Integrated tools for NGBI

Joaquin Correa, OSP

September 4, 2013

NERSC: NATIONAL ENERGY RESEARCH SCIENTIFIC COMPUTING

RECENT NERSC User Scientific Accomplishments

Astrophysics

NERSC played a key role in the discovery that led to the 2011 Nobel Prize in Physics.
(S. Perlmutter, UC Berkeley/LBNL)

Astrophysics

The earliest-ever detection of a supernova was made possible by NERSC and ESnet. (P. Nugent, LBNL)

A vastly improved organic semiconductor discovery is a key proof of principle for rational design of new materials.

(A. Aspuru-Guzik, Harvard)

Climate

Atmospheric scientists have shown how small-scale effects of aerosols contribute to errors in climate models.

(W. Gustafson, PNNL)

Chemistry

Molecular dynamics simulations show how certain surfactants can be used to separate out bundles of carbon nanotubes with important

Nuclear Physics

The KamLAND neutrino experiment showed that radioactivity cannot be Earth's only heat source; it accounts for only ½ of it.

Integrated tools for NGBI

What does NERSC's NGBI team do?

We focus on enabling high-performance computational solutions adapted to bio-imaging applications through an integrated highly accessible **shared scalable web-service that provides a one-stop-shop for producers and consumers of models built on imaging data** to refine pixel data into actionable knowledge resources.

Who is involved?

David Skinner Shreyas Cholia Joaquin Correa

Manfred Auer

Damir Sudar

Dani Ushizima

Joerg Meyer

CRD

NERSC

LSD

Key scientific issue being addressed

- Building biological models from massive streams of pixel data
- Spatial understanding of protein expression (PA)
- Statistical understanding of microbial communities in biofilms (MC)
- Improving imaging modalities from emerging instruments

Approach

- One-stop-shop for building and using biological models built on image data
- Leverage scalable computing and data techniques, end-toend data management
- **Bootstrapping ML-based** image processing with expert crowds. Automating segmentation and classification.
- Co-design of instrumentation and computation

NGBI

Web

HPC

micro-scopes

Our solution? An OMERO-based platform

... A shared scalable web-service that provides a one-stop-shop for producers and consumers of models built on imaging data to refine pixel data into actionable knowledge resources ...

Import

Over 100 file formats supported, including all major microscope formats. Annotate with

Organize

Organize by 'Project', 'Tags' or acquisition date. attachments, comments, ratings.

View

Move through multiple dimensions, copy and apply rendering settings. zoom and pan 'Big' images.

Analyze

of interest, write Python scripts in OMERO or connect to OMERO from your favorite analysis software.

Export

Draw and measure regions Export your images for analysis or publication. Save images as 'figures' ready for presentations.

Our solution? An OMERO-based platform

Our solution? An OMERO-based platform

HPC implementation -Architecture

Automated workflows

- Experiment design
- Automated annotation before classification
- Run scripts on the fly or demand-based
- Drag and drop files/folders/archives

Automated annotation, FN-based

EX:

GMO1101_Act5C_CON_updated.lsm

Pixels to knowledge – P2K

High-throughput, high-performance image processing

In 2013 we staffed, developed and deployed custom-tailored image-processing algorithms and successfully implemented a suite of general-purpose processing software using NERSC's high performance computing and its science gateway.

Enhanced annotation - Controlled Vocab for Model Building (subcellular locations: centrosome, euchromatin, ambiguous, etc), texture smoothness, roughness, clustering, among others

Protein Atlas

Gateway adoption

16 registered users from 3 labs

*files per user: 2k 3 Ek (stackable)

~files per user: 2k-2.5k (stackable) ~file size: 3.8G-5G (per stack)

Most common file type: 3D, 3D+c MRC

Most common computing

processes: Segmentation (random

forest), file conversion,

montaging, maximum intensity

channel projection

Scalable Image Analysis: segmentation of large EM data sets at NERSC, giga-pixel montaging of data sets

Microbial Communities

Computational Science

Crowd sourced classification and segmentation to power ML (TBI), comp. engagement, more docs, public view for giga-pixel images

Working on Joint Publication Fall 2013

Some numbers

- No. of registered users: 16 (3 labs)
- ~files per user: 2k-2.5k (stackable)
- ~file size: 3.8G-5G (per stack)
- Most common file type: 3D, 3D+c MRC
- Most common processes: Segmentation (random forest), file conversion, montaging, maximum intensity channel projection

Results

Successful cases: Image pre-processing, segmentation, analysis and visualization

Results, ML & ImageJ-based segmentation Nersc

Microbial communities (Desulfovibrio RCH1) - Segmented metal precipitate

Results, ML-based segmentation

Segmentation of 3D images (5D capable)

Un-processed MRC stack (800 images ~20MB each)

Segmented maps (bacteria, background and intermediate features)

3D renderings of individual channels

Results, Big image vis

Visualizing both macromolecular details and community organization

Results, High res. complex systems

Montaging 2D high-res images

Un-processed, un-montaged MRC stack (64 images ~3GB)

Processed, equalized and montaged single tiles (64 images x 375 per stack)

~ Gigapixel image dataset (800,000px by 600,000px) ~50GB

Services

Services

Pre-processing

- Reconstruction
- Filtering
- **–** ...

Segmentation

- (Un)Supervised
- Machine learning-based
- **–** ...

Visualization

- 2D/3D renders
- Patterns/Clusters
- **–** ...

Analysis

- Descriptors
- Geometries (NYI)
- **–** ...

Software

Pre-processing

- IMOD-eTOMO/WBP
- VLFEAT/PIL
- Others

Segmentation

- Norm-based, Correspondence-based
- NN/FL-based
- Others

Visualization

- Plane/Volume vis (Chimera, ImageJ)
- Mesh/Grid vis (NYI)
- Others

Analysis

- Texture, feature, ROIs, location
- Shape, angle, distance, volume
- Others

Upcoming implementations

- Crowd sourced parameters for classification and segmentation
- Agile dev methodology engagement
- More Docs
- Public views for giga-pixel images and statistical information.

Thank you!

