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ABSTRACT

During the last decades, electronic textual information has become
the world’s largest and most important information source. Daily
newspapers, books, scientific and governmental publications, blogs
and private messages have grown into a wellspring of endless infor-
mation and knowledge. Since neither existing nor new information
can be read in its entirety, we rely increasingly on computers to ex-
tract and visualize meaningful or interesting topics and documents
from this huge information reservoir.

In this paper, we extend, improve and combine existing individ-
ual approaches into an overall framework that supports topologi-
cal analysis of high dimensional document point clouds given by
the well-known #f-idf document-term weighting method. We show
that traditional distance-based approaches fail in very high dimen-
sional spaces, and we describe an improved two-stage method for
topology-based projections from the original high dimensional in-
formation space to both two dimensional (2-D) and three dimen-
sional (3-D) visualizations. To demonstrate the accuracy and us-
ability of this framework, we compare it to methods introduced re-
cently and apply it to complex document and patent collections.

Index Terms: H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Theory and methods; 1.5.3 [Pat-
tern Recognition]: Clustering—Algorithms;

1 INTRODUCTION

The quantity of electronic textual data collected today is growing
exponentially, and it is becoming increasingly difficult for humans
to identify relevant information without getting lost in an over-
whelming amount of information. As a consequence, we are relying
more and more on computers to pre-process, classify and visualize
coherent parts of massive data reasonably. To help humans navigate
this wealth of textual information, researchers have been constantly
searching for optimal models to accurately represent complex lin-
guistic relationships. One of these models is the vector space model
that represents documents as high dimensional vectors.

In this paper, we propose a framework that makes it possible
to investigate and visualize resulting document point clouds using
a topological approach. We do not expect users to be familiar with
concepts from topology. Instead, we consider our approach to com-
pete with clustering-based methods since it reveals similar informa-
tion as density-based clustering. We focus our work on classified
documents, instead of finding the classification itself, because we
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make use of a supervised dimension reduction method that incor-
porates cluster information. The usage of this supervised projec-
tion, in our first stage, aims to achieve a representation of the high
dimensional data in a “medium” dimensional space which is still
acceptable with respect to the optimization criteria of the dimen-
sion reduction method. That is, in this space, the cluster structure is
claimed to be preserved as much as possible. In our second stage,
we perform a topological analysis to obtain a data layout in 3-D that
reflects the structure of the point cloud in the intermediate space.
This direct analysis minimizes the loss of information caused by di-
rectly projecting the data down to two or three dimensions. Instead
of directly approximating a point set’s topology, we indirectly con-
struct a (density) scalar function and study its topology by means
of the join-tree, which gives structural/nesting information of the
dense regions. However, the join-tree is not capable of describing
various and complex high dimensional features.

Afterwards, this topological information is reflected by a 3-D
visualization, augmented by additional information of input data
points. This allows for visualizing both the structure and the data
set. While the former mainly leads to coarse structural insights,
the latter can be used for labeling or details on demand. Regarding
visual analytics aspects, we provide the user, e.g. a journalist, with
a framework to obtain a 2-D/ 3-D layout of a set of documents.
In this layout, the structure describes the data’s decomposition into
topics, constituted by documents which are similar. The nesting
structure helps to identify topics which are related to each other. To
achieve this presentation, we use a topology-based projection that
critically depends on a single parameter. Interactive analysis [17]
allows a user to identify iteratively an appropriate parameter value
and with it the desired information. Since clustering information
leads only to coarse insights, we deem our data layout as an initial
point for further exploration.

2 RELATED WORK

Text classification, as a mixture of information retrieval, machine
learning, and (statistical) language processing, is concerned with
building systems that partition an unstructured collection of doc-
uments into meaningful groups [20]. The two main variants are
clustering, i.e., finding a latent structure of a previously determined
number of groups, and categorization, i.e., structuring the data ac-
cording to a group structure known in advance. For the latter, super-
vised approach, different types of learners have been used, includ-
ing probabilistic “naive Bayesian” methods, decision trees, neural
networks and example-based methods. In recent years, support vec-
tor machines [12] and boosting [19] have been the two dominant
learning methods for text classification in computational learning
theory and for comparative experiments.

If represented as vectors, one can gain structural insights into
reasonably high dimensional data, by visualizing directly the point
cloud using axis-based methods such as scatter plot matrices [1]
or parallel coordinates [10]. Because these techniques depend on
the data’s dimensionality, it is often beneficial to project the data to



lower dimensional spaces prior to visualization. By defining mean-
ingful criteria, like maximal variance or maximal distance between
cluster centroids, projections try to preserve the structure in the pro-
jected dimension. These projection methods are either supervised,
such as LDA [6] or OCM [11], or unsupervised, such as PCA [13]
or MDS [16]. Choo et al. [4] combined the advantages of several
projections to minimize the information loss during the transforma-
tion. Besides linear projections, non-linear embeddings exist that
use additional structural information when determining a layout of
the data in lower dimensions: Takahashi et al. [22] proposed a man-
ifold learning approach to obtain a layout in 3-D that reflects the
topology of a high dimensional input scalar function. Their method
uses the k-nearest-neighborhood graph to seek the manifold prox-
imity and they define a scalar-based distance measure to determine
the closeness of points. To use this method for point cloud analysis,
one has to define a suitable scalar function. For clustering purposes,
a meaningful scalar function should also be defined in the void part
of a data set (i.e., locations without vertices) to ensure separation of
dense regions from regions of low density. Oesterling et al. [17] fo-
cus on the construction of a point set’s appropriate scalar function,
supported by a neighborhood definition by means of the Gabriel
graph [7], instead of deriving a manifold from the function. As a
result, their 3-D data layout reflects the topology of the data’s ap-
proximated density function, realized by the topological landscape
metaphor [24], a 3-D terrain which has the same topology as the
input data set. Therefore, their topological method does not ana-
lyze the topology of the point cloud itself, i.e., they do not try to
classify parts of the input data into topological spaces or homeo-
morphic manifolds. Those things are considered in the field of al-
gebraic or point-set topology and try to determine exact manifolds,
represented by the input data. A good survey through this field is
given in [2]. Specifically for document collections, ThemeScape
[25] also uses a terrain metaphor to visualize the data, though it
utilizes different underlying models.

3 BACKGROUND

The original contribution of this work lies in extending, improving
and combining several individual approaches into an overall frame-
work for analyzing document collections. To make it easier for the
reader to follow the details in the later part of this paper, we intro-
duce the most important concepts in this section.

3.1 Linear Discriminant Analysis (LDA)

For classified, high dimensional data, Choo et al. [4] described the
dimension reduction as a trace optimization problem. Following
their nomenclature, the clustered m-dimensional data points a; €
R™ are given as a data matrix

k
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The groups of column vectors in A correspond to the k groups of n
clustered m-dimensional input vectors. For these groups N; of col-
umn indices of vectors belonging to cluster i, the cluster centroids

¢® and the global centroid ¢ are given by
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Using the clusters’ vectors together with their centroids and
the global centroid, the within-cluster scatter matrix S, and the

between-cluster scatter matrix S, are defined as
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By calculating the trace of these scatter matrices as
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Choo et al. [4] specify cluster quality measures by considering the
distances between the k cluster centroids and the variance within
each cluster, respectively. That is, well-separated clusterings usu-
ally will have a large trace(S),) and a small trace(S,,). Eq.(1) de-
scribes trace(S),) as the squared sum of pairwise distances between
a cluster’s points and its centroid. Likewise, Eq.(2) describes the
pairwise distances between the cluster centroids and the global cen-
troid.

The fundamental idea of their approach is to consider dimension
reduction as a trace optimization that maximizes trace(G S, G) and
minimizes trace(GTSwG) in the reduced dimensional space, using
a dimension reducing linear transformation

GT e RP™:x e ™! — 7= GTx e R

projecting an m-dimensional input vector to an /-dimensional space
(m > 1). It turns out that the solution, G pa, of the LDA criterion as

Tojw = maxtrace((G $,,G) "' (G S,G))

consists of the column vectors which are the leading generalized
eigenvectors u of the generalized eigenvalue problem

Spu = AS,u 3)

and that LDA preserves the original cluster structure after project-
ing the m-dimensional input vectors into the /-dimensional space,
such that [ = k — 1. We refer the interested reader to reference [4]
for further information, as it explains all the relationships clearly
and in much more detail. In summary, LDA uses the additional
clustering information of the input data to do a supervised projec-
tion from the original high dimensional space into an optimal lower
dimensional space, i.e., (k — 1)-dimensional, maximizing the inter-
cluster distances and minimizing the intra-cluster distances in the
reduced dimensional space.

3.2 Approximating a Point Cloud’s Topology

Although LDA preserves the clustering structure in the intermedi-
ate space in terms of its optimization criteria (defined as a trace
optimization problem), the target dimensionality might still be sig-
nificantly larger than two or three. As a consequence, a subsequent
projection will cause a loss of information due to projective over-
plotting in conventional visualizations. To avoid this second projec-
tion error, the intermediate space could be analyzed directly, instead
of considering the point cloud in either the original m-dimensional
space or in the 2-D/ 3-D space. Oesterling et al. [17] described a
method to analyze a point cloud’s structure in higher dimensions.
They use the structural insights to achieve a 3-D data layout which
reflects the data’s structure in the original space. The basic idea is
to describe the point cloud’s structure indirectly by constructing a



scalar function that reflects the data distribution in terms of density.
In the context of density-based clustering, they have to evaluate the
neighborhood of the given points in order to distinguish regions of
both high and low density. Subsequently, they perform topological
analysis on the resulting scalar field, utilizing the join-tree [3] that
encodes the (joining-) evolution of contours, i.e., regions of equal
density throughout the scalar function. The final visualization re-
flects that join tree’s hierarchical structure, which, in turn, reflects
the structure of the point cloud’s density distribution. In particular,
they perform the following steps:

1) to facilitate the investigation of a point’s neighborhood, the
input point cloud is connected by the Gabriel graph [7], which
is a special neighborhood graph

2) utilize the neighborhood graph to perform kernel density es-
timation at meaningful positions in space. In this case, at the
graph vertices, i.e., at the data points (where it is dense), and
on the mid-points of the graph’s edges, i.e., in the void be-
tween two neighbored points (where it is likely not dense)

3) the join-tree computation is performed on this approximated
density distribution to analyze amount, size and (joining-) be-
havior of the contours. Because contours describe the dense
regions, this step is equivalent to determining number, size
and hierarchy of clusters

4) make use of the ropological landscapes metaphor, proposed
by Weber et al. in [24], to create a 3-D terrain that has the
same topology as the join-tree. In this landscape, the structure
of hills corresponds to that of the clusters in the input data set

We show topological landscapes and variations of this metaphor
throughout the next sections. Due to space limitations, we refer to
[17] and [24] for further information since these papers introduce
and explain a number of other concepts unrelated to the contribu-
tions of this work.

3.3 Volatility

In the vector space model (vsm) [18], text documents are repre-
sented as vectors. Each dimension corresponds to a separate term!
and denotes the term’s relevance in this particular document. Many
different criteria have been proposed to extract only meaningful
terms together with their individual significances. A common ap-
proach is the if-idf document-term weighting: for each single doc-
ument, each term’s frequency is weighted relatively to the number
of other documents containing this term. Instead of considering
only term frequencies in a single document or the whole corpus,
additional semantic analysis can contribute to a vector’s final ex-
pressiveness. Teresniak et al. [23, 9] proposed an approach to de-
fine a term’s meaningfulness or topical relevance based on the tem-
poral fluctuation of a term’s global context (i.e., how neighboring
terms change over time). Utilizing stock-market nomenclature, the
authors call this fluctuation of context the term’s volatility. Thus,
analyzing the variation of a term’s context for different time slices
can be utilized to detect highly discussed topics and their impor-
tance over time. To provide rough outline of the method, the major
calculation steps are:

1) Compute the significant co-occurrences C(¢) for each term ¢
in the whole corpus

2) Compute the significant co-occurrences Cr; () for each term ¢
in every time slice 7;

'We take a term to mean the inflected type of a word, whereas a word is
assumed to mean an equivalence class of inflected forms of a base form

3) For every co-occurrence term ¢; j € C(t) compute rank,, (i),
the series of all ranks of ¢, ; in the context of term # in every
time slice T;

4) Compute the coefficient of variation (i.e., the ratio of the
standard deviation to the mean) CV (rank,, ,(i)) for every co-
occurrence term ¢; j € C(r)

Crj

5) Compute the term’s volatility as the average of these vari-
ances:

Vol(t) = ﬁ Y.CV (ranke, (i)
J

When plotting a term’s frequency and volatility over time, both
quantities do not necessarily correlate. The basic idea of volatil-
ity is to detect a topic (as a change of contexts) and not just heavy
usage of high-frequent terms describing it. Although other meth-
ods may be used to increase the expressiveness of terms, we chose
this model to support the tf-idf measure and omit terms from a doc-
ument vector that are not volatile enough. For more details and
examples comparing frequency and volatility, we refer to [23, 9].

4 PROBLEMS CHOOSING AN APPROPRIATE DISTANCE
METRIC

4.1 Geometric Issues

It was Richard Bellman who first stated almost fifty years ago that
“a malediction has plagued the scientist from the earliest days”.
While this malediction, basically, concerns the problems caused by
increasing the number of independent variables in different fields of
application, especially for (metric) spaces, this means an exponen-
tial increase of volume with each additional dimension. As a con-
sequence, particularly for distance-based approaches, it has been
shown [21, 14, 8] that depending on the chosen metric, distances
between points either depend on the dimensionality (L; norm) or
approach a constant (L, norm) or zero (L;>3 norm). That is, the
relative difference between the distances to a point’s farthest and
closest point approaches zero. As a consequence, distances be-
come relatively uniform in higher dimensions and some distance-
based relationships such as nearest neighbors become meaning-
less in those spaces. Of course, if distances become uniform, ev-
ery distance-based approach is affected by this phenomenon. To
illustrate this problem for clustering algorithms, we consider the
MEDLINE? data set. This data set consists of 1,250 vectors in
a 22,095-dimensional space, divided into five equally sized clus-
ters. The black graph in Figure 1(a) shows the number of indi-
vidual distances between any two points. It is clearly visible® that
the maximum of all distances lies around 2.0 and 98,79% of the
distances are greater than 1.85. The key issue is that both the inter-
cluster distances (green) and the intra-cluster distances (red), which
are obtained by considering the given clustering information, show
the same behavior. If a data set contains several clusters, however,
this graph typically shows two peaks: one for the intra-cluster dis-
tances, and a peak representing the average distance between points
[21]. Consequently, because only one peak is present, any purely
distance-based approach will have issues with finding the underly-
ing clustering of this data set.

4.2 Semantic Issues

In addition to geometric issues, other semantic problems contribute
to the measured distance between documents. If documents are
represented by vectors, meaningful words usually serve as the vec-
tors’ dimensions. Although both a word and its significance heavily
depend on the chosen algorithm, there will always be some words

2We use the sparse matrices kindly provided in [4]
3all diagrams can be arbitrarily magnified in the electronic version of
this paper
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Figure 1: Partitioning of the MEDLINE distances between any (black)
two points into inter-cluster (green) and intra-cluster (red) distances,
done (a) in the original dimensionality and (b) after applying LDA.
Now, the red and the green peak are separated.

in the vector that violate the basic assumption that (dis)similarity
between documents is reflected by the distance between their cor-
responding vectors. Such words, like common and frequent words,
can make two documents from different topic areas appear more
similar than actually desired (or needed). The situation becomes
worse if the distance between two documents is dominated by the
contribution of non-discriminating words. It is possible that two
document vectors about the same topic consist of equal numbers of
discriminating and common words. If the common words are even
distinct, they can cause the vectors to disperse unintentionally, thus
negatively affecting the clustering.

4.3 Solution Approach

In summary, when we consider a document collection as a point
cloud, we are faced with two main problems. The first is the con-
struction of a point cloud where distances between points reflect
(dis)similarities between documents. Second, due to the curse of
dimensionality, we are most likely not able to distinguish between
similarity and dissimilarity, because most of the inter- and intra-
cluster distances are uniform. To alleviate the first problem, lan-
guage processing is necessary to avoid choosing meaningless words
which force documents to unintentionally approach or disperse. For
the second problem either a supervised (distance-independent in
our case) clustering algorithm or a supervised projection to a lower
dimensional space, being less afflicted by the curse of dimensional-
ity, is needed.

5 TWwO-STAGE PROJECTION

Our two-stage approach is related to that proposed in [4].
Choo et al. describe several two-stage combinations of supervised
LDA or OCM and unsupervised PCA to project the original input
point cloud into an intermediate space, followed by a second projec-
tion down to 2-D. The supervised first stage projects the point cloud
preserving its cluster structure and the goal of the second projection
is to minimize information loss due to the dimension reduction to
2-D. One of the main contributions of our work is to improve the
output of this two-stage approach by substituting the second stage
a with direct topological analysis of the intermediate space. To mo-
tivate this, we first consider the two-stage LDA-LDA projection.

5.1 Examining the Rank-2 LDA projection

This projection proposed by Choo et al. [4] consists of two subse-
quent LDA projections: (i) an LDA projection from the original m-
dimensional space into an intermediate (k — 1)-dimensional space
and (ii) an LDA projection from (k — 1)-dimensional data down to

(@ (b)

Figure 2: (a) Rank-2 LDA of the REUTERS data set. Some clusters
are still mixed in the projection (b) part of the 9-D scatter plot matrix,
showing the intrinsic separation of the overplotted clusters.

two dimensions. As explained in [4], the final projection matrix V,
VIe R xe R™! 5 2= VIx e R¥ = [u) )

composing the two single projections, consists of the leading gen-
eralized eigenvectors of Eq. (3). Since the Rank-2 LDA and
LDA+PCA are claimed to produce the best discriminating and al-
most identical results, we consider the Rank-2 LDA output, using
the REUTERS? data set. This document collection consists of 800
vectors in a 11,941-dimensional space, assigned equally to the fol-
lowing k = 10 clusters (the letters are used in the diagrams):

earn (’e’), acquisitions (’a’), money-fx ("'m’), grain (’g’), crude (’r’),
trade (’t’), interest (’i’), ship (’s’), wheat ("w’), and corn (’c’)

The result of the Rank-2 LDA is shown in Figure 2(a). As can be
seen’, the clustering is preserved well by the Rank-2 LDA. How-
ever, the clusters on the right-hand side and in the top left-hand cor-
ner of the scatter plot are overplotted. The pivotal question is why.
Overplotting could either be due to data relationships, meaning that
clusters are indeed mixed in the original space, or due to overplot-
ting in the second stage. Since LDA preserves the cluster relation-
ship in the /-dimensional space, we can analyze this 9-dimensional
intermediate space by looking at a scatter plot matrix. Figure 2(b)
shows us that the second assumption is true. Examining the point
cloud not only from the first two principal components, but con-
sidering the 7" — 9" dimensions in the scatter plot matrix, it can
be seen that both overplotted clusters consist of actually separated
clusters in the intermediate vector space. This is not completely
surprising, as the second-stage dimension reduction only uses two
axes to discriminate the classes which contribute most to the sec-
ond stage criteria. Nevertheless, due to the lack of any information
about the intermediate space the user will most likely tend to (mis-
takenly) assume that clusters are mixed.

5.2 Substituting the Second Stage

To eliminate the drawback of overplotting clusters, we substitute
the projection in the second stage with a topology-based projec-
tion from the /-dimensional intermediate space to a 3-D topologi-
cal landscape (which can be easily reduced to a 2-D visualization
as described in the next section). Considering the LDA-projected
(I = k—1)-dimensional point cloud, at first the Gabriel graph is cal-
culated to obtain neighborhood information, and a Gaussian-like fil-
ter kernel is applied on the graph’s vertices and edges. Having this
approximated density distribution, we determine its contour tree, or
more precisely the join-tree as its representative. Subsequently, this
tree serves as the input for the mapping process to achieve the final
topological landscape visualization.
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Figure 3: (a) topological landscape of the REUTERS data set in the
intermediate 9-dimensional space. The topological analysis reveals
the separated clusters which were overplotted by the Rank-2 LDA
(b) without rebalancing the branch decomposition, the spacial rela-
tionship between density attractors can be read off the landscape.

To justify this substitution of the second stage, we revisit the
REUTERS example from above. Although the documents belong-
ing to the (c)orn, (w)heat and (g)rain clusters are semantically re-
lated, the scatter plot matrix shows us that the corresponding clus-
ters are still separated. These separated point accumulations lead
to several density maxima inside the density distribution, resulting
in several hills in the topological landscape. Figure 3(a) shows the
topological landscape of the REUTERS data set. As can be seen,
we are now able to distinguish dense parts of the point cloud which
are separated by a region with low density. The hills of the land-
scape describe the topology of the point cloud’s density distribu-
tion, i.e., hills correspond to contours evolving between their ap-
pearing at a density maximum and their merging at a saddle point.
The colors of the hills have no special meaning and are chosen ran-
domly. The small spheres correspond to the actual data points and
are placed on the hills that correspond to their clusters. The colors
of the spheres reflect their class association, thus corresponding to
the coloring in Figure 2. As described in [17], the visual analysis
process is performed by finding an appropriate filter radius. For
this purpose, the user examines the landscape in each iteration and
determines the filter radius for the next iterative step. The analysis
process is finished when the user has extracted the desired cluster-
ing information or when the landscape denotes that the filter radius
is getting too small. In the latter case, noise starts to produce den-
sity attractors or several extrema are found inside one cluster. Con-
cerning the rebalancing, we point out that although this step was
originally proposed in [24] to improve space utilization, for clus-
terings, the non-rebalanced landscape accurately reflects the spatial
relationship between groups of points. As demonstrated in Fig-
ure 3(b), the hills (of each hierarchy level) are positioned in a spiral
layout around the center hill, which corresponds to the global maxi-
mum. That is, the global maximum lies inside the 'm’/’i’-cluster, as
this is the densest cluster (i.e., points per area). In the neighborhood
to this density maximum, there are two other attractors correspond-
ing to (local) accumulations of ’i’-class and *m’-class points. Next
to these clusters, the ’t’ cluster has its saddle position and in its
neighborhood the accumulation of the ’g’/’w’/’c’ clusters resides.

They form a local group, as they are closer to each other than to the
yet found clusters. The same holds for the yellow, cyan, and blue
clusters, belonging to the ’s’/’r’/’e’ and ’a’ clusters, respectively.
They are locally neighbored, but separated from the other clusters.
In this local neighborhood, the yellow and cyan clusters are, once
more, closer to each other than to the blue clusters. A comparison
of this landscape with Figure 2(a) leads to roughly the same neigh-
borhood description, except for all the information that was lost by
the second stage projection in Figure 2(a).

6 EXTENDING THE VISUALIZATION

Although it is capable of visualizing arbitrary, high dimensional
data, the original topological landscape metaphor was only applied
to visualize the topology of 3-D scientific scalar fields, given on
regularly sampled grids. Using this metaphor to visualize data on
a completely unstructured grid, sampled mostly inside the clusters
and hardly in between, leads to some perceptual problems:

6.1 3-Dto2-D

First of all, as the landscape is still three dimensional, it suffers
from overlapping of the hills and therefore the benefit of the visu-
alization is view-dependent (especially when data points are posi-
tioned at the back of a hill). To alleviate the overlapping of hills and
data points, we propose a flattening of the original topological land-
scape. Using the same construction scheme as in 3-D, we create a
flat 2-D landscape by using the join tree’s (interpolated) isovalues
as additional vertex information instead of considering them as 3-D
height values. On this 2-D scalar field, which has the same topol-
ogy as the input join tree, we apply normal color mapping and iso-
line extraction to encode the absolute densities. In order to support
the advantage of metaphors, we relate this visualization to an atoll
by applying a color coding from blue (water) to yellow (beach),
then fading from green (grass) into brown (mountains) and finally
to white (snowy mountain top). The isolines, which correspond to
the original height values, allow for an easier density correlation
between the data points. Altogether, this visualization supports the
same topological insights, but with far less overlapping in 2-D.

6.2 Improved Volume distribution

The second problem concerns the representation of approximated
contour volumes, i.e., the size of clusters in our case. As described
in [24], a metric-based distortion can be applied to the landscape in
order to reflect better the real size of hills (contours), which other-
wise would only depend on the depth of the branch decomposition
and the landscape’s construction scheme itself. Therefore, all trian-
gles of a hill are resized according to the hill’s corresponding cluster
volume. Because this volume is distributed equally to all the trian-
gles of a hill, the centered hill of nested hierarchies gets heavily
distorted. This distortion primarily destroys the visual expressive-
ness of the hill’s corresponding cluster in the landscape. To solve
this problem, we change the triangles’ volume assignment. Instead
of dividing a branch’s volume by the number of the corresponding
triangles, we assign the volume above the first saddle to the eight
triangles of the centered hill and the volume beneath the first saddle
is assigned equally to all the remaining triangles. Although this dis-
tribution could be done more accurately, by considering each vol-
ume between each pair of saddles, we believe that this distribution
sufficiently points out the volume of the corresponding cluster. Fig-
ure 4 shows the flattened REUTERS landscape with the size of the
hills (islands) corresponding to the clusters’ sizes (approximated by
the number of points).

6.3 Labeling

We additionally enhance this visualization with a labeling of both
hills and small data spheres. Since we are dealing with documents,



Figure 4: The flattened and volumetric distorted topological land-
scape of the REUTERS data set. The height lines and the coloring
reflect the original height values (i.e., the absolute density values)
from low (blue) to high (white). Furthermore, the distorted islands
better reflect the actual cluster volumes.

we are most likely interested in their titles first. However, show-
ing titles of all documents would result in significant overplotting
of labels. Therefore, we have implemented the basic ’excentric la-
beling’ approach, proposed by Fekete et al. [S]. In this approach
the user slides a small focus area over the data set, labeling only
those data points that lie inside the small focus window. Labels are
positioned around the focus area and a line connects them to their
corresponding data entities. Finally, labels are colored according to
the class of the data points. If titles are too long, we cut them or use
a given short version of the title.

Following the ideas of #f-idf and the vector space model, clus-
ters are thought to constitute topics. Document vectors belonging
to the same topic most likely share similar words with similar sig-
nificances. Therefore, these document vectors accumulate in the
subspace spanned by the dimensions (words) they share. The goal
is to provide hills (clusters) with labels corresponding to their top-
ics. Instead of using the documents’ class-association, we propose a
quick semantic analysis. For documents on a single hill, we identify
the most frequent word(s) they share and use the two most frequent
words as a hill’s topic.

7 CLASSIFICATION

Assuming an unclassified entity would match one of the given
classes, it is possible to use our proposed two-stage process for
classification purposes: The LDA, as a linear dimension reduction,
projects similar high dimensional vectors into the same region in
the lower dimensional space. Therefore, if we assume that we al-
ready have learned the LDA projection for a given class (based
on the classified input data), the nature of LDA ensures that addi-
tional similar unclassified vectors are projected into the same lower
dimensional target area. While this is an intrinsic feature of the
projection itself, we can, however, rely on the fact that similar vec-
tors (classified or not) are comprised by the same contours of the
density function in the projected space. Therefore, although it is
the first stage projection that ensures a clustering in the lower di-
mensional space, it is the second stage topological projection that
eventually gives us a tool for detecting the clustering and for per-
forming a classification, based on cluster association. From our
algorithm’s point of view, we assign unclassified data entities the
class of their neighbored classified entities as follows: We deter-
mine the LDA projection matrix based on the classified data and
use this matrix to project both the classified and unclassified data
(resulting in accumulations in the lower dimensional space if the
vectors are similar). We now have two choices: First, we combine
both point clouds to serve as the input for the topological analysis,
or we alternatively apply the topological analysis solely to the clas-
sified point cloud and approximate the topology of the combined
point cloud as follows: We extend the height graph of the input

point cloud by an edge between each unclassified data point and
its nearest classified neighbor (this equals the finding of the nearest
contour). Subsequently, we compute the densities at these edges’
mid-points and at the unclassified points (in both cases, based on
the classified entities). On this extended height graph, we continue
as before. For both scenarios, we find similar classified and un-
classified documents on the same branches in the branch decom-
position, thus assigning an unclassified entity the label of the most
frequent class on the entity’s branch (i.e., island in the landscape).

8 DISCUSSION AND EXAMPLES

Analyzing the /-dimensional intermediate space is, of course, more
expensive than analyzing a (lossy) 2D space. For detailed run-
time complexities we refer to [4], [17] and [24] and discuss some
common runtime issues instead: First, the initial LDA projection
greatly accelerates the topological analysis of the point cloud’s den-
sity distribution in the intermediate vector space. This accelera-
tion is due to the fact that the reduced dimensionality leads to a
less full Gabriel graph, resulting in fewer necessary density evalu-
ations on the graph’s edges. Since graph connectivity commonly
increases exponentially with each additional dimension, this ap-
proach leads to significant difference for high dimensional data sets.
Besides this, we can also use the classification ideas from the last
section and treat a percentage of the input data as it was unclas-
sified. By randomly using, e.g., only 50% of the input vectors to
learn the LDA projection matrix, the remaining 50% of the vectors
are thought to be projected correctly, due to their similarity to the
training data. Of course, using only a part of the input data greatly
accelerates the runtime of the LDA. We will demonstrate the qual-
ity of both classification and using only a subset of the data later in
this section.

For demonstration purposes, we apply our method to a New York
Times document collection and a patent collection. As mentioned,
we refer to the literature for detailed information regarding the run-
time of the individual steps. To provide a rough guideline, the
topological analysis of the previous REUTERS example and the
upcoming examples in this chapter took around four seconds each.
Our machine has 8GB memory and we use two 2.6GHz-QuadCore
processors to benefit from parallelism.

8.1 NYT - Document Collection

The New York Times Annotated Corpus* contains over 1.8 million
articles written and published by the New York Times between Jan-
uary 1, 1987 and June 19, 2007 with article meta-data provided by
the New York Times Newsroom, the New York Times Indexing Ser-
vice and the online production staff at nytimes.com. As part of the
New York Times’ indexing procedures, most articles are manually
summarized and tagged by a staff of library scientists.

For our testing purposes, we consider the year 2001 and extract
50 documents per day. As described in Section 3, we use the #f-idf
document-term weighting and the terms’ volatility to determine the
document vectors. Therefore, considering a single document, all
the stop words are pruned and the normal tf-idf weighting scheme
is applied to the remaining words. Subsequently, a 30-day sliding
window is used to determine a term’s volatility for each of the 365
days. Then, we use the variance of each term’s volatility series
to obtain an ordered series of over-year importance of all volatile
terms. Finally, we clip the tf-idf vectors by the words that are not
assumed to be sufficiently volatile (based on their position in the or-
dered list). As classification, we choose random documents corre-
sponding to 10 different tags, up to 250 per group. Altogether, this
test case consists of 1,896 documents (points), described by 46,393
words (dimensions). Figure 5 shows examples of the final visual-
ization. As can be seen, the LDA and the subsequent topology-

“http://www.ldc.upenn.edu



Rarities And 8 New Productions
ta; Napster Is Stirring Debate on Art...|

Experiencing szsxasyp

SGEHNITS e 4 wis for peace]

[Where OBWsdAOM&®Es Hip in the East Village
[t Lon

—~=

Figure 5: (a) 2-D visualization of the NYT data set. Islands corre-
spond to topics and their sizes fit the clusters’ number of documents.
(b) The same landscape for a higher filter radius and without volumet-
ric distortion. The small spheres between the islands are assumed
to be outliers or noise (i.e., documents with too common vocabulary).
(c) documents inside the focus area are labeled with their titles.

based projection down to 2-D preserve the 10 topical clusters suc-
cessfully described by the vector space model. The proposed la-
beling of the hills appropriately reflects the underlying topics, sug-
gested by the document titles and implied by the documents’ con-
tent. Looking at the visualization, it is important to understand that
closeness of islands does not imply that the corresponding topics
are related in the original space. This information gets lost during
the projection and, therefore, spatial relationships are only encoded
in the hierarchy of hills. (i.e., only sub-hills express spatial close-
ness to their parent hill).

8.2 Patent Collection

Access to patent information is of importance for a variety of inter-
est groups today. Besides many other properties, the majority of in-
formation describing the nature of a patent is still conveyed through
its textual content, therefore making natural language processing
(NLP) a mandatory part of solutions for patent analysis. The sheer
mass, complexity, high dimensionality, and heterogeneity of patent
data make scalable visual analytics approaches for patent analysis
[15] a hard task. One particularly relevant type of meta data that
is available for patent applications is manually assigned classifi-
cation information. This classification information organizes the

vast numbers of patents into predefined classes representing certain
technical or functional aspects. Several different schemes for patent
classification, such as the International Patent Classification (IPC),
Japanese F-terms, and the US classification, exist. Patent offices
are interested in automatic classification of new patent applications
according to the existing classification schemes.

In order to evaluate our approach, we tested against the IPC com-
prising more than 70, 000 classes, hierarchically organized into sec-
tions, classes, subclasses, main groups, and sub groups. In the end,
our test case consists of 1,552 randomly selected patents from dif-
ferent IPC hierarchies (up to 200 each):

’A61K..38/17°, ’C12N...1/21°, "H04Q...7/22°, " B41C...1/10’,
’C09D..11/00°, C09]...7/02’, *GO1N..33/53’, "]H04Q..11/04°

We used patent data® from the European Patent Office (EPO). As a
preprocessing step, the data has been analyzed and the text content
was stored in vectorized form within a search index. From this in-
dex the tf-idf values for all dimensions of the term vectors have been
computed. First, we examine whether our landscape reflects the
nesting structure of the chosen patent hierarchy. Figure 6(a) shows
the visualization for our test case. Mainly four groups can be iden-
tified: The purple and brown points in the upper-right corner, be-
longing to HO4Q patents, clearly address networking, as the labels
(and the document titles) relate to atm, address, message, ip and
cell. In fact, the HO4Q IPC-hierarchy categorizes patents belong-
ing to “electricity” (H), “electric communication technique”’(H04)
and “selecting (switches, relays, etc)” (H04Q). Although the group
of pink, blue and black points on the right-hand side belongs to
completely different IPC-sections (A61K, C12N, GO1N), the corre-
sponding patents all concern medical issues in their major field: A -
Human Necessities, C - Chemistry, G - Physics. Because they share
the medical vocabulary, they still constitute one topic in the vector
space model. Finally, the centered hill belongs to the B41C cluster
and the green and golden points comprise a cluster related to appli-
cations of materials in chemistry and metallurgy (CO9D, C09J).

We use this patent example to demonstrate the classification
ideas from section 7. For this purpose, we split the patents into
50% classified training data and 50% unclassified test data, which
means that we henceforth ignore their class label. For illustration
purposes, however, we remember the test data’s class association
for coloring in the landscape. After determining the training set’s
LDA projection matrix, we use it to project both patent sets and use
their combination for our topological analysis. Figure 6(b) shows
the (not volumetric distorted) landscape. As can be seen, the train-
ing data (represented by spheres) and the test data (represented by
cones) belonging to particular classes (represented by the color) are
all hosted on mainly their own islands. This confirms that due to
their shared vocabulary, i.e., their shared dimensions, patents of
a specific class are equally handled by the LDA, and their accu-
mulation in the lower dimensional space allows us to topologically
find the dense area as one combined cluster. While this allows for
a faster LDA computation, the topological encoding by means of
the join tree’s branch decomposition also offers a way to provide
the test data the (main) class of a branch’s / hill’s training data
class. In our example, the LDA projection using all the data took
28s, whereas using only 50% took only 12s. To evaluate classifi-
cation quality, we determined for each branch (island) how many
of the branch’s test data entities match the branch’s training data
class (using the test data’s known class in this case). On average,
89.4% of the test data on a branch matches the class of the training
data, or more precisely ~ 76.7% in the noisy region of the medicine
archipelago, and ~ 99.6% on the remaining branches which corre-
spond to clusters being better separated.

Sfrom "Text of EP-A documents’ and *Text of EP-B documents’



SHUNAN-TYPE ANTI-BLOOD COAGULATION FACTOR VIIT ANT...
FOR ESTIMATING SPEED OF A MOBILE STATION I

(b)

Figure 6: (a) 2-D topological landscape of the patent data set. The
nesting structure of the islands reflects the IPC hierarchy of the test
data set. (b) The same landscape without volumetric distortion. Even
by learning the LDA with only 50% of the input data, the remaining
patents (the cones) are placed on their correct islands (clusters).

9 CONCLUSIONS AND FUTURE WORK

To cluster document point clouds, we demonstrated the necessity
of reflecting similarity by distance and we referred to uniform dis-
tances, caused by the curse of dimensionality. We tried to alleviate
the first problem by using a term’s volatility, as we believe that this
approach results in more topically related terms. Concerning the
dimensionality, we showed that a supervised approach is necessary
in very high dimensional spaces. Therefore, we proposed a two-
stage framework consisting of a supervised LDA projection down
to (k— 1)-D, followed by a direct topological analysis of this in-
termediate vector space. By doing so, we were able to improve
comparable approaches that use a lossy second stage projections.
We also extended the visualization in [17] to facilitate a more pre-
cise and less overlapping analysis process in 2-D. For classification
purposes, we showed how LDA and the use of the branch decompo-
sition can be used for automatic document classification based on
an existing classification. Furthermore, the quality of the classifica-
tion itself can be verified by examining the distribution of colored
points in the landscape. If a single color occurs on several hills, the
clustering (and therefore the classification) might be inappropriate.
Since the presumed classification is a drawback compared to un-
supervised approaches, our future work will include the investiga-
tion and support of classification methods (possibly also topology-
based). We will also consider other data structures to identify more
complex topological features.
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