

Cray User Group 2011 Proceedings 1 of 13

Transitioning Users from the Franklin XT4 System to the
Hopper XE6 System

Katie Antypas and Yun (Helen) He, National Energy
Research Scientific Computing Center

ABSTRACT: The Hopper XE6 system, NERSC’s first peta-flop system with over
153,000 cores has increased the computing hours available to the Department of
Energy’s Office of Science users by more than a factor of 4. As NERSC users transition
from the Franklin XT4 system with 4 cores per node to the Hopper XE6 system with 24
cores per node, they have had to adapt to a lower amount of memory per core and on-
node I/O performance which does not scale up linearly with the number of cores per
node. This paper will discuss Hopper’s usage during the “early user period” and
examine the practical implications of running on a system with 24 cores per node,
exploring advanced aprun and memory affinity options for typical NERSC applications
as well as strategies to improve I/O performance.

KEYWORDS: XE6, I/O performance, hybrid programming models

1. Introduction
The Hopper system [1], a Cray XE6 with over 153,000
cores installed at the National Energy Research Scientific
Computing (NERSC) Center is the first peta-flop system
available to the general Department of Energy (DOE)
Office of Science research community. NERSC is the
primary high performance computing facility for the
Department of Energy’s Office of Science and serves the
broad DOE community providing computational and
storage resources and services to a range of researchers in
disciplines spanning astrophysics, climate, combustion,
biology, material science, chemistry, fusion and physics.
NERSC supports over 4,000 users representing roughly
400 different research projects.

The addition of the Hopper system with a peak
performance of 1.28 peta-flops to the NERSC facility
increases the computing time available to NERSC users
by a factor of 4 over NERSC’s previous generation large
scale system, Franklin, a Cray XT4 system with over

38,000 quad-core processors and a peak performance of
352 tera-flops.

Hopper

The Hopper system was deployed in two phases. The
first phase was an XT5 system that was delivered to
NERSC in the fall of 2009. This paper focuses on the
second, larger, and final configuration of the Hopper
system, a Cray XE6 named after Computer Scientist and
Rear Admiral Grace Murray Hopper, consisting of 3,284
compute nodes, each containing two 12 core AMD 2.1
GHz MagnyCours processors. Each compute core has a
peak performance of 8.4 Gflops/sec resulting in a system
with a peak performance of 1.28 PFlops. All but 384
compute nodes have 32 GB of DDR3 1333 MHz memory
while the remaining larger nodes have 64 GB of DDR3
1333 MHz memory creating a system with over 217 TB
of memory. The nodes are interconnected in a 3D torus
network with the Gemini interconnect which has
significantly improved reliability features compared to the

Cray User Group 2011 Proceedings 2 of 13

earlier generation Seastar2 network used on the Franklin
system. Whereas a failed or down link in the Seastar2
interconnect will cause an outage on the entire machine,
the Gemini interconnect has the capability of routing
around down links. The Gemini interconnect also has
greatly reduced latency and higher bandwidth compared
to the Seastar2 network. Table 1 shows the MPI latency
and MPI bandwidth of the Gemini and Seastar2 networks.

Table 1: Comparison of MPI latency and bandwidth on
the Seastar2 and Gemini networks.

NERSC has configured the Hopper system with five
different parallel file systems: a GPFS based global home
file system mounted across all NERSC systems, two
identical local Lustre scratch file systems which have a
peak performance of 35 GB/sec and a capacity of 1 PB
each, a global scratch GPFS file system, which is
mounted on most NERSC systems as well as a GPFS
based project file system intended for collaborative data
sharing.

As with Franklin, the previous generation machine,
Hopper runs two different operating systems, a full
featured SuSE Linux is run on the login nodes and service
nodes while the compute nodes run a light-weight
operating system called the Cray Linux Environment
(CLE). A new feature of the Hopper system is the
external login nodes that exist outside of the main torus
network. The 8 external login nodes have 16 cores each
with 128 GB of memory and increase the usability of the
system by allowing users to do more computationally and
memory intensive processing than an internal login node
would allow. The external login nodes also allow users to
access the five user file systems installed on Hopper when
the compute portion of the machine is unavailable. For a
more through discussion of the external services on Cray
systems please refer to last year’s CUG paper [2].

Hopper Timeline and Usage

The second phase of the Hopper system was delivered in
four shipments at the end of the 2010 summer. By
September 17th, all 68 cabinets had arrived at NERSC’s
Oakland Scientific Facility. During the fall, the system
was installed and integrated into the NERSC environment
and the earliest NERSC users accounts were enabled
November 15, 2010. These users were targeted because
their applications would stress various parts of the
systems. For example, users who ran large concurrency
jobs were invited on the Hopper system early to test the
network and scalability of the system. Users whose codes
contained both MPI and OpenMP were invited to test the
hybrid programming abilities of the system, and heavy
I/O users were invited to stress the I/O sub-systems. In
exchange for providing feedback to NERSC staff about
the performance of their codes and usability of the
system, all early users ran their applications on the system
free of charge. By the winter holiday, all user accounts
had been enabled on Hopper, though the time on the
system was still being shared with Cray engineers who
continued to test the system. On February 4th, the official
acceptance test and then, 30 day availability test began,
giving users uninterrupted system access. After
successful testing, the Hopper system was accepted by
NERSC on April 19, 2011 and the system went into
production shortly afterward on May 1st. The time from
November 2010 to May 1st 2011 is referred to as the
“Early User Period” during which time, user accounts are
not charged. It is a time when scientists and researchers
can experiment with larger concurrency jobs or try new
experiments they might not be able to do with their
normal production allocation. During the early user
period, over 350 million hours were delivered to the
Department of Energy’s, Office of Science researchers.
Two hundred eighty of NERSC’s over 400 projects used
time on the Hopper system and over 1000 users accessed
the system. Figure 1 shows the breakdown of the early
science hours by science category.

 Franklin (Seastar2) Hopper (Gemini)

MPI Latency 6.5 microseconds 1.6 microseconds

MPI
Bandwidth

1.6 GB/sec/node 6.0 GB/sec/node

Cray User Group 2011 Proceedings 3 of 13

Figure 1: Breakdown of CPU core hours on the Hopper
system from November 15, 2010 to April 30, 2011.

The largest science area represented during the early user
period was lattice gauge theory followed by fusion
energy, material science and combustion.

From the start of the availability test on February 5th until
May 1st, the system ran at a utilization of 81.7%. The
calculation for utilization is simply hours delivered to
science projects divided by 24 hours per day. All
benchmarking by NERSC or Cray staff is not included in
the hours to science projects. Since it also includes
downtimes and system maintenances, we are pleased with
a utilization of close to 82% for the first few months of
NERSC’s first peta-flop XE6 system; however, we will
continue to work to improve utilization on the system.
During the early user period, we noticed that the Hopper
system was able to recover and ride through problems
better than the previous generation XT4 Franklin system.
To illustrate, Lustre fail-over has been implemented and
tested on the Hopper system and thus when an OSS failed
in February, the system was able to recover on its own.
Some jobs were lost, but system utilization stayed above
60%, which for a system as large as Hopper, means a
significant number of cores were still running user
applications. A major source of lost utilization is system
maintenances and upgrades. Maintenances are necessary
to keep a machine healthy and patched; however, with
Hopper delivering 3.6 million CPU core hours per day,
the opportunity cost of taking a system down is high.
NERSC always tries to do as many tasks during a single
maintenance in order to avoid frequently taking the
system up and down. Finally, scheduling problems have

been a source of lost utilization on the system. NERSC
has a number of different queues configured for users to
submit jobs. These queues have different priorities, and it
was found that some of the jobs submitted to the high
priority debug queue were inhibiting the largest jobs on
the system from starting appropriately. NERSC has since
adjusted the queue structures so this type of interference
is less likely to happen. Figure 2 shows the utilization of
the system from February 5th, through April 30th.

Figure 2: Utilization of Hopper system from the start of
acceptance testing February 5, 2011 to April 30, 2011.

The NERSC workload is not only diverse in terms of the
science areas and algorithms, but also in terms of the size
of jobs run on the system. Some applications can utilize
the entire machine, while other applications run at more
modest sizes of a few hundred or few thousand cores.
Figure 3 shows the breakdown of job sizes on the system
during the early user period. When the system started
acceptance testing February 4th, 2011 the job sizes
became more stable with roughly 50% of raw hours going
for jobs run at 16,384 cores or higher and over 20% of
jobs run at 65,536 cores or higher.

Cray User Group 2011 Proceedings 4 of 13

Figure 3. Breakdown of CPU core hours by job size on
the Hopper system

User Feedback

User feedback from the early user period on Hopper was
generally positive. Because of the similarity of the
programming environments between Franklin and
Hopper, most applications were fairly easy to port to the
new system. At least at the beginning of the early user
period, many users were able to take advantage of the
relatively fast turn-around time for large number of cores.
One user states, “The best part of Hopper is the ability to
put previously unavailable computing resources toward
investigations that would otherwise be unapproachable.”
Another states, “During the "free" period Hopper
provided very good turnaround for my jobs, which were
in the 5,000 - 10,000 processor range. This was very
important for finding errors, scaling up my code and
generating new results”

2. Transitioning Users from Franklin to
Hopper

User Environment

While the software environment between Franklin and
Hopper has changed little, one of the largest challenges
transitioning users from the Franklin system to the
Hopper system has been teaching scientists to effectively

use all 24 cores of the Hopper system. Figure 4 illustrates
a Hopper compute node.

Figure 4. Schematic of Hopper compute node showing
non-uniform memory access (NUMA) nodes.

A major difference between Franklin and Hopper is the
available memory per core. On Franklin, each quad-core
compute node has 8 GB of physical memory, while most
Hopper compute nodes have 32 GB of physical memory.
However, not all that memory is available to user
programs. Compute Node Linux (the kernel), the Lustre
file system software, and message passing library buffers
all consume memory, as does loading the executable into
memory. Thus the precise memory available to an
application varies.

Approximately 31 GB of memory can be allocated from
within an MPI program using all 24 cores per node, i.e.,
1.29 GB per MPI task on average. If an application uses
12 MPI tasks per node on Hopper (half packed), then each
MPI task can use about 2.58 GB of memory. In
comparison, the average memory available for
applications on Franklin is about 1.88 GB using all 4
cores per node and 3.77 GB half packed, using only 2
cores per node.

Using 24 cores per node has been a challenge for some
users. As shown in Figure 4, each Hopper compute node
consists of 24-cores grouped into 4 NUMA nodes, each
with 6 cores. Any of the 24 cores can access the memory
of any NUMA node, however, memory access time from
a core to a local NUMA node’s memory will be faster

Cray User Group 2011 Proceedings 5 of 13

than to memory on a remote NUMA node. Put a different
way, compared to the Franklin compute node that had
uniform memory access for all cores, the Hopper compute
node is not flat, task placement and locality matter. Users
need to be particularly careful if they are trying to run
their application on fewer than 24 cores per node. For
example, for pure MPI problems, some users may only
want to run on 8 or 16 cores on the nodes in order to
increase the amount of memory available per MPI task.
Because of the non-uniform memory access on a Hopper
node, how those MPI tasks are placed on a node can have
a large impact on performance. The simplest default
options to launch a job on the compute nodes with the
ALPS aprun command, will assign tasks to the first numa
node before moving on to the next NUMA node. This
can result in sub-optimal performance, as ideally, a user
would want to spread MPI tasks evenly across the node.
Figure 5A below shows the naive way to launch an
application requesting only 4 cores per node compared to
a more optimal way shown in Figure 5B.

Figure 5A: Un-optimal placement of MPI tasks

Figure 5B: More optimal placement of MPI tasks

One way to spread MPI tasks evenly across a node is to
add the “-S” option to the aprun command line that is
used to specify how many MPI tasks to assign per NUMA
node. The example below shows the performance of a
real user application running the VASP code [3] in a 660
atom system with 384 MPI tasks on 32 codes, but one
simulation runs with the cores optimally placed across
NUMA nodes while the other does not.

Figure 6: Runtimes for VASP simulation run with and
without optimal MPI task placement.

Figure 6 shows the dramatic effect task placement can
have on performance. For the VASP simulation the aprun
line in the optimal case is: “aprun –n 384 –N 12 –S 3
vasp” where “-N 12” means to use 12 tasks per node, “-S
3” means to assign 3 MPI tasks per numa node. Without
“-S 3”, all 12 cores will be allocated on the first 2 NUMA
nodes, creating contention for memory bandwidth on the
first two NUMA nodes. Additionally, there will be sub-
optimal memory access to the final two NUMA nodes.
More advanced aprun options on Hopper such as ”-sn”
(number of NUMA nodes to use per compute node),
“-ss” (specify strict memory containment per NUMA
node) and “-cc” (controls how tasks are bound to cores
and NUMA node) are also available for users to tune
application performance.

Because of the larger number of cores available per node,
24, and the larger amount of shared memory available per
node, 32 GB, NERSC encourages users to try a new
programming paradigm, hybrid MPI/OpenMP, instead of
pure MPI. While most pure MPI applications that run

Cray User Group 2011 Proceedings 6 of 13

successfully on Franklin will also run successfully on
Hopper, some applications may fail due to out of memory
conditions. One strategy, as discussed above, is for users
to run on fewer than 24 cores per node, leaving some
cores idle. This is an acceptable strategy, though, the user
will be charged by the node, and so leaving cores idle will
result in a more costly run. An alternative is for users to
try a hybrid MPI/OpenMP model. Although this
paradigm may not necessarily outperform pure MPI
performance, it can lower memory usage by requiring
fewer instances of the same program, fewer MPI buffers
and the storage of fewer ghost cells. It takes advantage of
the natural two layers of parallelism of a Hopper compute
node: using MPI across nodes or NUMA nodes, and using
OpenMP within nodes or NUMA nodes. Fewer MPI tasks
per node avoid extra communication costs within a node
and allow for larger messages sizes to be sent off node.

Memory allocation also uses a “first-touch” policy, which
means memory is mapped on the NUMA node of the
compute core by which it is first written. With hybrid
MPI/OpenMP, it is recommended that each thread
initialize its memory at the “first touch”, so that it will
only access memory in its local NUMA node. Since this
is usually difficult to do, NERSC recommends using no
more than 6 threads per node, even though the maximum
number allowed is 24 per node [4]. We have seen that
typical Hybrid MPI/OpenMP applications show
performance improvements from 1 thread to 6 threads per
node, but drop when 12 or 24 threads are used unless
perfect “first touch” memory allocation can be
accomplished. Our strong suggestions to use no more
than 6 threads per node with MPI/OpenMP programming
on Hopper is clearly delivered to NERSC users in web
documentation, NERSC training sessions, and workshops.

Dynamic and Shared Libraries

The Hopper system supports the capability to run
dynamic and shared object codes on the compute nodes.
This functionality is not supported on the Franklin system
that runs an earlier version of the CLE operating system,
2.2. On Hopper with OS level CLE3.1, static binaries are
still the default and suggested way to launch jobs on the
system; however, dynamically linked applications with
shared libraries can be run if a user compiles with the
-dynamic flag and sets an environment variable at
runtime. Dynamic and shared library applications are run

on compute nodes via a software layer called DVS (Data
Virtualization Service) [5] which forwards the service
node environment and system libraries to the compute
nodes. Many Cray supported libraries such as SciLab,
MPI, pthreads, are available as dynamic shared objects
(DSOs), and users can define and use their own DSOs.
This feature also enables other executables (non-ELF
binaries) such as shell scripts, perl and python scripts, that
need shared libraries at run time, to run on the compute
nodes. Most system calls are also now supported. The
ability to run shared and dynamic object codes on the
Hopper system gives users an environment more similar
to the full Linux environment of traditional clusters and
users appreciate the convenience of this support.

We have discovered however, that loading shared
libraries on compute nodes can be slow, especially for
large core count jobs. It appears that the DVS software
layer is not currently configured to efficiently read shared
objects in parallel, which results in serialization and a
slowdown for user applications. We are actively working
with Cray for better tuning of DVS parameters.
Meanwhile, we advised NERSC users to try to combine
multiple shared libraries into one or for python
applications, reduce the number of python import calls if
possible. Some users had to build static executables to
avoid the performance hit caused by the shared libraries
slowness in the DVS layer [6].

I/O Performance

An area users continue to find challenging is scaling
application I/O and getting optimal I/O performance out
of the system. Writing and reading large amounts of data
from an HPC system is often a challenge for large
applications because of the great difference between the
compute node’s ability to calculate data compared to the
speed and performance of the magnetic spinning disks
used to store data. This forces scientists needing to read
or write large amounts of data to come up with a host of
techniques for increasing bandwidth, including striping
data across disks, aggregating data to a few nodes and
using various buffering techniques. One challenge for
users has been that although the number of cores on a
node has increased from 4 cores per node on the Franklin
system to 24 cores per node on the Hopper system, I/O
performance has not scaled with the number of cores.
IOR [7, 8] is a benchmark developed at Lawrence
Livermore National Laboratory and has a flexible
interface and can be run with various user I/O APIs such
as POSIX, MPIIO or HDF5. It can also be set to output
different block sizes. Figure 7 shows the difference in I/O
performance on the Franklin and Hopper systems using

Cray User Group 2011 Proceedings 7 of 13

the IOR benchmark on up to 24 MPI tasks where each
MPI task writes out 2GB of data. On Hopper this
represents one node while on Franklin this represents 6
nodes. The numbers are closely aligned for the first 8
MPI tasks and then start to diverge thereafter. Franklin
performance continues to increase, while Hopper
performance levels out at ~1700 MB/second. A question
that needs to be resolved is why Hopper write
performance peaks at 1700 GB/sec. Franklin’s peak node
performance achieves two-thirds the performance of the
Seastar2 network’s injection bandwidth of 1.6 GB/sec
whereas Hopper only achieves 28% of the bandwidth of
Gemini’s 6 GB/sec injection bandwidth rate. It is
interesting to note that using direct I/O that disables
caching and buffering at the operating system does not
improve performance. This leads us to believe that
throttling is occurring at the Lustre client level.

Figure 7: I/O write scalability comparison between
Franklin and Hopper to 24 cores.

To try to improve I/O performance for user applications,
Cray resurrected a library called iobuf that was used in the
earlier Catamount systems. The purpose of the iobuf
library is to buffer I/O requests on a compute node by
intercepting read and write calls and thus allowing fewer,
larger blocks of I/O to be read and written at a time,
improving I/O performance. Cray provides the iobuf
library in a module and the user needs only to load the
module and re-link the application. Additionally, the
environment variable IOBUF_PARAMS needs to be set
to indicate which user files should be buffered. The user
also has the option to set other parameters like the size of
the buffers and the number of buffers to use per file. The
defaults are 4 buffers per file each with a size of 1MB.
There are other more advanced settings for shared files
and shared buffers, prefetch and flush settings.
Additionally, the iobuf module can be used to gather I/O
statistics that are appended to the user’s standard out file.

The iobuf library’s capabilities were tested on 1560 cores
with the IOR benchmark. This particular IOR test at
NERSC uses the IOR POSIX file-per-processor interface
to measure the aggregate I/O performance on the system.
Each Lustre scratch file system has 156 Object Storage
Targets (OSTs), and this test is intended to write 10 files
on each OST. Each processor core writes and
subsequently reads 2GB for a total output of over 3TB.
Figure 8 shows the difference in performance between
runs with and without the iobuf library for three different
transfer sizes, one with a transfer size of 10,000 bytes, a
second with 1 million bytes and a third with 1,024,576
bytes. These three transfer sizes were chosen because
performance differences have been seen between small
and large transfer sizes as well as transfer sizes which
were not a power of two. It is important that NERSC
understand the performance implications of different
transfer sizes since real users applications do not always
output data in large power of two sized chunks. In all
cases, the IOR runs with I/O buffering enabled
outperformed the runs that did not and again in all three
cases, reads show significantly more benefit from I/O
buffering than writes. The read performance is between
30-40% better when I/O buffering is enabled. For writes,
performance only increases between 1 and 11%. I/O
performance increases the most for the 10k write cases
and the least for the power of two MiB case. This is an
expected result as smaller writes would benefit from
aggregation the most. For these runs, the IO buffering
parameters have been set to two buffers each of size 2
MB. It is clear that the parameter space could be explored
further with experiments to test larger and more buffers.

 Figure 8: Comparison of I/O performance for different
sets of transfer sizes using the IOR benchmark on 1560
cores.

In addition to testing the iobuf module on a synthetic
benchmark like IOR, we linked a full scientific

Cray User Group 2011 Proceedings 8 of 13

application, MAESTRO [9] against the iobuf library.
MAESTRO is a low mach number astrophysics code used
to simulate the evolution leading up to a type 1a
supernova explosion. This particular simulation examines
convection in a white dwarf and includes both explicit
and implicit solvers. The code uses the BoxLib [10] grid
framework, although this particular problem does not use
an adaptive mesh, but rather evolves the time-steps on a
uniform grid. The MAESTRO benchmark includes an
I/O component and represents applications that have
small or ‘bursty’ I/O patterns. This is often the case for
adaptive mesh applications that write data one grid
element, or box, at a time. These applications often suffer
from low I/O performance due to the overhead of many
write transactions. The iobuf library provided by Cray
could improve I/O performance for MAESTRO and
similar applications by buffering I/O on the node and
subsequently writing fewer, larger chunks of data at a
later time. The MAESTRO benchmark runs on 2048
processors and writes out 3 checkpoint-restart files using
a one-file-per-processor model. Each set of checkpoint-
restart files produces 153GB of data across 10240 files
with most file sizes roughly 10 MBs. Figure 9 shows that
linking with the iobuf library, with the default settings
improves I/O performance by about 5%. Changing the
iobuf parameter settings to use 2 buffers of size 2MB each
rather than 4 buffers of 1 MB each improved performance
slightly more. (Each of the tests were run multiple times,
with the minimum number provided in each case to avoid
the variability on the system.) The MAESTRO results are
consistent with the performance improvements seen with
the iobuf library on the IOR benchmark.

Figure 9: Performance of MAESTRO I/O with iobuf
library

We conclude that the iobuf library does improve
performance for some user applications. The largest
improvement comes from reading data. For writing data,

applications that send small amounts of data seem to
benefit the most, though this area certainly needs wider
parameter exploration. Since the iobuf module is simple
to use and requires no code changes, users are encouraged
to try it to see if I/O buffering will improve the
performance of their application. Users should be aware
though, that adding I/O buffers will reduce the amount of
memory available to a user application.

In addition to the challenges of getting optimal
performance from Hopper’s I/O sub-system, on March
24th, 2011 NERSC upgraded the Hopper system to CLE
3.1 UP03 which fixed a number of critical bugs.
Unfortunately, the upgrade to CLE 3.1 UP03 decreased
aggregate I/O performance across the system. NERSC
ran tests with the IOR benchmark on 1560 cores with the
POSIX interface with each processor writing 2GB of data
to 156 OSTs, (the same setup as in the previous IOR
benchmark.) This aggregate benchmark test is intended
to saturate the I/O bandwidth of the system and create a
sustained I/O rate so the aggregate performance of the
system can be measured. Figure 10 shows the
performance of the IOR benchmark on a single Lustre
scratch file system before and after the CLE 3.1 UP03.
Performance dropped by 30-40%. At this time, Cray has
a submitted a fix for problem, though it has not yet been
put on the Hopper system.

Figure 10: Performance degradation after the
CLE3.1UP03 upgrade

3. Problem reports and ongoing issues
Throughout the early user period, NERSC staff and users
have exposed bugs on the system, which is to be expected
on a new system with a young software stack. So far,

Cray User Group 2011 Proceedings 9 of 13

over 100 bugs have been opened against the Hopper
system and about half of them have been fixed. Figure 11
shows the open bugs by month during the early user
period. As expected, the most recent months have the
lowest ratio of fixed to open bugs compared to bugs
reported in the fall.

Figure 11: Bugs opened by NERSC and fixed by Cray
each month.

The following sections describe some of the specific
problems that were exposed on the system.

Low MPI Bandwidth with Small Memory Pages

Through the joint NERSC-Cray Center of Excellence
collaboration low level benchmark testing exposed the
MPI bandwidth for small pages was 50% the bandwidth
for large pages. With the default 4KB pages, the MPI
bandwidth between nodes measured 3.5 GB/sec whereas
the bandwidth when large memory pages were used was 6
GB/sec. Since most users were running with the default
memory pages, this performance problem was affecting a
large number of users. The issue was raised with Cray
and fixed in a subsequent patch.

Scheduling Problems

In February 2011, there were a few episodes where
compute nodes appeared to be available, but jobs were not
being scheduled on the nodes causing low system
utilization. In some cases the utilization dropped to 50%,
a sure sign of a problem as the Hopper queues were
regularly packed with jobs waiting to run. The log files
showed MOAB warning messages such as:
"WARNING: excessive memory in use (8597 MB) --
restart Moab?" It was found that there were orphan
reservations on the system, meaning that the ALPS

scheduler believed a job was utilizing a node when it
really was idle. This meant that the errant reservations
needed to be cleared up manually before the system could
return to normal utilization.

The problem was reported to Cray as bug 770068 on
February 28, 2011. NERSC discovered that the issues
were related to users submitting many one-node jobs
using job arrays. Cray’s investigation found that the job
arrays overwhelmed the ALPS scheduler causing an
invalid request to be forwarded to the scheduling agent
resulting in many TCP connections being opened and
closed repeatedly. Cray added additional error checking,
and provided the patch to NERSC a week after the bug
was submitted. Meanwhile, NERSC worked with users to
submit these types of job arrays more efficiently.

NID Ordering

Job placement on a system as large as Hopper can have an
effect on the performance of an application, as nodes
belonging to the same job but widely spread across the
system can suffer greater latencies and higher
communication costs. Cray's original node allocation
algorithm for placing an application on the torus was
based on NID ordering, where a particular job gets
allocated nodes that are physically adjacent to each other,
without any awareness of network topology. An
improvement was made to the job placement algorithm to
make it aware of the interleaving nature of the topology,
and is known as xyz ordering. However, the allocation of
nodes with either the original NID ordering or xyz
ordering was only two-dimensional. In order to allocate
nodes in three-dimensional manner that can take
advantage of the full torus bisection bandwidth, a new
algorithm was introduced on Hopper known as "xyz-by2"
[11]. This ordering helps to minimize job run time
variation by lowering latencies between nodes within a
job and maximizing global bandwidth (network capacity)
and bisection bandwidth fore each job.

The "xyz-by2" ordering was used to meet the run time
requirements for the set of application benchmarks used
for the Hopper procurement. After the OS upgrade to
CLE3.1UP03 on March 24, 2011, the Hopper benchmarks
were run to check the system and we discovered that the
performance of CAM, GTC, Paratec, Impact, NPB,
Stream, and Chombo were comparable to those before the
upgrade under the production environment. However, we
saw a significant slow down for MILC, Maestro, and
GAMESS, as much as 30% as shown in Figure 12.

Cray User Group 2011 Proceedings 10 of 13

Figure 12: Effect job placement on torus has on runtime
for NERSC applications.

The problem was reported to Cray, and it was discovered
that the optimal NID ordering algorithm was lost during
the OS upgrade. After it was put back on Hopper,
running the applications again confirmed that application
performance had returned to their previous performance
levels.

Mixing C++ and Fortran in the GNU Programming
environment

Another problem on the system reported by half a dozen
users was found when mixed language C++ and Fortran
applications executed in the GNU programming
environment. It was found if a code had both C/C++ and
Fortran routines, used I/O in a Fortran code, and was built
with the GNU compiler, the executable would generate a
segmentation fault during run time. This occurred with xt-
asyncpe/4.7 and was reported as bug 769872 on February
14, 2011. Cray discovered a symbol from libgfortran.a
was not getting resolved, resulting in a faulty memory
address. Cray provided a workaround and then the bug
was fixed in xt-asyncpe.4.9 released on March 17, 2011.

OpenMP Compiler Flag Options

A problem was found with the ftn, cc, and CC compiler
wrappers to the PGI compiler such that the standard
-mp=nonuma compiler option did not enable OpenMP.
The problem did not occur with the other compilers on the
system, Pathscale, GNU and Cray, and the standard flag
also worked fine using the native PGI compiler without

the compiler wrappers. It was also noticed that the issue
was only associated with xt-libsci/10.4.5 and not earlier
versions. The bug was reported to Cray on October 19,
2010 as bug 765956 and Cray provided a fix in release xt-
libsci/10.5.0, released on December 16th 2010 by
replacing -mp with -mp=nonuma in the wrapper for ftn
and cc with PGI. However, this fix caused another
problem that caused other options to the -mp flag to fail,
(such as -mp=trace, or -mp=align). We reported this as
bug 768025. Cray provided another fix for the wrappers
in xt-asyncpe/4.7 released on January 20th, 2011, but it
was found that the problem was only fixed for the
FORTRAN compiler wrapper ftn, but not for the C and
C++ wrappers. We re-iterated with Cray, and finally got
all the PGI compiler wrappers fixed for passing the
correct OpenMP compiler flags in xt-asyncpe/4.8 released
on February 17th, 2011. This exchange underscores the
importance of close communication with the vendor and
also the challenges testing all possible use cases all the
while mostly communicating through a bug tracking
system and through our local Cray onsite staff.

Libsci Dynamic Linking

Originally found on the Franklin system, but even more
relevant on the Hopper system which supports
dynamically loaded libraries, users reported errors linking
codes with the -dynamic compiler flag which resulted in
numerous errors about undefined references to FFTW3
functions when xt-libsci/10.4.3 and later were used.
Explicitly loading the FFTW3 module solved the
compiler errors. Also without the -dynamic flag, the
compilations worked successfully. The problem was not
seen with xt-libsci/10.4.0. (This problem was originally
found and filed as bug 761427 on June 15, 2010 on
Franklin.)

Cray's initial suggestion was to change NERSC’s default
FFTW library from FFTW2 to FFTW3. NERSC was
opposed to this suggestion since FFTW2 is the default
library on all of NERSC’s other systems and this could
cause confusion with users. Additionally, FFTW2 and
FFTW3 are essentially two products, which could be
made into distinct packages instead of using version
numbers to distinguish them. Because most users prefer
FFTW2 since it supports distributed memory MPI, it is
the default module on the system. To address the issue,
Cray introduced a new environment variable
CRAY_LIBSCI_FFTW_PATH to define the FFTW3 path
used by xt-libsci, in versions 10.4.8 and on. NERSC is
satisfied with this solution.

Cray User Group 2011 Proceedings 11 of 13

Complications Between xt-mpich2 and xt-shmem
Modules

Another complication with dynamic linking has been with
the interactions between the xt-mpich2 and xt-shmem
modules. Cray has deprecated the xt-mpt module, and
introduced two new separate modules xt-mpich2 for MPI
applications, and xt-shmem for SHMEM applications.
According to the MPI man page, "when the xt-mpt
module is loaded, the compiler drivers automatically link
code using both the -lmpich and -lsma options. This can
introduce undesirable dependencies if you are using
dynamic or shared libraries." These undesirable
dependencies have been observed in some of the
dynamically linked user applications with a distinct run
time error message of: dmapp_dreg.c:391:
_dmappi_dreg_register: Assertion `reg_cache_initialized'
failed. Explicitly unloading xt-shmem module and
rebuilding the application fixes the problem.

Because NERSC has such a large number of users,
choosing an appropriate default environment is critical for
reducing problem reports. NERSC had a number of
choices for setting the default modules environment at
login: A) load xt-mpt only; B) load xt-mpich2 only; C)
load both xt-mpich2 and xt-shmem. At NERSC, we chose
option C. The advantages of choosing option A are the
continuity of the default user environment, and no need to
contact users who had an explicit version of xt-mpt
loaded in their scripts (as some applications are only
validated to run with a certain MPI version.) The
disadvantage with option A is that every single
compilation with "-dynamic" option turned on would get
an error message saying xt-mpt is deprecated, and to load
xt-mpich2 or xt-shmem instead. This would affect all
codes using dynamic libraries. The advantage of
choosing option B is that all MPI applications will
compile successfully either statically or dynamically. The
disadvantages of choosing option B are that all SHMEM
applications will fail. The advantage of choosing option
C is that both MPI and SHMEM applications will compile
successfully either statically or dynamically. The
disadvantage of choosing option C is that some
dynamically linked applications may run into the
dependency issues between -lmpich and -lsma. Since
option C affects the least number of users, this was
chosen as the default login environment for all users on
Hopper. We documented the need for users to unload xt-
shmem to build dynamically linked MPI applications on
the NERSC web pages.

Mysterious error messages

Simple easy to understand error messages help users
determine reasons why a job or compilation failed. With
the transition from Franklin to Hopper, there are a number
of new job error messages that are specific to the XE6
system, many of them stemming from the new Gemini
interconnect and surrounding software.

One example is:
ERROR - nem_gni_error_handler(): a transaction error
was detected, error category 0x4 error code 0xb2e
Rank 0 [Mon Mar 7 03:46:10 2011] [c6-3c1s5n1] GNI
transaction error detected

This error message was puzzling as it was accompanied
by wide variety of other error messages, including: Fatal
MPI error, ALPS error, PGFIO/stdio error, segmentation
fault and it seemed that these other error messages were
better indications of the true cause of the job failures.
Checking with Cray developers proved our thought: the
nem_gni_error_handler message is a generic indication of
a failure that gives little insight into the problem. We
have suggested to Cray that this error message be
improved to avoid user confusion.

Another example of a difficult to parse user error is:
ERROR - MPID_nem_gni_check_localCQ(): Replaying
failed network transaction
Many of these error messages in one job is usually
followed by:
[NID 03782] 2011-04-20 18:45:43 Apid 1925046 killed.
Received node failed or halted event for nid xxxx
which indicated the node xxx used by this job went down.

Another common mistake users make is trying to run an
executable on Hopper that has been built for Franklin.
Binaries for one system are not compatible with the other
as an executable which is built for Franklin uses the
Portals message interface on the Seastar interconnect
while Hopper uses the Gemini interconnect. A distinct
error message such as “PtlNIInit failed :
PTL_NOT_REGISTERED” helps us to pinpoint the
problem and be able to help users easily.

Multiple users reported a similar error message as follows
on the same day:
[NID 01083] 2011-04-20 09:39:07 distributeControlMsg:
Apid 1919514 write
failure to node 449, 10.128.1.196, port 607, Connection
reset by peer

We reported the problem to Cray and it was discovered
that the node 449 was purposely downed on the previous
day, and accidentally did not get warm booted, though it

Cray User Group 2011 Proceedings 12 of 13

remained available for scheduling. Warm booting this
node brought it back to normal.

Some other error messages users sometimes see on
Hopper (and Franklin) are:

• “error while loading shared libraries: libxxxx.so
not found”. The cause may be CRAY_ROOTFS
is not set, or LD_LIBRARY_PATH is not
updated with user’s own shared objects.

• “OOM killer terminated this process”. Suggests
user to reduce memory usage or to use fewer
cores per node.

• “node count exceeds reservation claim”. Check

PBS keywords to be compatible with aprun
keywords. Do not use more nodes than reserved.

• “segmentation fault”. Usually an error in user

code.

• “compute nodes initiated termination”. Usually
an error in user code, and more information in
stderr.

We have documented common error messages and our
recommendations for troubleshooting the problems on the
Hopper web pages. A job completion analysis team has
been working on understanding the causes of the job
failures and providing the job completion reports on
Franklin and Hopper. Still, a clear error messages from
the system are a great benefit to NERSC users and staff
members.

4. Conclusions
In summary, the early user period on the Hopper system
has been successful, delivering over 350 million hours to
the Department of Energy Office of Science research
community and has enabled users to do research they
would not otherwise have been able to do. As soon as the
Hopper system came online, immediately it was highly
utilized, running applications at large scales. With the
new resiliency features of the Gemini interconnect and the
added redundancy to the file systems, the Hopper system
is significantly more stable than the earlier generation
Franklin XT4 machine. We expect to continue to report
system and software bugs against the Hopper system as
we stress the system and expose new problems going into
the production period. We will continue to work with
Cray on areas where we can improve the system such as

the as I/O performance, dynamic shared library scaling
and the usability of the login nodes.

References

1. NERSC web pages for Hopper.
http://www.nersc.gov/users/computational-
systems/hopper/

2. K. Antypas, T. Butler, J. Carter. External

Services on the Cray XT5 System Hopper. CUG
Proceedings 2010, Edinburgh Scotland.

3. VASP code: http://cms.mpi.univie.ac.at/vasp/

4. N.J. Wright et al. The NERSC-Cray Center of

Excellence: Performance Optimization for the
Multicore Era. CUG Proceedings 2011,
Fairbanks, Alaska.

5. D. Wallace and J. Rogers. DVS. CUG

Proceedings 2008. Helsinki, Finland.

6. T. Butler, G. Butler, R.C. Lee. DVS, GPFS and

External Lustre at NERSC - How It's Working on
Hopper. CUG Proceedings 2011, Fairbanks,
Alaska.

7. IOR code: http://computing.llnl.gov. Scalable

I/O Benchmark Project. Download:
http://sourceforge.net/projects/ior-sio/

8. H. Shan, K. Antypas, J.Shalf. Characterizing

and Predicting the I/O Performance of HPC
Applications Using a Parameterized Synthetic
Benchmark. IBM Journal of Research and
Development, Supercomputing 2008.

9. MAESTRO code:

https://ccse.lbl.gov/Software/index.html

10. A. Nonaka, A.S. Almgren, J. B. Bell, M. J.
Lijewski, C. M. Malone, and M. Zingale,
"MAESTRO: An Adaptive Low Mach Number
Hydrodynamics Algorithm for Stellar Flows",
Astrophysical Journal Supplement Series, 188,
358-383, June 2010

11. S. Whalen. “XE6 Job Placement: Node

Allocation in an Anisotropic Torus.”
NERSC/Cray quarterly meeting presentation.
January 27, 2011.

Cray User Group 2011 Proceedings 13 of 13

Acknowledgments
We would like to thank Zhengji Zhao for providing
VASP code performance data, and Nick Wright for
helpful suggestions.

We would like to thank Cray teams (remote and on site
support staff), the joint NERSC/Cray Center of
Excellence staff, and also our NERSC colleagues for their
hard work on Hopper. We would also like to thank
NERSC users for their valuable feedbacks.

The authors are supported by the Director, Office of
Science, Advanced Scientific Computing Research, U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231. This work used resources of the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science of the U.S.
Department of Energy.

About the Authors
Katie Antypas is the Group Leader of the User

Services Group at NERSC. Helen He is a High
Performance Computing consultant in the User Services
Group. Email: kantypas@lbl.gov, yhe@lbl.gov.

