
Opportunities and Challenges for
Domain-Specific Languages in

Fusion Applications

Alice Koniges
Lawrence Berkeley National Laboratory

Exascale Research Conference
Arlington, VA
October, 2012

A Domain-Specific Language (DSL) for
Fusion/Plasma Physics?

• Understanding the field
– Range of scales

• Opinions in the field
– Well, maybe a domain-aware library?
– No thank you, we do fine with MPI, Fortran and our libraries for

meshing and solvers
– If we can design something it can save a lot of duplicative efforts

and help use and maintain advanced components

• Possibilities for DSL
– Low-level, extensions, change MPI calls under hood
– A high-level construct (abstraction) for meshing or similar

operations
– Orchestrate the DSL to provide abstractions that can be handled by

an intermediary (e.g., ROSE-DTEC)
– Domain specific functionality should be in a human readable form

•  Top-to-bottom exascale computer
design is essential for efficient
design/operation of large-scale
experiments

–  Typical ITER discharge can be
estimated at 1M$

ITER, currently under construction
 in the South of France, aims to
demonstrate that fusion is an energy
source of the future

A variety of Fusion apps are required for building
and running the ITER

•  Fusion program has large suite of petascale
applications in use covering many spatial and
temporal scales

•  The fusion suite of parallel applications brings a
wide array of algorithms (implicit, nonlinear fluid,
PIC, continuum phase space)

ITER: $10B Reactor

10-10 10-2 104 100 10-8 10-6 10-4 102 ωLH
-1 Ωci

-1 τA Ωce
-1

Time in seconds for full-scale magnetic fusion interactions

Coupled code set diagram for magnetic fusion

Discharge time ~hour

Domain Specific Language approaches
can benefit the scientist

Data
Structures

Algorithms

Specialized
Source Code

Machine Code

Hardware
Information Environment

Meta-data

Data

Compiler Results Libraries

Scientist

Compiler

Metaprogramming Framework

Machine Code

Computer
Scientist

Scientist

Results

Data

metaprogram

Environment Hardware
Information

Scientific Program
Domain

Algorithms
Abstract

Code
Specialization

Hints

Domain-Specific
Active Libraries

Figures from Xpress Xstack project

-Scientist avoids worrying about parallelization, locality, and synchronization
-May really want: “Domain specific concepts” expressible in a variety of languages
-Common set of data abstractions, grid abstractions, functional abstractions

PIC as a driver for
Domain Specific Languages

•  "particle-in-cell" because plasma macro-quantities (number density,
current density, etc.) are assigned to simulation particles

•  Particles can live anywhere on the domain, but field and macro-
quantities are calculated only on the mesh points

•  Steps can lead to a domain specific language/concepts
– Integration of the equations of motion
– Interpolation of charge and current source terms to the field mesh
– Computation of the fields on mesh points (field solve)
– Interpolation of the fields from the mesh to the particle locations

•  PIC codes differ from Molecular Dynamics in use of fields on a grid
rather than direct binary interactions, goes from N2 to N

•  PIC codes are radically different from standard PDE solver codes
and show real promise for the exascale

Specific Components
of a DSL might include

• Data Structures/Abstractions
– Lagrangian particles: x, y, z, Vx, Vy, Vz, q, m, etc.
– Eulerian fields and sources: Jx, Jy, Jz, Ex, Ey, Ez,
– Bx, By, Bz on grids for electromagnetics;
– Rho, Phi (or V) for electrostatics

• Goal – don’t care where the particles live, e.g., in terms of the
parallel decomposition. Want to hide this from application
programmer

• Methods/Functional Abstractions
– Push particles
– Deposit (scatter) charge or currents from particles onto grid(s)
– Solve fields (Can we put this into a library call?)
– Gather forces from grids onto particles.

Questions for our DSL

• Data abstraction -- Need to ask what do you want
to do with the data –e.g., to push the particles.
User should not care about where the particles
live, what processor, etc. and need to conserve
movement of data between procs

• Grid abstraction -- fields have to live on a grid.
How much of grid in memory, and how is it
distributed? What do you need to pull from it?
Maybe don't want to replicate the grid on all
procs?

• Functional abstraction --can you generate the
move for a variety of different problems and let it
(DSL combined with compiler) generate the code
for this?

Why can it be difficult to define a PIC DSL

• Difference in layout of Lagrangian and/or Eulerian
quantities in memory

– not a hard barrier per say as layers of translations (copy) between data
structure can be added, but usually at the expense of runtime efficiency

• Legacy
• Competition
More evolved features like irregular gridding, AMR,

complex particle pushers, deposition schemes, or
field solvers, call for more sharing as a smaller
fraction of developers can effectively maintain
such codes.

basic data structures and operations are fairly simple and thus easily reproducible

δx
δy

Push	 par)cles)me	

Deposit	 charge/current	

Newton-‐Lorentz	

Par)cle-‐In-‐Cell	 workflow	

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Field	 solve	

Poisson/Maxwell	

Gather	 forces	

Vay – AFRD LBNL

δx
δy

Push	 par)cles)me	

Deposit	 charge/current	

Newton-‐Lorentz	

Par)cle-‐In-‐Cell	 workflow	

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Field	 solve	

Poisson/Maxwell	

Gather	 forces	 Deposit	 charge/current	

Vay – AFRD LBNL

δx
δy

Par)cle-‐In-‐Cell	 workflow	

Deposit	 charge/current	

Push	 par)cles)me	

Clouds of
particles

Newton-‐Lorentz	

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Field	 solve	

Poisson/Maxwell	

Gather	 forces	

Vay – AFRD LBNL

δx
δy

Par)cle-‐In-‐Cell	 workflow	

Deposit	 charge/current	

Push	 par)cles)me	

Gather	 forces	

Newton-‐Lorentz	

Field	 solve	

Poisson/Maxwell	

Clouds of
particles

Plasma=collec)on	 of	 interac)ng	
charged	 par)cles	

Absorp)on/Emission	

+	 absorp)on/emission	 (injec)on,	 loss	 at	 walls,	 secondary	 emission,	 ioniza)on,	 etc),	

poten)al/fields	

Filtering	 Filtering	

charge/currents	

+	 filtering	 (charge,currents	 and/or	 poten)al,fields).	

Add	 external	 forces	

+	 external	 forces	 (accelerator	 laQce	 elements),	

Vay – AFRD LBNL

!

dvi

dt
=
qi

mi

E
s
"
v
i
(t + #t /2) $ v

i
(t $ #t /2)

#t
=
qi

mi

E
s
(t)

!

dx
i

dt
"
x
i
(t + #t) $ x

i
(t)

#t
= v

i
(t + #t)

Particle Push step uses equations of motion. Here, we see a typical
Time-difference of eqns of motion: second order leap-frog scheme

Solution is explicit time advance:

DSL must allow for different types of push
steps according to physics modeled

!

v
i
(t + "t /2) = v

i
(t # "t /2) +

qi

mi

E
s
(x

i
(t))"t

!

x
i
(t + "t /2) = x

i
(t) + v

i
(t + "t /2)"t

Differences in Particle-In-Cell Codes

• Particle-in-Cell codes are used for a wide variety of
applications

• The family of codes known as GTC/GTS
implements a Particle method to solve the
Gyrokinetic Equations in Tokamaks and other
toroidal fusion devices

• Other particle codes are used to model sources for
tokamaks, fast ignition concepts for inertial fusion,
modeling heavy ion fusion beams

GTS (Gyrokinetic Tokamak Simulation)

• GTS particles are moved along the characteristics in phase
space

– Gyro-averaged Vlasov equation reduced to a simple
system of ordinary differential equations for particle push

• Straight-field-line magnetic coordinates in toroidal geometry
are employed (natural coordinates for tokamak)

• As before, grid replaces the direct binary interaction
between particles by accumulating the charge of those
particles on the grid at every time step and solving for the
electromagnetic field, which is then gathered back to the
particles’ positions

The DSL must allow for more complicated
particle movers

• Equations of motion for the particles along the
characteristics, slightly more complicated, same type of
calculation:

The DSL needs to also have a different
Charge Deposition methods

Classic PIC 4-Point Average GK
(due to W.W. Lee)

Charge Deposition Step (SCATTER operation)

GTC

Ethier PPPL

Solvers will also vary in the PIC/DSL (library call?)

• Can be done in real space (iterative solver)
– Four or eight-point average method

• Fourier solvers are used in some PIC codes

Exascale challenges that DSL can handle:
1D domain decomp. cache and memory

1D array of particles used to describe data abstraction at lowest
level, but they become randomly distributed during the simulation

Grid may be replicated between processes bad memory
footprint

Particle charge deposition on the grid leads to indirect addressing
in memory not cache friendly

PIC codes only part of the story in Fusion

•  Core Transport: GYRO/NEO
•  Collisional Edge Plasma: BOUT++
•  MHD: M3D-C1, NIMROD

•  Explicit PIC Modeling: GTS,
VORPAL

•  Wave heating, Wall interaction

Adapted from: Scott Kruger, Tech-X

Other opportunities: implicit MHD for
tokamaks

~ 8-9 variables per element (or mesh point) V, B, ρ, pe, pi
~ 102 toroidal planes (or Fourier modes)
 Large sparse matrix equations require low latency

Codes vary in:
•  single (big) matrix equation or several smaller equations

•  non-linearly implicit (NK), linearly implicit, or partial implicit

•  spectral, finite element, or finite differences in toroidal direction

ϕ

Options for DSL:
 Something similar to Liszt programming environment?
 Lower-level DSL to replace MPI calls
 Tokamak-based data structures

Thanks!

• Jean-Luc Vay LBNL
• Viktor Decyk UCLA
• Steve Jardin PPPL
• Stephane Ethier PPPL
• Rebecca Xuefei LBNL

