Best Practices for
Best Performance
on Edison

Zhenjgi Zhao
m | |YEARS NERSC User Services Group

} at the
PFOREFRONT

NUG 2014

Feb 6, 2014 o
US.DEPARTMENTOF | Officacf o M A

i ENEDRV ..

Agenda J:
* System Overview

 Compile time optimization

* Run time tuning options

* Node placements on Edison

* A couple of tips for Lustre 1/O

* Python applications at scale

* CCM usage

* Will not cover libraries, profiling tools.
* Interconnect will be covered by next talk

‘ U.S. DEPARTMENT OF Oﬁlce Of 9.
A eaeppy 0 2

System Overview

YEARS
at the
FOREFRONT
3 /—‘\‘ |ﬁ
U.S. DEPARTMENT OF Oﬁlce Of 3. freceee

iR ENEDARY ..

Edison at Glance

@

First Cray XC30

Intel vy Bridge 12-core, 2.4GHz
processors

64GB memory node

Aries interconnect with Dragonfly
topology for great scalability

Software environment similar to
Hopper

Performs 2.2x sustained
performance relative to Hopper

U.S. DEPARTMENT OF Office of

ENEDARV ..

‘ YE,

FORE

3 Lustre scratch file systems
configured as 2:2:3 for capacity
and bandwidth

Access to NERSC’s GPFS global
file system via DVS

12 x 512GB login nodes to
support visualization and
analytics

Ambient cooled for extreme
energy efficiency

<
A
rrrrrrr ‘"'|

BERKELEY LAB

Vital Statistics

@

I T ™

Cabinets

Compute Nodes

CPU Cores (Total / Per-node)

CPU Frequency (GHz)
Peak Flops (PF)

Memory (TB) (Total / Per-

node)

Memory (Stream) BW* (TB/s)
Memory BW/node* (GB/s)

File system(s)

Peak Bisection BW (TB/s)

Power (MW Linpack)

U.S. DEPARTMENT OF Office of

ENEDARV ..

68

6,384
152,408 / 24
2.1

1.29

217 / 32

331

52

2 PB @ 70 GB/s
5.1

2.9

28

5,192
124,608 / 24
2.4

2.4

333 /64

462.8

89

7.56 PB @ 180 GB/s
11

1.9

<
A
rrrrrrr ""|

BERKELEY LAB

YE.

FORE

Baseline performance L .

NERSC-6 Application Benchmarks

Concurrency 1024 2048 1024 2048 8192 1024
Streams/Core 2 2 2 2 1 1 1
Edison Time (s) 273.08 1,125.80 863.88 579.78 93545 446.36 173.51
HopperTime(s) 348 1389 1338 618 1901 921 353
Speedup? 1.3 1.2 1.5 1.1 2.0 2.1 2.0
| ssp |

Edison 258

Hopper 144

1) Speedup=Time(Hopper)/Time(Edison)
2) SSP stands for sustained system performance

: ~
GER), U-S: DEPARTMENT OF Offlce Of 6- f\‘ i

/ ‘ : “ : Dpv BERKELEY LAB

Compile time options

YEARS
at the
FOREFRONT
U.S. DEPARTMENT OF : "\‘ 0
o Office of _7-

iR ENEDARY ..

Compilers and NERSC recommended -
compiler optimization flags J:

Compiler Recommended
Optimization flags

Intel (default) -fast —no-ipo Comparable to the -02 optimization level,
Compiler wrappers add -xAVX

Cray Default High optimization;

Compiler wrappers add: -hcpu=ivybridge
GNU -Ofast No optimization;

Compiler wrappers add: -march=core-avx-i

Use the verbose option of the compiler wrappers to see the exact
compile/link options

ftn —v hello.f90

cc —v hello.c

CC —v hello.C

Module show craype-ivybridge

= A
U.S. DEPARTHENT OF | (Yffina of s rfr\‘ i

i ENEDRY .

y

t
E

Compilers and NERSC recommended
compiler optimization flags m-()

Relative Performance of Compilers on Edison

1.50 B Intel 14.0.1
[Cray 8.2.2
1.25 [GNU4.8.2
1.00
0.75
0.50
0.25
0.00
GTC2048 MILC8192 BTE1024 EPE1024 LUE1024 SPE1024
IMP1024 PAR1024 CGE1024 FTE1024 MGE1024 Mean
Compiler flags used: Benchmari
Intel: -fast —no-ipo
Cray: default
GNU: -Ofast Courtesy of Mike Stewart at NERSC
A ~U.S. DEPARTMENT OF ' OffICB Of _9.

Users are responsible to validate the codes —
to generate correct results .

* Intel compiler fails to catch the type mismatch in the example below,
and generates wrong results.
* Cray and GNU compilers do a better job by aborting the compilation

22217 @edison02:~> cat test1.f90 22217 @edison02:~> ftn test1.f90
program testl zz217 @edison02:~> ./a.out

real y y,a(y)= 1.000000 0.0000000E+00
y=1.0

print *, "y, a(y) =", y, a(y)

end

real*8 function a(z)
real*8 z

a=z

end

» Strictly follow language standards in your coding is highly recommended
as compilers follow the language standard more strictly now.

N
A
rrrrrrr "“l

. U.S. DEPARTMENT OF Ofﬂce Of -10-
@ EAMEDARY .. BERKELEY LA

Compiler flags that are helpful to generate 'nisc/

useful warnings

zz217 @edison02:~> ftn -warn all test1.f90
test1.f90(6): warning #6717: This name has not
been given an explicit type. [A]

y=a(x)

A

test1.f90(6): warning #6717: This name has not
been given an explicit type. [A]

y=a(x)

FAN

test1.f90(6): error #7977: The type of the function
reference does not match the type of the function
definition. [A]

y=a(x)

A

test1.f90(6): error #6633: The type of the actual
argument differs from the type of the dummy

argument. [X]
y=a(x)

N

compilation aborted for test1.f90 (code 1)

U.S. DEPARTMENT OF Omce Of S11-

i ENEDRV ..

YE.

FORE

Intel -warn all
Cray -m msg_Ivl
GNU -Wall

<
A
rrrrrrr ‘"'|

BERKELEY LAB

Rum time options

YEARS
at the
FOREFRONT
3 /—‘\‘ |ﬁ
U.S. DEPARTMENT OF Oﬁlce Of -12- freceee

iR ENEDARY ..

Edison compute node

YE.

at
FORE

Machine (54GB)

I NUMANode P#0 (32GB)

PCl18086:1d69

Socket P#0
I L3 (30MB) |
PC18086:1d02
I L2 (256KB) | I L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | I L2 (256KB) | I L2 (256KB) | I L2 (256KB) | I L2 (256KB) | I L2 (256KB) | I L2 (256KB) |
I L1d (32KB) | I L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) |
I L1i (32KB) | I L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | I L1i (32KB) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#S Core P#8 Core P#9 Core P#10 Core P#11 Core P#12 Core P#13
PU P#0 PU P#1 PU P#2 PU P#3 PU P#4 PU P#S PU P PU P#7 PU P PU P#9 PU P#10 PU P#11
PU P#24 PU P#25 PU P#26 PU P#27 PU P#28 PU P#29 PU P#30 PU P#31 PU P#32 PU P#33 PU P#34 PU P#35
| NUMANode P#1 (32GB)
Socket P#1
| L3 (30MB) |
I L2 (256KB) | I L2 (256KB) | | L2 (256KB) | | L2 (256KB) I | L2 (256KB) I | L2 (256KB) I | L2 256KB) | | L2 (256KB) | | L2 256KB) | | L2 (256KB) | | L2 (256KB) | I L2 (256KB) |
| L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) |
I L1i (32KB) | I L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) | I L1i (32KB) | I L1i (32KB) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#S Core P#8 Core P#9 Core P#10 Core P#11 Core P#12 Core P#13
PU P#12 PU P#13 PU P#14 PU P#15 PU P#16 PUP#17 PUP#18 PU P#19 PU P#20 PU P#21 PU P#22 PU P#23
PU P#36 PU P#37 PU P#38 PU P#39 PU P#40 PU P#41 PU P#42 PU P#43 PU P#a4 PU P#45 PU P#a6 PU P#47
Host: nid02803

Indexes: physical

Date: Tue Oct15 09:46:56 2013

Default process/thread affinity and default s
OMP_NUM_THREADS EZHZ0)-

Machine default: one-on-one process/thread to core binding

Compiler | Process/thread affinity Default
OMP_NUM_THREADS

Intel * Pure MPI codes, the process affinity works The number of cpu slots

fine if running on fully packed nodes available

e There are issues with thread affinity - all
threads from an MPI task are pined to a
single core where the MPI task is placed.

 An extra thread created by the Intel
OpenMP runtime interacts with the CLE
thread binding mechanism and causes
poor performance

Cray Works fine OMP_NUM_THREADS=1
GNU Works fine The number of cpu slots
available

<
A
rrrrrrr ""l

™ U.S. DEPARTMENT OF Oﬁlce Of -14-
(@ EAMEDARY .. BERKELEY LA

Process/thread binding with a binary
compiled with an Intel compiler

Export OMP_NUM_THREADS=6
aprun —n4 -N4 -S2 -d6 xthi.intel

Hello from rank O, thread 0, on nid02877. (core affinity =0
Hello from rank O, thread 1, on nid02877. (core affinity =0
Hello from rank O, thread 2, on nid02877. (core affinity =0
Hello from rank O, thread 3, on nid02877. (core affinity =0
Hello from rank O, thread 4, on nid02877. (core affinity =0

Hello from rank 1, thread 0, on nid02877. (core affinity = 6
Hello from rank 1, thread 1, on nid02877. (core affinity = 6
Hello from rank 1, thread 2, on nid02877. (core affinity = 6
Hello from rank 1, thread 3, on nid02877. (core affinity = 6
Hello from rank 1, thread 4, on nid02877. (core affinity = 6
Hello from rank 1, thread 5, on nid02877. (core affinity = 6)
Hello from rank 2, thread 0, on nid02877. (core affinity = 12)
Hello from rank 2, thread 1, on nid02877. (core affinity = 12)
Hello from rank 2, thread 2, on nid02877. (core affinity = 12)
Hello from rank 2, thread 3, on nid02877. (core affinity = 12)
Hello from rank 2, thread 4, on nid02877. (core affinity = 12)
Hello from rank 2, thread 5, on nid02877. (core affinity = 12)
Hello from rank 3, thread 0, on nid02877. (core affinity = 18)
Hello from rank 3, thread 1, on nid02877. (core affinity = 18)
Hello from rank 3, thread 2, on nid02877. (core affinity = 18)
Hello from rank 3, thread 3, on nid02877. (core affinity = 18)
Hello from rank 3, thread 4, on nid02877. (core affinity = 18)
| Hello from rank 3, thread 5, on nid02877. (core affinity = 18)

)
)
)
)
)
Hello from rank O, thread 5, on nid02877. (core affinity = 0)
)
)
)
)
)

‘ YE,
at

FORE

QE performance slowdown from a bad
process/thread affinity

2775.1
154.4¢5 5 167.5 L 83.75
& Hopper
aprun-n48 |aprun-n 24 -N 12aprun-n 24 -N 12 Edison
-S6-d2 -S6-d2-cc
numa_node
1 2 2

Aprun command line/OMP_NUM_THREADS

Aprun’s =S option need to be used to evenly

distribute MPI tasks to the two NUMA nodes b &

aprun -n 12 -N12 xthi.intel

Hello from rank 0, thread 0, on nid06119. (core affinity = 0)
Hello from rank 1, thread 0, on nid06119. (core affinity = 1)
Hello from rank 2, thread 0, on nid06119. (core affinity = 2)
Hello from rank 3, thread 0, on nid06119. (core affinity = 3)
Hello from rank 4, thread 0, on nid06119. (core affinity = 4)
Hello from rank 5, thread 0, on nid06119. (core affinity = 5)
Hello from rank 6, thread 0, on nid06119. (core affinity = 6)
Hello from rank 7, thread 0, on nid06119. (core affinity = 7)
Hello from rank 8, thread 0, on nid06119. (core affinity = 8)
Hello from rank 9, thread 0, on nid06119. (core affinity = 9)

Hello from rank 10, thread 0, on nid06119. (core affinity = 10)
Hello from rank 11, thread 0, on nid06119. (core affinity = 11)

aprun -n 12 -N12 -S6 xthi.intel

Hello from rank O, thread 0, on nid06119. (core affinity = 0)
Hello from rank 1, thread 0, on nid06119. (core affinity = 1)
Hello from rank 2, thread 0, on nid06119. (core affinity = 2)
Hello from rank 3, thread 0, on nid06119. (core affinity = 3)
Hello from rank 4, thread 0, on nid06119. (core affinity = 4)
Hello from rank 5, thread 0, on nid06119. (core affinity = 5)
Hello from rank 6, thread 0, on nid06119. (core affinity = 12)
Hello from rank 7, thread 0, on nid06119. (core affinity = 13)
Hello from rank 8, thread 0, on nid06119. (core affinity = 14)
Hello from rank 9, thread 0, on nid06119. (core affinity = 15)
Hello from rank 10, thread 0, on nid06119. (core affinity = 16)
Hello from rank 11, thread 0, on nid06119. (core affinity = 17)

i ENEwr=v

[- PR T

Socket 1 Socket O
NUMA node 1 NUMA node 0
I —
DDR3 Core Core Core Core Core Core DDR3
20/44 19/43 18/42 8/32 7/31 6/30
DDR3 | edan] el e])] s | ppr3
Core Core Core Core Core Core
23/47 22/46 21/45 11/35 10/34 9/33
NT() = A
2R U.S. DEPAR f\‘)

N | : =
m : A YE.

Manipulate process/thread affinity k

° _S’

-sn, -sl, -cc, and -ss options control how your application

uses the NUMA nodes.

-n Number of MPI tasks.
-N (Optional) Number of MPI tasks per Edison Node. Default is 24.

-S (Optional) Number of tasks per NUMA node. Values can be 1-12;
default 12

-sn (Optional) Number of NUMA nodes to use per Edison node. Values
can be 1-2; default 2

-ss (Optional) Demands strict memory containment per NUMA node.
The default is the opposite - to allow remote NUMA node memory
access.

-cc (Optional) Controls how tasks are bound to cores and NUMA
nodes. The default setting on Edison is -cc cpu which restricts each
task to run on a specific core.

* These options are important on Edison if you use OpenMP
or if you don't fully populate the Edison nodes.

http://portal.nersc.gov/project/training/EdisonPerformance2013/affinity

U.S. DEPARTMENT OF Ofﬂce Of _17-

N
A
rrrrrrr "“l

[@enepny 0

Recommended aprun options to assure
appropriate process/thread affinity

* Running on unpacked nodes
#PBS —| mppwidth=48 #2 nodes
aprun—n 24 -N 12 -S 6 ./a.out

* Running with OpenMP threads

#for threads per task <= 12

setenv OMP_NUM_THREADS 12
#for binaries compiled with Intel compilers
aprun—-n4-N2-S1-d 12 —cc numa_node ./a.out
for binaries compiled with GNU or Cray compilers.
aprun-n4-N2-S1-d12 ./a.out

#for threads per task>12 and <= 24
export OMP_NUM_THREADS=24
#for binaries compiled with Intel compilers
aprun—n 2 -N1-d 24 —cc none ./a.out
for binaries compiled with GNU or Cray compilers.
aprun—n2-N1-d 24 ./a.out

) U.S. DEPARTMENT OF Offlce Of _)
@ enepny "0 18

<
A
rrrrrrr ""|

BERKELEY LAB

YE.

FORE

N | : =
m : A YE.

Hyper-Threading (HT) on Edison £

)

U.S. DEPARTMENT OF OffICe Of -19-

ENEDARV —
- N Wiy

Cray compute nodes booted with Hyper-Threads always ON
Users can choose to run with one or two tasks/threads per core

Use aprun —j2 option to use Hyper-threading
— aprun—jl1-n ... Single Stream mode, one rank/thread per core
— aprun—j2-n... Dual Stream mode, two ranks/threads per core
— Default is Single Stream mode
Dual Stream is often better if
— throughput is more important
— your code scales extremely well
— When running at relatively low core counts
Single Stream is often better if ...
— single job performance matters more
— code does not scale well

NERSC-6 SSP applications 4 out of 7 ran with HT

However, HT may hurt code performance, use with caution.

https://www.nersc.gov/users/computational-systems/edison/performance-and-
optimization/hyper-threading/

N
A
rrrrrrr "“l

Core specialization L.

e System ‘noise’ on compute nodes may significantly degrade scalability
for some applications
* Core Specialization can mitigate this problem
— M core(s)/cpu(s) per node will be dedicated for system work (service core)

— As many system interrupts as possible will be forced to execute on the service
core

— The application will not run on the service cpus
* Use aprun -r to get core specialization
— aprun —r[1-8] —n 100 a.out
— Highest numbered cpus will be used
— Starts with cpu 48 on lvy Bridge e nodes
— Independent of aprun —j setting
* Apcount provided to compute total number of cores required

* Tests with NERSC-6 benchmark codes shows that the impact of core
specialization is at best negligible and often negative.

https://www.nersc.gov/users/computational-systems/edison/performance-and-
optimization/core-specialization/

N
A
rrrrrrr "“l

_ U.S. DEPARTMENT OF Omce Of 220-
fAcaepey "0

YE.

FORE

Hugepages may improv r
gepages may improve your code = .
performance i

* Hugepages may improve memory performance for common access
patterns on large data sets.
* The Aries may perform better with HUGE pages than with 4K pages.
— HUGE pages use less Aries resources than 4k pages

— More important when remotely access large percentage of nodes memory in an
irregular manner

 May get “cannot run errors” if there are not enough Hugepages memory
available (memory page fragmentation)
* Use modules to change default page sizes (man intro_hugepages)
— craype-hugepages2M, craype-hugepages4M, craype-hugepages8M, craype-

hugepages16M, craype-hugepages32M, craype-hugepages64M, craype-
hugepages128M,craype-hugepages256M,craype-hugepages512M

* Users are recommended to experiment with hugepages
* This feature is implemented at link and run time, to use
— Module load craype-hugepages2M
— CC-0my_app my_app.c
— Then run with the same hugepages module loaded

N
A
rrrrrrr "“l

_ U.S. DEPARTMENT OF Omce Of 291
fAcaepey "0

Hugepages may improve your code

L YE.
performance =
Maestro run time comparison with/without using
hugepages
1200 & Without using Hugepabes
1150 & Uisng Huagepages
1100
% 1050
ry
=
= 1000 — —
950 |—
850 N T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11
Runs

Mastro run time improves by 11% by average when using hugepage memory
compared to not using the hugepages.

;j;?f"‘\"""-’-!_;\,\v U.S. DEPARTMENT OF Omce of -22-
{7 caEDRY [

tary

YEARS

at the
FOREFRONT

U.S. DEPARTMENT OF | (Yffia f

iR ENEDARY ..

-23-

~

frreeerer

A
|

NERSC-6 application benchmark production s/

and dedicated time comparison

Application | CAM | GAMESS | _GTC_IMPACT-T MAESTRO|_MILC | PARATEC

Concurrency 240 1024 2048 1024 2048 8192
Streams/Core 2 2 2 2 1 1
Dedicated

Time (s) 273.08 1,125.80 863.88 579.78 935.45 446.36
Production

Time(s) 277.07 1,218.17 871.06 597.25 996.70 482.87
Slowdown?) 1.5% 8.2% 0.8% 3.0% 6.5% 8.2%

1) Slowdown=Time(Production)/Time(Dedicated)

U.S. DEPARTMENT OF Ofﬂce Of 24 -

i ENEDRY .

1024
1

173.51

198.45
14.4%

<
A
rrrrrrr ""l

YE.

FORE

Edison Gabinet Floor Layout

Edison cabinet groups:

Group O:
Group 1:
Group 2:
Group 3:
Group 4.

C0-0 C1-0
C2-0C3-0
C4-0 C5-0
C6-0 C7-0
CO0-1C1-1

C2-1C3-1
C4-1C5-1
C6-1C7-1
Group 8: CO-2 C1-2
Group 9: C2-2 C3-2
Group 10: C4-2 C5-2
Group 11: C6-2 C7-2

Group 5:
Group 6:
Group 7:

Group 14: C4-3 C5-3
Group 15: C6-3 C7-3

Note:

>

Y]
N
O i IR
O CASCADE o °
3 pisk/ |/ | AC BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE
| - p o T ||
I IR = IRl
o (e} o (o]
2 BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE
4 o o o o o o @© o o O
S El IR =0 =0 S El
o (e} o (o]
1 BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE |BLWR| CASCADE CASCADEW
4 o o o o™ o o @©m o o O
S IR = IR .
o (e} o (o]
0 BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE |BLWR| CASCADE | CASCADE |BLWR| CASCADE CASCADEW .
i m 1 o m 0 n . m L o m 0
0] 1 2 3 4 5 6 7

X ' Edison has 14 cabinet groups, connected with 546 optical cables (Rank 3)
UGS b R Pl = W

[o RO

The groups 12, and 13 are
missing in our layout

Use cnselect x_coord.eq.3
to choose the node list in
the cabinet group 3

X

~

frreeerer

Node placements and run time

MAESTRO Run time

& Dedicated run with same 86 nodes in one cabinet group i Dedicated, one job in each cabinet group, 14 jobs simultaneously

Production runn but one job in each cabine, 7 jobs simultaneously

1060
1050
1040
1030
1020
1010
1000

Time (s)

990
980
970
960

950

\% U.S. DEPARTMENT OF

ENEDRV

~

Office of 2. recee)f

YE.

at
FORE

Node placements and run time

Maestro Run Time

[One job in one cabinet --p-state 2.4GHz i one job in each cabinet group with --p-state=2.4GHz

One job in one cabinet & one job in each cabinet group

Q80 e e e

960 +HHt+++r++rt+1++r+r+4+4++v+v+vttv 40014+ 11+t

940 rrtrrtrrtrri

1 3 5 7 9 11131517 19 21 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83
Runs

~

D U.S. DEPARTMENT OF | Office of 7. ’\| .ﬁ‘
iENEDRY ..

|/0 performance

YEARS
at the
FOREFRONT
3 /—‘\‘ |ﬁ
U.S. DEPARTMENT OF Oﬁlce Of 228 - freceee

iR ENEDARY ..

Edison has three Lustre file systems L& J:

Size Aggregate Peak # of # of Default
(PB) Performance (GB/s) 0SSs OSTs | stripe count

SSCRATCH

/scratchl

SSCRATCH 2.1 48 12 24 96 2
/scratch?2

/scratch3 3.2 72 18 24 144 8

https://www.nersc.gov/users/computational-systems/edison/file-storage-and-i-o/edison-
scratch3-directory-request-form/

Users are encouraged to experiment with Lustre stripe count, size to obtain a good I/
O performance for their workloads, with a general guidance that a larger stripe count
may increase bandwidth but subject more contention, and vise versa.

Ifs setstripe
Ifs getstripe

man Ifs .
ZER U.S. DEPARTMENT OF Offlce Of _29. f\‘ i

,‘ ‘ : “ : Dpv BERKELEY LAB

Many factors may affect the 1/0 performance s/
of your jobs -

e Contentions for the resources with other users
 Hardware failure or downgraded performance
* File system fragmentations

* Bad user practices

— A user used fixed offset, and stripecount 1 and filled up
one of the OSTs a couple of times.

— Using too large stripe counts for small file I/O inviting
contention with other users unnecessarily and get widely
varying I/O time

. U.S. DEPARTMENT OF Ofﬂce Of -30-
fAcaepey "0

YE.
at

YEARS

at the
FOREFRONT

~

Offlce Of -31 - ”/,—,h‘ |

[o RO

DLFM method effectively reduces python
application startup time

at

FORE
WARP startup time using DLFM on Edison
350]
: i Loading time & Import Time Total Startup Time
300]
250
- 200
1
E
= _
150]
100 ' —
" ‘ -
0 ; . e e . J— . II|447 . IILIIL____T__IIIII
48 1200 2400 4800 9600 19200 38400

76800 96000
Number of MPI tasks

120000

Warp startup time is ~1 minutes at 38.4K cores!
;;?:5<9g:; US. DEPARTMENT OF (Yffina of
A :“:Dﬂv ' PRUERR

-32 -

Using DLFM module for large scale python =
applications ;

* DLFM, developed by Mike Davis at Cray, Inc, is a library
tool to reduce the python application startup time at
large scale.

 To access, do module load difm

 Compile your code using the python available via the
difm module

* Run with two steps

— Pilot run with small node count, eg., using 2 nodes collect the
needed shared libraries and python modules imported

— Real run with large number of cores, only one core read in the
shared libraries and python imported modules

e More info is in the DLFM website

. U.S. DEPARTMENT OF Omce Of 233
fAcaepey "0

YEARS

at the
FOREFRONT

~

Offlce Of -34 - ”/,—,h‘ |

[o RO

Cluster compatibility mode (CCM) EZ ()

 CCM is available on Edison to run TCP/IP applications or ISV
(Independent Software Vendor) applications.

* GO09 and Wien2k run via CCM because they need ssh to
compute nodes

* Running g09 over multiple nodes are not recommended due
to a performance issue with CCM and also g09’s relatively
low parallel scalability.

https://www.nersc.gov/users/computational-systems/edison/cluster-compatibility-mode/

. U.S. DEPARTMENT OF Ofﬂce Of _35.
fAcaepey "0

YEARS

at the
FOREFRONT

Thank you.

o U.S. DEPARTMENT OF Office of o

ienepny

