
What’s Ahead for Fusion Computing
Alice Koniges, NERSC, Berkeley Lab

Robert Preissl, Jihan Kim, John Shalf
Gabriele Jost (TACC), Rolf Rabenseifner (HLRS)

Cray COE at NERSC
Cloud Computing at NERSC

Sherwood Fusion Theory
April 2010

Sherwood 2010 2

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in
Thousands)

Physics of chip manufacturing has caused
a Multicore Revolution

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1970 1975 1980 1985 1990 1995 2000 2005 2010

Transistors (in Thousands)
Frequency (MHz)
Power (W)
Cores

Computer Centers and Vendors are
Responding with New Designs

•  Virtually all upcoming systems have various forms of
heterogeneous parallelism
•  NERSC6 Hopper with its multicore design
Two 12 core on a node
•  Blue Waters with its Power7 hardware threaded design
8 cores, 12 execution units/core, 4-way SMT/core
•  ASC Sequoia (follow-on to BlueGene design) with anticipated

support for transactional memory
•  Experts everywhere are preparing for this architecture revolution

with new languages, extensions to old languages, tools (and angst)
•  What does this mean for fusion applications?

The next advances in computing
will be highly disruptive (again)

•  Gigaflops (10^9) to Teraflops (10^12) was highly disruptive
–  Moved from vector machines to MPPs with message passing
–  Required new algorithms and software

•  Teraflops to Petaflops (10^15) was *not* very disruptive
–  Continued with MPI+Fortran/C/C++ with incremental advances

•  Petaflops to Exaflops (10^18) will be highly disruptive
–  No clock increases  hundreds of simple “cores” per chip
–  Less memory and bandwidth  cores are not MPI engines
–  x86 too energy intensive  more technology diversity (GPUs/accel.)
–  Programmer controlled memory hierarchies likely

•  Computing at every scale will be transformed (not just exascale)

4

Sherwood 2010 5

–  Multicore: replicated complex cores(X86 and Power7)
–  Manycore/Embedded:Simpler, Low power (BlueGene)
–  GPU/Accelerator: specialized processors from gaming space (Nvidia Fermi, Cell)

Following the paths to exascale can transform
Fusion computing

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Top500

COTS/MPP + MPI

COTS/MPP + MPI (+ OpenMP)

GPU CUDA/OpenCL
Or Manycore BG/Q, R

Exascale + ???

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
>1 PF Peak

NERSC-7
10 PF Peak

NERSC-8
100 PF Peak

NERSC-9
1 EF Peak

P
ea

k
Te

ra
flo

p/
s

 NERSC-6 System “Hopper”
is coming in 2 phases

Phase 1: Cray XT5
•  668 nodes, 5,344 cores
•  2.4 GHz AMD Shanghai
•  2 PB disk, 25 GB/s
•  Air cooled

Phase 2: Cray system
•  > 1 Pflop/s peak, ~150K cores
•  Two 12-core MCMs per node
•  AMD Magny-Cours
•  2 PB disk, 80 GB/s
•  Liquid cooled

3Q09 4Q09 1Q10 2Q10 3Q10 4Q10

Grace Murray
Hopper

(1906-1992)

•  Cray “Baker” Nodes with Gemini Interconnect in Phase 2

2003 2005 2007 2009 2009 2010
Opteron Opteron Barcelona Shanghai Istanbul Magny‐Cours

Single Core Dual Core Quad Core Quad Core 6 - Core 12 - Core
90 nm 90nm 65 nm 45 nm 45 nm 45 nm

Sherwood 2010 7

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound H

T3

H
T3

Heterogenous memory access within node
complicates programming model choices

•  Baker Node Details--24-core Magny Cours
–  2 Multi-Chip Modules, 4 Opteron Dies
–  8 Channels of DDR3 Bandwidth to 8 DIMMs
–  24 (or 16) Computational Cores, 24 MB of L3 cache
–  Non-uniform memory access within the node

To Interconnect

HT
3

HT3

HT3

 HT3

Sherwood 2010 8

Standard model of “MPI everywhere” will
likely not last forever

• We can run 1 MPI process per core (flat model for parallelism)
–  This works now and will work for a while
–  But this is wasteful of intra-chip latency and bandwidth (100x lower

latency and 100x higher bandwidth on chip than off-chip)
–  Model has diverged from reality (the machine is NOT flat)

• How long will it continue working?
–  4 - 8 cores? Probably. 128 - 1024 cores? Probably not.
–  Depends on performance expectations

• What is the problem?
–  Latency: some copying required by semantics
–  Memory utilization: partitioning data for separate address space requires

some replication
 How big is your per core subgrid? At 10x10x10, over 1/2 of the points are

surface points, probably replicated
–  Memory bandwidth: extra state means extra bandwidth
–  Weak scaling: success model for the “cluster era;” will not be for the many

core era -- not enough memory per core
–  Heterogeneity: MPI per CUDA thread-block?

Sherwood 2010 9

Programming Models are Changing to
Accommodate the Multicore Revolution

•  Programming models differ in how we think about communication
and synchronization among processes

–  Shared memory
–  Distributed memory
–  Some of each

•  Shared Memory (really globally addressable)
–  Processes (or threads) communicate through memory addresses

accessible to each
•  Distributed memory

–  Processes move data from one address space to another via
sending and receiving messages

•  Multiple cores per node make the shared-memory model efficient
and inexpensive

Sherwood 2010 10

New Models MPI + x or ? are in the future

•  MPI is likely to stay – for a while at least
•  However, simpler cores and limited memory are likely to make the

MPI-everywhere model obsolete.
•  We are considering new programming models that combine MPI

with another language such as UPC or CAF in addition to the
standard hybrid method of MPI+OpenMP

Sherwood 2010 11

MPI and Threads

•  MPI describes parallelism between processes (with
separate address spaces)

•  Thread parallelism provides a shared-memory model
within a process

•  OpenMP and Pthreads are common but different models
–  OpenMP provides convenient features for loop-level

parallelism
–  Pthreads provide more complex and dynamic approaches
–  OpenMP 3.0 (which adds task parallelism) adds some of

these capabilities to OpenMP
•  MPI combined with OpenMP is the most common current

means of adapting for heterogenous architecures
–  Doesn’t always work
–  Is not able to deal with NUMA on the nodes

Sherwood 2010 12

MPI Memory Model

•  Message Passing Interface
•  Memory Model:

–  MPI assumes a private address space
–  Private address space for each MPI Process
–  Data needs to be explicitly communicated

•  Applies to distributed and shared memory computer architectures

process 1
process 0
 process 2
 process 3

Address
Space P0

Message buffers
mpi_send mpi_receive

Address
Space P0

Sherwood 2010 13

OpenMP Memory Model

•  OpenMP assumes a shared address space
•  No communication is required between threads
•  Thread Synchronization is required when accessing shared data

process 0

T2
T1
T0

Shared address space

data

Sherwood 2010 14

OpenMP Code General Structure

•  Fork-Join Model:
•  Execution begins with a single “Master Thread”
•  A team of threads is created at each parallel region
•  Threads are joined at the end of parallel regions
•  Execution is continued after parallel region by the Master Thread
until the beginning of the next parallel region

time

Serial

4 Core

Parallel
execution

Master Thread
 Multi-Threaded

Serial

6 Core

Parallel
 Serial

Sherwood 2010 15

The PGAS Languages

•  PGAS (Partitioned Global Address Space) languages attempt to
combine the convenience of the global view of data with
awareness of data locality, for performance

–  Co-Array Fortran, an extension to Fortran-90)
  SPMD – Single program, multiple data
  Replicated to a number of images
  Variables declared as co-arrays are accessible by another image through a

set of array subscripts, delimited by [] and mapped to image indices by the
usual rule

–  UPC (Unified Parallel C), an extension to C
  UPC is an extension of C (not C++) with shared and local addresses
  Shared keyword in type declarations
  What we have been calling processes are called threads in UPC

–  and may be implemented as OS threads
–  Titanium, a parallel version of Java

  Titanium is a PGAS language based on Java
  The langauge is compiled, not interpreted

–  Implementations do not use the JVM

Sherwood 2010 16

Even the MPI-OpenMP hybrid model, is
complicated on multicore

Which programming
model is fastest?

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI
process
4 x multi-
threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

1) MPI everywhere

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI everywhere?

Fully hybrid
MPI & OpenMP?

In - between?
(Mixed model)

? Historically hybrid
programming can be
slower than pure
MPI

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

Sherwood 2010 17

Some examples of hybrid (MPI+OpenMP)

Sherwood 2010 18

In this code, gain from hybrid tails off after
6 cores due to NUMA effects

0

100

200

300

400

500

600

1 2 3 4 6 12

96 48 32 24 16 8

Ti
m

e
/ s

ec
s

 OPENMP threads / MPI tasks

Hyrbid OpenMP/MPI in a GTC
on a fixed number of total cores

Sherwood 2010 19

Memory Usage is a major gain in using
Hybrid on a fixed number of cores

0

2

4

6

8

10

12

14

16

1 2 3 4 6 12

96 48 32 24 16 8

M
em

or
y

pe
r n

od
e

/ G
B

OPENMP threads / MPI tasks

Results from GTC fusion code on Jaguar XT5

Sherwood 2010 20

W
al

l C
lo

ck
 T

im
e

(s
)

OpenMP Threads /MPI Task

Hybrid OpenMP in a Climate Code
Fixed number of 240 MPI Tasks

Sherwood 2010 21

Other Current Developments

GPUs
Clouds

Accelerator/GPU Solution to
Power Density Crises

•  GPUs are early adopter of simpler cores
–  Many simple functional units, specialized for graphics computations
–  Dramatic shift in programming model
–  CUDA is huge advance over GPGPUs, but programmability is still a concern

•  GPU’s are also used as accelerators (e.g., Roadrunner)
–  Disjoint memory space difficult to manage
–  PCIe bottleneck can compromise delivered performance
–  Similar to using vector co-processors on the CM5, must move into local memory

22

NERSC Dirac Cluster is part of a
research program

•  48 nodes
•  2 quad core Nehalems 2.4GHz, 24 GB per node memory
•  currently has Tesla accelerators in it, but will be upgraded with Fermi

when they come out
•  The fermi (E9) boards will have ECC and 3 GB of memory per board.

(16 lane PCIe to each board)
•  One Fermi board per host node.
•  OS same as Carver
•  The nodes will be connected to the carver/magellan switch

infrastructure with QDR IB 4x links (same as carver nodes).
•  Each Fermi card is 1Tflop/s so Dirac's theoretical peak performance

will be 48 Tflops

23

Sherwood 2010 24

Fusion Codes with GPU’s

●  Tech-X Work:
●  Finite-difference time domain

computations needed in edge for
–  Accurate representation of

antennas
–  Analysis of nonlinear effects and

sheaths
●  Prototyping (exporting VORPAL

geometry) using GPUlib (next
slide):

–  40x speedup GPU/CPU
–  Bandwidth limited

•  NERSC GTC port to GPUs

24

We are experimenting with GPUs
for a variety of codes

•  Q-Chem used to model Carbon capture, i.e., reactivity of CO2
with other materials (input from quantum calculations)

•  Molecular equilibrium structures:
•  2nd order Moller-Plesset perturbation theory (MP2)

•  Expensive fifth-order computational dependence on system size
•  Focus is to speed up the MP2 portion of the Q-Chem code

Jihan Kim1, Alice Koniges1, Berend Smit2, Martin Head-Gordon2

1NERSC/LBNL and 2UC Berkeley

Fermi GPU Racks - NERSC

€

E0
(2) =

1
4

ab rs
2

εa + εb −εr −εsa,b,r,s
∑

€

ij kl = ij kl − ij lk = dx1dx2χ i
*(x1)χ j

* (x2)r12
−1(1− P12)χk (x1)χ l (x2)∫

•  High-performance computing with GPUs
–  Tesla/Turing NERSC cluster (4 Nvidia FX-5800

Quadroplex, 4GB Memory)
–  New GPU cluster at NERSC (48 Nvidia Fermi cards)

•  Parallelizing codes (C++/Fortran)
–  CUDA (compute unified device architecture): parallel

architecture developed by Nvidia
–  Some can be done with libraries: replace blas

routines with cublas (50-75GFLOP/sec)
–  Asynchronous operation with GPU/CPU (overlap I/O

operations with blas3 matrix-matrix multiplications)
–  About 8-10 times speedup

The CPU and the GPU are
significantly different

Code Example

QAllocDouble(C, …);
QAllocDouble(iaP, …);
QAllocDouble(iajb, …);

for (i = 0; i < num1; i++)
{
 LongFileMan(FM_Read, iaP);
 for (j = 0; j < num2; j++)
 { …
 for (k = 0; k < num3; k++)
 {
 LongFileMan(FM_Read(k), C);

 AtimsB(iajb, iaP, C, …);
 …
 }
 }
}

#include “cublas.h”
#include “cuda_runtime_api.h”
cublasStatus = status;
Status = cublasInit();

QAllocDouble(C, …);
QAllocDouble(iaP, …);
QAllocDouble(iajb, …);
cudaMalloc((void**)d_C, sizeof(C));
cudaMalloc((void**)d_iaP, sizeof(iaP));
cudaMalloc((void**)d_iajb, sizeof(iajb));

for (i = 0; i < num1; i++)
{ LongFileMan(FM_Read, iaP);
 cudaMemcpy(d_iaP, iaP, sizeof(iaP), cudaMemcpyHostToDevice);
 for (j = 0; j < num2; j++)
 { LongFileMan(FM_Read(0), C);
 cudaMemcpy(d_C, C, sizeof(C), cudaMemcpyHostToDevice);
 for (k = 1; k < num3; k++)
 { cublasDgemm(‘n’, ‘n’, m, n, k, 1.0, d_iaP, lda, d_C, ldb, 0, d_iajb, ldc)
 LongFileMan(FM_Read(k), C);
 cudaMemcpy(d_C, C, sizeof(C), cudaMemcpyHostToDevice);
 …
 }
 }
}

Regular MP2 MP2 with CUDA

Sherwood 2010 28

Magellan – Exploring Cloud Computing

A Test bed to explore Cloud Computing
for Science

•  National Energy Research Scientific
Computing Center (NERSC)

•  Argonne Leadership Computing
Facility (ALCF)

•  $32M total funding, equally divided
between the two facilities

•  Funded by DOE under the American
Recovery and Reinvestment Act
(ARRA)

Sherwood 2010 29

Magellan Research Agenda

•  What are the unique needs and features of
a science cloud?

•  What applications can efficiently run on a
cloud?

•  Are cloud computing Programming Models
such as Hadoop effective for scientific
applications?

•  Can scientific applications use a data-as-a-
service or software-as-a-service model?

•  Is it practical to deploy a single logical
cloud across multiple DOE sites?

•  What are the security implications of user-
controlled cloud images?

•  What is the cost and energy efficiency of
clouds?

Sherwood 2010 30

Why Clouds for Science?

•  On-demand access to compute resources
–  e.g. Cycles from a credit card. Avoid

batch wait times.
•   Overflow capacity to supplement existing

systems
–  e.g., Berkeley Water Center has analysis

that far exceeds the capacity of desktops
•  Customized and controlled environments

–  e.g. Supernova Factory codes have
sensitivity to OS/compiler version

–  CernVM provides a fully integrated
environment for LHC analysis

•  Parallel programming models for data
intensive science
–  e.g., BLAST with Hadoop

Sherwood 2010 31

 NERSC Benchmarks on Commercial
Cloud

31

Codes Science
Area

Algorithm
Space

Configuration Slow-
down

Reduction
factor
(SSP)

Comments

Relative to Franklin

CAM Climate
(BER)

Navier
Stokes CFD

200 processors
Standard IPCC5 D-
Mesh resolution

3.05 0.33 Could not complete
240 proc run due to
transient node
failures. Some I/O
and small messages

MILC Lattice
Gauge
Physics (NP)

Conjugate
gradient,
sparse
matrix; FFT

Weak scaled: 144
lattice on 8, 32, 64,
128, and
256processors

2.83 0.35 Erratic execution
time

IMPACT-T Accelerator
Physics
(HEP)

PIC, FFT
component

64 processors,
64x128x128 grid
and 4M particles

4.55 0.22 PIC portion performs
well, but 3D FFT
poor due to small
message size

MAESTRO Astrophysics
(HEP)

Low Mach
Hydro; block
structured-
grid
multiphysics

128 processors for
128^3
computational mesh

5.75 0.17 Small messages and
all-reduce for implicit
solve.

Sherwood 2010 32

Increasing computational power should not be
ignored—a continued path to exascale exists

107

106

105

104

103

102

10

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Top500

COTS/MPP + MPI

COTS/MPP + MPI (+ OpenMP)

GPU CUDA/OpenCL
Or Manycore BG/Q, R

Exascale + ???

Franklin (N5)
19 TF Sustained
101 TF Peak

Franklin (N5) +QC
36 TF Sustained
352 TF Peak

Hopper (N6)
>1 PF Peak

NERSC-7
10 PF Peak

NERSC-8
100 PF Peak

NERSC-9
1 EF Peak

P
ea

k
Te

ra
flo

p/
s

Conclusions
•  Multicore revolution is changing computing

–  Hybrid?, New Languages?

•  New opportunities for fusion

–  Path to exascale is coming
–  Advances in self-consistent simulations requires tackling

the next generation hardware

•  Effective use of Hopper requires new programming techniques

–  Even simple MPI+OpenMP is complicated

•  other technologies for computing are upcoming

–  GPUs
–  Cloulds

33

