


# **Breakthrough Science at NERSC**

## Richard Gerber NERSC User Services Group

Cray Technical Workshop, Isle of Palms, SC February 25, 2009









## **Outline**

- Overview of NERSC
- NERSC's Cray XT4 Franklin
- Franklin 2008-2009 Usage
- Breakthrough Science







### **NERSC**

## **NERSC**

The National Energy Research Scientific Computing Center

### **NERSC's Mission**

Accelerate the pace of scientific discovery for all DOE Office of Science research

## **NERSC Provides High Performance**

Computing, information, data, and communications services







## **NERSC 2009 Configuration**

# Large-Scale Computing System

Franklin: Cray XT4

- 9,660 nodes
- 38,640 cores
- 79 TB Memory
- 400+ TB shared disk
- SeaStar 2 3D torus interconnect

95% of NERSC compute capacity



#### **Clusters**



#### Bassi

• IBM Power5 (888 cores) Jacquard

- LNXI Opteron (712 cores) PDSF (HEP/NP)
  - Linux cluster (~1K cores)

**NERSC Global Filesystem (NGF)** 



230 TB; 5.5 GB/s

#### **HPSS Archival Storage**

- 44 PB capacity
- 10 Sun robots
- 130 TB disk cache











## **NERSC's Cray XT4**

- Franklin
  - 102 Cabinets in 17 rows
  - 9,660 nodes (38,640 cores)
  - 79 TBs Aggregate Memory (4 x 2GB DIMMs per node)
- Interconnect: Cray SeaStar2,
   3D Torus
  - >6 TB/s BisectionBandwidth
  - >7 GB/s Link Bandwidth
- Shared Disk: 400+ TBs
- Network Connections
  - 24 x 10 Gbps + 16 x 1 Gbps
  - 60 x 4 Gbps Fibre Channel

#### Performance:

Sustained application: 38 Tflops

Peak performance: 355 Tflops

Linpack: 266 Tflop/sec





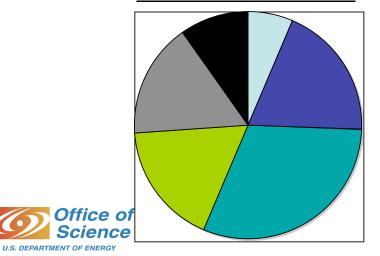




# NERSC is the Production Facility for all of DOE SC

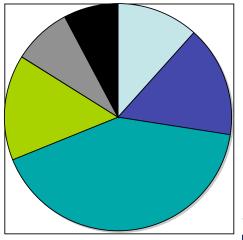
- NERSC serves a large and diverse community
  - $\sim 3,000 \text{ users}$
  - − ~ 400 projects
  - ~ 500 codes
  - − ~ 100 institutions (primarily DOE labs, US Univ)
- DOE allocates NERSC resources across all SC research areas
  - -High impact through large awards
  - -Broad impact across science domains







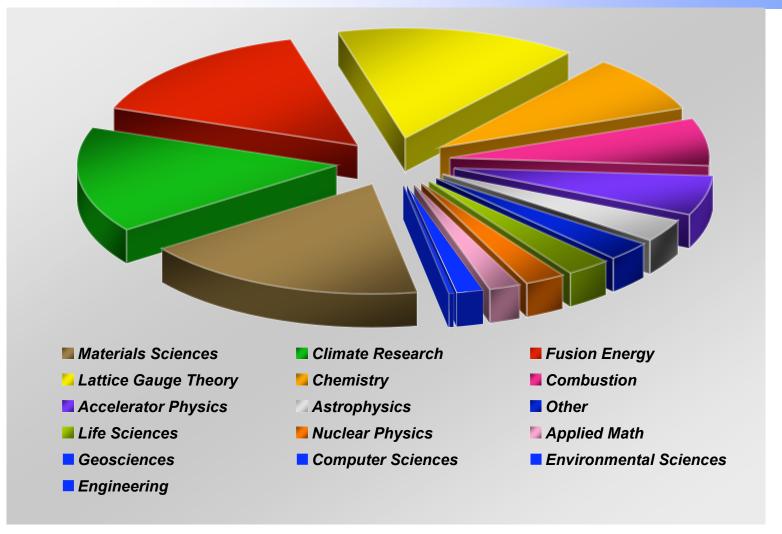

## 2009 Allocations by DOE Office


| Office            | XT4 hours | Num projects |
|-------------------|-----------|--------------|
| Adv Sci Comp Res  | 12.1 M    | 46           |
| Bio Environ Res   | 35.4 M    | 62           |
| Basic Energy Sci  | 57.2 M    | 163          |
| Fusion Energy Sci | 32.6 M    | 60           |
| High Energy Phy   | 30.5 M    | 32           |
| Nuclear Phy       | 18.0 M    | 31           |

#### **Percent of Allocation**






#### Percent of Projects







# 08/09 Franklin Use by Science Field









## **Scientific Publications**

 1,487 refereed publications based on research conducted using NERSC in mid-2007 to mid-2008

## Examples

- "Improving PEM Fuel Cell Catalyst Activity and Durability Using Nitrogen-Doped Carbon Supports," Y. Zhou, R. Pasquarelli, J. Berry, D. Ginley, T. Holme, R. O'Hayre, Nature Materials
- Genomics of cellulosic biofuels, Rubin, EM, Nature, 454 (7206): 841-845
   AUG 14 2008
- Questioning the existence of a unique ground-state structure for Si clusters, W. Hellmann, R. G. Hennig, S. Goedecker, C. J. Umrigar, B. Delley and T. Lenosky. Phys. Rev. B 75, 085411







# Solving Real-World Problems Using Computing

- DOE and NERSC have research on all aspects of the energy & climate change problems
  - -Energy sources: solar, bio, nuclear,...
  - -Energy production: catalysts
  - -Energy efficient engines,...
  - Carbon sequestration
  - -Climate change



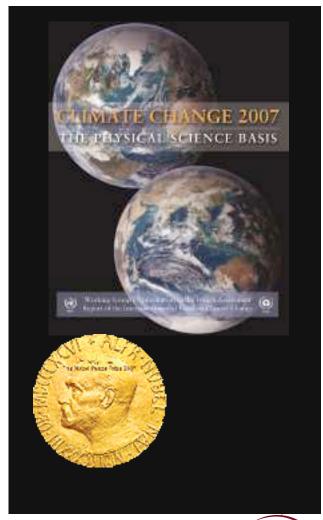




# **Breakthrough Science**








## **Climate Change**

How do you validate climate models?

Compare simulations to observations going back as far as you can.

But what if the observed data is incomplete and unreliable?







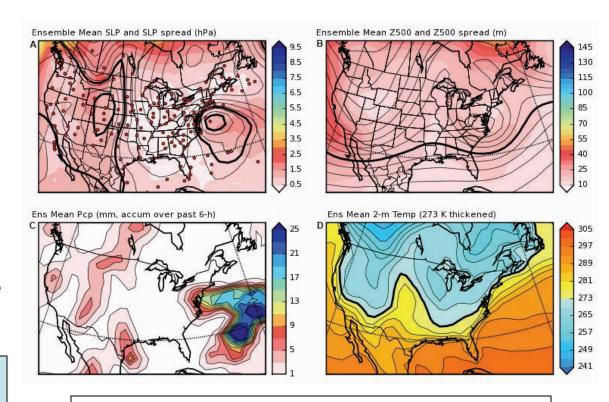


# Surface Input Reanalysis for Climate Applications

- The SIRCA project, lead by Gil Compo (U. Colo) seeks to create the first complete 3D data set of lower atmospheric pressure from 1871-2009.
- Input: error-prone manual sea-level measurements in the N. Hemisphere and random account of storms, etc.
- Apply a recursive filter and a weather prediction model to produce 2 degree (0.5 degree hires), 6-hour, 3D datasets
- To date: First compete dataset of atmospheric observations for 1908 to 1948, when modern observations began.








## **Validating Climate Models**

# Data will also enable investigation of

- 1878 El Nino of the Century
- Dust Bowl of the 1930s
- Arctic warming of the 1920s to 1940s

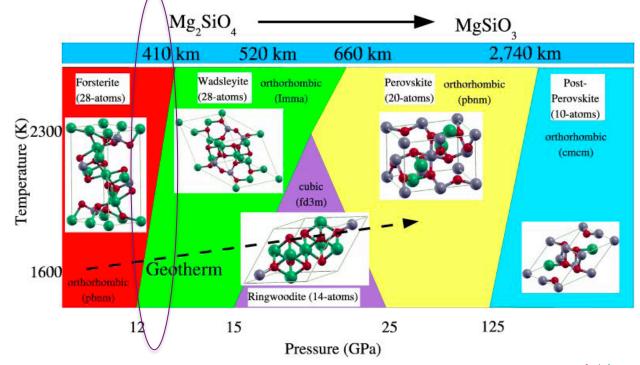
11 M hours (2008-09) 5,000 cores max 2,000 core median



Sea level pressures with color showing uncertainty (a&b); precipitation (c); temperature (d). Dots indicate measurements locations (a).








## **Materials Science/Geophysics**

Kevin Driver, John Wilkins (Ohio State)

Understanding how seismic waves propagate through silicates and reflect from boundaries is important for understanding sub-surface structures - implications for locating oil, carbon sequestration, geothermal energy, etc.

A seismic discontinuity at 410 km depth is attributed to a phase transition in magnesium silicate









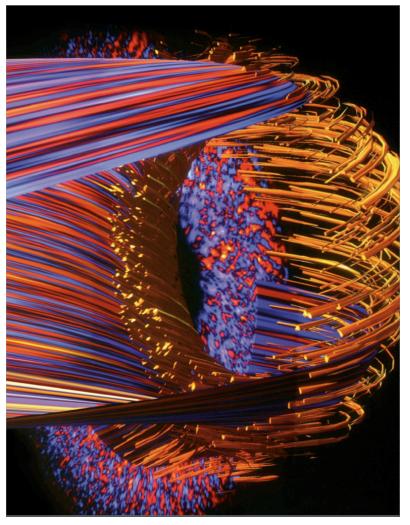
## **Quantum Monte Carlo Geophysics**

Using Quantum Monte Carlo techniques to study the Mg<sub>2</sub>SiO<sub>4</sub> system, the transition pressure is in great agreement with experiment, compared to DFT which is 50% in error.

Present studies include effects of Fe, which makes up about 10% of material in the transition zone.

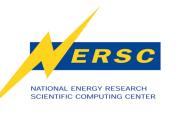
QMC calculations will accurately determine the equation of state of magnesium-iron-silicate, providing information on elastic behavior, structural transition pressure, and bulk sound velocity.

8 M hrs (2008-09) 4K-5K cores max 2K typical









## **Fusion Energy**

- Fusion holds the promise of abundant, clean energy
- Problem: How to confine hot plasma needed for fusion reaction
- In tokamak reactors (e.g. ITER), strong magnetic fields confine a torusshaped fusion plasma
- Effects at the outer edge of the confined plasma are of critical importance: e.g., interactions with container walls









## **Center for Plasma Edge Simulation**

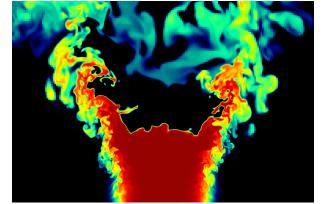
PI: C.S. Chang, NYU

- ITER requires a substantial core plasma rotation in order to stablize the dangerous resistive wall modes.
- No known external mechanism known to drive this rotation.
- Experimental evidence suggests that a spontaneous rotation in the edge could propagate into the core plasma by an ion turbulence process to generate enough rotation speed in ITER.
- A spontaneous co-current rotation in the tokamak edge plasma has been identified using the code XGC1.

8.6 M hrs (2008-09) 16K cores max 10K cores median








### Combustion

New combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions

in power generation and transportation.

Lean premixed combustion - esp. with H - is highly susceptible to a variety of combustion instabilities, making robust, reliable systems difficult to design.



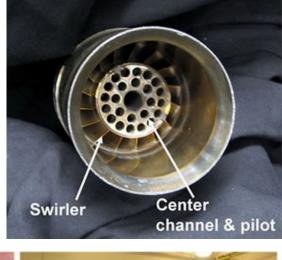
Combining a low Mach number formulation with adaptive mesh refinement provides a significant increase in computational efficiency compared to traditional uniform grid approaches to solving the full compressible flow equations



PI: John Bell, LBNL






## **Low-Swirl Burners**

- Discovered in 1991 at LBNL.
- May dramatically reduce pollutants by using special "lean premixed" fuels in power generation and transportation.
- Now being developed

for fuel-flexible, near-zero-emission gas turbines (2007 R&D 100 Award)



1" burner (5 kW, 17 KBtu/hr)





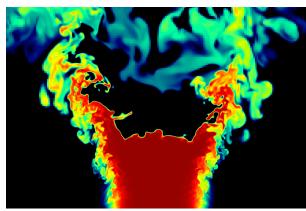
28" burner (44 MW, 150 MBtu/hr)

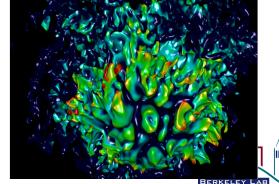




### **Low-Swirl Burner Simulation**

PI: John Bell, LBNL


- Numerical simulation of an ultra-lean premixed hydrogen flame in a laboratory-scale low-swirl burner.
- Interaction of turbulence and chemistry.
- Method captures the hydrogen flame cell structures (lower right).


16,000 cores max 2,000 core typical

10 M Hours (2008-2009)

J B Bell, R K Cheng, M S Day, V E Beckner and M J Lijewski, Journal of Physics: Conference Series **125** (2008) 012027









## **Example Projects**

#### **Lattice Gauge Theory**

Quantum Chromodynamics with three flavors of dynamical quarks - Toussaint, U. Arizona

#### **Climate Research**

Surface Input Reanalysis for Climate Applications (SIRCA) 1850-2011 - Compo, U. Colo.

#### Combustion

Interaction of Turbulence and Chemistry in Lean Premixed Laboratory Flames - Bell, LBL

#### **Fusion Energy**

Center for Plasma Edge Simulation: SciDAC FSP Prototype Center - Lee, PPPL

#### **Materials Sciences**

Modeling Dynamically and Spatially Complex Materials - Wilkins, OSU

#### **Accelerator Physics**

Particle simulation of laser wakefield particle acceleration - Geddes, LBNL

#### **Chemistry**

Large Eddy Simulation of Turbulence-Chemistry Interactions in Reacting Multiphase Flows -Oefelin, Sandia

#### **Astrophysics**

Computational Astrophysics Consortium - Woosley, UCSC







## **Example Projects**

#### **Life Sciences**

Advanced Theoretical Models to Characterize the Alzheimers Amyloid Beta Peptide - Head-Gordon, UC-Berkeley

#### **Applied Math**

Applied Partial Differential Equations Center - Bell, LBNL

#### Geosciences

Large Scale 3D Geophysical Inversion & Imaging -Newman, LBNL

#### **Computer Sciences**

Development and Test of an IO API for the Global Cloud Resolving Model - Schuchardt, PNL Scott?

#### **Environmental Science**

Impact of vegetation on turbulence over complex terrain: a wind energy perspective - Patton, UCAR







## Summary

- Science continues to thrive at NERSC on Franklin.
  - Still fun, too.
- Franklin is being used to address fundamental science and issues of urgent importance in energy sciences and applications.







## Acknowledgements

- Kathy Yelick, NERSC Director
- Harvey Wasserman, NERSC SDSA
- Francesca Verdier, NERSC Services
   Department Head



