
What’s Ahead for Fusion Computing 
Alice Koniges, NERSC, Berkeley Lab 

Robert Preissl, Jihan Kim, John Shalf 
Gabriele Jost (TACC), Rolf Rabenseifner (HLRS) 

Cray COE at NERSC 
Cloud Computing at NERSC 

Sherwood Fusion Theory 
April 2010 



Sherwood 2010 2 

1.E-01 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1970 1975 1980 1985 1990 1995 2000 2005 2010 

Transistors (in 
Thousands) 

Physics of chip manufacturing has caused 
a Multicore Revolution 

1.E-01 

1.E+00 

1.E+01 

1.E+02 

1.E+03 

1.E+04 

1.E+05 

1.E+06 

1.E+07 

1970 1975 1980 1985 1990 1995 2000 2005 2010 

Transistors (in Thousands) 
Frequency (MHz) 
Power (W) 
Cores 



Computer Centers and Vendors are 
Responding with New Designs 

•  Virtually all upcoming systems have various forms of 
heterogeneous parallelism 
•  NERSC6 Hopper with its multicore design 
Two 12 core  on a node 
•  Blue Waters with its Power7 hardware threaded design 
8 cores, 12 execution units/core, 4-way SMT/core 
•  ASC Sequoia (follow-on to BlueGene design) with anticipated 

support for transactional memory 
•  Experts everywhere are preparing for this architecture revolution 

with new languages, extensions to old languages, tools (and angst) 
•  What does this mean for fusion applications? 



The next advances in computing 
will be highly disruptive (again) 

•  Gigaflops (10^9) to Teraflops (10^12) was highly disruptive 
–  Moved from vector machines to MPPs with message passing 
–  Required new algorithms and software 

•  Teraflops to Petaflops (10^15) was *not* very disruptive 
–  Continued with MPI+Fortran/C/C++ with incremental advances 

•  Petaflops to Exaflops (10^18) will be highly disruptive 
–  No clock increases  hundreds of simple “cores” per chip 
–  Less memory and bandwidth  cores are not MPI engines 
–  x86 too energy intensive  more technology diversity (GPUs/accel.) 
–  Programmer controlled memory hierarchies likely 

•  Computing at every scale will be transformed (not just exascale) 
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–  Multicore: replicated complex cores(X86 and Power7) 
–  Manycore/Embedded:Simpler, Low power (BlueGene) 
–  GPU/Accelerator: specialized processors from gaming space (Nvidia Fermi, Cell) 

Following the paths to exascale can transform 
Fusion computing 
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 NERSC-6 System “Hopper” 
is coming in 2 phases 

Phase 1: Cray XT5 
•  668 nodes, 5,344 cores 
•  2.4 GHz AMD Shanghai 
•  2 PB disk, 25 GB/s 
•  Air cooled 

Phase 2: Cray system 
•  > 1 Pflop/s peak, ~150K cores 
•  Two 12-core MCMs per node 
•  AMD Magny-Cours 
•  2 PB disk, 80 GB/s 
•  Liquid cooled 

3Q09 4Q09 1Q10 2Q10 3Q10 4Q10 

Grace Murray 
Hopper 

(1906-1992)  

•  Cray “Baker” Nodes with Gemini Interconnect in Phase 2 

2003 2005 2007 2009 2009 2010 
Opteron  Opteron  Barcelona  Shanghai  Istanbul  Magny‐Cours 

Single Core Dual Core Quad Core Quad Core 6 - Core 12 - Core 
90 nm 90nm 65 nm 45 nm 45 nm 45 nm 
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Heterogenous memory access within node 
complicates programming model choices 

•  Baker Node Details--24-core Magny Cours 
–  2 Multi-Chip Modules, 4 Opteron Dies 
–  8 Channels of DDR3 Bandwidth to 8 DIMMs 
–  24 (or 16) Computational Cores, 24 MB of L3 cache 
–  Non-uniform memory access within the node 
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Standard model of “MPI everywhere” will 
likely not last forever 

• We can run 1 MPI process per core (flat model for parallelism) 
–  This works now and will work for a while 
–  But this is wasteful of intra-chip latency and bandwidth (100x lower 

latency and 100x higher bandwidth on chip than off-chip) 
–  Model has diverged from reality (the machine is NOT flat) 

• How long will it continue working?  
–  4 - 8 cores? Probably.  128 - 1024 cores? Probably not. 
–  Depends on performance expectations 

• What is the problem? 
–  Latency: some copying required by semantics 
–  Memory utilization: partitioning data for separate address space requires 

some replication 
 How big is your per core subgrid?  At 10x10x10, over 1/2 of the points are 

surface points, probably replicated 
–  Memory bandwidth: extra state means extra bandwidth 
–  Weak scaling: success model for the “cluster era;” will not be for the many 

core era -- not enough memory per core 
–  Heterogeneity: MPI per CUDA thread-block? 
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Programming Models are Changing to 
Accommodate the Multicore Revolution 

•  Programming models differ in how we think about communication 
and synchronization among processes 

–  Shared memory 
–  Distributed memory 
–  Some of each 

•  Shared Memory (really globally addressable) 
–  Processes (or threads) communicate through memory addresses 

accessible to each 
•  Distributed memory 

–  Processes move data from one address space to another via 
sending and receiving messages 

•  Multiple cores per node make the shared-memory model efficient 
and inexpensive 
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New Models MPI + x or ? are in the future 

•  MPI is likely to stay – for a while at least 
•  However, simpler cores and limited memory are likely to make the 

MPI-everywhere model obsolete. 
•  We are considering new programming models that combine MPI 

with another language such as UPC or CAF in addition to the 
standard hybrid method of MPI+OpenMP 
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MPI and Threads 

•  MPI describes parallelism between processes (with 
separate address spaces) 

•  Thread parallelism provides a shared-memory model 
within a process 

•  OpenMP and Pthreads are common but different models 
–  OpenMP provides convenient features for loop-level 

parallelism 
–  Pthreads provide more complex and dynamic approaches 
–  OpenMP 3.0 (which adds task parallelism) adds some of 

these capabilities to OpenMP 
•  MPI combined with OpenMP is the most common current 

means of adapting for heterogenous architecures 
–  Doesn’t always work 
–  Is not able to deal with NUMA on the nodes 
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MPI Memory Model 

•  Message Passing Interface 
•  Memory Model:  

–  MPI assumes a private address space 
–  Private address space for each MPI Process 
–  Data needs to be explicitly communicated 

•  Applies to distributed and shared memory computer architectures 

process 1
process 0
 process 2
 process 3


Address  
Space P0 

Message buffers 
mpi_send mpi_receive 

Address  
Space P0 
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OpenMP Memory Model 

•  OpenMP assumes a shared address space 
•  No communication is required between threads 
•  Thread Synchronization is required when accessing shared data 

process 0


T2
T1
T0


Shared address space 

data 
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OpenMP Code General Structure 

•  Fork-Join Model: 
•  Execution begins with a single “Master Thread” 
•   A team of threads is created at each parallel region 
•  Threads are joined at the end of parallel regions 
•   Execution is continued after parallel region by the Master Thread 
until the beginning of the next parallel region 

time


Serial


4 Core


Parallel
execution


Master Thread
 Multi-Threaded


Serial


6 Core


Parallel
 Serial
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The PGAS Languages 

•  PGAS (Partitioned Global Address Space) languages attempt to 
combine the convenience of the global view of data with 
awareness of data locality, for performance 

–  Co-Array Fortran, an extension to Fortran-90) 
  SPMD – Single program, multiple data 
  Replicated to a number of images 
  Variables declared as co-arrays are accessible by another image through a 

set of array subscripts, delimited by [ ] and mapped to image indices by the 
usual rule 

–  UPC (Unified Parallel C), an extension to C 
  UPC is an extension of C (not C++) with shared and local addresses 
  Shared keyword in type declarations 
  What we have been calling processes are called threads in UPC 

–  and may be implemented as OS threads 
–  Titanium, a parallel version of Java 

  Titanium is a PGAS language based on Java 
  The langauge is compiled, not interpreted  

–  Implementations do not use the JVM 
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Even the MPI-OpenMP hybrid model, is 
complicated on multicore 

Which programming 
model is fastest? 
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Some examples of hybrid (MPI+OpenMP) 
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In this code, gain from hybrid tails off after 
6 cores due to NUMA effects 
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Memory Usage is a major gain in using 
Hybrid on a fixed number of cores 
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Hybrid OpenMP in a Climate Code 
Fixed number of 240 MPI Tasks 
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Other Current Developments 

GPUs 
Clouds 



Accelerator/GPU Solution to 
Power Density Crises 

•  GPUs are early adopter of simpler cores 
–  Many simple functional units, specialized for graphics computations 
–  Dramatic shift in programming model 
–  CUDA is huge advance over GPGPUs, but programmability is still a concern 

•  GPU’s are also used as accelerators (e.g., Roadrunner) 
–  Disjoint memory space difficult to manage 
–  PCIe bottleneck can compromise delivered performance 
–  Similar to using vector co-processors on the CM5, must move into local memory  

22 



NERSC Dirac Cluster is part of a 
research program 

•  48 nodes  
•  2 quad core Nehalems 2.4GHz, 24 GB per node memory  
•  currently has Tesla accelerators in it, but will be upgraded with Fermi 

when they come out  
•  The fermi (E9) boards will have ECC and 3 GB of memory per board. 

(16 lane PCIe to each board)  
•  One Fermi board per host node.  
•  OS same as Carver  
•  The nodes will be connected to the carver/magellan switch 

infrastructure with QDR IB 4x links (same as carver nodes).  
•  Each Fermi card is 1Tflop/s so Dirac's theoretical peak performance 

will be 48 Tflops 

23 
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Fusion Codes with GPU’s 

●  Tech-X Work: 
●  Finite-difference time domain 

computations needed in edge for 
–  Accurate representation of 

antennas 
–  Analysis of nonlinear effects and 

sheaths 
●  Prototyping (exporting VORPAL 

geometry) using GPUlib (next 
slide): 

–  40x speedup GPU/CPU 
–  Bandwidth limited 

•  NERSC GTC port to GPUs 

24 



We are experimenting with GPUs 
for a variety of codes 

•  Q-Chem used to model Carbon capture, i.e., reactivity of CO2 
with other materials (input from quantum calculations) 

•  Molecular equilibrium structures:   
•  2nd order Moller-Plesset perturbation theory (MP2) 

•  Expensive fifth-order computational dependence on system size 
•  Focus is to speed up the MP2 portion of the Q-Chem code 

Jihan Kim1, Alice Koniges1, Berend Smit2, Martin Head-Gordon2 

1NERSC/LBNL and 2UC Berkeley 

Fermi GPU Racks - NERSC 
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•  High-performance computing with GPUs 
–  Tesla/Turing NERSC cluster (4 Nvidia FX-5800 

Quadroplex, 4GB Memory)  
–  New GPU cluster at NERSC (48 Nvidia Fermi cards)  

•  Parallelizing codes (C++/Fortran) 
–  CUDA (compute unified device architecture): parallel 

architecture developed by Nvidia 
–  Some can be done with libraries: replace blas 

routines with cublas (50-75GFLOP/sec) 
–  Asynchronous operation with GPU/CPU (overlap I/O 

operations with blas3 matrix-matrix multiplications) 
–  About 8-10 times speedup 

The CPU and the GPU are 
significantly different 



Code Example 

QAllocDouble(C, …); 
QAllocDouble(iaP, …); 
QAllocDouble(iajb, …); 

for (i = 0; i < num1; i++) 
{  
     LongFileMan(FM_Read, iaP); 
     for (j = 0; j < num2; j++) 
     {   … 
          for (k = 0; k < num3; k++) 
          {      
               LongFileMan(FM_Read(k), C);          

                           
               AtimsB(iajb, iaP, C, …); 
               … 
           } 
      } 
} 

#include “cublas.h” 
#include “cuda_runtime_api.h” 
cublasStatus = status; 
Status = cublasInit(); 

QAllocDouble(C, …); 
QAllocDouble(iaP, …); 
QAllocDouble(iajb, …); 
cudaMalloc((void**)d_C, sizeof(C)); 
cudaMalloc((void**)d_iaP, sizeof(iaP)); 
cudaMalloc((void**)d_iajb, sizeof(iajb)); 

for (i = 0; i < num1; i++) 
{    LongFileMan(FM_Read, iaP); 
     cudaMemcpy(d_iaP, iaP, sizeof(iaP), cudaMemcpyHostToDevice); 
     for (j = 0; j < num2; j++) 
     {    LongFileMan(FM_Read(0), C); 
          cudaMemcpy(d_C, C, sizeof(C), cudaMemcpyHostToDevice); 
          for (k = 1; k < num3; k++) 
          {    cublasDgemm(‘n’, ‘n’, m, n, k, 1.0, d_iaP, lda, d_C, ldb, 0, d_iajb, ldc) 
               LongFileMan(FM_Read(k), C); 
               cudaMemcpy(d_C, C, sizeof(C), cudaMemcpyHostToDevice); 
               … 
           } 
      } 
} 

Regular MP2  MP2 with CUDA  
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Magellan – Exploring Cloud Computing 

A Test bed to explore Cloud Computing 
for Science 

•  National Energy Research Scientific 
Computing Center (NERSC) 

•  Argonne Leadership Computing 
Facility (ALCF)  

•  $32M total funding, equally divided 
between the two facilities 

•  Funded by DOE under the American 
Recovery and Reinvestment Act 
(ARRA)  
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Magellan Research Agenda 

•  What are the unique needs and features of 
a science cloud? 

•  What applications can efficiently run on a 
cloud? 

•  Are cloud computing Programming Models 
such as Hadoop effective for scientific 
applications? 

•  Can scientific applications use a data-as-a-
service or software-as-a-service model? 

•  Is it practical to deploy a single logical 
cloud across multiple DOE sites? 

•  What are the security implications of user-
controlled cloud images? 

•  What is the cost and energy efficiency of 
clouds? 
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Why Clouds for Science? 

•  On-demand access to compute resources 
–  e.g. Cycles from a credit card.  Avoid 

batch wait times. 
•   Overflow capacity to supplement existing 

systems 
–  e.g., Berkeley Water Center has analysis 

that far exceeds the capacity of desktops 
•  Customized and controlled environments 

–  e.g. Supernova Factory codes have 
sensitivity to OS/compiler version 

–  CernVM provides a fully integrated 
environment for LHC analysis 

•  Parallel programming models for data 
intensive science 
–  e.g., BLAST with Hadoop 
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      NERSC Benchmarks on Commercial 
Cloud 

31 

Codes Science 
Area 

Algorithm 
Space 

Configuration Slow-
down 

Reduction 
factor 
(SSP) 

Comments 

Relative to Franklin  

CAM Climate 
(BER) 

Navier 
Stokes CFD 

200 processors 
Standard IPCC5 D-
Mesh resolution 

3.05 0.33 Could not complete 
240 proc run due to 
transient node 
failures. Some I/O 
and small messages  

MILC Lattice 
Gauge 
Physics (NP) 

Conjugate 
gradient, 
sparse 
matrix; FFT 

Weak scaled: 144 
lattice on 8, 32, 64, 
128, and 
256processors 

2.83 0.35 Erratic execution 
time 

IMPACT-T Accelerator 
Physics 
(HEP) 

PIC, FFT 
component 

64 processors, 
64x128x128 grid 
and 4M particles 

4.55 0.22 PIC portion performs 
well, but 3D FFT 
poor due to small 
message size  

MAESTRO Astrophysics 
(HEP) 

Low Mach 
Hydro; block 
structured-
grid 
multiphysics 

128 processors for 
128^3 
computational mesh 

5.75 0.17 Small messages and 
all-reduce for implicit 
solve.  
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Increasing computational power should not be 
ignored—a continued path to exascale exists 
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Conclusions 
•  Multicore revolution is changing computing 

–  Hybrid?, New Languages? 

•  New opportunities for fusion 

–  Path to exascale is coming 
–  Advances in self-consistent simulations requires tackling 

the next generation hardware 

•  Effective use of Hopper requires new programming techniques 

–  Even simple MPI+OpenMP is complicated 

•  other technologies for computing are upcoming 

–  GPUs 
–  Cloulds 
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