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Abstract—Edison is NERSC's newest petascale Cray XC30 
system. Edison has three Lustre file systems deploying the 
Cray Sonexion storage systems. During the Edison acceptance 
test period, we measured the system I/O performance on a 
dedicated system with the IOR benchmark code from the 
NERSC-6 benchmark suite. After the system entered 
production, we observed a significant I/O performance 
degradation for some tests even on a dedicated system. While 
some performance change is expected due to file system 
fragmentation and system software and hardware changes, 
some of the performance degradation was more than expected.      
In this paper, we analyze the I/O performance we observed on 
Edison, focusing on understanding the performance change 
over time. We will also present what we have done to resolve 
the major performance issue. Ultimately, we want to detect 
and monitor the I/O performance issues proactively, to 
effectively mitigate I/O performance variance on a production 
system.  

I/O performance; IOR; Lustre; Sonexion; OSTs; I/O 
bandwidth; read rate 

I.  INTRODUCTION 
Edison [1], a Cray XC30 system, is NERSC's newest 

supercomputer, with a peak performance of 2.57 peta-flops. 
It features Intel’s dual-socket 12-core Ivy Bridge 
processors; Cray’s Aries interconnect with Dragonfly 
topology, and the Cray Sonexion storage system. Edison has 
three Lustre file systems providing 7.5 PB of online disk 
space with 168 GB/s peak IO bandwidth with a total of 336 
OSTs. 

As part of the acceptance tests, at the end of August 
2013, we performed Lustre file system performance tests on 
a dedicated system using the IOR benchmark code from the 
NERSC-6 benchmark suite [2]. The IOR benchmark tests 
included the Posix file per process and MPI-IO shared file 
I/O tests with different access patterns that were designed to 
represent the NERSC I/O workload. About four months 
later (mid December, 2013), we ran the exact same set of 
I/O tests in dedicated mode again after the system went 
through several major hardware and software upgrades. We 
observed significant I/O performance changes. While most 
of the performance changes were under +/- 20% relative to 
the August results, some of the tests, especially MPI-IO 
shared file read tests, were more than 70% slower or faster 
than the August results. We noticed that the MPI-IO tests 
with larger transfer sizes ran about 70% faster, but that 
MPI-IO with a small transfer size was slower by more than 

70%. While the increased performance was not a concern, 
the 70% decrease in performance of the MPI-IO with a 
transfer size of 10k (denoted as MPI-IO 10k hereafter; this 
is one of the tests included in the NERSC-6 benchmark 
suite) caught our attention. While some performance 
variation, perhaps as much as +/- 20%, may be expected due 
to system hardware and software changes and from file 
system fragmentation due the production I/O load, the 70% 
performance degradation was considered to be very serious 
and in need of further investigation. 

From the Lustre file system point of view, the MPI-IO 
10k test is not optimal because of the relatively small 
transfer size; in general, users should avoid such sizes. 
However, as shown by data collected by Darshan, an I/O 
characterization tool [3], about 50% of all I/O operations on 
Hopper, NERSC’s large Cray XE6 system were unaligned, 
or small I/O operations with transfer sizes that are much 
smaller than the Lustre block size [4]. Understanding the 
performance variance of the MPI-IO 10k test after system 
changes, therefore, has practical meaning to NERSC users. 
In this paper we will present what we have done to 
understand this performance issue, and what we have 
learned from our debugging efforts. 

Ultimately, we want to detect and monitor I/O 
performance issues proactively to effectively mitigate I/O 
performance variance on a production system, which can be 
very disruptive to user production workflows. While I/O 
performance variation from contention for the limited I/O 
resources is not easily avoidable under the current system 
settings and configuration, there are still some steps that can 
be taken to mitigate unnecessary contention by promoting 
good I/O practices. Moreover, we observed that when users 
report huge I/O time variations at NERSC, it is often when 
the file systems misbehave or perform poorly for a reason 
that requires further investigation. Therefore, it is critical to 
be able to monitor the file system health and performance. 
We will discuss what monitoring tools are in place on 
Edison, and will describe several efforts to detect and 
mitigate I/O performance variation. 

II. THREE LUSTRE FILE SYSTEMS ON EDISON 

Edison has three Lustre scratch file systems built on the 
Cray Sonexion 1600 storage system [5], configured in the 
ratio 2:2:3 for capacity and bandwidth. Table 1 shows the 
configuration of the three Lustre file systems. The first two 
file systems (FS1 and FS2) have 2.16 PB disk space and 48 
GB/s aggregate peak I/O bandwidth with 12 Scalable 



Storage Units (SSUs) and 96 OSTs each; the third file 
system (FS3) has 3.2 PB disk space and 72 GB/s peak I/O 
bandwidth with 18 SSUs and 144 OSTs. Each OST contains 
8 data disks and 2 parity disks (dual-ported 3.5 inch 3TB 
NL-SAS 7,200 RPM disk drives) configured as a RAID 6 
array; two dual-ported 3.5 inch 100GB SSDs drives, which 
are configured as a shared RAID 1 array, and are partitioned 
and used for the MDRAID and the file system journals; and 
two spare 3TB NL-SAS disk drives. 

The default Lustre stripe size is 1MB and the default 
stripe counts are 2, 2, and 8 on the three file systems, 
respectively. Users are distributed to the first two file 
systems evenly in a round-robin fashion. The third file 
system is reserved for users who need large I/O bandwidth, 
and access is granted by request. Therefore, one may expect 
a different I/O usage pattern on FS3 while a similar I/O load 
and usage pattern may be expected on FS1 and FS2. These 
file systems are subject to purging. Files that are older than 
12 weeks (defined by last access time) are removed. 

III. BENCHMARK CODES AND TESTS 

A. IOR 
IOR [6] is a commonly used I/O benchmark program for 

testing performance of parallel file system. It provides 
multiple interfaces and options for access patterns that can 
be used to produce a wide variety of I/O workloads. IOR 
was one of the codes included in the NERSC-6 benchmark 
suite that resulted in the Hopper acquisition and was also 
used for Edison procurement that is internally coded as 
NERSC-7 project. The IOR version we used was 2.10.0. 

B. IOBUF Library  
IOBUF [7] library is an I/O buffering library provided by 

Cray. It can reduce the I/O wait time for programs that read 
or write large files sequentially. IOBUF intercepts I/O 
system calls such as READ and OPEN, and adds a layer of 
buffering, thus improving program performance by enabling 
asynchronous prefetching and caching of file data. IOBUF 
was used in some of our IOR benchmark tests. The behavior 
of IOBUF can be controlled by a number of environment 
variables. The environment variable, IOBUF_PARAMS, can 
be used to control the buffer sizes and files to selectively 
apply buffering. The IOBUF versions we used were 2.04 and 
2.05. 

C. Instrumented IOR 
The standard IOR benchmark reports net read and write 

rates at the end of the runs. To debug the I/O performance 

issue, we used an instrumented version of IOR [8] in our 
debugging runs, which reports the “instantaneous” 
bandwidth during a benchmark run. The instantaneous I/O 
bandwidth was obtained by summing up the data moved per 
second by each processor core. The instrumented IOR was 
based on IOR 2.10.3.   

D. IOR Benchmark Tests 
 We used the IOR tests with different interfaces and I/O 

access patterns that were designed to represent the NERSC 
I/O workload. The tests include Posix file per process and 
MPI-IO shared file I/Os with transfer sizes of 10,000, 
1,000,000 and 1,048,576 bytes using a number of processor 
cores that are proportional to the number of available OSTs 
in each file system. Table 2 shows these tests in more detail. 
For simplicity, we will use the short names, PosixFpP 10k, 
PosixFpP 1m1, PosixFpP 1m2, MPI-IO 10k, MPI-IO 1m1, 
and MPI-IO 1m2 to denote these benchmark tests hereafter. 
In all these tests, each node writes or reads 96 GB data (4 GB 
per core) either from a single file or multiple files, which is 
1.5 times the available per-node memory, 64 GB. This is to 
eliminate cache effects. As one of the official run rules 
defined in the NERSC-6 benchmark suite (also by IOR 
default), in all of the IOR benchmark tests mentioned above, 
the IOR program does the write and the read tests within a 
single aprun invocation. It opens the file(s), writes, then 
closes the file(s); and reopens the file(s), reads, and closes 
the file(s) again. To defeat buffer caching for read after 
write, we made each task read its neighbor’s data from 
different nodes (reorderTasks=1). The IOR program reports 
the net write and read rates at the end of the run. We will 
often refer to the read test in this standard benchmark run as 
the “read-after-write” test. There are many flexible ways to 
run IOR. For example, in some of the investigations, we 
made the IOR program read existing files that were written 
by the previous standard benchmark runs. We will refer the 
read test in this case (read alone) as the “re-read” test 
throughout the paper.  

To improve I/O performance, we used the IOBUF 
libraries with some of the tests (See Table 2), especially with 
the MPI-IO 10k test. We disabled the collective buffering 
(CB) in the MPI-IO 10k test to use the IOBUF library, which 
improves this specific test performance significantly. Since 
the IOBUF library provides a buffer to aggregate small 
transfers to a bigger size before the file system actually 
“sees” any of these file operations, the MPI-IO 10k test + 
IOBUF with 1,000,000 byte buffer is equivalent to the MPI-
IO 1m1 test with collective buffering (CB) disabled. 
Therefore, we ran the MPI-IO 1m1 test without CB in some 
cases when investigating the MPI-IO 10k performance issue 
for simplicity. 

IV. I/O PERFORMANCE ON EDISON  
Edison was delivered to NERSC at the end of June 2013. 

About one month after installation, site integration, 
configuration and staff tests, we enabled the first batch of 
early users. At the end of August we enabled all 
(approximately 2,000) NERSC users. We carried out the 
official I/O acceptance tests on Aug. 23, 2013 using a 

Table 1. The configuration of the three Lustre file systems on Edison 
 

 Size 
(PB) 

Aggr. Peak I/O 
Bandwidth (GB/s) 

# of 
SSUs 

# of 
OSSs 

# of 
OSTs 

FS1 or /scratch1 2.1 48 12 24 96 

FS2 or /scratch2 2.1 48 12 24 96 

FS3 or /scratch3 3.2 72 18 36 144 

 



dedicated system. Fig. 1 shows a part of the IOR 
performance results from the acceptance tests. Each test was 
run two or three times. Among the three file systems, FS2 
(green symbols in Fig. 1) and FS3 (orange) were almost 
clean (1% full), while FS1 (blue) was about 30% full. There 
were 72, 72, and 144 OSTs in the three file systems, 
respectively, at that time. (As we will describe in the next 
section, three more SSUs were added to each of the first two 
file systems after the August acceptance tests, so that today 
Edison has 96, 96, 144 OSTs in its three file systems, 
respectively). Fig. 2 (a) shows three representative IOR tests 
selected from Fig. 1, but instead of showing the bandwidth 
for the whole file system, we show bandwidth per SSU.  Fig. 

2 (b) shows the coefficient of variation (COV) of the I/O 
rates for the three selected tests. 

We can see that with the two clean file systems, FS2 and 
FS3, IOR achieved aggregate bandwidths of about 36 GB/s 
and 72 GB/s, respectively, which are 100% of the theoretical 
peaks. With 30% full FS1, IOR achieved around 80% of the 
peak bandwidth. We can see that the I/O bandwidth scales 

 
 

Figure 1. The IOR performance results observed in August 2013 on 
Edison’s three file systems. Solid triangles and x’s denote the write 

and read rates. The blue, green and orange symbols are for FS1, FS2, 
and FS3, respectively.   

 
 

 
 

Figure 2. (a) The bandwidth per SSU obtained with three selected IOR 
benchmark tests with both Posix file per process and MPI-IO shared 

file tests on the three Lustre file systems on Edison.  
 

 
 

Figure 2. (b) The Coefficient of Variation (COV) of the read and write 
rates for the three selected IOR benchmark tests. 

 

Table 2. IOR benchmark tests run on Edison. Note the number of cores 
used and the size of the files are for the upgraded file systems, which 
have 96, 96 and 144 OSTs in FS1, FS2, and FS3, respectively. FS1 and 
FS2 had 72 OSTs each before the upgrade. The number of cores and the 
size of the files used in the acceptance tests were 75% of the values 
shown in this table for FS1 and FS2. 
 

Transfer Size 10,000 
bytes 

1,000,000 
bytes 

1,048,576 
bytes 

Posix File 
Per Processor 

Test Name PosixFpP 
10k 

PosixFpP 
1m1 

PosixFpP 
1m2 

# of Nodes/Cores 
Used 

FS1: 32/768; FS2: 32/768; 
FS3: 48/1152 

Aggregate File Size FS1: 3.1TB; FS2: 3.1TB; FS3: 4.6TB 

# of Files (4GB each) FS1: 768; FS2: 768; FS3: 1152 
IOBUF_PARAMS count=2:size=32m:direct 

Lustre Striping       lfs setstripe -s 1m -c 1 

Other IOR options 

     useO_DIRECT=0 
     reorderTasks=1 
     fsync=1 
     intraTestBarriers=1 

MPI-IO 
Shared File 

 

Test Name  MPI-IO 
10k 

MPI-IO 
1m1 

MPI-IO 
1m2 

# of Nodes/Cores 
Used 

FS1: 96/2304; FS2: 96/2304; 
FS3: 144/4608 

Aggregate File Size FS1: 9.2TB; FS2: 9.2TB; 
FS3: 13.8 TB 

# of Files 1 

IOBUF_PARAMS 

For MPI-IO 10k: 
  count=1:size=1000000: 
  prefetch=0 

For MPI-IO 1m1 and 1m2: 
  IOBUF was not used 

MPI-IO Hints 
 

For MPI-IO 10k: 
  cb_romio_read=disable 
  cb_romio_write=disable 

For MPI-IO 1m1 and 1m2: 
  cb_romio_read=enable 
  cb_romio_write=enable 

Lustre Striping 

For MPI-IO 10k: 
      lfs setstripe -s 1m -c -1 
For MPI-IO 1m1 and 1m2: 
     lfs setstripe -s 4m -c -1 

Other IOR options 

     collective=1 
     reorderTasks=1 
     fsync=1 
     intraTestBarriers=1 

 



almost linearly up to 144 OSTs, which is the largest number 
of OSTs available in a single Lustre file system on Edison. 
The maximum bandwidths per SSU were about 4000 MB/s 
for write and slightly less for read (see Fig. 2 (a) PosixFpP 
1m2 tests on FS2 and FS3). It should be noted that all our 
tests are “fixed data” IOR runs, which usually report lower 
bandwidths than the “fixed time” IOR tests [8]. 

 We can also see that the performance variation from run 
to run was up to 40% for the read tests on FS1 even under 
dedicated conditions, while it was under 10% on the other 
two clean file systems. Since FS1 was 30% full, the large 
performance variation may be related to file system 
fragmentation and physical positions of the files relative to 
the slower or faster end of the disk drive. File fragmentation 
usually affects reads more than writes. As noted in [8], the 
physical positions of a file could result in 15-30% of 
performance variation even on a dedicated file system. 
However, it was not proven that fragmentation and physical 
positions of files alone had contributed for the 40% variation 
in our case. We do not exclude the possibility of FS1 being 
affected by some undetected undergoing file system events 
at that time as well. Unfortunately, we did not save the 
original files (multi-TB in size) to investigate this further. 

V. I/O PERFORMANCE CHANGES OVER TIME  
 After the acceptance tests, Edison went through several 

major hardware and software upgrades. See Table 3 for 
details. Both FS1 and FS2 were expanded with three more 
SSUs (24 OSTs). There were multiple upgrades of the Cray 
Linux Environment (CLE) and Lustre client, as well as the 

Cray Developer Toolkit (CDT), which contains the MPI and 
IOBUF libraries, and compilers used by IOR. In addition, we 
opened up all the three file systems to users, so that FS2 and 
FS3 became loaded with user production I/O files. Since we 
enforce purging, the file system usage was under 30% on all 
the three file systems [See Fig. 3]. There were about 1,000 
active users on each of the first two file systems and fewer 
than 40 active users (non-support staff) on FS3 as of now. 

Due to all the changes mentioned above, we ran the same 
set of the IOR tests again last December in dedicated mode. 
Fig. 4 shows the I/O performance change we observed in 
December relative to the August results. We can see that 
most of the performance changes were under +/- 20% 
relative to the August results. However, some of the tests, 
especially MPI-IO shared file read tests, were more than 
70% slower or faster than the August results. The two MPI-
IO read tests with relatively large transfer sizes, MPI-IO 1m1 
and MPI-IO 1m2, were faster by 70%, while the MPI-IO 10k 
read test, which has a relatively small transfer size, was 
slower by more than 70% across all three file systems. In 
what follows, we attempt to uncover the basis for this 
change. 

A. Debugging the MPI-IO 10k performance slowdown 
To understand this performance degradation, we took a 

few dedicated system times between December 2013 and 
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Figure 4. The IOR performance tests on December 17, 2013 on 
dedicated Edison system. The performance data was shown is relative 

to the last August results.   

Table 3. Edison file system expansions and CLE /Lustre upgrades. 
  
Date FS1 

(# of OSTs) 
FS2 

(# of OSTs) 
FS3 

(# of OSTs) 
CLE/Lustre 

Versions 
Aug 1, 2013 72  72  144  5.0.UP03/2.3.0 

Dec 6, 2013    5.1.UP00/2.4.0 

Dec 16,2013  96    

Jan 17, 2014 96     

Mar 11, 2014    5.1.UP01/2.4.1 

 
 

 
 
Figure 3. This figure shows the Lustre file system usage on Edison. The third file system has a larger average file size compared to the first two file systems.  



March 2014. We ran the MPI-IO 10k tests on the dedicated 
system a few more times, and conducted a series of 
debugging runs. We started by confirming that this 
performance slowdown is indeed a persistent issue. (See the 
READ tests in Fig. 5).  We looked at a number of issues; six 
of them are described below. 

1) File Fragmentation and physical positions on the 
disk drive: As we have mentioned earlier, file fragmentation 
and physical positions of the files on the disk drives could 
result in significant performance variation, especially for 
read tests. However, these don’t seem to account for the 
persistent 70% performance slowdown. As mentioned 
earlier, the write and read rates in a standard IOR 
benchmark run (read-after-write) were obtained in a single 
aprun invocation. We discovered that when running the read 
test alone (re-read), i.e., making the IOR program read an 
existing file that was generated by a previous MPI-IO 10k 
standard run, the read rates were consistently much 
improved compared to the read-after-write test, and 
sometimes they were even comparable to the August results. 
See Fig. 5 for the RE-READ tests. This rules out the file 
fragmentation and physical position on the disk drive as the 
cause of the 70% slowdown, since the read-after-write and 
the re-read tests both read the same file and so have the 
same file fragmentation and physical position.  

2) Programming environment changes: When we run 
benchmark tests, we usually compile codes with the current 
default software versions. However, since we fortuitously 
retained some previous binaries, we had the opportunity to 
compare performance from tests compiled under CDT 1.10 
and CDT 1.06. Fig. 6 shows the read rates of the read-after-
write tests for the MPI-IO 10k test that were run on different 
dates. The August acceptance tests used the binary built on 
7/19 under CDT 1.06. Note that the last two runs in the 
figure (purple and orange), were the runs on 12/30 with the 
two binaries built on 12/15 and 7/19, respectively. They 
were very similar, which suggests that none of the Intel 
compiler, MPICH, and IOBUF library changes were the 
cause of the 70% MPI-IO 10k read slowdown.  

3) Characteristic performance profile of the MPI-IO 
10k read test: Debugging an I/O performance problem 
observed in the dedicated tests is difficult on a production 
system because there is no way to separate performance 
variation due to contention from other users. However, since 
Edison is a petascale system that delivers 3.2 million core-
hours to users daily, it was very difficult for us to obtain 
significant dedicated time. (Even on a dedicated system, I/O 
performance could easily vary by about 40% from run to 
run.) In general, one can run the same tests multiple times to 
mitigate variation effects; however, it was not very practical 
for us to do so with this specific test, as it takes a bit more 
than two hours to complete the standard MPI-IO 10k test 
(write and then read) during a limited dedicated system 
reservation hours. So it was highly desirable for us to be 
able to reproduce the performance issue on a smaller 
internal Cray R&D XC30 system.  

 Reproducing an I/O performance at scale on a smaller 
internal Cray R&D XC30 was not straightforward, as the 
exact benchmark test can not be run due to the smaller 
number of OSTs and compute nodes available (and may 
also be subject to other slight architectural differences). In 
addition, the net I/O bandwidths reported by IOR alone 
were not sufficient to tell if a problem at scale is reproduced 
at a smaller scale or not, because large I/O variation from 
run to run may occur even on dedicated system (we have 
seen up to 40% variation). A key advance in the 
investigation was made last March when we learned that the 
read-after-write and the re-read tests have very different 
performance profiles using an instrumented version of IOR. 
Fig. 7 shows the read profiles we observed on the Cray 
R&D XC30 system (with 32 OSTs) for the read-after-write 
and the re-read tests. As shown in Fig. 7, while the read rate 
steeply declines in the read-after-write test, it stays fairly 
constant after an initial drop in the re-read test. This profile 
was consistently seen later on various systems as long as the 
file size per node was at least as large as the memory per 
node and multiple OSTs were used. The read rate drops 
even more steeply when the larger file size per node and 
larger number of OSTs were used.  
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Figure 5. The MPI-IO 10k dedicated performance change over time.  

 
 

Figure 6. This figure shows the MPI-IO 10k read rates (read-after-
write) measured by the two binaries that were built for the August 
acceptance tests (built on 7/19) and for the December retest (built on 
12/15/13). 



In March of 2014, we got dedicated system time on 
Edison and ran a number of tests.  First, we needed to 
confirm if the same profiles also occurred on Edison. Fig. 8 
shows the I/O profiles we obtained using the instrumented 
IOR with the MPI-IO 10k test on Edison FS2. It shows two 
plots, each with three curves: a write, a read, and a re-read. 
The first read is the distinctive read-after-write profile and 
the second read is the re-read profile. We can see that the 
read profiles on Edison are consistent with what we 
observed on the internal Cray R&D XC30 system (Fig. 7). 
With more OSTs and file size per node being used, a steeper 
read rate drop is observed. Note that Fig. 8 has the write, 
read, and re-read data all in sequence which makes the 
curves more compressed than in Fig. 7 

Then we used the instrumented IOR for a number of 
scaling experiments on Edison FS3 using the MPI-IO 1m1 
test with collective buffering disabled as seen in Fig. 9. Fig. 
9 (a) has three curves.  These three tests were all done on 
64-GB nodes with file sizes equal to 16, 32, and 64 GB per 
node.  All three tests were read-after-write, but only the read 
data are plotted for clarity.  The first test completed in about 

100 seconds, with performance fairly constant throughout.  
The second test, with a file twice the size as the first test, 
completed in about 200 seconds, and again, with 
performance fairly constant.  The third test, with file size 
twice the size as the second test, but significantly, also the 
size of all the compute node memory, did not have a 
constant rate but declined dramatically throughout the test.  
This confirmed that the performance profile seen on the 
smaller Cray system was indeed happening on Edison. Fig. 
9 (b) shows what happened when the file size, the number 
of OSTs, and the number of ranks were all doubled 
compared to the third test in Fig. 9(a).  Performance was 

 

 
 
Figure 8. The I/O rates measured by the instrumented IOR for the two 
MPI-IO 10k jobs that were run on Edison FS2 in dedicated mode on 
3/26/2014. The second read curve shows the read rate from the re-read 
job. 

 

 
 

Figure 7. The distinctive read profiles for the read-after-write (upper 
plot, write rates are not shown) and the re-read test (lower plot) 
observed on the internal Cray R&D XC30 system with dual socket 
12-core Ivy Bridge processors with 64 GB per node memory 
(dedicated). 32 nodes, 32 OSTs and 64GB/node file size were used 
in the tests.  Instead of the MPI-IO 10k test, the equivalent MPI-IO 
1m1 test without collective buffering was run in the tests. 



almost doubled, due to having twice as many OSTs, but the 
profile has the same overall shape. 

These scaling tests strengthen the belief that the problem 
can be reproduced on a smaller system and that the profile, 
rather than the net performance, is the signature of the 
problem.  Since this read profile as reported by instrumented 
IOR was to play a critical role, we compared that profile 
with the file system performance profile from the Lustre 
Monitoring Tool (LMT) [10].  Fig. 10 shows the LMT data 
for the same two jobs that were shown in Fig. 8 (MPI-IO 
10k runs on FS2).  They agree, except that the IOR plot 
shows a more zigzag shape, because it used one-second bins 
to collect data, while the LMT used five-second bins to 
calculate the rates over time.  Otherwise, the match in the 
profiles confirms that instrumented IOR is reporting the true 
performance. 

Knowing that the read profile of the read-after-write is a 
characteristic of the performance slowdown in the MPI-IO 
10k test, we then looked back the August LMT data.  Fig. 
11 (a) is for FS1 and Fig. 11 (b) is for FS2.  We see that the 
read-afer-write profile in August was more like the current 
re-read profile. FS2 was less full and less fragmented than 
FS1 that time, which probably accounts for the slightly 
better performance of FS2.  

We attempted to look further into the difference between 
the two read profiles. Fig. 12 shows the I/O time per 
compute node for one of the dedicated runs on FS2.  Fig. 13 
shows the I/O rates for the two selected nodes, 47 and 48. 
We can see that the I/O times of the compute nodes vary a 

 

 
 
Figure 10. The LMT data for the two MPI-IO 10k jobs ran on 
3/26/2014 (the same two jobs as in Fig. 8). The second read curve in 
each panel is the read rate from the re-read job.  

 
(a) 

 
(b) 

 
Figure 9. The scaling tests with the MPI-IO 1m1 test without CB on 
FS3 in dedicated mode. The MPI-IO 1m1 test with CB disabled is 
equivalent to the MPI-IO 10k test using IOBUF library with a buffer 
size of 1,000,000 bytes. The upper panel shows the read rates when 
increasing the file sizes. The number of cores and OSTs used were 
kept constant, 768 cores and 32 OSTs. The lower panel shows the read 
rates when increasing the number of OSTs used while keeping the file 
size per OST constant. Note, read rates shown here were from the 
read-after-write tests, not from the re-read tests. 

.   



lot in the read-after-write test but are very balanced in the 
re-read test. Since each compute node has perfectly 
balanced I/O workload, and does not do any computing, we 
could expect a very balanced I/O time among compute 
nodes in dedicated runs. The fact that the re-read job has a 
well balanced I/O time while the read-after-write does not 
suggest some kind of interaction between the write and read 
phases in the standard run. However, from how the IOR 
code was run, and from the application level, we do not 
expect any interaction between the write and read phases.  

Whatever has caused the 70% slowdown between 
August and December, we have at least identified that 
something has changed that dramatically changed the 
performance profile and the net performance. This has made 
it practical to use internal Cray R&D systems to debug the 
problem and to confirm the fix. In addition, on the internal 
systems it is easy to switch back and forth between CLE and 
Lustre versions compared to a production system like 
Edison.   

4) CLE and Lustre upgrades: The CLE and Lustre 
versions are not easily revertible, especially on a production 
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Figure 11. These are LMT data for the three dedicated MPI-IO 10k jobs on the FS1 (upper panel) and FS2 (lower panel) that were run on 8/23/2013. 

 
Figure 12. The write and read time per compute node. This was a 

dedicated run on FS2 on 3/26/2014.    
 



system. However, we had a chance to run a test with CLE 
4.2 + Lustre 1.8.6 and with CLE 5.2 + Lustre 2.4 on the 
internal Cray R&D XC30 system. We observed that the read 
profile was fairly flat with CLE 2.4 + Lustre 1.8.6 (See Fig. 
14) while it steeply declined with CLE 5.2 + Lustre 2.4 (Fig. 
7 upper panel). This comparison is more evidence that 
something has changed in CLE and/or Lustre client that is 
the cause of the change in performance. By comparing the 
versions running on Edison in August and in December, it 
further narrows down the range of changes to somewhere 
between CLE 5.0.UP03 + Lustre 2.3.0 and CLE 5.1.UP00 + 
Lustre 2.4.0. However, since the Lustre client upgrades are 
always incorporated into specific CLE versions, it was 
difficult to determine if it was CLE or Lustre that was 
responsible for the performance slowdown.  

5) A Sonexion parameter readcache_max_filesize: 
When looking into the file system configuration changes on 
Edison since last August, we noticed that the value of a 
Sonexion parameter, readcache_max_filesize, was changed 
from “infinite” to 1MB with one of the Lustre upgrades on 
Edison. This parameter controls the maximum size of a file 
that both the read and write-through caches will try to keep 
in memory. Files larger than readcache_max_filesize will 
not be kept in cache for either read or write. This parameter 

change appeared to be worth investigating. Fortunately, this 
parameter was resettable without needing to revert the 
Lustre version.  So in one of our dedicated tests, we tested if 
this change was responsible for the MPI-IO 10k 
performance 70% slowdown. We observed that when set to 
”infinite” (the same as in last August) the MPI-IO 10k read 
rates improved, especially in the re-read tests. However, the 
read pattern of the MPI-IO 10k test was not changed, and 
the improvement of the read rate in the read-after-write test 
was not enough to restore the last August results.  See Fig. 
15. 

6) Compute node kernel and Lustre caches: As we have 
mentioned earlier, in the standard IOR benchmark runs the 
write and read tests were run in a single aprun invocation. 
The fact that the read-after-write performs poorly while the 
re-read test does not indicates that the write phase must have 
left some “residue” which affects the follow-on read test. 
The compute node kernel caches appear to be the first 
suspect. We did an MPI-IO 10k test (in production), in 
which we cleared the compute node kernel caches between 
the write and read phases by running the following 
command on the compute nodes, 

echo 3 > /proc/sys/vm/drop_caches 
This was possible because IOR has an option to add an 
arbitrary time delay between the write and the read phases 
(the –d option), so that we (root) could run the above 
command on the compute nodes. However, this did not 
result in any observable difference in the read profile of the 
MPI-IO 10k test. Next, we further cleaned up the Lustre 
caches by running the following command on the compute 
nodes,  

echo 1 > /proc/fs/lustre/ldlm/drop_caches 
and finally, we found that the read profile of the MPI-IO 
10k test changed to the same as that of the re-read test. See 
Fig. 16. This points to issues in the Lustre implementation. 
We provided our investigation results to a Cray Lustre 
developer, who worked closely with us at the late stage of 
the debugging. With further analysis, he was able to identify 

 

 
Figure 13. I/O rates for the nodes 47 (upper panel), and 48 (lower 

panel) in Fig. 12.   

 
 

Figure 14.  The read rates measured by the instrumented IOR for an 
MPI-IO 1m1 test without collective buffering under the CLE 4.2 and 
Lustre client 1.8.6 on the internal Cray R&D Cray XC30 system.   

 



the specific Lustre patch which was responsible for this 
performance issue [9].  However, the patch was both too old 
and too central to be easily removed from Lustre 2.4/2.5/etc. 
Further investigation is still under way.     

B. Lessons learned from the MPI-IO 10k performance 
issue 
Through the debugging of this performance issue, we 

clearly see some room to improve the software release, 
installation and testing process. While we could not expect 
bug-free software in general, a better set of benchmark 
suites seems to be needed for both developers/vendors and 
sites, which would help in catching performance issues 
earlier. Yet while this may be obvious in principle, there are 
many challenges in I/O testing.  For example, this specific 
MPI-IO 10k test takes more than two hours to complete, and 
that has made it an unfavorable test to run after every CLE 

and Lustre client upgrade in dedicated mode for a 
production system like Edison. However, running a shorter 
version of this test may not show the performance problem.  
It seems the instrumented IOR is something we could 
deploy in the future as it may provide a way to catch 
performance profiles without running lengthy benchmark 
runs. Or if we have to run lengthy tests, the instrumented 
IOR may catch distinctive performance profile changes 
without needing to run on dedicated systems.  

VI. I/O PERFORMANCE VARIANCE AND MONITORING IN 
PRODUCTION ENVIORNMENT  

I/O performance variation is very disruptive to user 
workflows. The two major causes of I/O time variation are 
the contention for the I/O resource among users and the 
degraded file system performance. While contention is 
unavoidable under our current configuration (because I/O 
resources are not a "schedulable" resource), we can still take 

   

 
Figure 15. Dedicated MPI-IO 10k test runs on FS2 with the 
readcache_max_filesize of 1MB  (upper panel, the current value) and 
“infinite” (lower panel, the value in August, 2013).  The IOR rates 
were from instrumented IOR. 

  
 

 
Figure 16. The figure shows the I/O rates for an MPI-IO 10k standard 
test (write and then read, upper panel), and a re-read test (lower panel) 
on FS2. These tests were run under the production environment. 
Between the write and read phases during the standard run, the 
compute node kernel and Lustre caches were cleaned up.  

 
 



some steps to mitigate the situation by promoting good I/O 
practices where applicable. During one of our debugging 
processes we located a user job that was stressing the file 
system with the Posix file per process I/O on FS3. The user 
bundled 11 job instances into one large job. Each job 
instance used 1024 cores; each core read a 50 MB file. So 
the job ran with a total of 11,264 cores, reading 500 GB in 
total. Looking into the past Darshan [3] profiling data 
(unfortunately, Darshan is disabled on Edison now because 
it does not work with the current craype version, 2.0 and up, 
therefore no current data) it appeared that the user code may 
do small transfer size I/O operations. In addition, the user 
was using the default Lustre stripe count on FS3 (8), which 
is not optimal in general for Posix file per process I/O. So 
we suggested that the user try the IOBUF library with stripe 
count 1. The user was able to get at least 100 % I/O time 
improvement and reduced I/O time variation. See Fig. 17.  

We notice that when users report huge I/O variation, 
usually it is when some components of the file systems are 
underperforming or misbehaving. Last March, many users 
reported that their file I/O was slow by more than 10 times. 
With dedicated debugging from the onsite Cray staff (the 
debugging was not trivial), we were able to locate a slow 
disk drive, and resolved the problem by replacing the slow 
drive with a spare one. During this process, we ran the Posix 
FpP 1m2 IOR test multiple times to aid the debugging. This 
test assigns one file (or several files) with stripe count of 1 
to each OST, and has exactly one rank writing to and 
reading from each file.  This way, the performance of each 
specific OST can be measured with only about 5 minutes of 
test time.  Any OST that is having performance problems 
can then be easily identified, even without dedicated system 
time.  Determining the cause is another challenge, but at 
least it is known that there is a problem and it has been 
narrowed down to a specific OST. It has proven to be an 
easy tool to use to help debugging and confirm the fix. 
Therefore, we are now running IOR tests regularly to 
proactively detect performance issues.   

Being able to monitor and detect file system health and 
performance is crucial to delivering quality I/O service to 
users. Currently we have the Lustre Monitoring Tool (LMT) 
[10], which monitors Lustre file system servers, and the 
Simple Event Correlator (SEC) [12], which monitors system 
events, in place on Edison. LMT data is very useful to 
monitor the file system activity and performance. Currently, 
the LMT data is not available for general users, though. It 
requires extra efforts to be able to make them available to 
users. NERSC is working on it now. Edison uses the Cray 
provided Simple Event Correlator (SEC) tool to monitor file 
system events, which can alert system administrators when 
there are system changes that are predefined in the SEC rule 
file. For example, SEC monitors the following file system 
related events: 

Boot, disk in and out,  
Various failovers, e.g., mds, OST, etc.,  
Slow or hung threads on OSS nodes 
Failed to connect to database 
Lock timed out 
Fan enclosure error 

We often receive SEC reports about slow or hung threads on 
the OSS nodes, but it is usually difficult to determine if it is 
something that can wait until the system recovers by itself 
(e.g., if they are just from user contention), or it is serious 
enough and is in need of investigation right away. In 
addition, it is usually difficult to correlate the slow threads 
with the affected user jobs without non-trivial manual 
interaction. 

We do not use the Cray Sonexion System Manager 
(CSSM) [13] on Edison. It has a web based GUI that 
provides status and control of all system components, 
including storage hardware, RAID, operating system and the 
Lustre file system. It seems to be considered more as a 
debugging tool instead of a monitoring one among the 
onsite Cray staff. In their last attempt to run CSSM on 
Edison, the GUI failed to display LMT data because the 
available browser version was too old on the system 
management server. It seems some work is needed for 
CSSM to fully function on Edison at this point. However, in 
the long run if we could incorporate some of the monitoring 
capability of CSSM in to the Nagios [14] framework, it 
should be very helpful.   

VII. CONCLUSION AND FUTURE WORK 
In this paper we provided a detailed investigation into 

many potential causes of I/O performance variation on 
NERSC’s Cray XC30 system. Through an extensive series 
of experiments on Edison and on an internal Cray system we 
ruled out programing environment changes, file 
fragmentation and physical positions, a Sonexion caching 
parameter, and CLE upgrades.  We were able to narrow the 
cause to a range of Lustre releases and eventually to a 
specific Lustre patch. A further investigation to fix the 
problem is still under way.  

The key progress made in this investigation was 
identifying the distinctive read profiles of the MPI-IO 10k 
test with the instrumented IOR benchmark code, which made 
it possible to reproduce the dedicated performance issue of 
large file systems on a small internal Cray system, and to 
investigate the problem in a production environment. 
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Figure 17. File read time comparison of a user code, QLUA [11], with 
and without using the IOBUF library. The stripe count was also 
changed from the default 8 to 1. This figure was provided by a NERSC 
user. 

 



Catching the distinctive performance profiles using the 
instrumented IOR could be a general approach that helps 
debugging elusive IO performance issues. Because the 
performance profile is more sensitive to the changes 
compared to the net I/O rates, especially a large I/O rate 
variation from run to run may occur.  

The I/O run time variation can be very disruptive to user 
workflows. Promoting good user I/O practices may mitigate 
the variation from user contention. NERSC uses the SEC and 
LMT to monitor the file system health and performance, and 
is running IOR benchmarks regularly to help monitor the file 
system performance. NERSC is looking into making LMT 
data available to users, and is also looking into other 
benchmark options to test the I/O performance with small 
transfer sizes.  

ACKNOWLEDGMENT 
The authors would like to thank Mark Swan at Cray, Inc., 

for extracting LMT data on Edison, and would also like to 
thank Steve Luzmoor, Patrick Farrell at Cray, Inc., for their 
work and help to resolve the bug 809189 [the bug we opened 
for this MPI-IO 10k performance issue]. The authors also 
thank a NERSC user, Marcus Petschlies, who provided the 
IOBUF tests results with a QCD code, QLUA. They also 
thank Nathan Wichmann at Cray, Inc., who conducted the 
IOR acceptance tests. They also thank Shane Canon at 
NERSC for providing Lustre file system usage on Edison, 
and Harvey Wasserman at NERSC for valuable discussion 
and help. In addition, most of the debugging jobs were 
required to run on the dedicated Edison system, which was 
not possible without the support from Jeff Broughton, the 
NERSC-7 project manager, and the help from other Cray 

onsite and NERSC system staff. This work was supported by 
the ASCR Office in the DOE, Office of Science, under 
contract number DE-AC02-05CH11231. It used the 
resources of the National Energy Research Scientific 
Computing Center (NERSC). 

REFERENCES 
[1] NERSC Edison: http://www.nersc.gov/users/computational-

systems/edison/ 
[2] NERSC-6 benchmark suite, a set of benchmark codes and tests 

resulted in the Hopper system, a Cray XE6, acquisition. Edison 
procurement, coded as NERSC-7 internally, used the same set of 
benchmark suite.  

[3] Darshan, a light weight I/O profiler, 
http://www.mcs.anl.gov/research/projects/darshan/  

[4] NERSC workload analysis used for NERSC-8 procurement [internal 
communication] 

[5] Cray Sonexion Brochure, is available at 
http://www.cray.com/Assets/PDF/products/sonexion/SonexionBrochu
re.pdf 

[6] The source for the IOR benchmark application, version 2.10.3, is 
available at http://sourceforge.net/projects/ior-sio.  

[7] Cray IOBUF: module load iobuf, man iobuf  
[8] D. Petesch, M. Swan, “Instrumenting IOR to Diagnose Performance 

Issues on Lustre File Systems”, Proc. Cray User Group, May 2013.  
[9] LU-744 osc: add lru pages management - new RPC, 

http://review.whamcloud.com/#/c/2514/ 
[10] LMT: Lustre File System Operations Manual - Version 1.8 S-6540 
[11] QLUA, https://usqcd.lns.mit.edu/redmine/projects/qlua_code 
[12] SEC:  http://simple-evcorr.sourceforge.net/ 
[13] CSSM: Cray® Sonexion® Administrator’s Guide HR5-6093-B 
[14] Nagios: http://www.nagios.org

 


