Enabling Physics insight with Multidimensional Computer Simulations

SC14 Panel November 16, 2014

Mathematics + Algorithms for a new Multiphysics Simulation Code applied to large experiments

Neutralized Drift Compression Experiment (NDCX-II)

CYMER EUV Lithography System

History: Predictive calculations needed for optics and diagnostics protection on NIF

Problem: Traditional ALE codes complicated and crashed for late-time simulations

Traditional ALE

Newly Designed ALE-AMR

Led a project to design a new 3D multimaterial ALE + AMR code including substantial new physics

ALE-AMR is an open science code that runs at various computing centers including NERSC and has no export control restrictions

- 3D ALE hydrodynamics
- AMR (use 3X refinement)
 - With 6 levels, vol ratio 107 to 1
- Multi-Material (interface reconstruction)
- Anisotropic stress tensor
- Tabulated EOS and opacities
- Material failure with history
- Laser ray trace and deposition
- Ion deposition
- Thermal conduction
- Radiation diffusion
- 2D Axisymmetric capability
- AMR with 3X in only 1 direction
- Surface tension

Multimateral ALE + AMR; including anisotropic stress tensor

$$\frac{\partial \rho}{\partial t} + \nabla \bullet (\rho \vec{v}) = 0$$
 Continuity equation
$$\rho \frac{\partial \vec{v}}{\partial t} = \nabla p + \nabla \bullet \Sigma' + \rho \vec{b}$$
 Equations of motion
$$\rho \frac{\partial e}{\partial t} + p \nabla \bullet \vec{v} = 0$$
 PdV work
$$\sum_{n=1}^{n+1} f(\Sigma^n, \rho, e, \vec{v}, p, T, \vec{h})$$
 Material Stress Update

$$p = p(\rho, e)$$
 $T = T(\rho, e)$
•EOS tables
•Various gas laws

Radiation Diffusion added via an operator splitting method

ALE-AMR was used to model the late time properties of HEDLP targets shot for National Ignition Campaign (450 M\$ per year, 4B\$ to construct)

Multimaterial interface reconstruction + AMR allows fast and accurate modeling of complex targets

Molten Al in a Keyhole wedge simulation expands and drops in density in a divergent velocity field

Need to estimate droplet sizes in divergent velocity fields motivated effort on surface tension

Simulations showed that x-ray loading in initial design damaged thin samples and tilted redesign protects samples from x-rays and fast debris wind from target

Some stuff about me

- 1st Woman to get a PhD in Applied Mathematics at Princeton
- Approximately 100 Papers and 1000 Citations
- PI on a few million dollars of research grants
- Raised 3 Kids, have a physicist spouse (34 years)
- Worked part time a bit but don't tell anyone ☺
- Had 9 post-docs in last 6 years
- Try to make time to ride my horse, do an occasional sprint triathlon, play piccolo

Leader/PI, Petascale Initiative in Computational Science and Engineering

Project:	Post Doc	Start Date	Eductation (PhD)
EFRC: Q-Chem parallelization and GPU Optimization	J Kim	Oct-09	Univ. IL Urbana-Champaign
Fusion: GTS for ITER-Scale; Programming Models	R Preissl	Feb-10	J. Kepler Univ. (Austria)
Multiphase Flow in Porous Media for Carbon Sequestration	K Fagnan	Mar-10	Univ. of Washington
Modeling for Next Generation Advanced Light Source	B Austin	Jun-10	UC Berkeley
Advanced Light Source and Geophysical Imaging with GPU's	F Maia	Jul-10	Uppsala Univ. (Sweden)
Benchmarking and Optimization of Energy-Related Applications	P Narayanan	Sep-10	Univ. of Maryland
ARRA-funded LBL NDCX-II modeling with ALE-AMR	W Liu	Jan-11	UC Los Angeles
Linear Solvers and Hybrid Programming	X Yuan	Mar-11	Columbia University
Poission Solver for Nano-Control EFRC	C Kavouklis	Jun-11	Univ. of Texas Austin

Teaching, mentoring, recruiting and public outreach

GRACE HOPPER WOMEN "COMPUTING CELEBRATION of WOMEN"

Working in the community

- Scientific Programming
 - Guest Editor
- Computational Science and Engineering
 - Invited Lead-off chapter
- International Journal of High Performance Computing
 - Associate Editor

Scalable Arbitrary-Order Pseudo-Spectral Electromagnetic Solver

J.-L. Vay¹, T. Drummond¹, A. Koniges¹, B. B. Godfrey^{1,2}, I. Haber²
¹Lawrence Berkeley National Laboratory, ²University of Maryland

SUMMARY: While pseudo-spectral methods have been popular in the early PIC codes, the finite-difference time-domain method has become dominant with the rise of massively parallel computing owing to its locality advantage that lends to message passing that is limited to neighboring processors. Recently, a novel parallelization strategy was proposed [1] that takes advantage of the local nature of Maxwell equations that has the potential to combine pseudo-spectral accuracy with finite-difference favorable parallel scaling. In this talk, we will present the latest developments in the implementation of spectral-based solvers in Warp and discuss our latest findings.

