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Understanding and Mitigating Multicore Performance Issues 
on the AMD Opteron  Architecture 

 

Abstract 
Over the past 15 years, microprocessor performance has doubled approximately every 18 
months through increased clock rates and processing efficiency. In the past few years, 
clock frequency growth has stalled, and microprocessor manufacturers such as AMD have 
moved towards doubling the number of cores every 18 months in order to maintain 
historical growth rates in chip performance. This document investigates the ramifications 
of multicore processor technology on the new Cray XT4 systems based on AMD 
processor technology. We begin by walking through the AMD single-core and dual-core 
and upcoming quad-core processor architectures. This is followed by a discussion of 
methods for collecting performance counter data to understand code performance on the 
Cray XT3 and XT4 systems. We then use the performance counter data to analyze the 
impact of multicore processors on the performance of microbenchmarks such as STREAM, 
application kernels such as the NAS Parallel Benchmarks, and full application codes that 
comprise the NERSC-5 SSP benchmark suite. We explore compiler options and software 
optimization techniques that can mitigate the memory bandwidth contention that can 
reduce computing efficiency on multicore processors. The last section provides a case 
study of applying the dual-core optimizations to the NAS Parallel Benchmarks to 
dramatically improve their performance.1 

Introduction 
Recent trends in microprocessors have shown a decreased rate of growth in clock speed as a 
result of having approached the power and thermal limits of current chip technology. As a result, 
additional computing power is being added to CPUs in the form of multiple compute cores 
operating at roughly constant clock rates. While the impact of multi-core parallelism at the 
commodity/desktop level is modest, the HPC sector, which needs regular significant increases in 
available computing power, is confronted with concurrencies that race upward in lieu of faster 
compute elements. Today’s supercomputers harness tens of thousands of cores, and those on the 
drawing board are built from millions of cores. These architectures are implicitly betting that 
additional cores can be efficiently used. It is therefore important to understand at the level of 
HPC applications how these many thousands of tasks can make good use of each core.  
 
Multicore computing is a paradigm shift at least as dramatic as the transition from vector 
platforms to MPPs. Whereas the transition to MPPs required careful examination of how best to 
use local versus remote (off node) resources, the transition to multicores requires examination of 
how best to share resources within and connected to the CPU. Multiple compute cores on a 
single CPU also introduce an additional layer in the hierarchy of parallelism used in scientific 
                                                
1 AMD, Opteron, ACML, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Cray, XT3, 
XT4, CrayPAT, and LibSci are trademarks of Cray Inc. Other product names used in this publication are for 
identification purposes only and may be trademarks of their respective companies. 
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codes. While this presents some new opportunities, it also presents new challenges in the form of 
inter-core resource conflict and contention.  
 

  
Figure 1: Recent trends in microprocessor performance and architecture. The figure on the left shows the 
average SPEC-Int performance over the past three decades (courtesy of David Patterson, from Patterson & 
Hennessy Vol. 4). The figure on the right shows that while the number of transistors that can be packed onto 
a chip continues to improve, all other traditional performance metrics (clock rate, ILP and power density) 
are flat-lining (courtesy of Kunle Olukotun, Lance Hammond, Herb Sutter, and Burton Smith). The industry 
response is to move to multicore chips. 
 
The microprocessor industry’s move to multicore is well under way, and for many reasons it is 
inevitable. Figure 1 shows recent trends in microprocessor performance. The diagram on the left 
shows the past three decades of exponential performance improvements for individual 
microprocessor cores as measured by SPEC-Int. However, starting in 2003, that growth has 
tailed off dramatically. The chart on the right shows that Moore’s Law, which says silicon 
lithography improvements will enable 2x more transistors to be fit onto a chip approximately 
every 18 months, is still alive and well. However, all of the traditional sources of processor 
performance improvement (instruction-level parallelism [ILP], clock speed, and increased power 
density that results from pushing up the clock speed) are all flat-lining around the same time that 
the graph on the left shows departure from the 52%/year SPEC benchmark scaling. This 
indicates that using more transistors per chip to boost performance of individual CPUs, either by 
clock frequency scaling or increased ILP, is no longer effective. Consequently, the industry 
response is to move to multiple cores as their primary strategy for maintaining the per-chip 
performance improvements that have, until recently, matched the rate of Moore’s law 
lithography improvements. 
 
Since the move to multicore processors is inevitable, it is important to examine the consequences 
of this architectural change for application performance and to understand how to mitigate the 
performance bottlenecks that arise from these architectural choices. This document focuses on 
the performance bottlenecks that may arise when using multi-core AMD Opteron sockets. 
While most of the data herein are have been gathered on dual core systems, we expect quad and 
higher core systems may further constrain available memory bandwidth per core. Given the 
current and likely continued trends in super-scalar systems, it is important that the application 
programmer understand the details of the imbalance of the system and techniques that can be 
used to restructure applications to more effectively utilize the caches and translation lookaside 
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buffers (TLB), and to take advantage of streaming SIMD extension (SSE) instructions to achieve 
the highest possible performance.  
 
The first sections of the report document the architecture of the Opteron socket, concentrating 
on those features of the architecture that must be understood to avoid memory contention. We 
then describe the performance tools available to obtain hardware counter data and how that can 
be used to better understand how the application is using the cores. Next, we use performance 
counter data to examine the effects of multicore AMD Opteron processors on the efficiency of 
the NERSC-5 procurement benchmarks, the NAS kernels run in serial mode, and finally some 
microbenchmarks (STREAM and Apex-MAP) that isolate the source of performance 
bottlenecks. The last section describes how to optimize codes to improve multicore performance, 
including compiler options and techniques for restructuring an application to be more cache-
friendly. In that section we will also discuss the use of SSE instructions, which while not 
particular to dual-core issues, are an important way to achieve higher performance on the socket.  

AMD Opteron 1000, 2000, and 8000 Series Multicore Processor 
Architecture (also known as AMD Rev F or AMD NPT Family 0Fh) 

Cache Organization 
The Opteron processors have level 1 instruction (L1I) and data (L1D) caches. There is a level 
2 cache (L2) that can hold either instructions or data. The L1 caches and L2 cache are exclusive 
of each other. This means, in the case of data for example, an item of cached data will not be in 
both the L1D and the L2 caches at the same time. This allows the combined L1 and L2 caches to 
hold more data but may require more write-backs of data from L1 into L2 than in a design where 
the L1 contents are a subset of the L2 contents. 
 
The L1 data cache is 64 KB in size and organized with 64 byte lines and is two-way set 
associative. Virtual address bits 14:6 determine which set is selected, and each of the two ways 
(i.e., lines) of this set is checked for a hit. 
 
The L2 cache is 1 MB in size, 16-way set associative, and functions as a victim cache. This 
means it is filled with data that was previously in the L1 cache but was evicted as a result of the 
L1 cache replacement policy. An exception to this is the hardware prefetcher that speculatively 
prefetches data into the L2 based on detection of access patterns. The most common scenario, 
and that most amenable to support from hardware and software assistance, is one where the 
program is sequentially striding through the cache lines of the array. In contrast to the hardware 
prefetch mechanism, using software prefetch instructions—prefetchnta and prefetcht0/1/2 
—will result in data being prefetched into the L1 cache. The rationale of these instructions is that 
explicitly issued software prefetches should be treated as less speculative and more likely to be 
used, therefore fetching into the L1 cache will be more optimal. The prefetchnta instruction 
biases the prefetched data to get evicted before other data as it means the data is non-temporal in 
nature. 
 
For many applications the hardware prefetch mechanism should suffice, but for others that may 
access multiple streams of data, the software prefetch instructions allow explicit prefetching of 
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some or all streams into L1 cache. Many compilers provide tuning flags that give the compiler 
strong hints for utilizing prefetch instructions during code generation. 
 
The L1 data cache is indexed using virtual address bits, but the tags are comprised of physical 
address bits. This allows indexing to be done before translation has completed. Due to the size of 
the 64 KB L1 cache, there are not enough untranslated bits (bits that fall through directly from 
virtual to physical address) available to index the cache using physical address bits only. The 
practical implication of this is that virtual to physical mappings can affect how data is placed in 
the cache and therefore affect performance. 
 
Under Linux (or any OS that lazily allocates pages only when touched), there is a possibility that 
using translated address bits to index a cache can result in lost performance due to subtle 
interactions between the OS behavior and the cache design. An important rule of thumb for 
programmers is to initialize all data before reading it. This may sound obvious and is good 
programming practice, but there have been cases where data was assumed to be initialized to 
zero and read without initializing it to zero. However, under Linux, uninitialized data usually 
results in multiple virtual address pages being mapped to the same special physical page (called 
the zero page). Upon the first write to such a virtual page, Linux’s copy-on-write mechanism 
causes a new physical page to be allocated and zeroed. Without such copy-on-write allocation 
occurring, accesses to different virtual pages that map to the same physical page can result in 
cache thrashing and poor performance. Since the L2 serves as a victim cache, the way in which a 
cache line would move from one index set to another set in the L1 (one form of thrashing) would 
be to get evicted to the L2 and then brought back into the L1. 
 
A more subtle caveat has to do with each L1 cache line (64 bytes) being implemented in an 
eight-bank interleaved fashion. This means there are eight banks in the L1, and bits 5:3 of the 
virtual address select the bank. So a 64 byte cache line is really laid out evenly across the eight 
banks, with 8 bytes in each bank. A bank conflict can occur if two virtual addresses have 
different indices (bits 14:6) but the same bits for their bank (bits 5:3). In this case, only one load 
per cycle from L1 will be allowed rather than two per cycle if going to different banks. 
Practically speaking, if a loop appears to be having fewer loads per cycle than expected (possibly 
using the hardware performance counters), examination of the virtual addresses loaded in the 
loop may reveal such a conflict. 
 
Besides the possibility of a cache bank conflict reducing performance as described above, the 
offsets between array addresses can, in rare instances, result in pathologically bad scenarios 
where only a portion of the cache gets effectively used. This can usually be solved by adding 
some padding to the suspect arrays, either by explicitly sizing them larger or using compiler flags 
to direct additional padding to be generated. 

Translation Lookaside Buffers  
The translation lookaside buffers (TLBs) provide a faster method of translating virtual addresses 
to physical addresses without requiring accessing the multiple levels of page tables. There are 
two levels of TLBs. The level 1 TLB (L1 TLB) can hold 40 address translations. Of these 40, 8 
are for 2 MB large pages and 32 are for 4 KB regular pages. The level 2 TLB (L2 TLB) can 
hold 512 translations for 4 KB pages only. Thus the TLB reach is 8 * 2 MB = 16 MB for large 



 6 

pages and 512 * 4 KB = 2 MB for regular pages. In large-page mode, two of the TLB pages are 
pinned by the OS, so in practice, only six of the pages are available to applications (12 MB of 
coverage). 
 
The L1 TLB is fully associative, and the L2 TLB is four-way set associative. If a program’s data 
will fit within the 16 MB reach of the L1 TLB large pages, using large pages may be of benefit. 
However if the data exceeds that size, using small pages may actually perform better due to the 
L2 TLB and actual access patterns. Even codes that have relatively low page miss rates in small 
page mode can suffer when using large pages because so few pages are available. For instance, a 
code that walks linearly through seven or more distinct arrays will also thrash a six-entry TLB. 
Codes that rely on indirect access, such as row-compressed sparse matrix solvers or codes that 
use explicit representations of unstructured meshes, will consume one page per level of 
indirection. In those cases, the smaller page sizes may offer a lower miss rate despite smaller 
coverage of the memory, due to the larger numbers of pages available to the application. The 
1 GB page sizes available in the quad-core system may alleviate this problem, but the 1 GB 
pages may prove impractical if an entire page (1 GB of the node memory) must be owned by the 
OS image (that would make 1 GB of the node memory inaccessible to applications). 

Data Prefetch 
Both hardware and software based prefetch mechanisms are supported in the Opteron 
processors.  
 
The hardware prefetch mechanism detects and prefetches cachelines from main memory into the 
L2 cache. Detection of a stream for prefetching is based on detecting a pattern of increasing or 
decreasing successive cachelines. It takes two contiguous cacheline fetches, l and l+1, that miss 
in the L2 to trigger the prefetch mechanism. Upon detection of this pattern, the prefetch 
hardware will initiate a fetch of the cache line l+3. Accesses in strides larger than a single 
cacheline will not trigger the hardware prefetcher. Any sequence of L1 misses to successive 
cachelines can trigger the hardware prefetcher if tracking resources are available, including 
software prefetches that miss in the L1. The prefetchnta is an exception to this; since its intent 
is to avoid cache pollution, prefetchnta will not trigger the hardware prefetcher. 
 
The facilities for software prefetching consist of  

• prefetching via loads (standard mov instruction) 
• prefetch, prefetcht0, prefetcht1, and prefetcht2 instructions 
• prefetchw instruction 
• prefetchnta instruction 

 
The prefetch and prefetcht0/t1/t2 instructions all do the same thing on current generations 
of processors. These software prefetch instructions will bring data into the L1 data cache rather 
than the L2 as the hardware prefetch mechanism does. The t0/t1/t2 versions of the prefetch 
instructions are implementation dependent and may in future designs indicate what level of the 
cache hierarchy should serve as the destination for prefetched data. Software prefetch is always 
honored unless a load, store, or hardware prefetch to the same cacheline overrides it. There can 
be up to eight outstanding L2 misses at a time per core, regardless of whether they are due to 
load, store, or software prefetch instructions. 
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The prefetchw instruction provides a hint to the processor that the prefetched data is likely to be 
modified later and it may be better to bring it into the cache in exclusive mode rather than shared 
so that an upgrade to modified state can be done more efficiently. Currently this instruction is 
equivalent to a regular prefetch instruction, however. 
 
The prefetchnta indicates the data being prefetched is non-temporal in nature and unlikely to 
be reused prior to being evicted from the cache. In this case, the data is still brought in to the L1 
cache but is marked in a way to indicate it is not recently used and thus will be favored for 
replacement before other cachelines in its congruence class. This is useful for data that is not 
being written only. For data that is only being written, such as large array initializations or the 
destination of a memory block copy, it is recommended that the processor’s write combining 
store mechanism be used. 
 
Some general rules of thumb and remarks related to software prefetching are: 

• Software prefetching six to eight cachelines ahead is typically good, as the latency of a 
prefetch instruction that misses in the L2 is on the order of 100 cycles. The latency for a 
software prefetch that hits in the L2 is on the order of 13 cycles. 

• Try to have at least 100 cycles worth of computation in loop iterations between software 
prefetch instructions. 

• Try to unroll loops so that each iteration works on an entire cacheline at a minimum. 
Multiple cachelines per iteration should be OK as well. 

• Avoid multiple software prefetches to the same cacheline. 
• Neither hardware nor software prefetches will be allowed to generate page fault 

exceptions. However, a prefetch that misses in the TLB will cause a TLB fill to be 
initiated. 

 
For data that is being written and consists of one or more entire cachelines that are not likely to 
be used again soon, it is recommended that write combining store instructions be utilized. These 
are the movnt versions of the mov instructions. They will utilize special write combining store 
buffers in the processor and are flushed to main memory when an entire cacheline-sized buffer 
fills up. This reduces cache pollution for data unlikely to be needed again soon and enables more 
efficient write transactions into main memory. This will be faster than a prefetchw instructions 
since the cacheline is not first read from memory. Write combining instructions are not 
recommended, however, if the memory region being written to has been marked a “write-
combining” in the processor’s memory type range registers (MTRRs) or page attribute tables 
(PAT). One other caveat is that use of write combining stores may require a fence instruction be 
placed after the last such store in some cases for program correctness. Appendix B of the 
document “Software Optimization Guide for AMD64 Processors” describes more details about 
how the write combining store facility is implemented. 
 
Table 1 shows what is generally the best prefetch strategy based on the dataset size and type of 
accesses. In this table, movnt refers to any of the various flavors of non-temporal mov 
instructions (integer, float, packed, etc.). The term prefetch refers to any of the software 
prefetch/t0/t1/t2 instructions. 
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In the cases of sequential read-only and sequential read-write, it may be beneficial to issue two 
prefetch or two prefetchw instructions before entering a loop to jump start the hardware 
prefetcher. This may also cause subsequent software prefetches inside the loop to hit in the L2. If 
so, a software “prefetch-ahead” distance of less than the six to eight cachelines mentioned earlier 
may be preferable. 

Table 1. Summary of prefetch strategies. 
Less than ½ L2 size or of unknown size Data Less than ½  

L1 size Reused Not Reused 
Greater than ½ 
L2 size 

Read only prefetch or 
prefetchnta 

prefetch prefetchnta prefetchnta 

Sequential read only hwprefetcher 
+ prefetch 

hwprefetcher + 
prefetch 

prefetchnta prefetchnta 

Read-write prefetchw prefetchw prefetchnta prefetchnta 

Sequential read-write prefetchw prefetchw prefetchnta prefetchnta 

Write only prefetchw prefetchw movnt movnt 

Sequential write only hwprefetcher 
+ prefetchw 

hwprefetcher + 
prefetchw 

movnt movnt 

Upcoming Quad-Core Changes  
The upcoming quad-core processors provide a number of enhancements to improve performance. 
Highlights recently disclosed include: 

• Support for an additional large page size of 1 GB. (4 KB and 2 MB are still supported.) 
• A fully associative 48-entry L1 TLB where all 48 entries may be used for any of the three 

pages sizes (4 KB, 2 MB, 1 GB). 
• A L2 TLB that can hold 512 4-KB page translations or 128 2-MB page translations. 
• A 2 MB L3 cache is shared by the four cores and functions as a victim cache for each 

core’s private L2 cache. The L2 caches are 512 KB per core. L1 caches remain at 64 KB 
and private to each core. The L3 is engineered for future expansion. 

• Dual channel memory is now unganged or two independent channels. This should 
improve concurrency in memory accesses and improve the chances of hitting in an 
already open DRAM bank. 

• Full 128-bit-wide floating point unit (4 flops/cycle). 
o This makes it even more important to use full-width SSE2 instructions as opposed 

to the “upper/lower” half varieties if data alignment is known. In other words, 
instructions such as mulpd, addpd, movapd, etc. are preferable to ones such as 
mulsd, addsd, movhpd, movlpd, etc. That is, aligned data and vectorizable 
code become even more beneficial. 

o Similarly, if the upper portion of a 128-bit XMM register does not matter, it is 
better to use movsd and movss to load scalar values into the lower portions of the 
XMM register instead of movlpd or movlps. 

o For unaligned data, it may be better to use movupd or movdqu for loads and 
movhpd or movlpd for stores. 

• Two 128 bit loads from L1D per cycles (versus current 2 × 64 bit loads per cycle). 
• Support for 48 bits of physical address (256 TB). Current Opteron processors support 

40 bits of physical address. 
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• A new hardware prefetch buffer in the memory controller that can track positive, 
negative, and non-unit strides. It will not speculatively fill the L3, L2, or L1 caches, but 
instead prefetches into dedicated prefetch buffers in the memory controller. 

• A new data cache prefetcher that is adaptive and detects positive or negative non-unit 
stride patterns (e.g., non-adjacent cachelines) and adapts the prefetch distance based on 
prefetching success. Further, the prefetched data now gets brought into the L1 rather than 
the L2. 

• Prefetchw software prefetch instruction is now implemented separate from prefetch 
(prefetchw denotes intent to modify and provides a hint to set the cacheline state 
according to the MOESI protocol appropriately). 

General Source Code Level Optimizations  
While many optimizing compilers will detect and perform the following optimizations on their 
own, programming style can aid the compiler in detecting a potential optimization or knowing it 
is safe. A few ideas along these lines are: 

• Declare functions that are not used outside the file in which they are declared as “static” 
functions. This will force internal linkage and may aid in function inlining versus the 
default external linkage. 

• If it is not permissible to allow expression reordering (particularly floating point) by the 
compiler throughout the entire scope of a compilation unit, it may be useful to explicitly 
express parallelism in sections of code where the programmer knows reordering (e.g., 
reassociation) to be safe. An example of this would be a loop that computes a number of 
partial sums from different segments of an array rather than a single summation that is 
calculated by summing the array from start to end in order. 

• Explicit calculation of common subexpressions and storing the value in a local variable 
may be useful in code where the compiler fails to detect the opportunity to compute a 
partial result and reuse it across loop iterations. A good example of this is a stencil 
operation in a 3D grid data structure where the nine elements at locations [i+1, j+/-1,  
k+/-1] become the nine elements at locations [i, j+/-1, k+/-1] in the next loop iteration 
(when i = i+1). In such cases, explicit calculation and copying of a partial result between 
temporary variables can help the compiler generate better code.  

• Many compilers will pad arrays and structures to improve the alignment of their 
elements, but if the compiler is unable or fails to do so, the programmer might try doing 
so explicitly in the declaration of those data structures. In general, declaring elements of 
C structs in order from largest to smallest is best. 

• The same rule of thumb applies to local variable declarations in functions. Declaration in 
order from largest to smallest usually improves the chances of favorable alignment and 
layout in memory. 

• For parallel applications, avoid having separate data items fall into the same 64 byte 
cacheline since this can create a false sharing condition that causes the cacheline to thrash 
between the unshared caches of each core. Explicit padding by the programmer or flags 
to provide hints to the compiler are possible ways to alleviate this. 

• Avoid repeatedly dereferencing pointers in a function. Particularly for C code where the 
compiler may not know at compile time whether different pointers will alias (point to) the 
same address at runtime, this can result in many more loads and stores than desired. 
Frequently compilers will provide flags to tell the compiler it is safe to assume no such 
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aliasing exists. Barring that, or just to make it more explicit, a programmer might 
consider dereferencing the pointer once at the start of the function, placing a working 
copy into a local variable, and copying it back at the end of the function. 

Methodology for Gathering Performance Data 
Except where otherwise noted, we analyzed benchmark performance on a dual-core Cray XT3 
system (Jaguar at ORNL) and a prototype Cray XT4 system using data collected from the 
AMD Opteron hardware performance counters. CrayPAT was used to instrument the 
benchmark codes to gather runtime performance statistics for our evaluation. The following 
section describes how to use CrayPAT and the basic methodology used to gather these 
statistics. 

Using CrayPAT  to Gather Runtime Statistics 
The Cray Performance Analysis Tools (CrayPAT) were used to record the hardware efficiency 
of the application benchmarks. These tools are provided on all Cray XT3s and provide a 
simple interface to hardware counter and other instrumentation data. Users are able to load the 
CrayPAT environment model, rebuild their code, instrument the executable with the 
pat_build command, and receive reports from their application runs. CrayPAT captures 
performance data without the need for source code modifications. Event tracing was used to 
gather data during these experiments. Tracing records events at function entry and exit points, 
rather than interrupting execution periodically to capture events. Event tracing is added to an 
executable by the pat_build command, provided that the craypat module was loaded when 
the source was compiled. Loading the craypat module for compilation is necessary to ensure 
that the needed debugging headers remain in the object files. Because CrayPAT is able to 
leverage hardware-level performance counters, by means of the Performance API (PAPI) library, 
only minimal overhead is added to the user’s application. 
 
Because application tracing can produce enormous amounts of data, CrayPAT uses runtime 
summarization by default. Rather than storing the data for each function on each process, 
CrayPAT instead stores the data in aggregate. Summarization also ignores function parameter 
and return values, as well as stack information. While all of this information is valuable, 
especially when debugging program performance, it is unnecessary for the purposes of this 
report. The aggregate hardware counter data provides a representative look at memory and cache 
performance across the entire application execution.  
 
The Opteron processor architecture has four 48-bit hardware event counters, each of which can 
be used to monitor a variety of different events. For this reason, CrayPAT defines nine sets of 
commonly used hardware counters, which are grouped by function. Two groups of hardware 
counters (groups 1 and 2) were used in these experiments to understand the cache and memory 
performance. The first group records total floating point operations, L1 data cache accesses, L1 
data cache misses, and TLB misses. The second group records L1 and L2 data cache accesses, 
cache refills from L2 cache, and cache refills from system memory. Because MPI use can 
negatively influence each of the recorded metrics, the executables were instrumented in such a 
way that MPI functions were removed from the metrics. The results cited in Table 2, therefore, 
only include user code. 
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Table 2. Explanation of hardware counter events. 
 

PAT_HWPC_EVENT_SET 1: (FP, LS, L1 misses, & TLB misses) 
PAPI_FP_OPS  Floating point operations 
PAPI_L1_DCA Accesses to level 1 data cache 
DC_MISS  Total level 1 data cache misses 
PAPI_TLB_DM  Translation lookaside buffer misses 
PAT_HWPC_EVENT_SET 2: (L1 & L2 data accesses & misses) 
PAPI_L1_DCA Accesses to level 1 data cache 
DC_L2_REFILL_MOESI  Total data cache refills from level 2 cache to level 1 cache. 
DC_SYS_REFILL_MOESI  Total data cache refills from system memory/level 2 data cache misses 
BU_L2_REQ_DC  Accesses to level 2 data cache 

 

Example Application Report 
As an example of how each program was analyzed, this section will show and interpret reports 
for a single application. As was already explained, each application was profiled so that user and 
MPI functions are considered separately. In the report, this creates three major data sessions: 
Totals for program, User, and MPI. As the names imply, the Totals section is the complete data 
from the program execution, User includes only user functions, and MPI includes only MPI 
functions. Within the User and MPI sections, there is a breakdown of the most pertinent 
functions from each group. Below is an example of a program totals section for a report using 
hardware counters group 1. 
 

Totals for program 
--------------------------------------------------------------------- 
 Time%                      100.0% 
 Cum.Time%                    100.0% 
 Time                    6732.607664 
 Calls                   162397731109 
 PAPI_TLB_DM       659.911M/sec  4441480049284 misses 
 PAPI_L1_DCA      86841.249M/sec 584478099205200 ops 
 PAPI_FP_OPS      14501.875M/sec  97603713650150 ops 
 DC_MISS         1193.517M/sec  8032871839125 ops 
 User time        6730.420 secs  17499092506162 cycles 
 Utilization rate                100.0% 
 HW FP Ops / Cycles                5.58 ops/cycle 
 HW FP Ops / User time 14501.875M/sec  97603713650150 ops     4.4%peak 
 HW FP Ops / WCT    14497.163M/sec 
 Computation intensity               0.17 ops/ref 
 LD & ST per TLB miss              131.60 ops/miss 
 LD & ST per D1 miss               72.76 ops/miss 
 D1 cache hit ratio                98.6% 
 % TLB misses / cycle               0.4% 

 
Each report section shows how much time was spent in that section and the percentage of total 
execution time. For the Totals section, this is obviously 100% of the execution time. Below these 
metrics is the total number of function calls. The next four metrics are the hardware counters 
included in counter group 1, PAPI_TLB_DM (translation look-aside buffer misses), PAPI_L1_DCA 
(L1 cache accesses), PAPI_FP_OPS (floating point operations), and DC_MISS (data cache misses), 
and their counter values. It is important to remember that these values are the aggregate from 
every MPI task and not from a single CPU. The next item is another measure of execution time, 
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this one derived from the hardware performance counters. Below that are several useful metrics 
derived from the counter data. For example, HW FP Ops / User time is the common megaflop 
count for the program, in this case 14.5 GF or about 4.4% of the peak performance. The 
remaining derived metrics will be explained shortly. Below is a USER section from a report for 
hardware counter group 2. 
 

USER 
---------------------------------------------------------------- 
 Time%                       100.0% 
 Cum.Time%                     100.0% 
 Time                     6724.668036 
 Calls                    162396953744 
 PAPI_L1_DCA       86890.056M/sec  584116763286676 ops 
 DC_L2_REFILL_MOESI    1191.189M/sec   8007744664830 ops 
 DC_SYS_REFILL_MOESI    155.048M/sec   1042309740361 ops 
 BU_L2_REQ_DC       1256.872M/sec   8449296500998 req 
 User time        6722.481 secs  17478450934102 cycles 
 Utilization rate                 100.0% 
 L1 Data cache misses   1346.237M/sec   9050054405191 misses 
 LD & ST per D1 miss                64.54 ops/miss 
 D1 cache hit ratio                 98.5% 
 LD & ST per D2 miss                560.41 ops/miss 
 D2 cache hit ratio                 87.7% 
 L2 cache hit ratio                 88.5% 
 Memory to D1 refill    155.048M/sec   1042309740361 lines 
 Memory to D1 bandwidth  9463.401MB/sec  66707823383104 bytes 
 L2 to Dcache bandwidth 72704.398MB/sec 512495658549120 bytes 

 
The example above is similar to the previous one, except it only includes data from user 
functions. This report is especially useful when MPI functions are considered separately, as they 
were in this example. Notice that for this report the specific hardware counters have changed. 
They are now PAPI_L1_DCA (L1 data cache accesses), DC_L2_REFILL_MOESI (L1 refills from L2 
cache), DC_SYS_REFILL_MOESI (L2 refills from system memory), and BU_L2_REQ_DC (L2 data 
cache requests). This will, of course, change the derived metrics. 
 
These two different reports include several important metrics derived from the raw hardware 
counter data. The computational intensity metric shows how many operations are executed for 
every memory reference. If this number is large, then a lot of computation is done for every trip 
to memory, but if it is small, then the program is not reusing the items it fetches from memory. In 
the Totals report above, the computation intensity is 0.17, which means that for all the time spent 
fetching from memory, only one-fifth of that time is being used for calculations. It is desirable to 
have a computational intensity above 1, and the larger, the better. The LD & ST per TLB miss 
and LD & ST per D1 miss are similar metrics, showing the number of load and store operations 
per TLB and L1 data cache misses. As with the computation intensity metric, larger numbers are 
better. 
 
The next two metrics to focus on are the D1 cache hit ratio and % TLB miss/cycle. The D1 
cache hit ratio shows how many memory references were found in cache. The hit ratio is 
affected by cache-line reuse and prefetching, so it can and should be a high percentage. It is 
impossible to have 100% of all data references hit cache, but a well-written code should be able 
to achieve a cache hit ratio very near 100%. This metric can usually be improved over the most 
naïve implementation by using techniques described below. The opposite is true for the 
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percentage of TLB misses per cycle. Because TLB misses are an extremely expensive operation, 
it is important that the program have as few TLB misses as possible. This metric essentially 
shows the chance that any given operation results in an expensive TLB miss. It is critical to 
program performance to keep this metric below 1%. The Users example contains several more 
load/store operations per miss and miss ratio metrics, which should be interpreted as already 
explained, and also cache and memory bandwidth measures. 

Application Performance on AMD Multicore Processors 
The first step in understanding and mitigating multicore bottlenecks is determining whether we 
actually have a problem to start with! In this section, we examine the impact of memory 
bandwidth contention on the performance of application kernels (represented by the NAS 
Parallel Benchmarks run in serial mode) and full applications. Not all applications suffer equally 
from the move to dual core. Next, we use STREAM and APEX-MAP microbenchmarks to show 
that memory bandwidth contention is the primary source of performance loss when moving from 
single- to dual-core systems. The conclusion is that many applications are not limited by memory 
bandwidth and that remedies for memory bandwidth contention will be beneficial only for those 
codes that are provably dependent on memory bandwidth. 

NERSC-5 SSP Applications 
NERSC uses the SSP (Sustained System Performance) performance metric to assess the 
performance of HPC systems. The SSP uses a set of applications derived from the NERSC 
workload to predict the effective sustained performance delivered to real scientific workloads 
rather than focusing on the peak performance that is reflected in the LINPACK benchmark. In 
this section, we look at the effect of dual-core processors on the processing efficiency of the 
NERSC SSP applications. 
 
The medium NERSC-5 application benchmarks were profiled on dual-core XT3 and XT4 
hardware using CrayPAT, as described in the previous sections. Since we are only interested in 
single-node performance for this report, the results exclude the performance characteristics of the 
MPI sections. All applications except CAM were run on 64 processors, with CAM running on 
54. The applications were run in both serial and virtual node mode (single and dual core) and 
also using small and large pages. 
 
Before discussing the applications in detail, we note that the hardware performance counter data 
collected does not indicate a clear source of the dual core penalty in regards to the cache and 
TLB subsystems. That is, the operations per TLB or cache miss are virtually unchanged on going 
to dual core in every case. The counter data does have a predictive value, in that applications 
with good ratios show little performance decrease on going to dual core. This is only to be 
expected given the discussion in previous sections, and our conclusion is that if each core is 
using less of a shared resource such as memory bandwidth, less contention can occur. 
 
Regarding the merits of using small or large pages, however, the hardware performance counter 
data is conclusive. In general, runs utilizing large pages show an increased number of TLB 
misses and decreased performance on both single and dual core. Again, this is clearly explained 
from our understanding of the hardware. 
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MILC  
The benchmark code MILC represents part of a set of codes written by the MIMD Lattice 
Computation (MILC) collaboration to study quantum chromodynamics (QCD), the theory of the 
strong interactions of subatomic physics. Strong interactions are responsible for binding quarks 
into protons and neutrons and holding them all together in the atomic nucleus. MILC performs 
simulations of four-dimensional SU(3) lattice gauge theory on MIMD parallel machines. The test 
case for the data shown here is for a lattice size of 324 with two trajectories of five steps each. 
MILC uses inlined SSE assembly code for some routines to aggressively perform software 
prefetching. 
 
From the data in Table 3, we can see that small pages outperform large pages by a slight margin 
on both the XT3 and XT4, due to a modest reduction in TLB misses. The dual core penalty 
is significant on both the XT3 and XT4; MILC has the largest penalty of all the applications 
studied. Using small pages, MILC runs 44% and 43% slower on the dual-core XT3 and XT4 
systems, respectively. From the TLB and cache miss ratios, we see very little spatial or temporal 
locality in the memory references generated by the MILC application. The ratios are uniformly 
low for both small and large pages. This is to be expected due to the type of scattered memory 
addressing that is performed in this application. Even so, the ratios seem at odds with the high 
computational intensity. Significant work has been done to include software prefetch instructions 
and SSE instructions in many of the kernels, and we conjecture that the effect of these 
optimizations may be skewing the composite hardware counter results. 
 

Table 3. MILC performance on single-core and dual-core  
AMD Opteron  processors using small and large pages. 

 

Small Pages Large Pages 
XT3 Single Dual Single Dual 
Wall Clock Time 160 230 166 232 
Sustained MFLOPS 69370 48402 67138 47976 
Percent of Peak 21% 15% 20% 14% 
Computational Intensity 2.1 2.1 2.1 2.1 
References/TLB Miss 308 309 68 68 
References/D1 Cache Miss 16 16 16 16 
References/D2 Cache Miss 32 32 31 31 
XT4     
Wall Clock Time 127 181 130 184 
Sustained MFLOPS 87840 61482 85447 60538 
Percent of Peak 26% 18% 26% 18% 
Computational Intensity 2.1 2.1 2.1 2.1 
References/TLB Miss 307 308 106 106 
References/D1 Cache Miss 16 16 16 16 
References/D2 Cache Miss 33 33 33 33 
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GTC  
GTC is a three-dimensional code used to study microturbulence in magnetically confined 
toroidal fusion plasmas via the particle-in-cell (PIC) method. It solves the gyro-averaged Vlasov 
equation in real space using global gyrokinetic techniques and an electrostatic approximation. 
The Vlasov equation describes the evolution of a system of particles under the effects of self-
consistent electromagnetic fields. The test case studied here is 10 particles per cell and 2000 time 
steps. 
 
In Table 4, we can see that small pages outperform large pages by almost 40%. This is the largest 
effect observed over all the applications studied here. The change in TLB miss ratio on going to 
large pages explains the very large performance hit; the number of TLB misses increases by a 
factor of almost 300. From closer inspection of the GTC trace data, the three routines most 
significant in terms of time consumed all contain loop constructs that address more than eight 
arrays, causing thrashing of the TLB. The dual core penalty is small, amongst the lowest of all 
the applications, at 4% slower when run with small pages. From the cache miss ratio, we see a 
reasonable amount of spatial or temporal locality in the memory references generated by the 
GTC application. 
 

Table 4. GTC performance on single-core and dual-core  
AMD Opteron  processors using small and large pages. 

 

Small Pages Large Pages 
XT3 Single Dual Single Dual 
Wall Clock Time 614 639 851 879 
Sustained MFLOPS 71219 68557 51584 49920 
Percent of Peak 21% 21% 16% 15% 
Computational Intensity 1.17 1.17 1.17 1.16 
References/TLB Miss 4858 4853 21 21 
References/D1 Cache Miss 44 43 44 44 
References/D2 Cache Miss 355 355 206 206 

 

PARATEC  
The benchmark code PARATEC (PARAllel Total Energy Code) performs ab initio quantum-
mechanical total energy calculations using pseudopotentials and a plane wave basis set. Total 
energy minimization of electrons is done with a self-consistent field (SCF) method. Force 
calculations are also done to relax the atoms into equilibrium positions. PARATEC uses an all-
band (unconstrained) conjugate gradient (CG) approach to solve the Kohn-Sham equations of 
density functional theory (DFT) and obtain the ground-state electron wavefunctions. In solving 
the Kohn-Sham equations using a plane wave basis, part of the calculation is carried out in 
Fourier space, where the wavefunction for each electron is represented by a sphere of points, and 
the remainder is in real space. Specialized parallel three-dimensional FFTs are used to transform 
the wavefunctions between real and Fourier space, and a key optimization in PARATEC is to 
transform only the non-zero grid elements. The test case used as input to collect data is bulk 
silicon with a unit cell containing 125 atoms, running a single SCF calculation. 
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Data in Table 5 shows the performance of PARATEC on the XT3 and XT4. Interestingly, 
on the XT3, small pages lead to marginally better performance, but the situation is reversed on 
the XT4. This is because the ratio of TLB misses running with small and large pages changes 
quite significantly (more than a factor of 4) according to the architecture. The major source of 
this change is improved large page TLB performance on the XT4. Given that the processor is 
identical on both these platforms, we assume that the performance difference is due to a newly 
installed version of the compiler and ACML library. The dual core penalty is small for both 
architectures, at 5% slower with small pages. The TLB and L2 cache miss ratios are good for 
both large and small pages, but the L1 cache miss ratio falls to around the average across all the 
applications. 
 

Table 5. PARATEC performance on single core and dual core  
AMD Opteron  processors using small and large pages. 

 

Small Pages Large Pages 
XT3 Single Dual Single Dual 
Wall Clock Time 593 622 598 630 
Sustained MFLOPS 221864 211696 220223 208938 
Percent of Peak 66.8 63.6 66.2 62.8 
Computational Intensity 1.51 1.51 1.51 1.51 
References/TLB Miss 6659 6670 1325 1309 
References/D1 Cache Miss 61 61 61 61 
References/D2 Cache Miss 1133 1129 1226 1222 
XT4     
Wall Clock Time 549 572 548 570 
Sustained MFLOPS 239915 230774 240621 231337 
Percent of Peak 72% 69% 72% 70% 
Computational Intensity 1.48 1.48 1.48 1.48 
References/TLB Miss 6749 6736 5643 5473 
References/D1 Cache Miss 105 105 105 105 
References/D2 Cache Miss 1139 1151 1241 1247 

 

CAM  
The Community Atmosphere Model (CAM) is the atmospheric component of the Community 
Climate System Model (CCSM) developed at NCAR and elsewhere for the weather and climate 
research communities. Although generally used in production as part of a coupled system in 
CCSM, CAM can be run as a standalone (uncoupled) model as it is here. The NERSC 
benchmark runs CAM version 3.1 at D resolution (about 0.5 degree) using a finite volume 
dynamical core. 
 
From the data shown in Table 6, we can see that small pages outperform large pages by a slight 
margin on the XT3, although on the XT4 the difference in performance is almost 
nonexistent. As with PARATEC, the ratio of TLB misses running with small and large pages 
changes significantly (more than a factor of 2) according to the architecture. In this case, 
however, the change is due to both a performance improvement of large page TLB miss rate and 
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the decrease in small page TLB miss rate on the XT4. Again, we believe the origin of this 
change is the upgraded compiler. The dual core penalty is significant, the second largest of all 
the applications, at 12% slower with small pages on the XT3. However, this penalty drops to 
10% on the XT4. The TLB and cache miss ratios fall into the middle of the range when 
comparing all the applications. 
 

Table 6. CAM performance on single core and dual core  
AMD Opteron  processors using small and large pages. 

 

Small Pages Large Pages 
XT3 Single Dual Single Dual 
Wall Clock Time 1733 1937 1806 2002 
Sustained MFLOPS 30574 27357 29334 26464 
Percent of Peak 10.5 9.4 10.1 9.1 
Computational Intensity 0.56 0.56 0.55 0.55 
References/TLB Miss 2847 2851 172 183 
References/D1 Cache Miss 33 33 33 33 
References/D2 Cache Miss 518 513 545 536 
XT4     
Wall Clock Time 1216 1335 1215 1339 
Sustained MFLOPS 43584 39691 43599 39573 
Percent of Peak 13% 12% 13% 12% 
Computational Intensity 0.89 0.89 0.89 0.89 
References/TLB Miss 1913 1910 314 317 
References/D1 Cache Miss 22 22 22 22 
References/D2 Cache Miss 335 330 354 349 

 

MADbench 
The benchmark code MADbench is a stripped-down version of MADCAP (Microwave 
Anisotropy Dataset Computational Analysis Package). This package contains several 
computational tools developed for analysis of data from cosmic microwave background (CMB) 
experiments. The goal of these experiments is to extract the wealth of cosmology information 
embedded in the CMB that is related to the universe at an age of about 400,000 years after the 
Big Bang. Such experiments typically involve scanning a significant amount of the sky for long 
periods at very high resolution. The reduction of the resulting datasets, first to a pixelized sky 
map and then to an angular power spectrum, is extremely computationally intensive. The 
primary computational challenge is an out-of-core solution to a dense linear algebra problem on 
distributed matrices. The test case used here is 18,000 pixels with 24 bins operating in single 
gang mode. 
 
The performance of MADBench is summarized in Table 7. For this application only, on the 
XT3, running with large pages slightly outperforms running with small pages. Virtually 
identical performance between large and small page runs is observed on the XT4. The dual 
core penalty is one of the smallest, at 3% slower with large pages on the XT3 and 2% slower 
on the XT4. TLB and cache miss ratios are the best of all the applications on both XT3 and 
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XT4, probably due to the main computational work being matrix-matrix multiplication, which 
is carried out via an optimized ACML routine. Interestingly, TLB misses are vastly improved 
for large pages on the XT4. This data point is the only occasion where the ratio of operations 
per TLB miss is better running with large pages than with small pages. 
 

Table 7. MADBench performance on single core and dual core  
AMD Opteron  processors using small and large pages. 

 

Small Pages Large Pages 
XT3 Single Dual Single Dual 
Wall Clock Time 1318 1336 1248 1291 
Sustained MFLOPS 219981 216986 232294 224640 
Percent of Peak 66% 65% 70% 68% 
Computational Intensity 1.73 1.7 1.72 1.72 
References/TLB Miss 7807 7880 3281 3265 
References/D1 Cache Miss 122 124 121 121 
References/D2 Cache Miss 2481 2348 2922 2880 
XT4     
Wall Clock Time 1248 1272 1236 1263 
Sustained MFLOPS 230868 226415 233129 228185 
Percent of Peak 69% 68% 70% 69% 
Computational Intensity 1.67 1.67 1.67 1.67 
References/TLB Miss 7911 7918 12521 12721 
References/D1 Cache Miss 122 122 121 122 
References/D2 Cache Miss 2407 2399 2989 2968 

 
 

GAMESS 
The benchmark code GAMESS (General Atomic and Molecular Electronic Structure System) 
performs various ab initio quantum chemistry simulations. Several kinds of SCF wavefunctions 
can be computed with correlation. Correlation corrections to these SCF wavefunctions include 
configuration interaction, second order perturbation theory, and coupled-cluster approaches, as 
well as the density functional theory approximation. A variety of molecular properties, ranging 
from simple dipole moments to frequency-dependent hyperpolarizabilities may be computed. 
Many basis sets are stored internally, together with effective core potentials, so all elements up to 
radon may be included in molecules. The two benchmarks used here test DFT energy and 
gradient, RHF energy, MP2 energy, and MP2 gradient. 
 
From the data in Table 8, we can see that small pages outperform large pages by about 10%. The 
dual core penalty is minimal, one of the smallest of all the applications at 2% slower with small 
pages on the XT3. The TLB and cache miss ratios are about average when compared across all 
the applications studied, except the TLB miss ratio for the small pages runs which is relatively 
small. 
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Table 8. GAMESS performance on single core and dual core  
AMD Opteron  processors using small and large pages. 

 

Small Pages Large Pages 
XT3 Single Dual Single Dual 
Wall Clock Time 6573 6732 7087 7334 
Sustained MFLOPS 14976 14643 14310 13645 
Percent of Peak 5% 4% 4% 4% 
Computational Intensity 0.17 0.17 0.17 0.17 
References/TLB Miss 131 131 109 109 
References/D1 Cache Miss 72 73 73 73 
References/D2 Cache Miss 561 561 566 566 

 

Analysis of NERSC-5 SSP  
Figure 2 shows the impact of moving from single-core to dual-core processors on application 
performance. Overall, the majority of N5 SSP applications suffered very little from the move to 
dual-core processors. On average, the performance penalty of moving from single- to dual-core 
processors was on the order of 10%. This indicates that memory bandwidth is unlikely to be the 
bottleneck for application performance. MILC suffered the worst effects from the move to dual-
core processors. In that case, the dominant portion of the MILC kernel is hand-coded in 
assembly, so it makes optimal use of memory bandwidth. It is interesting to point out that, except 
for MILC, the difference in performance between using large pages vs. small pages was actually 
greater than the performance impact of moving to dual cores. The importance of TLB page size 
was examined in detail in the discussion of the Opteron architecture above. 
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Figure 2. NERSC SSP Performance on single-core vs. dual-core AMD Opteron  processor. Except for 
MADCAP, small-page performance results were used. The average performance penalty for moving from 
single to dual core was 10.3%. 
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NAS Parallel Benchmarks 
Several of the NAS Parallel Benchmarks—CG, MG, SP, LU, and BT—were run in serial mode 
on the dual core for examining a worst case scenario comparison of packed and unpacked 
execution. The addressing characteristics of the kernels are as follows: 

• BT: 5 x 5, stride 
• SP: 5 x 5, stride 
• LU: 5 x 5, stride 
• MG: Contiguous 
• CG: Indirect 

Methodology 
The latest 3.x.x version of the serial versions of the NAS benchmarks were built for the Class B 
problem size using –O3 and –fastsse options using the Portland Group (PGI) compilers. Each 
applet/kernel is executed in a serial fashion, from a top level MPI wrapper with two MPI ranks. 
In order to run in this fashion, the code had to be slightly modified to facilitate our study. The 
modification is summarily: 
 

<main program declarations> 
mask=0 
read(10,*)cpuflag 
if (cpuflag.eq.1)mask(0)=1 
if (cpuflag.eq.2)mask(1)=1 
if (cpuflag.eq.3)mask(0)=1 
if (cpuflag.eq.3)mask(1)=1 
 
if (mask(my_mpi_rank).eq.1)then 
   <original serial code> 
endif 
call MPI_Barrier(MPI_COMM_WORLD, ierr) 
call MPI_Finalize(ierr) 
<original program end> 

 
Each of the applications was executed on one dual core socket with two MPI ranks for values of 
cpuflag of 1, 2, and 3, yielding performance data for execution on core 0 and core 1 separately 
(single core runs) and core 0 and 1 simultaneously (dual core runs). Runs were also performed 
replacing the final barrier operation with an mpi_abort while parking the non-executing core in 
a tight loop. No timing discrepancy was found between these two methods, indicating negligible 
effect from idle tasks parked in the barrier operation. 
 
The data presented was generated on a Cray internal machine, “Seal,” running Catamount v1.5.x 
using both 4 KB page size (small pages) and 2 MB pages (large pages) selected via the yod 
command. Seal is a Cray XT4 platform with the following node attributes: 

• Sockets: 1 
• Processor: AMD Opteron 1218 (Rev F) 
• Frequency: 2.6 GHz, peak floating point performance of 5.2 Gflops 
• Memory: 667MHz DDR2, peak bandwidth of 10 GB/s (8 GB/s STREAM) 
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We note in contrast to the NERSC-5 SSP application tests, these NAS benchmarks are 
configured so that the tasks do not communicate with one another. This enables us to isolate our 
performance study to scalar performance without consideration of message-passing performance.  
 
Execution times for the applications obtained are given in Table 9. In the table, single core runs 
are provided for each of the two cores independently, while dual core run timings are shown for 
each core from the same run. 
 

Table 9. Execution times (seconds) for the NAS benchmarks. 
 

 Single Core Runs Dual Core Runs Averages 
 Large Pages Small Pages Large Pages Small Pages Large Pages Small Pages 

   core 1 core 2 core 1 core 2 core 1  core 2 core 1  core 2 S/core D/core S/core D/core 
BT 431.5 431.5 406.0 405.9 472.2 472.2 454.9 454.9 431.5 472.2 405.9 454.9 
SP 359.6 359.5 327.8 327.9 468.3 468.3 456.9 456.9 359.5 468.3 327.9 456.9 
LU 536.1 536.0 539.9 539.9 738.1 738.1 743.8 743.8 536.1 738.1 539.9 743.8 
CG 189.3 189.2 188.2 188.1 208.7 208.7 206.8 206.8 189.3 208.7 188.2 206.8 
MG 16.0 16.0 16.2 16.2 23.5 23.5 23.5 23.5 16.0 23.5 16.2 23.5 

 
We compare the execution performance of the NAS benchmarks on single and dual-core 
processors. The effect of enabling small pages on both dual and single core execution of the 
kernels is shown in Table 10. 
 

Table 10. Performance penalties for using dual core for both small and large pages. 
 

 Decrease in Time  
from Enabling Small Pages 

Time Increase  
for Dual Core 

 Single Core Dual Core Large Pages Small Pages 
BT 5.92% 3.66% 109.42% 112.05% 
SP 8.82% 2.44% 130.24% 139.35% 
LU -0.71% -0.77% 137.69% 137.77% 

CG 0.59% 0.91% 110.29% 109.93% 
MG -0.84% 0.04% 146.35% 145.07% 

 

Analysis of NAS Benchmarks 
We see a range of effects from dual core execution ranging from 10% to 45%, with MG 
exhibiting the greatest effect and CG least (Figure 3). Of interest is that the enablement of small 
page sizes in execution has an apparently different effect on overall execution time of a given 
application depending upon whether it was executed in single or dual core mode. Applets 
exhibiting most sensitivity remain so in this regard. The trend appears to suggest that the effect 
of small pages is less pronounced when dual core mode is employed. The average degradation in 
execution time is approximately 27%, which is more significant than the typical performance 
drop on the NERSC-5 SSP applications. Notably, all NAS kernels exhibit greater overall flop 
rate in dual core mode. 
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Relative value of 4 KB page size for single vs. dual core 
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Figure 3. NAS benchmark performance. The figures show the change in NAS kernel performance as a result 
of the move from single to dual core for both small pages and large pages. 
 

Microbenchmarks and Probes 
While application benchmarks provide the most direct evidence of the effective performance that 
a given system architecture will deliver for a code, they also tend to be too complicated to infer 
the source of bottlenecks that result in performance differentiation. Microbenchmarks and probes 
are much simpler proxies that enable a more detailed study of specific architectural bottlenecks 
and behaviors that would otherwise be hopelessly intertwined when observed in a full-fledged 
application code. We will focus primarily on a handful of microbenchmarks that analyze the 
performance of the memory hierarchy with varying degrees of complexity and scope—
STREAM, Membench, and Apex-MAP.  

STREAM 
The STREAM benchmark is used to assess the effective bandwidth delivered by the memory 
subsystem. Table 11 and Figure 4 show STREAM performance on the Cray XT3 and Cray 
XT4 systems. The stream results used an array size of 53,687,091 elements, offset of 0 and a 
total memory requirement of 1228 MB (well outside of the L2 cache). The primary source of 
contention is the memory interface, which is shared between the two cores on chip. 
 

Table 11. Observed memory bandwidth (Mb per second per core)  
for Cray XT3  and XT4  from STREAM benchmark. 

 

 One Core XT3 
One Core 
XT4 Two Core XT3 Two Core XT4 

Copy 5137 8196 2345 4074 
Scale 5067 7257 2348 4012 
Add 4734 7482 2309 3469 
Triad 4135 7464 2310 3626 
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Figure 4. Graphical depiction of STREAM performance. 

 

Membench 
The Membench test performs a STREAM-like copy operation to examine memory bandwidth 
limited performance, but sweeps over a range of buffer sizes. The benchmark was run on both 
the XT3 and XT4 systems. The XT3 uses the same performance processor cores as the 
XT4, but contains slower DDR1 memory, whereas the XT4 uses DDR2 memory interfaces, 
which offer a much higher bandwidth.  
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Figure 5. Membench results for XT3  and XT4 . 

 
We can see clearly from Figure 5 that when the benchmark fits within the L2 cache, the 
Opteron processors (both Rev-E on XT3 and Rev-F on XT4) maintain constant 
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performance at 10+ GB/s due to the independent L2 caches. However, once the processors must 
go to main memory, the effective memory bandwidth per core is cut in half. For the XT3, 
Membench goes from 6 GB/s sustained per core to 2.8 GB/s sustained per core. For the XT4, 
the performance drops from 7.5 GB/s for single core down to 3.9 GB/s per core when running on 
both cores.  
 
This makes it clear that the primary source of bandwidth contention for the AMD processors is 
bandwidth on the memory interface. Otherwise, the independent L2 caches ensure that both 
cores can operate without interfering with one another for independent cache-resident data. 

Apex-MAP 
Apex-MAP (Memory Access Probe) is a synthetic benchmark that was designed to trace out a 
richer variety of application memory access patterns than benchmarks such as STREAM, 
Membench, or Cachebench are capable of producing. Whereas STREAM and Membench only 
deal with unit-stride memory access patterns, Apex-MAP (as shown in Figure 6) provides access 
patterns that vary in both temporal locality (the α parameter) and spatial locality (the L 
parameter). The α parameter is expressed as an exponent to a power distribution for the memory 
addresses that varies from 0 to 1, where 0 represents a high degree of spatial locality in the 
memory accesses and 1 represents a uniform random access that spans memory space. The L 
parameter simply refers to the length of the contiguous data access, which varies from 1 to 64 K 
words of memory. These two parameters can be varied continuously to trace out a 2D map of 
memory subsystem performance for a broad range of memory access patterns. More details can 
be found in the SC2005 paper describing Apex-MAP’s capabilities (http://crd.lbl.gov/ 
DOEresources/SC05/ApexMap_EStrohmaier.pdf). 
 

  
 

Figure 6. Apex-MAP traces out a 2D space of memory access patterns characterized by their spatial and 
temporal locality. The spatial locality, L, describes the size of contiguous accesses to a given memory location. 
The temporal locality, α , is an exponent for a power law distribution of memory accesses. The diagram on the 
left shows how the memory access patterns of various benchmarks correspond to the continuous 2D space 
traced out by Apex-MAP. The diagram on the right shows a typical Apex-MAP plot of the performance of a 
Power3 microprocessor on the NERSC-3/Seaborg system. The performance (vertical direction) is given in 
terms of cycles per memory access. 
 
The serial version of Apex-MAP was run on the ORNL Jaguar system, which has dual-core 
2.6 GHz Rev-E Opteron processors. A single copy of Apex-MAP was run on each node for the 
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unpacked (single-core) case, and two copies of serial Apex-MAP were run for the packed (dual-
core) case. 
 

 
Figure 7. Apex-MAP results for AMD Opteron  processors on XT3 . 
 
Figures 7a and 7b show the Opteron processors’ response to the different memory access 
patterns presented by Apex-MAP. Figure 7c shows the difference between the single-core and 
dual-core performance. It points out quite clearly that the dual-core processor performance is cut 
nearly exactly in half when the two cores have an access pattern that is primarily bandwidth 
bound. However, when the memory access pattern causes performance to be bounded by latency, 
there is very little performance penalty for running with both cores. So the degree to which code 
performance suffers from moving from single core to multi-core is dependent on how much of 
the code is in fact bandwidth bound. As we will see from the application results, it is not clear 
that many codes are indeed in the bandwidth bound regime. 
 
Erich Strohmaier created a simple linear model for the response of the memory subsystem based 
only on the bandwidth and latencies to memory and to the L2 cache. In Figure 7d, we see the 
residual error between the performance predicted by this simple model and the actual Apex-
MAP performance. We can see across the entire parameter space, the very simple model 
correctly predicts the memory response except in the case with the lowest spatial and temporal 
locality. The error is likely due to the fact that the model does not account for branch 
mispredicts, TLB misses, and much lower memory efficiency for the random accesses across the 



 26 

entire memory space. What this means is that the predicted dual-core performance across a wide 
range of memory access patterns is correctly accounted for using the simplest possible model for 
memory performance—namely, that the effective latency of the memory subsystem and 
bandwidth + latency for the L2 cache remains the same regardless of how many cores are used, 
but the main memory bandwidth is cut in half. This result assures us that there are unlikely to be 
additional sources of contention in the processor design aside from the memory bandwidth 
contention. 

Extrapolating to Quad-Core Performance 
We observe from the AMD architectural discussion that when excluding messaging 
performance, the primary source of contention when moving from single core to dual core is 
memory bandwidth. The testing with STREAM and Membench microbenchmarks confirms this 
assumption, as the performance of the 2.6 GHz AMD cores only becomes differentiated when 
the data sizes become larger than the L2 cache and must go to main memory. Finally, the 
analysis with Apex-MAP shows that a simple performance model that presumes only that 
memory bandwidth is cut in half when processors access main memory is highly accurate in 
predicting dual-core performance for a wide variety of memory access patterns. Therefore, 
investigation of more complex models for dual-core performance is unlikely to yield higher-
fidelity results. 
 
With these conclusions in mind, we go back to the task of extrapolating the performance of the 
NERSC benchmarks on quad-core systems. We begin by enumerating the assumptions of our 
model: 

1. The only source of performance difference between single- and dual-core runs is memory 
bandwidth contention. 

2. The 2.6 GHz RevE and RevF AMD cores execute code at roughly the same performance 
in the absence of memory bandwidth contention. 

3. We can therefore break execution time into the portion that is stalled on shared resources 
(memory bandwidth) and the portion that is stalled on non-shared resources (everything 
else). 

4. Under this circumstance, we can use the timing difference from single- to dual-core runs 
to compute the fraction of execution time spent in memory bandwidth contention. 

5. We can then extrapolate the quad-core performance by assuming the time spent in the 
execution component remains the same, but the time spent in memory bandwidth 
contention will increase proportional to the reduction in effective memory bandwidth per 
core. 

 
We began by testing the above assumption using the XT3 performance data to predict the 
effective performance on the XT4. The XT4 in this test operates at the same clock frequency 
as the XT3, but the DDR2-667 memory subsystem is 30% faster than the DDR1-400 MHz 
memory of the XT4. Starting with the MILC data:  

• The execution time for single-core runs on the XT3 is 160 seconds, and the time spent 
in dual-core is 230 seconds. 

• The STREAM benchmarks indicate that the memory bandwidth for dual core is 
approximately half that of the single core, so if the five assumptions above hold true, we 
should expect execution time to obey the relationship:  
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o single core: core_exec_time + bandwidth_contention_time = 160 s  
o dual core: core_exec_time + 2*bandwidth_contention_time = 230 s 

• Solving the above system of equations provides us with an estimate of 90 seconds spent 
executing in the core (for both single and dual core) and 70 seconds spent in memory 
bandwidth contention for single core and 140 seconds (2x longer) spent in memory 
bandwidth contention for dual core. 

• We use the STREAM bandwidth numbers to project the time spent in memory bandwidth 
contention for the XT4’s faster memory subsystem and compare to the actual time 
spent in Figure 8 below. 
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Figure 8. Predicted and actual execution times on XT4  using our performance estimation methodology. 

 
Figure 9 shows that the prediction error for MILC, PARATEC, and MADBench is very low 
(<5%). The prediction for CAM is far off, but we also observe that the compiler version changed 
between the XT3 and XT4 CAM runs, so it probably should not be used in the prediction. 
 

-5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

MILC PARATEC MADCAP CAM

Code

%
 E

r
r
o

r
 i

n
 P

r
e
d

ic
t
io

n

SC Error

DC Error

 
Figure 9. XT4  Prediction error for our methodology. Most of the  

predictions are good within 6% of the actual runtimes. 
 
Next, we use this prediction methodology to estimate the impact of moving to quad core without 
any improvements in memory bandwidth. We assume for the moment that the clock frequency 
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for the quad-core processors remains the same at 2.6 GHz, ignore changes to the core 
microarchitecture (particularly the new SIMD units), and assume that the L3 cache can be used 
effectively to mitigate the smaller L2 cache.  
 
Figure 10 shows the net effect on the execution time for the SSP benchmarks using this simple 
method for prediction. The average performance impact of moving from single core to dual core 
without improving memory bandwidth is 7.4%, but the impact of moving from single core to 
quad core without some improvement in memory bandwidth increases to 21.4% on average. This 
model, of course, ignores other microarchitectural improvements to the AMD Opteron 
architecture and ignores interconnect bandwidth contention, but does indicate clearly that some 
improvement in memory bandwidth will be required to maintain computational efficiency for the 
NERSC-5 SSP. 
 

 
Figure 10. This graph shows the net increase in runtime for the NERSC-5 SSP  
benchmarks under the assumption that memory bandwidth contention can be  

treated exclusively from the other components of the runtime. 

Optimizing Code for the AMD Multicore Processors 
This section describes compiler options and code restructuring techniques that can be used to 
improve code performance on multicore processors. Some of these techniques simply represent 
“due diligence” for optimizing codes for the AMD Opteron processor architecture, regardless 
of the number of cores involved. 

Compilers, Libraries, and Profiling 
The Portland Group (PGI) compiler suite, version 6.1, was used for the Cray XT3 results cited 
in this document. For all benchmarks except CAM, the -fastsse compiler optimization option 
was selected. Due to issues with result accuracy, -fast was instead used when compiling CAM. 
Where necessary, version 3.0 of the AMD Core Math Library (ACML) and Cray LibSci 
provided basic mathematical kernels.  
The -fast compiler option is designed as a safe but good optimization level. This option begins 
at -O2 and adds -Munroll=c:1, -Mnoframe, and -Mlre. The -Munroll=c:1 option tells the 
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compiler to completely unroll all loops with a loop count of 1 or less, effectively eliminating 
loop overhead when a loop is unnecessary. Even if a loop does not meet the criteria to be 
completely unrolled, the compiler will consider partially unrolling the loop to reduce loop 
overhead. The -Mnoframe option prevents the generation of code to set up the stack frame, 
which is generally only needed for debugging purposes. Lastly the -Mlre option eliminates 
loop-carried redundancies, which can reduce memory references and arithmetic operations. 
 
The -fastsse option starts with all of the same optimization options as -fast, but further 
extends the optimizations to include vectorization through the use of SSE. The option expands to 
-fast -Mvect=sse -Mscalarsse -Mcache_align -Mflushz. The -Mflushz option simply 
tells the processor to flush SSE registers to zero. Since this is a processor-level option, it is a no-
cost optimization. -Mvect=sse instructs the compiler to do two things. First, it enables 
automatic vector pipelining so that the compiler will attempt to vectorize loops. Doing so 
increases the number of operations performed per memory operation, in turn increasing 
throughput. Second, the option instructs the compiler to generate SSE instructions to handle the 
vectorized loops. SSE (streaming SIMD extensions) instructions support fetching a single 
instruction to execute on multiple data items, which improves processor throughput by reducing 
instruction fetches and by hiding memory latency. The -Mscalarsse option instructs the 
compiler to use SSE instructions for scalar math operations, which often results in faster 
execution. Lastly the -Mcache_align option forces unconstrained data objects of at least 16 
bytes in size to be aligned on cache line boundaries. A data object is considered unconstrained if 
it is not in a FORTRAN common block or a member of an aggregate data structure. In order to 
assure that stack-based local variables are cache aligned, this option must be used. 
 
For one application, Apex-Map, an attempt was made to improve performance by manually 
unrolling the main program loop. Instead we found that this manual unroll actually caused 
slightly worse performance. We were not able to conclusively determine why this occurred. It is 
likely that the manual unrolling affected the compiler’s ability to optimize the loop, causing 
poorer performance.  

Restructuring to Achieve Better Cache Performance 
Utilizing cache effectively is quite simple in concept; however, the implementation can be 
difficult. The basic idea is to structure your program to work on a set of data that can reside in 
cache while numerous updates are performed on that data. In most codes this can be 
accomplished by blocking the logic of the program to work on subsets of the data.  
 
On massively parallel processors, we frequently see a greater than expected increase in 
performance when the number of processors increases. When the problem size is fixed, a larger 
increase in performance can occur when the dataset on each processor is small enough to fit in 
cache. This phenomenon is called super-linear speedup and is attributed to increased cache reuse.  
 
If this is the case, why can’t one simply block the applications using an inner/outer loop structure 
whereby each invocation of the outer loop accesses a dataset that is small enough to fit in cache? 
Conceptually this is an excellent approach and will be covered later in this section.  
A complication to this approach is that caches have associativity that can hinder attempts to 
completely use the cache. The application programmer can avoid this complication by paying 
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strict attention to the alignment of arrays in memory. This issue will also be addressed later in 
this section. Another issue related to alignment of arrays has to do with the utilization of SSE2 
and SSE3 instructions. To minimize the overhead to utilize these vector instructions, arrays 
should be aligned on 128-bit boundaries.  
 
Lastly an application programmer can increase the computational intensity of a DO loop to 
perform more floating-point operations for each fetch/store. This technique needs to be 
coordinated with the compiler, since it tries to do the same thing when higher levels of 
optimization are employed.  

Memory Layout and Alignment 
The user has significant control over the allocation of arrays in memory, but most users do not 
understand how important that allocation is. On the Opteron architecture, level 1 cache is the 
most important to use effectively, and it is the most difficult cache to use. First, it is only 64 KB, 
and second, it is two-way associative. A cache line on this system is 64 bytes, and any single 
cache line can only go into two slots in level 1 cache. This is the problem. 
 
If the user views memory arranged in 512 columns, each the width of a cache line, as in Table 
12, we can see that the cache lines in the first column of memory can only go into C11 or C21 
(Cache Associativity Class 1 – 1 and Cache Associativity Class 2 – 1). While there are a good 
number of cache lines in the entire cache, if we require three lines from the first column of 
memory, then there will be thrashing of the level 1 cache. Effectively, data will be flushed from 
level 1 cache to level 2 cache, and when we need it again, there will be a delay until it is 
retrieved from level 2 cache.  
 

Table 12. Memory Layout and Alignment 
Level 1 Cache 
 

C11 C12 C13 C14 … … … C1510 C1511 C1512 
C21 C22 C22 C24 … … … C2510 C2511 C2512 

 

Memory 
 

1 2 3 4 … … … 510 511 512 
513 514 515 516 … … … 1022 1023 1024 

… … … … … … … … … … 
… … … … … … … … … … 
… … … … … … … … … … 

64257 64258 64259  … … … 64766 64767 64768 
 
Now let us investigate a poor allocation of data that will significantly impact performance on this 
cache architecture. The following Fortran code should be illustrate the point: 
 

REAL * 8 A(64,64),B(64,64),C(64,64) 
DO I = 1,64 
  C(I,1) = A(I,1) + B(I,1) 
ENDDO 

Regardless of which column of memory A(1,1) is being allocated, since the size of the A array is 
exactly the size of one associativity class, the first element of B will reside in the same column of 
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memory, and consequently the first element of C will reside in the same column of memory. 
When the DO loop executes, A(1,1) through A(8,1) will be fetched into C11; next B(1,1) through 
B(8,1) will be fetched into C21. Once A(1,1) is added to B(1,1), the application must fetch up 
C(1,1) through C(8,1) to replace C(1,1). This fetch of C(1,1) must go into C11 or C21. It will 
result in one of these cache lines being evicted to level 2 cache. The next pass through the DO 
loop will require A(2,1) and B(2,1), fetching previously evicted cache lines from level 2 cache 
and resulting in C(1,1) through C(8,1) being evicted to level 2 cache. This DO loop will result in 
significant thrashing of cache, since only two of the three cache lines can reside in level 1 cache 
at the same time. 
 
In this situation, nothing would prohibit the compiler from simply padding between the arrays to 
avoid this situation. Adding a temporary array the size of one cache line between the arrays 
would turn this horrible cache-thrashing example into a reasonably cache-friendly example. 
 
While the compiler can do this padding in the above example, if the arrays were in a COMMON 
block, or if the arrays were passed into a subroutine as arguments, the compiler could not do the 
required padding. A compiler has significant restrictions imposed to assure storage and sequence 
association of the Fortran program. 
 
Now this is a simple example. How about a large application? This example is easily fixed by 
changing the arrays slightly. What if there are too many arrays to examine all of their starting 
memory locations and determine if you are indeed being victimized by cache associativity?  
 
Looking closer, we see that level 1 cache will hold 1024 cache lines of 8 –8 byte words, that is, 
8192 words. If we allocate our arrays a power of 2 plus a cache line, we have a good chance that 
we will not have significant cache thrashing. In the upcoming section on cache blocking, we 
must understand that all data that is used—Loop indices, addresses, etc.—must be stored in the 
cache. When analyzing the DO loops data usage, it is usually best to leave some cache lines 
available for some of these scalar quantities. 
 
The proposed alignment discussed here is also conducive to using SSE instructions. On today’s 
hardware, SSE instructions can deliver twice the performance in 32-bit mode, and the data move 
instructions can improve 64-bit performance. These instructions can only be issued on data that 
is aligned on 128-bit boundaries. If all of our arrays are of length equal to a power of 2 plus the 
width of a cache line (for example, 1024 + 8 = 1032) then we have the required alignment. The 
compiler will try to do some shuffling to align data to use these instructions; however, if the user 
performs the alignment, fewer overheads will be incurred. Also the user must compile the 
application with –fastsse to use these instructions. 
 
As was mentioned in the previous section, the quad-core systems will have the ability to perform 
four floating-point ops/clock. This means that the SSE instruction on 64-bit instructions will also 
result in double the performance of non-SSE work. 

Unrolling to Increase Computational Intensity 
Some cases of Fortran DO loops can benefit significantly by unrolling to increase computational 
intensity. Computational intensity is defined as the number of floating-point operations divided 
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by the number of array fetches/stores. Unrolling to increase computational intensity effectively 
reduces the number of fetches and stores, which is always a good thing to do. Consider the 
following DO loop: 
 

     DO 46011 J = 1, 4 
     DO 46010 I = 1, N 
      C(J,I)=0.0 
46010 CONTINUE 
 
      DO 46011 K = 1,4 
      DO 46011 I = 1,N 
       C(J,I) = C(J,I) + A(J,K) * B(K,I) 
46011 CONTINUE 

 
The computational intensity of the innermost DO loop 46011 is 2/3—we do not count the fetch of 
A(J,K) since that is a scalar with respect to the DO loop 46011. How can we improve this piece of 
code? We can always unroll short DO loops inside the longer DO loops as follows: 
 

!    THE RESTRUCTURED 
   DO 46012 I = 1, N 
    C(1,I) = A(1,1) * B(1,I) + A(1,2) * B(2,I) & 
      + A(1,3) * B(3,I) + A(1,4) * B(4,I) 
    C(2,I) = A(2,1) * B(1,I) + A(2,2) * B(2,I) & 
       + A(2,3) * B(3,I) + A(2,4) * B(4,I) 
    C(3,I) = A(3,1) * B(1,I) + A(3,2) * B(2,I) & 
       + A(3,3) * B(3,I) + A(3,4) * B(4,I) 
    C(4,I) = A(4,1) * B(1,I) + A(4,2) * B(2,I) & 
       + A(4,3) * B(3,I) + A(4,4) * B(4,I) 
46012 CONTINUE 

 
Now the computational intensity increases from 2/3 to 28/12, and the performance for N = 250 
increases from 500 Mflops to 2800 Mflops. If we use –fastsse on the original, some amount of 
unrolling is achieved, and without the restructure, the compiler gets 1800 Mflops. We count both 
a fetch and a store for C(1,I), C(2,I), C(3,I), and C(4,I) since this array will have data elements 
replaced into it.  
 
This loop unrolling is employed extensively in the ACML libraries, and often the user should 
call a BLAS (using the highest level BLAS possible)or LaPACK routine. Whenever the code has 
matrices of rectangular shapes with a short dimension much shorter than the long dimension, the 
Fortran code, if correctly written, will usually beat the call to the library. 

Blocking for Cache Reuse  
Blocking for cache reuse is the most powerful restructuring technique for achieving the best 
performance on today’s chip technologies. Blocking refers to taking a multi-nested DO loop and 
updating the multi-dimensional arrays with chunks that will fit within the cache. Blocking gets 
the best results when the data has already been allocated as discussed in the previous section. 
The best example of blocking is a simple matrix multiply kernel: 
 

DO 46031  K = 1, N 
    DO 46031 J = 1, N 
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    DO 46031 I = 1, N 
     A(I,J) = A(I,J) + B(I,K) * C(K,J) 
46031 CONTINUE 

 
Quick analysis tells us that this matrix multiply will fit into level 1 cache as long as the arrays do 
not conflict in cache and N is less than 52 for 8 byte reals and 75 for 4 byte reals. Assuming that 
N is 1000, the innermost DO loop will not fit into cache, so we will introduce some outer DO loops 
to chunk the data so that it will fit. Assuming we are using real*8, we want the inner chunk to 
be a square chunk of 50 × 50. To achieve that we can: 
 

DO JJ = 1,20 
DO II = 1,20 
DO 46031  K = 1, N 
    DO 46031 J = 1+(JJ-1)*50, JJ*50 
    DO 46031 I = 1+(II-1)*50, II*50 
     A(I,J) = A(I,J) + B(I,K) * C(K,J) 
46031 CONTINUE 
ENDDO 
ENDDO 

 
Notice that the innermost DO loop only updates chunks of 50 × 50 at a time, and this should fit 
into cache as long as the arrays are aligned appropriately. 
 
Not everyone has matrix multiply kernels; however, this approach can be used when any 2- or 3-
D grid is used. If one considers the situation where the outermost loop of a 3-D grid is located at 
a high level and the computational planes are updated within the subroutines, most times the 
planes of arrays are larger than the cache can hold. Often times these planes can be broken into 
chunks of pencils (several one-dimensional chunks that fit in cache). It is important that all the 
computation be done on the pencil chunk—requiring the introduction of a DO loop within the 
outer grid loop that goes over the second dimension, as indicated above in the MATMUL 
example. This is not an easy restructuring task, and is best accomplished when originally writing 
the application.  
 
As we see more and more cores and a higher mismatch between memory bandwidth and flop 
rates, these restructuring techniques will become even more important.  

NAS Kernel Optimization  
In this section, we demonstrate how to apply the above optimizations using the NAS Class-B 
MG kernel as an example. We point out that the MG kernel saw the largest performance drop 
when moving from single core to dual cores. Execution time increases by 1.4x, which 
corresponds to a 40% drop in efficiency when moving from single to dual cores. We show below 
how a simple cache-blocking optimization can yield substantial performance benefits that are 
actually amplified when moving from single to dual core. 
Using the advice from the previous section, we applied a simple blocking of the loops in 
psinv() and resid(), thus 
 

do i3=2,n3-1 
 do i2=2,n2-1 
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  do i1=1,n1 

 
is replaced by 

 
do i3block=2,n3-1,BLOCK3 
 do i2block=2,n2-1,BLOCK2 
  do i3=i3block,min(n3-1,i3block+BLOCK3-1) 
   do i2=i2block,min(n2-1,i2block+BLOCK2-1) 
    do i1=1,n1 

 
We did a search to find an appropriate parameterization of BLOCK2 and BLOCK3. As shown in 
Figure 11, this optimization is effective on single-core execution, providing 14% performance 
improvement; however, on dual-core runs, the effect is more pronounced, giving 25% 
improvement in the packed run with the optimal page size. 
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Figure 11. The graph on the left shows the percent improvement on NAS MG performance derived from the 
cache-blocking optimizations. The graph on the right shows the optimization also reduces the impact of 
moving from single core to dual core. 
 

Advice to Code Developers 

The following suggestions should only be applied to those routines that use most of the CPU 
time in your program. You cannot always design a data layout that is good for all parts of the 
program, so concentrate on the major computational routines. 

Data Layout 
Going forward into an era of multi-core sockets, code developers must understand that the only 
way they will achieve a high percentage of peak performance is by organizing their data to be 
cache friendly. As we have seen in this report, memory bandwidth/core is decreasing and 
unfortunately in four years the dual-core Opteron architecture will look well balanced 
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compared to what is coming. On the plus side, we are getting more levels of cache and all in all 
more cache memory. Some general rules for laying out your data are: 

1. Make sure your innermost loop is contiguous and vectorizable.  
2. Make sure that the sizes of the dimensions of the arrays are not a large power of 2; it is 

best to have them a power of 2 plus a cache line. Make sure that the length of the array 
dimensions are a multiple of 128 bits. 

3. If possible, variables that are used together should be grouped together in memory.  

Shared Memory Parallelization 
Start thinking about shared memory parallelization now; in the future, this programming 
paradigm on the socket will allow you to more effectively use bandwidth off the node. 
Additionally, if you consider using OpenMP and/or Pthreads on the socket, you should see better 
utilization of the shared level 3 caches. The potential for four MPI tasks on the quad core sharing 
usage of the level 3 cache is zero; however, if OpenMP and/or Pthreads are used across the quad 
cores, you may be able to share data through the level 3 cache. Once again, cores/socket will get 
larger, and a hybrid programming paradigm may perform well on these new sockets. 

Vectorization 
With the quad-core system there will be an even larger benefit from using the SSE instructions 
and it will get even more beneficial in the future. Vectorizing for SSE requires that the arrays are 
being accessed contiguously and the variables are on 128-bit boundaries. The loops do not have 
to be too long. Loops of length 8 are just fine. 

Prefetching  
Many loops can benefit from the use of prefetch directives. These are very compiler dependent. 
If you really understand how the cache works and the amount of data being stored in the cache, 
then intelligent use of prefetch directives can be beneficial. 

Advice to System Designers 

The Memory Wall 
We observe that the primary source of contention on the AMD Opteron dual-core processor is 
memory bandwidth, due to the shared memory interface. The relative simplicity of this 
bottleneck results in a correspondingly simple remedy. AMD would do well to maintain this 
level of simplicity for future generation processor designs by limiting the degree to which on-
chip resources are shared or ensuring that such resources are shared in a fashion that provides 
predictable, easy to understand, and (in particular) measurable responses. It is essential that 
AMD provide performance counters that directly measure contention on any contended 
resources! Currently, even for very simple sources of resource contention (e.g., memory 
bandwidth contention), AMD does not provide adequate performance counter resources to 
measure this directly. One must take multiple timings to acquire enough different counters to 
infer the quantity of memory bandwidth contention. AMD must address this in future generation 
processors as the additional sources of contention arise. 
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There has been considerable concern over the growing imbalance between memory system 
performance and processor performance (the “memory wall”). Many fear that multicore has 
further exacerbated this imbalance, placing us on the wrong side of the memory wall. In fact, 
multicore does not represent a dramatic shift from the historical trajectory regarding memory 
wall. Had clock rates continued to increase at historical rates (doubling clock frequency every 18 
months rather than number of cores), the same issues regarding bandwidth starvation would 
exist. The move to multicore continues to exacerbate memory bandwidth problems, but the stall 
in clock frequency has diminished the corresponding worsening of memory latency in terms of 
processor-clocks. 
 
Evidence collected in this report shows that many codes are clearly still bounded by other 
performance bottlenecks. We find that the majority of codes in our study were clearly not limited 
by memory bandwidth contention—those with low computational intensity are likely suffering 
more from memory latencies. While AMD’s on-chip memory controllers have improved 
efficiency for such latency-bound codes, additional attention to advanced (possibly user or 
compiler directed) prefetch capabilities could go a long way towards reducing latency-bound 
performance bottlenecks.   

Opteron  Processor TLB 
The TLB on the Opteron processor turns out to be a more serious cause of performance 
differentiation than the move from single to dual cores. With 512 TLB entries, the 4 KB small 
pages do not provide adequate coverage of physical memory for demanding HPC codes. 
However, the TLB can only hold 16 entries for the large 2 MB pages! So although the TLB 
coverage is increased from 2 MB to 16 MB of physical memory, the small number of entries 
increases the amount of TLB thrashing for codes that must access multiple arrays that are laid 
out in distinct parts of memory —creating a catch-22 for most application codes. 
 
The move to 128 2-MB page translations will enable coverage of 256 MB of memory. The 
availability of 1 GB pages is not going to be helpful in this regard because the OS must pin at 
least one physical page for the kernel memory—making an entire gigabyte of physical memory 
on the node unavailable to applications. Therefore, the 1 GB page size does not offer a credible 
solution unless it can be intermixed with smaller page sizes. AMD should, therefore, target larger 
coverage for the 2 MB page size in future generation processors by offering more TLB entries 
(for example, offering 512 entries for both 4 KB and 2 MB pages) for this intermediate page 
size. 

Quad Core Cache Changes 
In order to squeeze more cores onto a single die, the Opteron quad-core processor will offer 
much smaller L2 caches but will add an L3 cache. This leads to two concerns.  
 
The most immediate impact of the change in L2 cache size will be on PDE solvers using block-
structured grids (stencil codes). The MSP2005 paper by Kamil et al.2 provides a performance 
model that indicates that the on-chip cache must be large enough to store at least three planes of 
                                                
2 S. Kamil, L. Oliker, J. Shalf, “Impact of Modern Memory Subsystems on Cache Optimizations for Stencil Computations,” Proceedings of the 

ACM Memory Systems Performance 2005 Conference (MSP05), Chicago IL, 2005. (http://crd.lbl.gov/~oliker/papers/msp_2005.pdf) 
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the block-structured grids required by the calculation to achieve peak performance. The smaller 
caches will require a correspondingly smaller working set size per core. Overall, the grids 
supported efficiently by the quad-core processor will be roughly the same size as those supported 
by the dual-core processors it replaces. 
 
The shared L3 cache will likely provide some benefits for shared-memory codes where cache-
lines would otherwise thrash between the L1/L2 caches of different cores that touch the same 
line. However, codes that are exclusively MPI-based (without shared cache lines) may see higher 
conflict misses in L3 for poorly aligned memory references. 

Dual Memory Controllers 
As the number of cores on chip increases, the stream of memory addresses presented to the 
memory controllers is likely to be less regular. When running MPI codes on the current dual-
channel memory subsystem, the address stream will reflect two different pages in memory, 
resulting in thrashing of row addresses presented to memory and reducing performance due to 
the penalty of having to constantly reopen memory banks. The quad-core processor will 
introduce independent memory channels that will improve the apparent coherence of the address 
stream. This will benefit codes that run in MPI mode (running in separate address spaces). But as 
the Cray XT nodes move to support hybrid and shared-memory programming models, it may 
be useful to offer the option to use the memory channels in either fashion depending on the 
application. It would be useful if the controller would support both modes of organizing the 
memory channels (independent and interleaved), depending on which kind of code will be run on 
the nodes.  

Cache Coherency Protocol: Necessary but Not Sufficient 
While concerns revolving around memory bandwidth for multicore are overblown, concerns 
regarding the ability to write code that exposes enough parallelism to take advantage of the 
multicore chip are essential. While this has resulted in new activity in the HPC languages 
community, the hardware vendors can play an essential role in enabling simpler access to on-
chip concurrency.  
 
Initially, applications are likely to treat multicore and manycore (8+ cores) chips simply as 
conventional symmetric multiprocessors (SMPs). However, looking forward, multicore 
processors offer unique capabilities that are fundamentally different from SMPs, and which 
present significant new opportunities: 

• The intercore bandwidth on a multicore chip can be many times greater than is typical for 
an SMP, to the point where it should cease to be a performance bottleneck. 

• Intercore latencies are far less than are typical for an SMP system (by at least an order of 
magnitude). 

• Multicore chips could offer new lightweight coherency and synchronization primitives 
that only operate between cores on the same chip. The semantics of these fences are very 
different from what we are used to on SMPs, and will operate with much lower latency. 

 
If we simply treat multicore chips as traditional SMPs—or worse yet, by porting MPI 
applications—then we may miss very interesting opportunities for new architectures and 
algorithm designs that can exploit these new features. Therefore, AMD and Cray should be 
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deeply involved in collaborating with the programming model development community to find 
ways to exploit these unique capabilities.  
 
The computer architecture and languages community has made a number of recent advances that 
take better advantage of the available on-chip bandwidth and that look well beyond the 
traditional SMP model for multithreading. 
 
For example, developers currently depend on cache-coherency protocol to implement mutual 
exclusion locks that are typically used for intercore coordination. However, using MOESI or 
MESI protocol for such locks creates huge amounts of redundant or unnecessary traffic across 
the HT fabric that could be eliminated if the scope of the transactions were limited to on-chip or 
if additional features were added to the cache-coherency protocol to directly support such 
features. Support for producer-consumer data transfer models between cores would enable more 
bandwidth-conservative stream programming models. More flexible data coherency schemes can 
better leverage the on-chip bandwidth and reduced latency without being having efficiency 
compromised by the need to enforce strict global ordering of memory transactions. In addition, 
real-time embedded systems such as the STI Cell processor and the NVidia 128-core processor 
offer more direct control over the memory hierarchy, and so could benefit from on-chip storage 
configured as software-managed scratchpad memory. 
 
Transactional memory can make multithreading and auto-parallelization much simpler and more 
robust. Normally the compiler or a programmer (using OpenMP) must make assumptions about 
memory correctness and the scope of data arrays when translating serial code into loop-parallel 
code. The programmer must allocate and use explicit lock variables to ensure mutual exclusion 
where memory hazards exist. If any assumptions are incorrect, the code will fail in inconsistent 
or unexpected ways. Transactional memory simplifies mutual exclusion because programmers 
do not need to allocate and use explicit lock variables or worry about deadlock. Each loop 
iteration in a parallel loop can be couched as a transaction. If any of the parallel loop iterations 
have a data dependence, then the transactions will automatically detect and resolve the conflict 
by rolling back and re-trying the conflicting transaction. The advantage over locks is that if 
programmer (or compiler) assumptions about the safety of parallelizing a loop prove to be 
incorrect, the program will still produce the correct answer—it will just do so without a parallel 
speedup. Such mechanisms will not necessarily improve multicore performance, but they can 
definitely make multithreading and hybrid programming more accessible, simpler to debug, and 
less prone to errors.  
 
It is much easier to implement transactions efficiently using on-chip resources than it is to 
implement them between cores on an SMP. Hardware-supported transactional memory can 
coexist with cache logic using relatively minor changes.  
The ultimate message is that cache-coherence protocol is a necessary minimum level of service 
for coordinating the actions of cores on a multicore processor, but it is not sufficient! Multicore 
chip vendors and system integrators such as Cray should engage the software development 
community in investigating these various alternatives for making parallel programming and 
multithreading more tractable for the software development community at large. 
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Conclusions 
The applications tested generally made efficient use of a second core, with an average 10.3% 
slowdown compared with single-core execution, and with a factor of 2 decrease in real cost 
(power, cooling, platform support infrastructure, etc.).  
 
In contrast, the NAS kernels examined provided a less favorable result, exhibiting 27% 
degradation on average. Though this is still a positive overall result, it shows that there are 
certain cases in which such a good result may not be exhibited. Notably, no application exhibited 
an aggregate performance negative result, that is showed greater than 50% reduction in 
performance for an at most 50% reduction in available resources. We note that the NAS kernels 
are not entirely independent observables of the dual core performance space, having certain 
commonalities in structure, size and systems (architecture) constraints at the time of authorship. 
For the NAS kernels operating in dual-core mode, we observe a shift in the effect of changing 
the page size employed on the Opteron processor. 
 
Execution of the STREAMS suite indicates that even in highly memory-intensive kernels, there 
is a possibility for gaining greater utilization from the available fixed bandwidth resource.  
 
As mentioned previously, the manner of execution of the NAS kernels (unlike the applications) 
may also affect overall performance, arising from different degrees of synchronicity between the 
cores in a socket. We would also draw attention to the fact that different degrees of optimization 
of a given application will lead to different effects of operation in dual-core mode—that is, a 
highly optimized code will make more efficient use of the memory channel in single-core mode 
(the reference point). This is somewhat analogous to the observation that a parallel application 
will scale more readily if compute sections are detuned, that is, the parallel component of 
execution time is artificially inflated. 
 
Moving forward, we observe that the shift to multicore processors will not bring linear increases 
in performance with core count, but will bring very compelling benefits. The “memory wall” and 
associated mitigating programming techniques will be of increasing significance in that scenario. 
Offsetting the memory bandwidth disadvantages, we expect to see some positive benefits: 
extremely low latency and high bandwidth messaging between cores as multicore architectures 
adopt shared caches; the ability to rapidly re-load-balance algorithms by virtue of zero-cost 
relocation of data between processes sharing a socket in a parallel application; or highly efficient 
hybrid and global address space programming models exploiting flat access speeds to local 
memory and shared cache.  
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