Coupling MM5 with ISOLSM: Development, Testing, and Application

W.J. Riley, H.S. Cooley, Y. He*, M.S. Torn Lawrence Berkeley National Laboratory

Outline

- Introduction
- Model Integration
- Model Configuration
- Model Testing
- Simulation and Impacts of Winter Wheat Harvest
- Conclusions
- Observations and Future Work

Introduction

- CO₂ fluxes and other trace-gas exchanges are tightly coupled to the surface water and energy fluxes.
- Land-use change has strong impact on surface energy fluxes.
- We coupled MM5 with ISOLSM (Riley et. al 2003), which is based on LSM1 (Bonan, 1995).
- LSM1, thus ISOLSM, simulates: vegetation response to water vapor, CO₂, and radiation; soil moisture and temperature.
- ISOLSM also simulates gases and aqueous fluxes within the soil column and ¹⁸O composition of water and CO₂ exchanges between atmosphere and vegetation.

Model Integration

- New interface between MM5 and ISOLSM based on the current OSULSM interface with MM5 and includes:
 - partitioning shortwave radiation between diffuse and direct components
 - spatially and temporally-dependent vegetation dynamics (i.e., leaf area index).
- Compiler options changed to accommodate two different source code styles.
- Automatic script to retrieve and process pregrid data from NCEP NNRP data.

Model Integration (cont'd)

- Import MM5 to NERSC IBM SP machine.
 - 380 compute nodes, 16 way each → 6,656 processors
 - 16 to 64 GB memory per node
 - 375 MHz per CPU → 10 Tflop/sec peak speed
 - 44 TB disk space in GPFS
- Revise MPP library and MPP object files for ISOLSM.
- Investigate optimization levels to achieve bit-for-bit MPP results with sequential runs.
- Run scripts with automatic I/O from NERSC HPSS.
- Speedup with 64 CPUs is about 36.
- Simulation time: 15 min for domain 1

50 min for domain 2

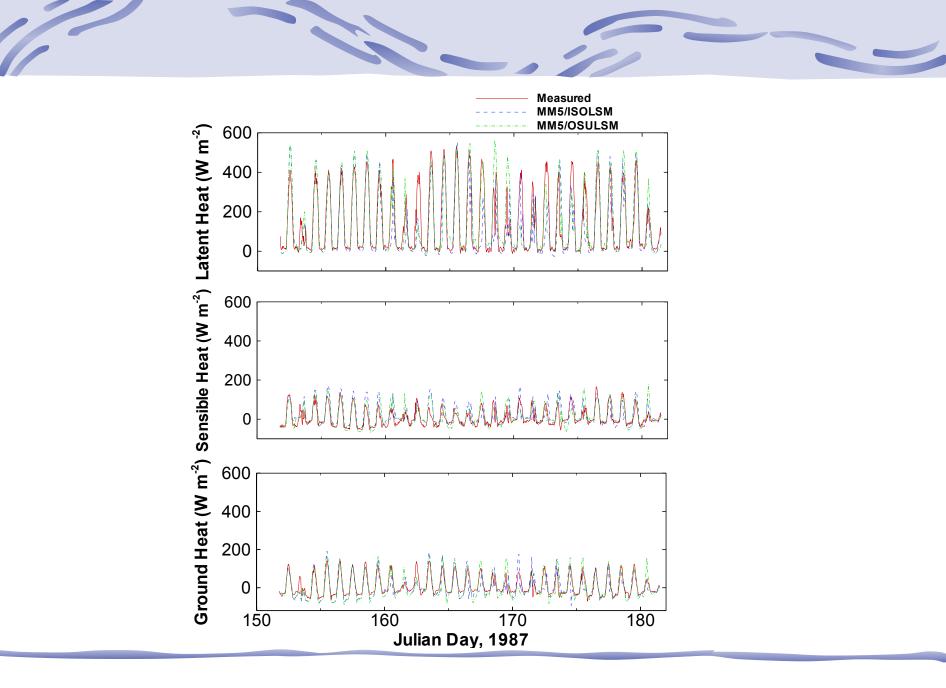
Model Configuration

- Model Initialization:
 - First-guess and boundary condition interpolated from NCEP NNRP.
- Model Grids:
 - Outer Domain 1: Continental USA

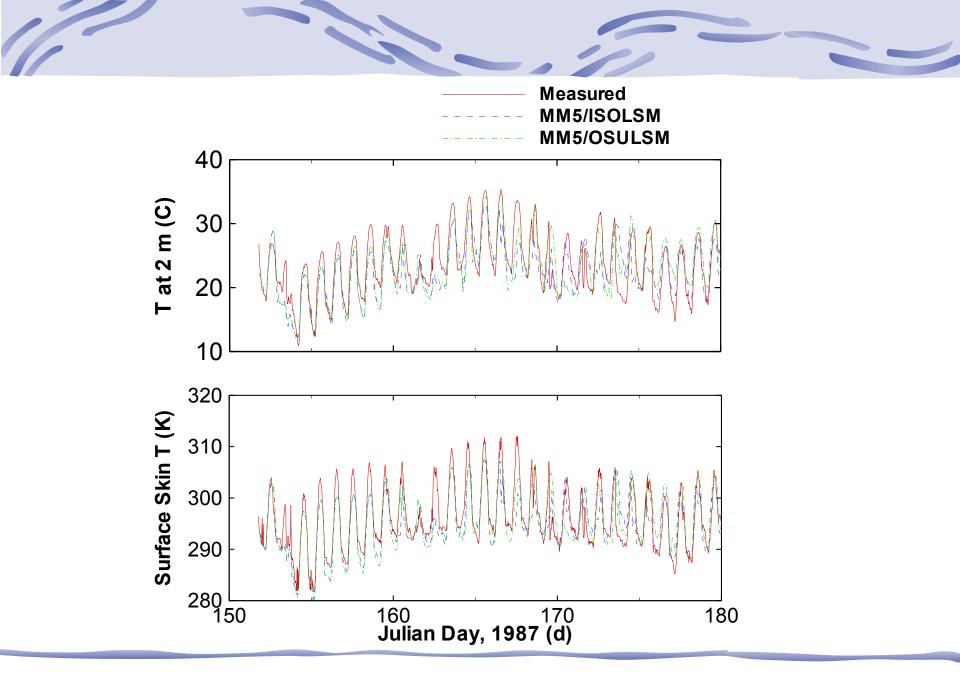
grid size: 54 x 68, resolution: 100 km x 100 km

- One-way nestdown
- Inner Domain 2: FIFE or ARM-CART region

grid size: 41 x 41, resolution: 10 km x 10 km


- $\,$ $\bullet\,$ Vertical: 18 $\sigma\text{-layers}\,$ between 100 mb and surface
- Physics package used:
 - Grell convective scheme
 - Simple ice microphysics
 - MRF PBL scheme
 - CCM2 radiation package

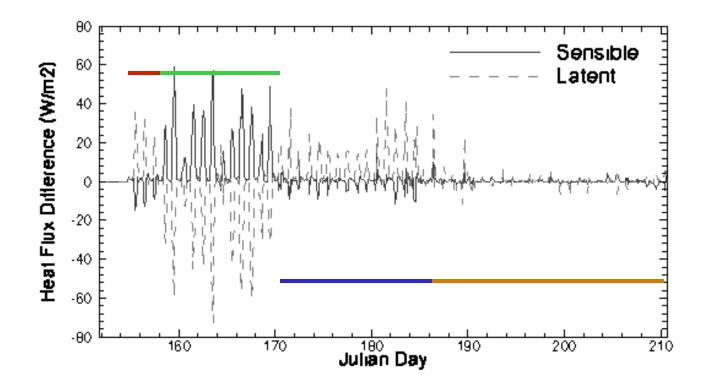
Model Testing


Comparisons between:

- MM5 coupled with ISOLSM
- MM5 coupled with OSULSM (Chen and Dudhia, 2001)
- FIFE dataset: 3-year measured data (Betts and Ball 1998)
 - surface fluxes, soil moisture, soil temperature, etc.
 - spatially averaged over 225 km² area of Kansas.
 - June, July, August of 1987-1989.
- ISOLSM performed comparably or better than OSULSM.

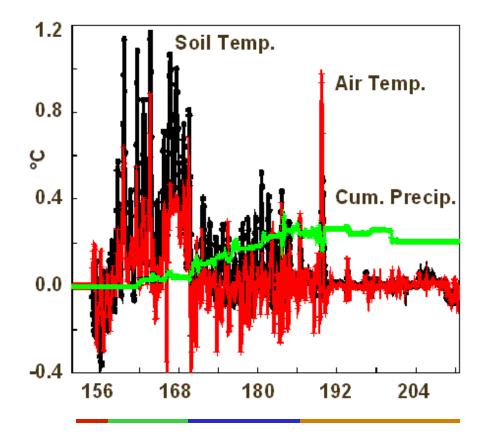
June 2003

Yun (Helen) He

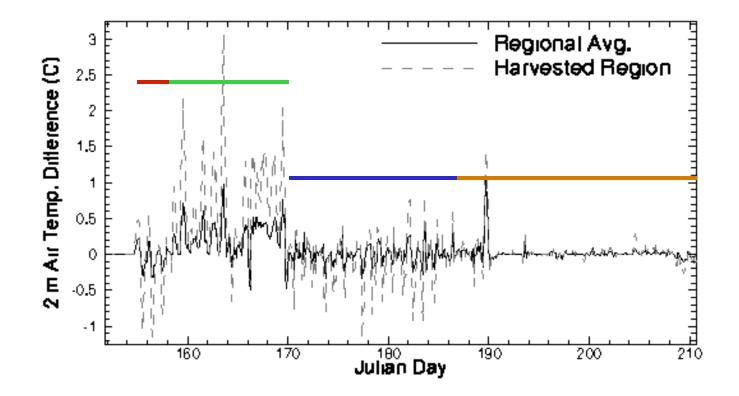


Winter Wheat Harvest Simulation

- MM5-ISOLSM model applied to ARM-CART region from June to July 1987.
- Two scenarios:
 - Early harvest: June 4, 1987 (Julian day 155)
 - Late harvest: July 5, 1987 (Julian day 186)
- Set harvest area with bare soil.
- Four distinct time periods are evident in the simulations:
 - JD 155-158: large evaporation at harvest area
 - JD 158-170: reduced evaporation at harvest area
 - JD 170-186: increased precipitation
 - JD 186-210: two scenarios converge


ARM-CART Region early harvest – late harvest

Yun (Helen) He



ARM-CART Region early harvest - late harvest

early harvest – late harvest

Conclusions

- Successfully coupled MM5 and ISOLSM.
- Built and ran the coupled model in parallel.
- Validated the coupled model against current MM5 model and FIFE dataset.
- Utilized the coupled model to study the impact of winter wheat harvest.
- Winter wheat harvest simulation indicates that harvest impacts both regional and local surface fluxes, 2 m air temperature, and soil temperature and moisture.

Observations and Future Work

- The coupled model allows us to estimate surface fluxes that are consistent with ecosystem CO₂ exchange.
- The soil advection and diffusion sub-models allow us to simulate the impacts of regional meteorology on other distributed trace-gases.
- Study the impact of human-induced land-use change on regional climate and predict regionally-distributed estimates of CO₂ exchanges.
- Investigate the practicality of estimating distributed trace-gas fluxes from atmospheric measurements.