ALE – Arbitrary Lagrangian Eulerian Authors: Alice Koniges,¹ D. Eder,¹ O. Landen,¹ R. Anderson,¹ A. Fisher,¹ B. Gunney,¹ N. Masters,¹ B. Brown,¹ K. Fisher,¹ B. Brown,¹ K. Fisher,¹ B. Brown,¹ K. Fisher,¹ T. Kaiser,¹ A. Geille,² J-P. Jadaud,³ J-M. Chevalier,² D. Raffestin,² D. Benson,⁴ M. Meyers,⁴ H. Jarmakani,⁴ B. Blue⁵ # **Protecting NIF Optics and Diagnostics** NIF targets must be designed to minimize damage to optics and diagnostics from target debris AMR – Adaptive Mesh Refinement ALE-AMR Target materials, mass, geometry, and orientation are the critical parameters to understand ### NIF Early Light (NEL) experiments demonstrated effectiveness of tilting diagnostic components to redirect debris **OMEGA** # Summary - NIF ALE-AMR is unique in its ability to model hot plasmas and cold fragmenting solids - NIC targets are analyzed; results help guide NIC target design - Improvements to physics models are ongoing ## Computational Modeling and Experimental Validation #### Macroscopic verification and validation Benchmarking against industry standard Electromagnetic ring expansion Code matches experimental data Solenoid **NIF ALE-AMR** Johnson-Cook strength and M. Altynova, X. Hu, and G. Daehn: Increased Ductility in High Velocity Al ring **Electromagnetic Ring Expansion**, Metall. Material Trans. A, 27A, Plastic strain comparison shows good agreement **Maximum radial velocity** Dedicated joint LLNL/Commissariat à l'Énergie Atomique (CEA) x-ray driven fragmentation experiments are ongoing ### Application to NIF/NIC ### Shock timing campaign simulations Requirements on shrapnel size and velocity depend on filter material and thickness ### NIF ALE-AMR simulations For re-emit at 10 J/cm², pinholes don't get launched. Higher energies do.