Scalability Challenges in Large-Scale Tape Environments

Jason Hick
Lawrence Berkeley National Laboratory
NERSC Storage Systems Group

June 4, 2014

Agenda

- NERSC and its storage systems
- The Golden Age of Tape
- Our challenges at scale
 - Reading data, system usability
 - Proactively maintaining the system
 - Having enough people

Industry challenges at scale

- Component and end-system reliability
 - Mechanical failures flash, disk, tape
- Speed versus size of single devices
- Detecting and repairing failures

Summary

National Energy Research Scientific Computing Center (NERSC)

© 2014 The Regents of the University of California, Lawrence Berkeley National Laboratory

- Located at Berkeley Lab
- User facility supports 6 DOE Offices of Science:
 - 5000 users, 600 research projects
 - 48 states; 65% from universities
 - Hundreds of users each day
 - ~1500 publications per year
 - With services for consulting, data analysis and more

Types of computing at NERSC

Data Intensive

Experiments and Simulations

NERSC ingests, stores and analyzes data from Telescopes, Sequencers, Light sources, Particle Accelerators (LHC), Microscopes, and other scientific instruments

Large Scale

Capability Simulations

Petascale systems run simulations in Physics, Chemistry, Biology, Materials, Environment and Energy at NERSC

NERSC

Petascale Computing,
Petabyte Storage, and Expert
Scientific Consulting

High Volume

Job Throughput

NERSC computer, storage and web systems support complex workflows that run thousands of simulations to screen materials, proteins, structures and more; the results are shared with academics and industry through a web interface

The compute and storage systems 2014

Focusing on storage at our facility

- Parallel file systems (Lustre and GPFS) are primary storage to supercomputers
 - Total of over 20 PBs of disk available to users
 - Some multi-PB parallel file systems backed up to HPSS (Parallel Incremental Backup System)
 - Has demonstrated it can process over 150TBs of backup data in a single day currently using direct-to-tape with 12 T10KC tape drives
 - On average, we complete a restore for a user about every other week
- Archival and backup systems (HPSS) are secondary storage for users
 - 65 PBs of data stored, growing at >1PB per month
 - 30% of user IOs are read/retrieve requests from archival storage, so a very active archive
 - Focus on reliability of the system for user data by:
 - Deploying solutions to proactively monitor and maintain health of user data, and environmental parameters necessary for tape
 - Actively migrating/moving data within the system

The Golden Age of Tape

- Tape is demonstrating capability for future decades (150TB), still handling vast quantities of data, and is integrated to varying degrees with file systems
- Storing data at scale (>5PB) tape is power efficient, fault resilient, and cost effective
- Today, "Tape" or "tape systems" normally means HSMs
 - HPSS, pDMF, and SAMFS
 - Few workloads go direct-to-tape (e.g. large-scale backups, instrument/raw data acquisition)
- Tape continues to enable the highest data growth rates
 - Supports >50% CAGR at our facility
 - Address the most difficult data ingest, migration, and long-term storage needs

Our challenge – reading data from tape

- Unordered requests result in
 - Wasted time mounting tapes
 - Especially in the case of large amounts of data or ingests over time where large quantities of tapes are involved
 - ~1 minute per tape mount
 - Longer duration of overall transfer
 - · Repositioning within tape
 - Re-mounts of the same tape
 - Mechanical issues during excessive tape mounting cause further delay
 - Cartridge, tape library, drives
 - Mounts succeed but sometimes after multiple attempts
- More important to store data to tape optimizing for your reads
 - Even storing it in different ways
- Things that were ok to do yesterday/year become a problem as time goes on
 - Small files with tapes getting larger
 - Number of files stored over period of time (multiple tapes)

Avoiding one tape mount is equivalent to reading a 12GB file.

Taking the time to order the list of files to retrieve can reduce duration of transfer from days to hours.

- More devices and more complexity at scale
- Require advanced features and automation in problem detection, determination, and notification
 - The industry only recently has software that helps determine problems with tape drive or media
 - We achieve, but struggle to be proactive
 - Proactively failing a tape reduces the duration and complexity of problem resolution
- Vendors are moving away from onsite support
- Ability to detect and fix failures increasing slower than the system's capacity
 - Validating a single tape
 - Rebuilding a tape or copying data off a tape

- There is no metric on how many staff per PB, however more staff is required for higher complexity or scale of a system
 - This is not unique to tape systems
 - Finding skilled staff is difficult
- The mechanical nature of storage (disk and tape) makes them people intensive

Industry challenge - component reliability

- Improve tape's environmental sensitivity
 - Libraries are typically not sealed/filtered
 - Tape and drives are exposed to temperature, humidity, particulate in the room
 - Results in special considerations for tape, which gets costly
- With capacity and quantity of tape increasing, need improvements in component reliability
- Failures are typically mechanical (cartridge, drive, robot)
 - Reliability of data in practice on tape is very high
 - We observe that tape failures are not catastrophic as opposed to disk/flash failures

Industry challenge – speed vs. size

- Capacity leadership is vital to tape industry
- Need to balance tape drive speed with capacity improvements
 - How many is too many files to risk putting on one tape?
 - How long will it take to rebuild the tape?
 - How long will it take to migrate the data off the old technology onto the new one?
 - How long will it take to verify a tape?

Industry challenge – detecting & repairing failures

- Software to improve on managing historical information/statistics
 - Tape systems tend to be in place for long periods of time and have a wealth of statistics to understand
 - Move beyond break-fix into proactive health determination
 - Identifying suspect tapes (soft errors), drives with multiple failures, etc.
- Tape drives are still configured by-hand upon replacement

Summary

- Tape technology is capable of enabling big data and exascale storage
 - Highest supported CAGR, capacity demos show promise
- Challenges at scale can be met with close collaboration/partnership of high scale sites and industry
 - Improve software to detect, diagnose, and repair faults
 - Work to improve component reliability
 - Features to support tape ordering for high volume reads

Thank you.

