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A large range of faci
multi-physics plasma modeling

Thin foil target hit from LHS

+ 3D ALE hydrodynamics
« AMR (use 3X refinement)

« Anisotropic stress tensor
« Material failure with history
+ lon/laser deposition
+ Thermal conduction

rbitrary Lagrangian Eulerian * Radiation diffusion

tive Mesh Refinement

+ Surface tension

Basic equations in ALE-AMR
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is the total stress tensor (surface tension enters here),
eviatoric stress, and ¢ is the strain rate tensor with

sy =0y + Poy and ¢

Laser Mega Joule (LMJ) - France

s can benefit from

ALE-AMR is an open science code
and has no export control restrictions

* With 6 levels, vol ratio 107 to 1

+ Material interface reconstruction
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Fragmentation model uses void insertion and Model validated
with experiments at Jupiter Laser Facility

Large laser facilities, e.g., NIF and LMJ, require modeling to

protect optics and diagnostics
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‘ Code is used to model ion beam experiments at NDCX-I1

The Bethe-Block

for ion
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where pr, Ar, Z;

in ALE-AMR is

Vopr [ 22, N
} [‘\""’] {%] [(Zr = Z)(Loghs + R) + ZG(3/8.) (LogAs + R/2)] ,

, and Z are the target density, target atomic weight, target

atomic number, and target ionization state, respectively, and
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Density and temperature profiles at the completion of the 1 ns, 2.8 MeV,
Li ion pulse along the radial center of an Al foil. Fluence of 20 J/cm?.
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The Hydra source is not open, which limits the ability to add new packages,

e.g., AMR, surface tension,

fragmentation models, and new multiphysics

‘ NDCX-II Facility at LBNL ‘

ION BEAM

VOLUMETRI

ALE-AMR simulations

The entire target, e. g., Si cooling
rings and Al casing, must be modeled

Damage to debris shields

Materials during laser
heating

Threshold density at 220 ns

ALE-AMR used to model extreme UV lithography experiment

using laser heated molten metal droplets

Use six levels of refinement is critical to model plasma plume expansion
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@ Tin Droplets

Use a prepulse to flatten droplet prior to
main pulse

Atlow prepulse energies, droplet is
observed to oscillate (surface tension
effect)
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Xand Y scale is
10" microns
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Surface tension model based on volume fractions was validated
with analytic test cases
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Simulation of NIF experiment using 1% of full
laser energy with majority of target not vaporized

Multi-Physics Code Available for Collaborations
Plasma wall interactions for magnetic fusion devices
Modeling of ion beam experiments
Fragmentation of materials

Surface tension effects for molten material

Some recent ALE-AMR Publications:

Cray XC30 with Intel Ivy Bridge 12-core process
Aries interconnect with Dragonfly topology
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\ NERSC 8 Benchmark o
Edison is very
3 Performance
I~ to Hopper, but
N e 25 times the
s stsn  performance p
D; on most codes

Peak Flops (PF) 129 24

CPU cores 152,408 124,800
Frequency (GHz) 2.1 24
Memory (T8) 217/32 333/64
Total / Per-node

Memory BW* 331 530.4
(T8/5)

Memory BW/ 52 102
node* (GB/s)

Filesystem 2PB70GB/s 6.4.PB 140 GB/s
Peak Bisection BW 5.1 110
(TB/s)

sqft 1956 1200
Power (MW 291 19
Linpack)

New algorithms should work in concert with n
exascale operating systems: ParalleX Execution N

Lightweight multi-threading
Divides work into smaller tasks
Increases concurrency

Message-driven computation ~
Move work to data
Keeps work local, stops blocking

Constraint-based synchronization

+ Declarative criteria for work

+ Eventdriven

+ Eliminates global barriers

Data-directed execution

+ Merger of flow control & data structure

Shared name space

* Global address space

+ simplifies random gathers
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Thomas Sterling, et al. IU and XP
HPX and Related Application Development

— Explore app development alternative to “traditional MPX”".
~ Question: Can a qualitatively different approach (Parallex-ba
= Exploit untapped and new parallelism?
= Improve expressability?
= Improve productivity?
=Get us to Exascale and beyond?
~ Broad sampling of app domains & algorithms:
= Plasma physics, Many-body & particle-in-cell (PIC)
* Nuclear engineering & finite volume/eigensolvers.
» Shock physics & finite element/explicit time integration.
* Computational mechanics & implicit sparse solvers.

— Full team effort involving app designers, XPRESS team, HPX
ParalleX developers, and compiler and tools developers
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