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Research Scientific Computing Center 

ABSTRACT: The Hopper XE6 system, NERSC’s first peta-flop system with over 
153,000 cores has increased the computing hours available to the Department of 
Energy’s Office of Science users by more than a factor of 4.  As NERSC users transition 
from the Franklin XT4 system with 4 cores per node to the Hopper XE6 system with 24 
cores per node, they have had to adapt to a lower amount of memory per core and on-
node I/O performance which does not scale up linearly with the number of cores per 
node.  This paper will discuss Hopper’s usage during the “early user period” and 
examine the practical implications of running on a system with 24 cores per node, 
exploring advanced aprun and memory affinity options for typical NERSC applications 
as well as strategies to improve I/O performance.   
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1. Introduction 
The Hopper system [1], a Cray XE6 with over 153,000 
cores installed at the National Energy Research Scientific 
Computing (NERSC) Center is the first peta-flop system 
available to the general Department of Energy (DOE) 
Office of Science research community.  NERSC is the 
primary high performance computing facility for the 
Department of Energy’s Office of Science and serves the 
broad DOE community providing computational and 
storage resources and services to a range of researchers in 
disciplines spanning astrophysics, climate, combustion, 
biology, material science, chemistry, fusion and physics.  
NERSC supports over 4,000 users representing roughly 
400 different research projects. 
 
The addition of the Hopper system with a peak 
performance of 1.28 peta-flops to the NERSC facility 
increases the computing time available to NERSC users 
by a factor of 4 over NERSC’s previous generation large 
scale system, Franklin, a Cray XT4 system with over 

38,000 quad-core processors and a peak performance of 
352 tera-flops. 

 

Hopper 
 

The Hopper system was deployed in two phases.  The 
first phase was an XT5 system that was delivered to 
NERSC in the fall of 2009.  This paper focuses on the 
second, larger, and final configuration of the Hopper 
system, a Cray XE6 named after Computer Scientist and 
Rear Admiral Grace Murray Hopper, consisting of 3,284 
compute nodes, each containing two 12 core AMD 2.1 
GHz MagnyCours processors.  Each compute core has a 
peak performance of 8.4 Gflops/sec resulting in a system 
with a peak performance of 1.28 PFlops.  All but 384 
compute nodes have 32 GB of DDR3 1333 MHz memory 
while the remaining larger nodes have 64 GB of DDR3 
1333 MHz memory creating a system with over 217 TB 
of memory.  The nodes are interconnected in a 3D torus 
network with the Gemini interconnect which has 
significantly improved reliability features compared to the 
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earlier generation Seastar2 network used on the Franklin 
system.  Whereas a failed or down link in the Seastar2 
interconnect will cause an outage on the entire machine, 
the Gemini interconnect has the capability of routing 
around down links.  The Gemini interconnect also has 
greatly reduced latency and higher bandwidth compared 
to the Seastar2 network. Table 1 shows the MPI latency 
and MPI bandwidth of the Gemini and Seastar2 networks. 

 
Table 1: Comparison of MPI latency and bandwidth on 
the Seastar2 and Gemini networks. 
 
NERSC has configured the Hopper system with five 
different parallel file systems:  a GPFS based global home 
file system mounted across all NERSC systems, two 
identical local Lustre scratch file systems which have a 
peak performance of 35 GB/sec and a capacity of 1 PB 
each, a global scratch GPFS file system, which is 
mounted on most NERSC systems as well as a GPFS 
based project file system intended for collaborative data 
sharing. 
 
As with Franklin, the previous generation machine, 
Hopper runs two different operating systems, a full 
featured SuSE Linux is run on the login nodes and service 
nodes while the compute nodes run a light-weight 
operating system called the Cray Linux Environment 
(CLE).  A new feature of the Hopper system is the 
external login nodes that exist outside of the main torus 
network.  The 8 external login nodes have 16 cores each 
with 128 GB of memory and increase the usability of the 
system by allowing users to do more computationally and 
memory intensive processing than an internal login node 
would allow.  The external login nodes also allow users to 
access the five user file systems installed on Hopper when 
the compute portion of the machine is unavailable.  For a 
more through discussion of the external services on Cray 
systems please refer to last year’s CUG paper [2].   

Hopper Timeline and Usage 
 
The second phase of the Hopper system was delivered in 
four shipments at the end of the 2010 summer.  By 
September 17th, all 68 cabinets had arrived at NERSC’s 
Oakland Scientific Facility.  During the fall, the system 
was installed and integrated into the NERSC environment 
and the earliest NERSC users accounts were enabled 
November 15, 2010.  These users were targeted because 
their applications would stress various parts of the 
systems.  For example, users who ran large concurrency 
jobs were invited on the Hopper system early to test the 
network and scalability of the system.  Users whose codes 
contained both MPI and OpenMP were invited to test the 
hybrid programming abilities of the system, and heavy 
I/O users were invited to stress the I/O sub-systems. In 
exchange for providing feedback to NERSC staff about 
the performance of their codes and usability of the 
system, all early users ran their applications on the system 
free of charge.  By the winter holiday, all user accounts 
had been enabled on Hopper, though the time on the 
system was still being shared with Cray engineers who 
continued to test the system.  On February 4th, the official 
acceptance test and then, 30 day availability test began, 
giving users uninterrupted system access.  After 
successful testing, the Hopper system was accepted by 
NERSC on April 19, 2011 and the system went into 
production shortly afterward on May 1st.  The time from 
November 2010 to May 1st 2011 is referred to as the 
“Early User Period” during which time, user accounts are 
not charged.  It is a time when scientists and researchers 
can experiment with larger concurrency jobs or try new 
experiments they might not be able to do with their 
normal production allocation.  During the early user 
period, over 350 million hours were delivered to the 
Department of Energy’s, Office of Science researchers.  
Two hundred eighty of NERSC’s over 400 projects used 
time on the Hopper system and over 1000 users accessed 
the system.  Figure 1 shows the breakdown of the early 
science hours by science category. 
 
 

 Franklin (Seastar2)  Hopper (Gemini) 

MPI Latency  6.5 microseconds 1.6 microseconds 

MPI 
Bandwidth 

1.6 GB/sec/node 6.0 GB/sec/node 
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Figure 1: Breakdown of CPU core hours on the Hopper 
system from November 15, 2010 to April 30, 2011. 
 
The largest science area represented during the early user 
period was lattice gauge theory followed by fusion 
energy, material science and combustion. 
 
From the start of the availability test on February 5th until 
May 1st, the system ran at a utilization of 81.7%.  The 
calculation for utilization is simply hours delivered to 
science projects divided by 24 hours per day.  All 
benchmarking by NERSC or Cray staff is not included in 
the hours to science projects.   Since it also includes 
downtimes and system maintenances, we are pleased with 
a utilization of close to 82% for the first few months of 
NERSC’s first peta-flop XE6 system; however, we will 
continue to work to improve utilization on the system.  
During the early user period, we noticed that the Hopper 
system was able to recover and ride through problems 
better than the previous generation XT4 Franklin system.  
To illustrate, Lustre fail-over has been implemented and 
tested on the Hopper system and thus when an OSS failed 
in February, the system was able to recover on its own.  
Some jobs were lost, but system utilization stayed above 
60%, which for a system as large as Hopper, means a 
significant number of cores were still running user 
applications.  A major source of lost utilization is system 
maintenances and upgrades.  Maintenances are necessary 
to keep a machine healthy and patched; however, with 
Hopper delivering 3.6 million CPU core hours per day, 
the opportunity cost of taking a system down is high.  
NERSC always tries to do as many tasks during a single 
maintenance in order to avoid frequently taking the 
system up and down.  Finally, scheduling problems have 

been a source of lost utilization on the system.  NERSC 
has a number of different queues configured for users to 
submit jobs.  These queues have different priorities, and it 
was found that some of the jobs submitted to the high 
priority debug queue were inhibiting the largest jobs on 
the system from starting appropriately.  NERSC has since 
adjusted the queue structures so this type of interference 
is less likely to happen.  Figure 2 shows the utilization of 
the system from February 5th, through April 30th. 
 
 

 
Figure 2: Utilization of Hopper system from the start of 
acceptance testing February 5, 2011 to April 30, 2011. 
 
The NERSC workload is not only diverse in terms of the 
science areas and algorithms, but also in terms of the size 
of jobs run on the system.  Some applications can utilize 
the entire machine, while other applications run at more 
modest sizes of a few hundred or few thousand cores.  
Figure 3 shows the breakdown of job sizes on the system 
during the early user period.  When the system started 
acceptance testing February 4th, 2011 the job sizes 
became more stable with roughly 50% of raw hours going 
for jobs run at 16,384 cores or higher and over 20% of 
jobs run at 65,536 cores or higher.   
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Figure 3.  Breakdown of CPU core hours by job size on 
the Hopper system 
 

User Feedback 

User feedback from the early user period on Hopper was 
generally positive.  Because of the similarity of the 
programming environments between Franklin and 
Hopper, most applications were fairly easy to port to the 
new system.   At least at the beginning of the early user 
period, many users were able to take advantage of the 
relatively fast turn-around time for large number of cores. 
One user states, “The best part of Hopper is the ability to 
put previously unavailable computing resources toward 
investigations that would otherwise be unapproachable.”  
Another states, “During the "free" period Hopper 
provided very good turnaround for my jobs, which were 
in the 5,000 - 10,000 processor range. This was very 
important for finding errors, scaling up my code and 
generating new results” 

 

2.  Transitioning Users from Franklin to 
Hopper 

User Environment 

 
While the software environment between Franklin and 
Hopper has changed little, one of the largest challenges 
transitioning users from the Franklin system to the 
Hopper system has been teaching scientists to effectively 

use all 24 cores of the Hopper system. Figure 4 illustrates 
a Hopper compute node. 
 
 

 
Figure 4. Schematic of Hopper compute node showing 
non-uniform memory access (NUMA) nodes. 
 
A major difference between Franklin and Hopper is the 
available memory per core.  On Franklin, each quad-core 
compute node has 8 GB of physical memory, while most 
Hopper compute nodes have 32 GB of physical memory.  
However, not all that memory is available to user 
programs.  Compute Node Linux (the kernel), the Lustre 
file system software, and message passing library buffers 
all consume memory, as does loading the executable into 
memory. Thus the precise memory available to an 
application varies.   
 
Approximately 31 GB of memory can be allocated from 
within an MPI program using all 24 cores per node, i.e., 
1.29 GB per MPI task on average.  If an application uses 
12 MPI tasks per node on Hopper (half packed), then each 
MPI task can use about 2.58 GB of memory.  In 
comparison, the average memory available for 
applications on Franklin is about 1.88 GB using all 4 
cores per node and 3.77 GB half packed, using only 2 
cores per node. 
 
Using 24 cores per node has been a challenge for some 
users.  As shown in Figure 4, each Hopper compute node 
consists of 24-cores grouped into 4 NUMA nodes, each 
with 6 cores.  Any of the 24 cores can access the memory 
of any NUMA node, however, memory access time from 
a core to a local NUMA node’s memory will be faster 
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than to memory on a remote NUMA node.  Put a different 
way, compared to the Franklin compute node that had 
uniform memory access for all cores, the Hopper compute 
node is not flat, task placement and locality matter.  Users 
need to be particularly careful if they are trying to run 
their application on fewer than 24 cores per node.  For 
example, for pure MPI problems, some users may only 
want to run on 8 or 16 cores on the nodes in order to 
increase the amount of memory available per MPI task.  
Because of the non-uniform memory access on a Hopper 
node, how those MPI tasks are placed on a node can have 
a large impact on performance.  The simplest default 
options to launch a job on the compute nodes with the 
ALPS aprun command, will assign tasks to the first numa 
node before moving on to the next NUMA node.  This 
can result in sub-optimal performance, as ideally, a user 
would want to spread MPI tasks evenly across the node.  
Figure 5A below shows the naive way to launch an 
application requesting only 4 cores per node compared to 
a more optimal way shown in Figure 5B. 
 

 
Figure 5A:  Un-optimal placement of MPI tasks 
 

 
Figure 5B: More optimal placement of MPI tasks 

One way to spread MPI tasks evenly across a node is to 
add the “-S” option to the aprun command line that is 
used to specify how many MPI tasks to assign per NUMA 
node.  The example below shows the performance of a 
real user application running the VASP code [3] in a 660 
atom system with 384 MPI tasks on 32 codes, but one 
simulation runs with the cores optimally placed across 
NUMA nodes while the other does not. 
 
 
 

 
Figure 6: Runtimes for VASP simulation run with and 
without optimal MPI task placement. 
 
Figure 6 shows the dramatic effect task placement can 
have on performance.  For the VASP simulation the aprun 
line in the optimal case is: “aprun –n 384 –N 12 –S 3 
vasp” where “-N 12” means to use 12 tasks per node, “-S 
3” means to assign 3 MPI tasks per numa node.  Without 
“-S 3”, all 12 cores will be allocated on the first 2 NUMA 
nodes, creating contention for memory bandwidth on the 
first two NUMA nodes.  Additionally, there will be sub-
optimal memory access to  the final two NUMA nodes.  
More advanced aprun options on Hopper such as ”-sn” 
(number of NUMA nodes to use per compute node),       
“-ss” (specify strict memory containment per NUMA 
node)  and “-cc” (controls how tasks are bound to cores 
and NUMA node) are also available for users to tune 
application performance. 
 
Because of the larger number of cores available per node, 
24, and the larger amount of shared memory available per 
node, 32 GB, NERSC encourages users to try a new 
programming paradigm, hybrid MPI/OpenMP, instead of 
pure MPI.  While most pure MPI applications that run 
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successfully on Franklin will also run successfully on 
Hopper, some applications may fail due to out of memory 
conditions.  One strategy, as discussed above, is for users 
to run on fewer than 24 cores per node, leaving some 
cores idle.  This is an acceptable strategy, though, the user 
will be charged by the node, and so leaving cores idle will 
result in a more costly run.  An alternative is for users to 
try a hybrid MPI/OpenMP model.  Although this 
paradigm may not necessarily outperform pure MPI 
performance, it can lower memory usage by requiring 
fewer instances of the same program, fewer MPI buffers 
and the storage of fewer ghost cells.  It takes advantage of 
the natural two layers of parallelism of a Hopper compute 
node: using MPI across nodes or NUMA nodes, and using 
OpenMP within nodes or NUMA nodes. Fewer MPI tasks 
per node avoid extra communication costs within a node 
and allow for larger messages sizes to be sent off node. 
 
Memory allocation also uses a “first-touch” policy, which 
means memory is mapped on the NUMA node of the 
compute core by which it is first written.  With hybrid 
MPI/OpenMP, it is recommended that each thread 
initialize its memory at the “first touch”, so that it will 
only access memory in its local NUMA node.  Since this 
is usually difficult to do, NERSC recommends using no 
more than 6 threads per node, even though the maximum 
number allowed is 24 per node [4]. We have seen that 
typical Hybrid MPI/OpenMP applications show 
performance improvements from 1 thread to 6 threads per 
node, but drop when 12 or 24 threads are used unless 
perfect “first touch” memory allocation can be 
accomplished.  Our strong suggestions to use no more 
than 6 threads per node with MPI/OpenMP programming 
on Hopper is clearly delivered to NERSC users in web 
documentation, NERSC training sessions, and workshops. 
 

Dynamic and Shared Libraries 
 

The Hopper system supports the capability to run 
dynamic and shared object codes on the compute nodes.  
This functionality is not supported on the Franklin system 
that runs an earlier version of the CLE operating system, 
2.2.  On Hopper with OS level CLE3.1, static binaries are 
still the default and suggested way to launch jobs on the 
system; however, dynamically linked applications with 
shared libraries can be run if a user compiles with the       
-dynamic flag and sets an environment variable at 
runtime.  Dynamic and shared library applications are run 

on compute nodes via a software layer called DVS (Data 
Virtualization Service) [5] which forwards the service 
node environment and system libraries to the compute 
nodes.  Many Cray supported libraries such as SciLab, 
MPI, pthreads, are available as dynamic shared objects 
(DSOs), and users can define and use their own DSOs. 
This feature also enables other executables (non-ELF 
binaries) such as shell scripts, perl and python scripts, that 
need shared libraries at run time, to run on the compute 
nodes.  Most system calls are also now supported.  The 
ability to run shared and dynamic object codes on the 
Hopper system gives users an environment more similar 
to the full Linux environment of traditional clusters and 
users appreciate the convenience of this support. 
  
We have discovered however, that loading shared 
libraries on compute nodes can be slow, especially for 
large core count jobs.  It appears that the DVS software 
layer is not currently configured to efficiently read shared 
objects in parallel, which results in serialization and a 
slowdown for user applications. We are actively working 
with Cray for better tuning of DVS parameters.  
Meanwhile, we advised NERSC users to try to combine 
multiple shared libraries into one or for python 
applications, reduce the number of python import calls if 
possible.  Some users had to build static executables to 
avoid the performance hit caused by the shared libraries 
slowness in the DVS layer [6]. 
 

I/O Performance 
 
An area users continue to find challenging is scaling 
application I/O and getting optimal I/O performance out 
of the system.  Writing and reading large amounts of data 
from an HPC system is often a challenge for large 
applications because of the great difference between the 
compute node’s ability to calculate data compared to the 
speed and performance of the magnetic spinning disks 
used to store data.  This forces scientists needing to read 
or write large amounts of data to come up with a host of 
techniques for increasing bandwidth, including striping 
data across disks, aggregating data to a few nodes and 
using various buffering techniques.  One challenge for 
users has been that although the number of cores on a 
node has increased from 4 cores per node on the Franklin 
system to 24 cores per node on the Hopper system, I/O 
performance has not scaled with the number of cores.  
IOR [7, 8] is a benchmark developed at Lawrence 
Livermore National Laboratory and has a flexible 
interface and can be run with various user I/O APIs such 
as POSIX, MPIIO or HDF5.  It can also be set to output 
different block sizes.  Figure 7 shows the difference in I/O 
performance on the Franklin and Hopper systems using 
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the IOR benchmark on up to 24 MPI tasks where each 
MPI task writes out 2GB of data.  On Hopper this 
represents one node while on Franklin this represents 6 
nodes.  The numbers are closely aligned for the first 8 
MPI tasks and then start to diverge thereafter.  Franklin 
performance continues to increase, while Hopper 
performance levels out at ~1700 MB/second.   A question 
that needs to be resolved is why Hopper write 
performance peaks at 1700 GB/sec.  Franklin’s peak node 
performance achieves two-thirds the performance of the 
Seastar2 network’s injection bandwidth of 1.6 GB/sec 
whereas Hopper only achieves 28% of the bandwidth of 
Gemini’s 6 GB/sec injection bandwidth rate.  It is 
interesting to note that using direct I/O that disables 
caching and buffering at the operating system does not 
improve performance.  This leads us to believe that 
throttling is occurring at the Lustre client level. 
 

 
Figure 7: I/O write scalability comparison between 
Franklin and Hopper to 24 cores. 
 
To try to improve I/O performance for user applications, 
Cray resurrected a library called iobuf that was used in the 
earlier Catamount systems.  The purpose of the iobuf 
library is to buffer I/O requests on a compute node by 
intercepting read and write calls and thus allowing fewer, 
larger blocks of I/O to be read and written at a time, 
improving I/O performance.  Cray provides the iobuf 
library in a module and the user needs only to load the 
module and re-link the application.  Additionally, the 
environment variable IOBUF_PARAMS needs to be set 
to indicate which user files should be buffered.  The user 
also has the option to set other parameters like the size of 
the buffers and the number of buffers to use per file.  The 
defaults are 4 buffers per file each with a size of 1MB.  
There are other more advanced settings for shared files 
and shared buffers, prefetch and flush settings.  
Additionally, the iobuf module can be used to gather I/O 
statistics that are appended to the user’s standard out file. 
 

The iobuf library’s capabilities were tested on 1560 cores 
with the IOR benchmark.  This particular IOR test at 
NERSC uses the IOR POSIX file-per-processor interface 
to measure the aggregate I/O performance on the system.  
Each Lustre scratch file system has 156 Object Storage 
Targets (OSTs), and this test is intended to write 10 files 
on each OST.  Each processor core writes and 
subsequently reads 2GB for a total output of over 3TB.  
Figure 8 shows the difference in performance between 
runs with and without the iobuf library for three different 
transfer sizes, one with a transfer size of 10,000 bytes, a 
second with 1 million bytes and a third with 1,024,576 
bytes.  These three transfer sizes were chosen because 
performance differences have been seen between small 
and large transfer sizes as well as transfer sizes which 
were not a power of two. It is important that NERSC 
understand the performance implications of different 
transfer sizes since real users applications do not always 
output data in large power of two sized chunks.  In all 
cases, the IOR runs with I/O buffering enabled 
outperformed the runs that did not and again in all three 
cases, reads show significantly more benefit from I/O 
buffering than writes.  The read performance is between 
30-40% better when I/O buffering is enabled.  For writes, 
performance only increases between 1 and 11%.  I/O 
performance increases the most for the 10k write cases 
and the least for the power of two MiB case.  This is an 
expected result as smaller writes would benefit from 
aggregation the most.  For these runs, the IO buffering 
parameters have been set to two buffers each of size 2 
MB.  It is clear that the parameter space could be explored 
further with experiments to test larger and more buffers. 
 
 

 
 Figure 8: Comparison of I/O performance for different 
sets of transfer sizes using the IOR benchmark on 1560 
cores. 
 
In addition to testing the iobuf module on a synthetic 
benchmark like IOR, we linked a full scientific 
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application, MAESTRO [9] against the iobuf library.  
MAESTRO is a low mach number astrophysics code used 
to simulate the evolution leading up to a type 1a 
supernova explosion.  This particular simulation examines 
convection in a white dwarf and includes both explicit 
and implicit solvers.  The code uses the BoxLib [10] grid 
framework, although this particular problem does not use 
an adaptive mesh, but rather evolves the time-steps on a 
uniform grid.  The MAESTRO benchmark includes an 
I/O component and represents applications that have 
small or ‘bursty’ I/O patterns.  This is often the case for 
adaptive mesh applications that write data one grid 
element, or box, at a time.  These applications often suffer 
from low I/O performance due to the overhead of many 
write transactions.  The iobuf library provided by Cray 
could improve I/O performance for MAESTRO and 
similar applications by buffering I/O on the node and 
subsequently writing fewer, larger chunks of data at a 
later time.  The MAESTRO benchmark runs on 2048 
processors and writes out 3 checkpoint-restart files using 
a one-file-per-processor model.  Each set of checkpoint-
restart files produces 153GB of data across 10240 files 
with most file sizes roughly 10 MBs.  Figure 9 shows that 
linking with the iobuf library, with the default settings 
improves I/O performance by about 5%.  Changing the 
iobuf parameter settings to use 2 buffers of size 2MB each 
rather than 4 buffers of 1 MB each improved performance 
slightly more.  (Each of the tests were run multiple times, 
with the minimum number provided in each case to avoid 
the variability on the system.)  The MAESTRO results are 
consistent with the performance improvements seen with 
the iobuf library on the IOR benchmark. 
 
 

 
Figure 9: Performance of MAESTRO I/O with iobuf 
library 
 
We conclude that the iobuf library does improve 
performance for some user applications.  The largest 
improvement comes from reading data.  For writing data, 

applications that send small amounts of data seem to 
benefit the most, though this area certainly needs wider 
parameter exploration.  Since the iobuf module is simple 
to use and requires no code changes, users are encouraged 
to try it to see if I/O buffering will improve the 
performance of their application.  Users should be aware 
though, that adding I/O buffers will reduce the amount of 
memory available to a user application. 
 
In addition to the challenges of getting optimal 
performance from Hopper’s I/O sub-system, on March 
24th, 2011 NERSC upgraded the Hopper system to CLE 
3.1 UP03 which fixed a number of critical bugs.  
Unfortunately, the upgrade to CLE 3.1 UP03 decreased 
aggregate I/O performance across the system.  NERSC 
ran tests with the IOR benchmark on 1560 cores with the 
POSIX interface with each processor writing 2GB of data 
to 156 OSTs, (the same setup as in the previous IOR 
benchmark.)  This aggregate benchmark test is intended 
to saturate the I/O bandwidth of the system and create a 
sustained I/O rate so the aggregate performance of the 
system can be measured.  Figure 10 shows the 
performance of the IOR benchmark on a single Lustre 
scratch file system before and after the CLE 3.1 UP03.  
Performance dropped by 30-40%.  At this time, Cray has 
a submitted a fix for problem, though it has not yet been 
put on the Hopper system. 
 
 

 
 
Figure 10: Performance degradation after the 
CLE3.1UP03 upgrade 

 

3. Problem reports and ongoing issues 
Throughout the early user period, NERSC staff and users 
have exposed bugs on the system, which is to be expected 
on a new system with a young software stack.  So far, 
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over 100 bugs have been opened against the Hopper 
system and about half of them have been fixed.  Figure 11 
shows the open bugs by month during the early user 
period.  As expected, the most recent months have the 
lowest ratio of fixed to open bugs compared to bugs 
reported in the fall. 
 
 

 
Figure 11: Bugs opened by NERSC and fixed by Cray 
each month. 
 
The following sections describe some of the specific 
problems that were exposed on the system. 
 

Low MPI Bandwidth with Small Memory Pages 
 
Through the joint NERSC-Cray Center of Excellence 
collaboration low level benchmark testing exposed the 
MPI bandwidth for small pages was 50% the bandwidth 
for large pages.  With the default 4KB pages, the MPI 
bandwidth between nodes measured 3.5 GB/sec whereas 
the bandwidth when large memory pages were used was 6 
GB/sec.  Since most users were running with the default 
memory pages, this performance problem was affecting a 
large number of users.  The issue was raised with Cray 
and fixed in a subsequent patch. 

 

Scheduling Problems 
 

In February 2011, there were a few episodes where 
compute nodes appeared to be available, but jobs were not 
being scheduled on the nodes causing low system 
utilization.  In some cases the utilization dropped to 50%, 
a sure sign of a problem as the Hopper queues were 
regularly packed with jobs waiting to run.  The log files 
showed MOAB warning messages such as: 
"WARNING: excessive memory in use (8597 MB) -- 
restart Moab?"  It was found that there were orphan 
reservations on the system, meaning that the ALPS 

scheduler believed a job was utilizing a node when it 
really was idle.  This meant that the errant reservations 
needed to be cleared up manually before the system could 
return to normal utilization.  
 
The problem was reported to Cray as bug 770068 on 
February 28, 2011.  NERSC discovered that the issues 
were related to users submitting many one-node jobs 
using job arrays.  Cray’s investigation found that the job 
arrays overwhelmed the ALPS scheduler causing an 
invalid request to be forwarded to the scheduling agent 
resulting in many TCP connections being opened and 
closed repeatedly.  Cray added additional error checking, 
and provided the patch to NERSC a week after the bug 
was submitted.  Meanwhile, NERSC worked with users to 
submit these types of job arrays more efficiently. 

 

NID Ordering 
 

Job placement on a system as large as Hopper can have an 
effect on the performance of an application, as nodes 
belonging to the same job but widely spread across the 
system can suffer greater latencies and higher 
communication costs.  Cray's original node allocation 
algorithm for placing an application on the torus was 
based on NID ordering, where a particular job gets 
allocated nodes that are physically adjacent to each other, 
without any awareness of network topology.  An 
improvement was made to the job placement algorithm to 
make it aware of the interleaving nature of the topology,  
and is known as xyz ordering.  However, the allocation of 
nodes with either the original NID ordering or xyz 
ordering was only two-dimensional.  In order to allocate 
nodes in three-dimensional manner that can take 
advantage of the full torus bisection bandwidth, a new 
algorithm was introduced on Hopper known as "xyz-by2" 
[11]. This ordering helps to minimize job run time 
variation by lowering latencies between nodes within a 
job and maximizing global bandwidth (network capacity) 
and bisection bandwidth fore each job. 
 
 
The "xyz-by2" ordering was used to meet the run time 
requirements for the set of application benchmarks used 
for the Hopper procurement.  After the OS upgrade to 
CLE3.1UP03 on March 24, 2011, the Hopper benchmarks 
were run to check the system and we discovered that the 
performance of CAM, GTC, Paratec, Impact, NPB, 
Stream, and Chombo were comparable to those before the 
upgrade under the production environment.  However, we 
saw a significant slow down for MILC, Maestro, and 
GAMESS, as much as 30% as shown in Figure 12. 
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Figure 12: Effect job placement on torus has on runtime 
for NERSC applications. 
 
The problem was reported to Cray, and it was discovered 
that the optimal NID ordering algorithm was lost during 
the OS upgrade.  After it was put back on Hopper, 
running the applications again confirmed that application 
performance had returned to their previous performance 
levels. 

 

Mixing C++ and Fortran in the GNU Programming 
environment 

 
Another problem on the system reported by half a dozen 
users was found when mixed language C++ and Fortran 
applications executed in the GNU programming 
environment.  It was found if a code had both C/C++ and 
Fortran routines, used I/O in a Fortran code, and was built 
with the GNU compiler, the executable would generate a 
segmentation fault during run time. This occurred with xt-
asyncpe/4.7 and was reported as bug 769872 on February 
14, 2011.  Cray discovered a symbol from libgfortran.a 
was not getting resolved, resulting in a faulty memory 
address.  Cray provided a workaround and then the bug 
was fixed in xt-asyncpe.4.9 released on March 17, 2011. 

 

OpenMP Compiler Flag Options  
 

A problem was found with the ftn, cc, and CC compiler 
wrappers to the PGI compiler such that the standard          
-mp=nonuma compiler option did not enable OpenMP.   
The problem did not occur with the other compilers on the 
system, Pathscale, GNU and Cray, and the standard flag 
also worked fine using the native PGI compiler without 

the compiler wrappers.  It was also noticed that the issue 
was only associated with xt-libsci/10.4.5 and not earlier 
versions.  The bug was reported to Cray on October 19, 
2010 as bug 765956 and Cray provided a fix in release xt-
libsci/10.5.0, released on December 16th 2010 by 
replacing -mp with -mp=nonuma in the wrapper for ftn 
and cc with PGI.  However, this fix caused another 
problem that caused other options to the -mp flag to fail, 
(such as -mp=trace, or -mp=align).  We reported this as 
bug 768025.  Cray provided another fix for the wrappers 
in xt-asyncpe/4.7 released on January 20th, 2011, but it 
was found that the problem was only fixed for the 
FORTRAN compiler wrapper ftn, but not for the C and 
C++ wrappers.  We re-iterated with Cray, and finally got 
all the PGI compiler wrappers fixed for passing the 
correct OpenMP compiler flags in xt-asyncpe/4.8 released 
on February 17th, 2011.  This exchange underscores the 
importance of close communication with the vendor and 
also the challenges testing all possible use cases all the 
while mostly communicating through a bug tracking 
system and through our local Cray onsite staff. 

 

Libsci Dynamic Linking 
 

Originally found on the Franklin system, but even more 
relevant on the Hopper system which supports 
dynamically loaded libraries, users reported errors linking 
codes with the -dynamic compiler flag which resulted in 
numerous errors about undefined references to FFTW3 
functions when xt-libsci/10.4.3 and later were used.   
Explicitly loading the FFTW3 module solved the 
compiler errors. Also without the -dynamic flag, the 
compilations worked successfully.  The problem was not 
seen with xt-libsci/10.4.0.  (This problem was originally 
found and filed as bug 761427 on June 15, 2010 on 
Franklin. ) 
 
Cray's initial suggestion was to change NERSC’s default 
FFTW library from FFTW2 to FFTW3.   NERSC was 
opposed to this suggestion since FFTW2 is the default 
library on all of NERSC’s other systems and this could 
cause confusion with users.  Additionally, FFTW2 and 
FFTW3 are essentially two products, which could be 
made into distinct packages instead of using version 
numbers to distinguish them.  Because most users prefer 
FFTW2 since it supports distributed memory MPI, it is 
the default module on the system.  To address the issue, 
Cray introduced a new environment variable 
CRAY_LIBSCI_FFTW_PATH to define the FFTW3 path 
used by xt-libsci, in versions 10.4.8 and on.  NERSC is 
satisfied with this solution. 
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Complications Between xt-mpich2 and xt-shmem 
Modules 
 
Another complication with dynamic linking has been with 
the interactions between the xt-mpich2 and xt-shmem 
modules.  Cray has deprecated the xt-mpt module, and 
introduced two new separate modules xt-mpich2 for MPI 
applications, and xt-shmem for SHMEM applications.  
According to the MPI man page, "when the xt-mpt 
module is loaded, the compiler drivers automatically link 
code using both the -lmpich and -lsma options. This can 
introduce undesirable dependencies if you are using 
dynamic or shared libraries."  These undesirable 
dependencies have been observed in some of the 
dynamically linked user applications with a distinct run 
time error message of: dmapp_dreg.c:391: 
_dmappi_dreg_register: Assertion `reg_cache_initialized' 
failed.  Explicitly unloading xt-shmem module and 
rebuilding the application fixes the problem. 
  
Because NERSC has such a large number of users, 
choosing an appropriate default environment is critical for 
reducing problem reports.  NERSC had a number of 
choices for setting the default modules environment at 
login: A) load xt-mpt only; B) load xt-mpich2 only; C) 
load both xt-mpich2 and xt-shmem. At NERSC, we chose 
option C. The advantages of choosing option A are the 
continuity of the default user environment, and no need to 
contact users who had an explicit version of xt-mpt 
loaded in their scripts (as some applications are only 
validated to run with a certain MPI version.)  The 
disadvantage with option A is that every single 
compilation with "-dynamic" option turned on would get 
an error message saying xt-mpt is deprecated, and to load 
xt-mpich2 or xt-shmem instead. This would affect all 
codes using dynamic libraries.  The advantage of 
choosing option B is that all MPI applications will 
compile successfully either statically or dynamically.  The 
disadvantages of choosing option B are that all SHMEM 
applications will fail.  The advantage of choosing option 
C is that both MPI and SHMEM applications will compile 
successfully either statically or dynamically. The 
disadvantage of choosing option C is that some 
dynamically linked applications may run into the 
dependency issues between -lmpich and -lsma.  Since 
option C affects the least number of users, this was 
chosen as the default login environment for all users on 
Hopper.  We documented the need for users to unload xt-
shmem to build dynamically linked MPI applications on 
the NERSC web pages. 
 

Mysterious error messages 
 

Simple easy to understand error messages help users 
determine reasons why a job or compilation failed.  With 
the transition from Franklin to Hopper, there are a number 
of new job error messages that are specific to the XE6 
system, many of them stemming from the new Gemini 
interconnect and surrounding software.  
 
One example is:  
ERROR - nem_gni_error_handler(): a transaction error 
was detected, error category 0x4 error code 0xb2e  
Rank 0 [Mon Mar 7 03:46:10 2011] [c6-3c1s5n1] GNI 
transaction error detected   
 
This error message was puzzling as it was accompanied 
by wide variety of other error messages, including:  Fatal 
MPI error, ALPS error, PGFIO/stdio error, segmentation 
fault and it seemed that these other error messages were 
better indications of the true cause of the job failures.  
Checking with Cray developers proved our thought: the 
nem_gni_error_handler message is a generic indication of 
a failure that gives little insight into the problem.  We 
have suggested to Cray that this error message be 
improved to avoid user confusion. 
 
Another example of a difficult to parse user error is:  
ERROR - MPID_nem_gni_check_localCQ(): Replaying 
failed network transaction 
Many of these error messages in one job is usually 
followed by: 
[NID 03782] 2011-04-20 18:45:43 Apid 1925046 killed. 
Received node failed or halted event for nid xxxx  
which indicated the node xxx used by this job went down.   
 
Another common mistake users make is trying to run an 
executable on Hopper that has been built for Franklin.  
Binaries for one system are not compatible with the other 
as an executable which is built for Franklin uses the 
Portals message interface on the Seastar interconnect 
while Hopper uses the Gemini interconnect. A distinct 
error message such as “PtlNIInit failed : 
PTL_NOT_REGISTERED” helps us to pinpoint the 
problem and be able to help users easily.  
 
Multiple users reported a similar error message as follows 
on the same day: 
[NID 01083] 2011-04-20 09:39:07 distributeControlMsg: 
Apid 1919514 write  
failure to node 449, 10.128.1.196, port 607, Connection 
reset by peer 
 
We reported the problem to Cray and it was discovered 
that the node 449 was purposely downed on the previous 
day, and accidentally did not get warm booted, though it 
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remained available for scheduling. Warm booting this 
node brought it back to normal. 
 
Some other error messages users sometimes see on 
Hopper (and Franklin) are: 
 

• “error while loading shared libraries: libxxxx.so 
not found”. The cause may be CRAY_ROOTFS 
is not set, or LD_LIBRARY_PATH is not 
updated with user’s own shared objects.  
 

• “OOM killer terminated this process”. Suggests 
user to reduce memory usage or to use fewer 
cores per node. 

 
• “node count exceeds reservation claim”. Check 

PBS keywords to be compatible with aprun 
keywords.  Do not use more nodes than reserved. 

 
• “segmentation fault”. Usually an error in user 

code. 
 

• “compute nodes initiated termination”. Usually 
an error in user code, and more information in 
stderr. 

 
We have documented common error messages and our 
recommendations for troubleshooting the problems on the 
Hopper web pages.  A job completion analysis team has 
been working on understanding the causes of the job 
failures and providing the job completion reports on 
Franklin and Hopper.  Still, a clear error messages from 
the system are a great benefit to NERSC users and staff 
members. 
 

4. Conclusions 
In summary, the early user period on the Hopper system 
has been successful, delivering over 350 million hours to 
the Department of Energy Office of Science research 
community and has enabled users to do research they 
would not otherwise have been able to do.  As soon as the 
Hopper system came online, immediately it was highly 
utilized, running applications at large scales.  With the 
new resiliency features of the Gemini interconnect and the 
added redundancy to the file systems, the Hopper system 
is significantly more stable than the earlier generation 
Franklin XT4 machine.  We expect to continue to report 
system and software bugs against the Hopper system as 
we stress the system and expose new problems going into 
the production period.  We will continue to work with 
Cray on areas where we can improve the system such as 

the as I/O performance, dynamic shared library scaling 
and the usability of the login nodes. 

 

References 
 

1. NERSC web pages for Hopper. 
http://www.nersc.gov/users/computational-
systems/hopper/ 

 
2. K. Antypas, T. Butler, J. Carter. External 

Services on the Cray XT5 System Hopper. CUG 
Proceedings 2010, Edinburgh Scotland. 

 
3. VASP code: http://cms.mpi.univie.ac.at/vasp/ 

 
4. N.J. Wright et al.  The NERSC-Cray Center of 

Excellence: Performance Optimization for the 
Multicore Era. CUG Proceedings 2011, 
Fairbanks, Alaska.  

 
5. D. Wallace and J. Rogers. DVS. CUG 

Proceedings 2008. Helsinki, Finland. 
 
6. T. Butler, G. Butler, R.C. Lee.  DVS, GPFS and 

External Lustre at NERSC - How It's Working on 
Hopper. CUG Proceedings 2011, Fairbanks, 
Alaska. 

 
7. IOR code: http://computing.llnl.gov.  Scalable 

I/O Benchmark Project.  Download: 
http://sourceforge.net/projects/ior-sio/ 

 
8. H. Shan, K. Antypas, J.Shalf. Characterizing 

and Predicting the I/O Performance of HPC 
Applications Using a Parameterized Synthetic 
Benchmark. IBM Journal of Research and 
Development, Supercomputing 2008. 

 
9. MAESTRO code: 

https://ccse.lbl.gov/Software/index.html 
 

10. A. Nonaka, A.S. Almgren, J. B. Bell, M. J. 
Lijewski, C. M. Malone, and M. Zingale, 
"MAESTRO: An Adaptive Low Mach Number 
Hydrodynamics Algorithm for Stellar Flows", 
Astrophysical Journal Supplement Series, 188, 
358-383, June 2010 

 
11. S. Whalen. “XE6 Job Placement: Node 

Allocation in an Anisotropic Torus.” 
NERSC/Cray quarterly meeting presentation. 
January 27, 2011. 



 

 
 

Cray User Group 2011 Proceedings 13 of 13 
 

 

Acknowledgments 
We would like to thank Zhengji Zhao for providing 
VASP code performance data, and Nick Wright for 
helpful suggestions.  
 
We would like to thank Cray teams (remote and on site 
support staff), the joint NERSC/Cray Center of 
Excellence staff, and also our NERSC colleagues for their 
hard work on Hopper.  We would also like to thank 
NERSC users for their valuable feedbacks. 
 
The authors are supported by the Director, Office of 
Science, Advanced Scientific Computing Research, U.S. 
Department of Energy under Contract No. DE-AC02- 
05CH11231. This work used resources of the National 
Energy Research Scientific Computing Center, which is 
supported by the Office of Science of the U.S. 
Department of Energy. 
 

About the Authors 
Katie Antypas is the Group Leader of the User 

Services Group at NERSC.  Helen He is a High 
Performance Computing consultant in the User Services 
Group. Email: kantypas@lbl.gov, yhe@lbl.gov. 


