
Automatic Library Tracking Database at NERSC
Zhengji Zhao

National Energy Research Scientific Computing Center,
Lawrence Berkeley National Laboratory

Berkeley, USA
ZZhao@lbl.gov

Abstract—Automatic Library Tracking Database

infrastructure is a lightweight tool that can automatically track
the libraries that are linked into the applications. It can also
track the applications that are launched on the Cray systems (on
other systems as well). It was previously developed by Fahey, et
al. [1], and was further developed at NERSC to be used at
computing centers like NERSC, which has more than 6,000
active users. In this paper, we will present the ALTD tool and its
enhancement at NERSC. We will also present how it is used at
NERSC for various purposes.

Keywords—ALTD; link line; library usage; ld; linker; aprun;
job launcher; wrapper

I. INTRODUCTION
Understanding software usage is an important task for HPC

centers in order to provide a better software service to users
and to plan for future software need. While there are ways to
track application software from the various logs available on
the HPC systems, there were not good ways to track the
libraries used in the applications, especially when the
applications are linked statically, until Fahey, et al., developed
the Automatic Library Tracking Database infrastructure
(ALTD) [1]. ALTD can track the libraries used in both
statically and dynamically linked applications, and also for the
libraries provided by vendors, support staff and users. ALTD
intercepts the link line of the GNU linker (ld), which is
invoked by all compilers at the backend, and stores the link
line along with other user information into a database for later
query and analysis. ALTD also intercepts the job launchers,
aprun or mpirun (for simplicity omit mpirun for the job
launcher hereafter), to track the application binaries launched
on the systems and stores the application as well as the job
information into a database. By searching the characteristic
patterns in the link lines stored in the database, one can obtain
the library usage statistics. Since ALTD stores the whole link
line which contains the paths to the library files, not only the
library names but also the exact versions of the libraries can be
tracked as well. ALTD also adds a unique tag to the application
binaries at linking time, therefore it is possible to track the
libraries used by an application actually run on the system as
well. ALTD was implemented with two main scripts that wrap
the ld and the aprun commands. Where the aprun wrapper
enables arbitrary prologue and epilogue scripts for the job,
which can be used for other workload monitoring purpose in
addition to tracking library usage. ALTD is a lightweight tool.
It has a negligible overhead to the compile time, and has zero
overhead to the application run time. Therefore, ALTD does
not change user experience on the systems, which is essential

for ALTD to be used as a system-wide tracking tool on a HPC
system.

ALTD has been used in several HPC centers [2-3],
including the National Institute for Computational Sciences
(NICS), Oak Ridge National Laboratory, the Swiss National
Supercomputing Centre (CSCS), and NERSC. NERSC
imported ALTD on its Cray XE6 in 2012. Compared to NICS
where the tool was first developed, NERSC has a much larger
number of users and applications. It has more than 6,000 active
users, and has more than 500 applications running on each
machine. When ALTD was first imported at NERSC, we ran
into a few issues. First, ALTD accesses an external database at
the place where the link line was intercepted, so each
invocation of the ld command accesses an external database
server. While this works fine for a center with a smaller user
base, it did not work well at NERSC. Since many users were
simultaneously pounding the database server, which serves
other databases as well, it frequently put a high load on the
database server, and made it fail to function properly. In
addition, to keep only unique link lines in the database ALTD
checks if a link line already exists in the database or not for
each link line intercepted by the ld command. We noticed this
query takes longer and longer time when database table sizes
grow. Moreover, the system admins and the server team staff at
NERSC had a strong concern about the fact that a fundamental
command like ld relies on the status of an external server.
Therefore NERSC implemented an ALTD to address these
issues and concerns.

II. ALTD ENHANCEMENT AT NERSC
Before introducing the NERSC enhancement to ALTD, we

would like to provide a relevant overview of the ALTD
implementation at NICS. More details about ALTD
implementation can be found in [1]. ALTD consists of the ld
wrapper (a bash and a python scripts) and the aprun wrapper
(a perl and a python scripts). The ld wrapper intercepts the
link line, and stores the linkage information into two tables,
altd_machine_link_tags and altd_machine_linkline (denote as
link_tags and linkline tables hereafter), in the external
database (MySQL) server. At the same time an ELF section
header is added in the binary, which includes a unique id (the
tag_id field in the link_tags table) that connects the binary
with its link line in the database. The ld wrapper assigns this
unique id for each successful linking and the resulting binary
by incrementing an integer primary key in the link_tags table.
The ld wrapper accesses the external database server each
time the ld command is invoked. The ALTD aprun wrapper

reads the ELF section header of a binary and stores its unique
id (tag_id) and other job information into a database table,
altd_machine_jobs, and then executes the binary. Therefore
the aprun wrapper also accesses the database server for each
aprun invocation.

To avoid the live access of the ld command to an external
database server, we generated the primary key that is unique to
each application binary without querying the link_tags table as
implemented in the original ALTD. We used the Linux
command, uuidgen, to generate unique primary key outside of
the link_tags table, and saved the intercepted linkage data to
the disk (See Fig. 1 for the tables used by ALTD at NERSC).
Then a cron job runs every 5 minutes to push the collected data
into the database. Fig. 2 is the flowchart of the ALTD ld
wrapper. We also separated the data intercepting and database
updating parts for the job launcher wrapper as well. Fig. 3
shows the flowchart of the ALTD aprun wrapper. This
removed the “external” component in the ld and aprun
commands, also prevented many users from pounding the
database server simultaneously. To speed up the link line
searching for the unique entries in the database, we added a
field in the linkline table with the hash values of the link line,
and used the hash value instead of the whole link line when
searching for the unique link line entries.

III. APPLICATIONS OF ALTD
The ALTD tables contain information about by whom and

when what application was compiled, and what libraries (and
the exact versions) were used, which compiler (and version)
was used, and how the application was linked (dynamically or
statically), on which system the application was built, by
whom and when the application was run, etc. Various library
and application usage statistics can be generated by querying
the ALTD databases.

ALTD has been used for multiple purposes since it was
imported to NERSC. It can provide the library usage statistics
which is important for the center to understand the current
software need and to provide more focused software support
for users. This information was also important for the system
procurement. Fig. 4 shows the library usage on Hopper, a
Cray XE6 system, which was used to prioritize the library

need in the NERSC-8 procurement (which resulted in the
next-generation system, Cori, a Cray system based on the Intel
MIC architecture).

ALTD provides the usage statistics for the library and
application developers and vendors, which help them to focus
development effort on the more commonly used software
packages.

ALTD helps restoring the program environment where
user applications were built, which was helpful for users who
have problems to use the upgraded software. See Fig. 5. This
information was also helpful for debugging system issues that
were potentially caused by the applications using certain
libraries.

The ALTD aprun wrapper allows any scripts to run before
and/or after the job execution, which can be used to collect
many other information about the applications launched on the
system. For example, by adding a simple prologue script in the
aprun wrapper, ALTD was able to capture user input files for
an application, VASP, a materials science code that consumes
the most computing cycles at NERSC. This helps to identify
the most commonly used computation types, so to focus code
optimization effort on the most commonly used routines in the
application to prepare for the next generation system.

ACKNOWLEDGMENT
This work was supported by the ASCR Office in the DOE,

Office of Science, under contract number DE-AC02-
05CH11231. It used the resources of the National Energy
Research Scientific Computing Center (NERSC).

REFERENCES

[1] M. Fahey, N Jones, and B. Hadri, The Automatic Library Tracking
Database, Proceedings of the Cray User Group 2010, Edinburgh, United
Kingdom.

[2] B. Hadri, M. Fahey, T. Robinson, and W. Renaud, Software Us- age on
Cray Systems across Three Centers (NICS, ORNL and CSCS),
Proceedings of the Cray User Group 2012, Stuttgart, Germany.

[3] Recent enhancements to the Automatic Library Tracking Database
infrastructure at the Swiss National Supercomputing Centre,
proceedings of the Cray User Group 2013, Napa Valley, CA.

Fig. 1. Tables used in the ALTD implementation at NERSC. From the top, they are the altd_edison_linkline, altd_edison_link_tags and altd_edison_jobs tables,
respectively, for Edison, a Cray XC30 system at NERSC. The first two tables are used by the ALTD ld wrapper. Compared to the tables used in the NICS
implementation, the unique primary key, tag_id, in the altd_edison_link_tags table is a 36 character string instead of an integer, and is generated by the Linux
command, uuidgen, outside of the table. This is to avoid the ld command from accessing the external database server. The shaline field in the
altd_edison_linkline table is the hash function of the linkline, which is used to check if a linkline already exists in the linkline table or not. This is a new addition
in the NERSC ALTD linkline table.

 Automatic Library Tracking Database Infrastructure at NERSC

Zhengji Zhao

National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory

This work used resources of the National Energy Research Scientific Computing Center (NERSC), and National Center for Computational
Sciences (NCCS), which are supported by the Office of Science of the U.S. Department of Energy

Automatic Library Tracking Database infrastructure is a light-weight tool that can automatically track the libraries that are linked into the applications. It can also track the
applications that are launched on the Cray systems (on other systems as well). It was previously developed by Fahey, et al. and was further developed at NERSC to be used at a
computer centers like NERSC, which has more than 6,000 active users. In this poster, we will present the ALTD tool and its enhancement at NERSC. We will also present how it is
used at NERSC for various purposes.

This figure shows the number of unique users for the libraries supported
by Cray and NERSC staff on Hopper during Jun 21, 2012 and Jan 17, 2013
time period, in the order of from the most to the least used libraries.

The ALTD ld wrapper puts a small “cookie” (the tag_id) into the
application binary in addition to intercepting the link line, this
makes it possible to “track” the binary even if the binary is renamed
or is copied to a different location. This feature is helpful when
debugging system issues that might be caused by some
applications.

An ALTD tool to display the build
environment for an application binary:

aryal@edison12:~> linkinfo.sh /global/homes/a/aryal/bin/gvasp5.3.2
User : zz217
Linked on : 2013-01-03
Executable Name: vasp
Libraries Used :
//usr/lib64/libhugetlbfs.a
../vasp.5.lib/libdmy.a
/opt/cray/atp/1.6.0/lib//libAtpSigHCommData.a
/opt/cray/atp/1.6.0/lib//libAtpSigHandler.a
/opt/cray/libsci/12.0.00/cray/81/sandybridge/lib/libsci_cray_mp.a
/opt/fftw/3.3.0.1/x86_64/lib/libfftw3.a
/opt/cray/mpt/5.6.0/gni/mpich2-cray/74/lib/libmpich_cray.a
/opt/cray/mpt/5.6.0/gni/mpich2-cray/74/liblibmpl.a
/opt/cray/xpmem/0.1-2.0500.36799.3.6.ari/lib64/libxpmem.a
/opt/cray/pmi/4.0.0-1.0000.9282.69.4.ari/lib64/libpmi.a
/opt/cray/ugni/4.0-1.0500.5836.7.58.ari/lib64/libugni.a
/opt/cray/udreg/2.3.2-1.0500.5931.3.1.ari/lib64/libudreg.a
/opt/cray/alps/5.0.1-2.0500.7663.1.1.ari/lib64/libalpslli.a
/opt/cray/alps/5.0.1-2.0500.7663.1.1.ari/lib64/libalpsutil.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libpgas-dmapp.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libu.a
/opt/cray/dmapp/4.0.1-1.0500.5932.6.5.ari/lib64/libdmapp.a
/opt/cray/pmi/4.0.0-1.0000.9282.69.4.ari/lib64/libpmi.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libfi.a
/opt/gcc/4.4.4/snos/lib64/libstdc++.a
/opt/gcc/4.4.4/snos/lib/gcc/x86_64-suse-linux/4.4.4/libgcc_eh.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libf.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libcraymath.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libcraymp.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libu.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libcsup.a
//usr/lib64/librt.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libtcmalloc_minimal.a
//usr/lib64/libpthread.a
//usr/lib64/libc.a
/opt/gcc/4.4.4/snos/lib/gcc/x86_64-suse-linux/4.4.4/libgcc_eh.a
//usr/lib64/libm.a
/opt/gcc/4.4.4/snos/lib/gcc/x86_64-suse-linux/4.4.4/libgcc.a

1"

10"

100"

1000"

10000"

mp
ich
"
lib
sci
"

ne
tcd
f"

sh
me
m"

me
1s
"

pa
pi"

su
pe
rlu
"

gsl
"

tri
lin
os
"

bo
os
t"

pn
etc
df" tps

l"

cfi
tsi
o"

ezc
df"

su
nd
ial
s"

tau
"

on
esi
de
d"

sca
lap
ac
k" silo

"

d:
pa
ck" tcl

"

ud
un
its
"
iob
uf"

mp
ip"

N
um

be
r'o

f'u
nq

iu
e'
us
er
s''

Libraries''

Library'usage'on'Hopper'
(June'21,'2012':'Jan'17,'2013)'

'

mpich"

zlib"

libsci"

hdf5"

netcdf"

:w"

shmem"

acml"

me1s"

parme1s"

papi"

petsc"

superlu"

hypre"

gsl"

mumps"

trilinos"

ALTD has been used for multiple purposes since it was imported to
NERSC. It can provide the library usage statistics which is important for
the center to understand the current software need and to provide more
focused software support for users. This information is also an important
information for next system procurement.

ALTD provides the usage statistics for the library and application
developers and vendors, which help them to focus development effort on
the more commonly used software packages. We also made ALTD data
web accessible, so to make the database query easier for more users.

ALTD helps restoring the program environment where user applications
were built, which was helpful for users who have issues with the upgraded
software. This information was also helpful for debugging system issues
caused by suspected applications.

ALTD was also capable of capturing user input files for certain
applications to understand the most commonly used computation types,
so to focus code optimization effort for the commonly used applications
for the next generation architecture.

The ALTD tables contain information about by whom and when an application was compiled,
and what libraries (and the exact versions) were used, which compiler (and version) was used, and
how the application was linked (dynamically or statically), on which system the binary was built,
by whom and when the binary was run, etc. Various library and application usage statistics can be
generated by querying the ALTD databases.

Understanding software usage is an important task for computer centers so to provide a better

software service to users and to plan for future software need. While there are ways to track
application software from the logs available on the systems, there was not a good way to track
the libraries used in applications, epecially when the applications are linked statically, until Fahey,
et al., developed the Automatic Library Tracking Database (ALTD) infrastructure [1]. ALTD can
track the library usage for both statically and dynamically liked applications, and also for the
libraries provided by both vendors and users. ALTD intercepts the link line of the GNU linkder (ld),
which is invoked by all compilers at the backend, and stores the link line along with other user
information into a database for later query. Since ALTD stores the whole linkline which contains
the paths to the library files, not only the library names but also the exact versions of the libraries
can be tracked. ALTD also intercepts the job launcher, aprun or mpirun, to track the applications
launched on the systems. The ALTD is a light-weighted tool. It has a very small overhead to the
application builds, and has zero overhead to the application run time. Therefore, ALTD does not
change user experience on the systems, which is critical for any monitoring or tracking tools
implemented on the system.

NERSC imported ALTD from NICS in 2012, and have enabled ALTD on our Cray XC30 (Edison),

XE6 (Hopper), and a Linux cluster, an IBM iDataPlex system (Carver). Compared to NICS where
the tool was first developed, NERSC has a much larger number of users and applications. It has
more than 6,000 active users, and has more than 500 applications running on each machine.
When ALTD was first imported at NERSC, we ran into a few issues. First, ALTD accesses the
external database at the place where the link line was collected, so each invocation of the ld
command accesses the external database server. While this works fine for centers with a smaller
user base, it did not work well at NERSC. Since many users were simultanously pounding the
database server, which serves other databases as well, it frequently put a high load on the
database server, and made it fail to function properly. In addition, to keep only unique link lines in
the database ALTD checks if a link line already exists in the database or not for each link line
intercepted by the ld command. We observed that this query was getting slower with the growing
databse table sizes. Moreover, the system admins and the server team staff at NERSC had a
strong concern about the fact that a fundamental command like ld relies on the staus of an
external server. Therefore NERSC implemented an ALTD to address these issues and concerns.

To avoid the live access of the ld command to an external database server, we generated the

primary key that is unique to each application binary without querying the ALTD link tag table as
implemented in the original ALTD. We used the Linux command, uugidgen, to generate unique
primary key outside of the link tag table, and saved the intercepted linkage data to the disk. Then
a cron job runs every 5 minutes to push the collected date into the database. We also separated
the data capturing and database updating parts for the job launcher as well. This removed
“external” component in the ld command, also prevented many users from pounding the
database server simultaneously. To speed up the link line searching for the unique entries in the
database, we used hash functions of the link line instead of the whole link line.

Tables used in ALTD implementation at NERSC

Fig. 2. The flowchart of the ALTD ld wrapper at NERSC. Now the ld wrapper does not access the external database server at invocation of the ld command.
Instead, it saves the database entry for the linkage information to a file, and then a cron job, which runs every 5 minutes, pushes the linkage information from the
file to the database.

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Generate!assembly!code!

(pyLD.py!–gen_assembly_code)!

Start!

Turn!on!

ALTD?!

Build!assembly!code,!link!original!

executable!with!the!assembly!code,!

and!generate!the!tracemap!

(ld!$ARGV!ldArgs.o!Ht!>!trace.txt)!

Get!executable!name!and!clean!the!linkline!

Check!ALTD!

environment!

Exit!status!

Linking!without!

tracking!

Save!database!entry!to!a!file!

Generate!database!entries!for!linkline!

(pyLD.py!–gen_db_entries)!

Script_exit=0!

Yes

Success

Yes

Failed

No

No

 Assembly code ldArgs.s:!
 .section .altd
 .asciz "ALTD_Link_Info"

 .byte 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 .asciz "Version:1.0:"
 .asciz "Machine:edison:"
 .asciz "Tag_id:722afe23-c351-4485-a557-5f4c92d69546:"
 .asciz "Year:2014:"
 .byte 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
 .asciz "ALTD_Link_Info_End"

Create a temp
directory for ALTD

temporary files

A cron job runs every 5 minutes to put the
intercepted linkline in the file into the database
tables:
 altd_edison_link_tags
 altd_edison_linkline

ALTD ld wrapper:
 ld – a bash script that wraps the /usr/bin/ld
 pyLD.py – a python script that the ld wrapper
 calls
 ld_db.sh – a bash shell script that updates the
 database

Fig. 3. The flowchart of the ALTD aprun wrapper at NERSC. Now the aprun wrapper does not access the external database server at invocation of the aprun
command. Instead, it saves the database entry about the application and the job to a file, and then a cron job, which runs every 5 minutes, pushes the entry from the
file to the database.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Run!objdump!on!the!executable!
to!get!the!.altd!secRon!header!

info!and!parse!it!

Start!

Get!the!path!to!the!executable!

Aprun!Exit!status!

Save!database!entry!to!a!file!

Generate!database!entry!for!the!
executable!and!the!job!

Yes No

A cron job runs every 5 minutes to put the
intercepted info for the executable and the job
from the file into the database table:
 altd_edison_jobs

ALTD job launcher (aprun) wrapper:
 aprun - a perl script that wraps the job launcher
 aprun, which allows an arbitrary prologue
 and/or epilogue.
 aprun-prolouge - a python script that runs before
 the job starts
 aprun-epilogue - a python script that runs after
 the job completes

Execute!aprunHprologue!

Success?!

Execute!aprunHepilogue!

Run!the!executable!and!
save!the!aprun!exit!status!

Yes

Get!the!job!info!from!the!
environment!

.altd!secRon!
present?!

No
Any other desired scripts can be executed in the
aprun-prologue script

Any other desired scripts can be executed in the
aprun-epilogue script

Run!any!desired!epilogue!scripts!

1"

10"

100"

1000"

10000"

mp
ich
"
lib
sci
"

ne
tcd
f"

sh
me
m"

me
1s
"

pa
pi"

su
pe
rlu
"

gsl
"

tri
lin
os
"

bo
os
t"

pn
etc
df" tps

l"

cfi
tsi
o"

ezc
df"

su
nd
ial
s"

tau
"

on
esi
de
d"

sca
lap
ac
k" silo

"

d:
pa
ck" tcl

"

ud
un
its
"
iob
uf"

mp
ip"

N
um

be
r'o

f'u
nq

iu
e'
us
er
s''

Libraries''

Library'usage'on'Hopper'
(June'21,'2012':'Jan'17,'2013)'

'

mpich"

zlib"

libsci"

hdf5"

netcdf"

:w"

shmem"

acml"

me1s"

parme1s"

papi"

petsc"

superlu"

hypre"

gsl"

mumps"

trilinos"

aryal@edison12:~> linkinfo.sh /global/homes/a/aryal/bin/gvasp5.3.2
User : zz217
Linked on : 2013-01-03
Executable Name: vasp
Libraries Used :
//usr/lib64/libhugetlbfs.a
../vasp.5.lib/libdmy.a
/opt/cray/atp/1.6.0/lib//libAtpSigHCommData.a
/opt/cray/atp/1.6.0/lib//libAtpSigHandler.a
/opt/cray/libsci/12.0.00/cray/81/sandybridge/lib/libsci_cray_mp.a
/opt/fftw/3.3.0.1/x86_64/lib/libfftw3.a
/opt/cray/mpt/5.6.0/gni/mpich2-cray/74/lib/libmpich_cray.a
/opt/cray/mpt/5.6.0/gni/mpich2-cray/74/liblibmpl.a
/opt/cray/xpmem/0.1-2.0500.36799.3.6.ari/lib64/libxpmem.a
/opt/cray/pmi/4.0.0-1.0000.9282.69.4.ari/lib64/libpmi.a
/opt/cray/ugni/4.0-1.0500.5836.7.58.ari/lib64/libugni.a
/opt/cray/udreg/2.3.2-1.0500.5931.3.1.ari/lib64/libudreg.a
/opt/cray/alps/5.0.1-2.0500.7663.1.1.ari/lib64/libalpslli.a
/opt/cray/alps/5.0.1-2.0500.7663.1.1.ari/lib64/libalpsutil.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libpgas-dmapp.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libu.a
/opt/cray/dmapp/4.0.1-1.0500.5932.6.5.ari/lib64/libdmapp.a
/opt/cray/pmi/4.0.0-1.0000.9282.69.4.ari/lib64/libpmi.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libfi.a
/opt/gcc/4.4.4/snos/lib64/libstdc++.a
/opt/gcc/4.4.4/snos/lib/gcc/x86_64-suse-linux/4.4.4/libgcc_eh.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libf.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libcraymath.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libcraymp.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libu.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libcsup.a
//usr/lib64/librt.a
/opt/cray/cce/8.1.2/craylibs/x86-64/libtcmalloc_minimal.a
//usr/lib64/libpthread.a
//usr/lib64/libc.a
/opt/gcc/4.4.4/snos/lib/gcc/x86_64-suse-linux/4.4.4/libgcc_eh.a
//usr/lib64/libm.a
/opt/gcc/4.4.4/snos/lib/gcc/x86_64-suse-linux/4.4.4/libgcc.a

Fig. 5. An ALTD tool to display the build environment for an application binary.

Figure 4. This figure shows the number of unique users for the libraries supported by Cray and NERSC staff on Hopper during Jun 21, 2012
and Jan 17, 2013 time period, in the order of from the most to the least used libraries.

