performance requirements for data intensive science are beyond what can typically be achieved using traditional methods
 - Default host configurations (TCP, filesystems, NICs)
 - Converged network architectures designed for commodity traffic
 - Conventional security tools and policies
 - Legacy data transfer tools (e.g. SCP)
 - Wait-for-trouble-ticket operational models for network performance
- The Science DMZ model describes a performance-based approach
 - Dedicated infrastructure for wide-area data transfer
 - Well-configured data transfer hosts with modern tools
 - Capable network devices
 - High-performance data path which does not traverse commodity LAN
 - Proactive operational models that enable performance
 - Well-deployed test and measurement tools (perfSONAR)
 - Periodic testing to locate issues instead of waiting for users to complain
 - Security posture well-matched to high-performance science applications

NERSC-SLAC-ESnet recent example

- Needed 125 node Linux system, requested "Data Intensive Pilot Award" for compute/storage in Fall 2012
- Ran LCLS instrument in March 2013 where 110TB moved via bbcp between facilities over Bay Area MAN (SLAC-to-NERSC) during multiple shifts
- Ultimately a success in moving data, but failed in keeping up with instrument/shifts
 - Compute system admins to help keep nodes healthy
 - Storage admins to ensure data transfer and storage available
 - ESnet and NERSC network admins to ensure data transfer/ network health

Lessons learned – future work

- Bandwidth guarantees to enable shift planning
 - Maximal use of current 10Gb, same as we upgrade to 100Gb
 - Can we couple a metroX solution providing RDMA over high latency connections using the optical wavegear?
- Prefer real-time capability to avoid duplicate storage needs at multiple sites
 - Data acquisition system
 - Post analysis storage depending on where compute cycles are available
- Definitely moving from current "push" model to "pull" model
 - Eliminates need for science team to have expertise/knowledge of both sites, accounts at both, know how to use both sites
 - Instead, will make the data available at SLAC, and consumers at NERSC (or wherever) can pull the data
- Interested in a publish-subscribe model where data could be streamed from source site to remote consumers

Use case 2: Highly connected sites

- Building A or Site A and Building B or Site B
 - Storage at Building A/Site A
 - Compute at Building B/Site B
- CRT Building (Berkeley), 6 mile separation, OSF Building (Oakland)
 - Considering using 100Gb Ethernet wavegear with EDR/FDR IB routers with extra buffers (to handle high latency) to provide 200-400Gb connectivity between buildings
 - This will enable us to provide reasonable bandwidth while minimizing the downtime for the facility
- MLB.com
 - Budget for private network at all baseball parks
 - HDTV recordings on numerous cameras
 - Saved locally (disk arrays), then copied via network to MLB.com
 - Video production and archiving
- What are any organizations/users today doing to highly connect their facilities?

IB SAN for GPFS currently underway

- I/O or gateway servers for each compute system
- Consolidate cluster of GPFS storage servers (NSDs)
- Recently upgraded from QDR to FDR
- Using OpenSM as subnet manager
- Working through current limitations
 - Conflict between OpenSM and UFM as SM
 - Interoperability between vendors/drivers
 - Monitoring, standing up UFM in monitoring mode and using custom perl program with perfquery (helps to identify bad cables)
 - GPFS supporting multiple RDMA networks on single NSD

Use case 3: Remote visualization

- Are there scientific datasets being visualized remotely?
- Video conferencing technology
 - Demand for video meetings is rapidly increasing, resolution is still very low

Summary

- Current state-of-the-practice for storage @ distance is efficient bulk data movement
- Working towards, and scientists desiring remote access to data
 - Simply mounting file systems at remote sites is challenging (not likely) for security issues it presents
 - But publish-subscribe model is attractive, need to learn more
- Three use cases for this that I see
 - Highly connecting 2 or more physical sites
 - Supporting instrument-based facilities and enabling distributed collaborations (and ultimately increasing discovery)
 - Remote visualization
- Most interested to explore using RDMA with MetroX and 100Gb wavegear

