Philosophy of

Scripting for
Complex
Workflows

E%>, U.S. DEPARTMENT OF Office of

EN ERGY Science

Douglas Jacobsen
NERSC User Services

February 15, 2013

~

frreeerer

A
|

Complex Workflows

 Workflows in scientific computing enable:
— Multiple calculations to proceed in parallel
— Conditional entry into a subset of calculations
— Automated error recovery
— “Assembly-line” formalism for your calculations

— Can make your calculations almost “data
agnostic” — reuse same process management
code again and again

* Balance queue-wait times against
calculation times to ensure efficiency

Office of e ""'l
Science o BERKELEY LAB

GComplex Workflows: Examples

Mostly Serial with pipelining Mostly Parallel with barrier Tree!
Molecular Dynamics Bootstrapping Calculation Genome Assembly
& Annotation

ystem
Equilibration

Segment j
Trajectory Evaluate

Calculation Resample 1
b Resamnle

nesailipie 3

Evaluate
Free Energy Resample n
Analysis

Evaluate
Merge Results Boostrapping
Distribution

""\"""f: U.S. DEPARTMENT OF Ofﬁce Of ‘Ih‘

ENERGY Science 7 BERKELEYJAB

@

Pattern 1: Mostly Serial

* Series of steps where one (or more) are
repeated

— Results of next step depend on the current

_ a Y
calculation
— Completion of a step could spawn a
subsequent analysis process
\ y v/

* Post-processing like a Free Energy Purturbation
calculation

* Data transfer (e.g. to archive)

Office of

7\\ U.S. DEPARTMENT OF
@ ENERGY scioncs

<
A
rrrrrrr ""l

Pattern 1: Mostly Serial

* Basic Implementation Strategy

— Implement all logic in code to be executed
on compute node (possibly in batch script)

— Script will resubmit itself to achieve looping —
must have termination criteria!

— Script will (optionally) submit step-specific
post-processing jobs

Office of

/\\ U.S. DEPARTMENT OF
@ ENERGY science

Pattern 1: Mostly Serial

Pseudo-code — Job Chaining

currldx = 0

endIdx = 200 HOpper: oK
errCnt = 0 Carver: OK
maxErrors = 5 Genepool: OK
If getenv (START) :

currldx = getenv (START)
If getenv (ERRORS) :
errCnt = getenv (ERRORS)

If (currldx > endIdx) OR (errCnt >= maxErrors):
exit

exitStatus = runCalculation (currldx)
If (checkForErrors (currIdx, exitStatus)):
errCnt += 1

if (errCnt < maxErrors):
gsub —-v START=currldx, ERRORS=errCnt thisScript

exit exitStatus

, Advantages:
gsub -v START=currlIdx dependentJob.script .
. Robust error checking
If currldx < endIdx: .
gsub -v START=(currIdx+1l),ERRORS=errCnt thisScript No wasted queue-wait time
Disadvantages:
exit exitStatus Warning: Avoid jOb chaining in the . Node failure can disrupt pipeline

~

us.oeearTvenT o | Office of| debug queues! Small tests are OK. S—

ENERGY Science

Pattern 1: Mostly Serial

Pseudo-code — Job Chaining and Job Dependency

currldx = 0

endIdx = 200

errCnt = 0 HOpper: OK

maxErrors = 5]

If getenv (START) : Carver: OK
currldx = getenv (START) Genep00|: OK

If getenv (ERRORS) :
errCnt = getenv (ERRORS)

If (currIdx > endIdx) OR (errCnt >= maxErrors):
exit

If (currldx > 0 AND checkForErrors (currIdx - 1)):
errCnt += 1
if (errCnt >= maxExrrors) :
exit 1
currldx -= 1

If currldx < endIdx:
if (torque) jobDep = “-W afterany:” + getenv(“"PBS O JOBID”)
if (gridengine) jobDep = “-hold jid “ + getenv (“JOBID”)
gsub -v START=(currIdx+l),ERRORS=errCnt (jobDep) thisScript

Advantages:

* Robust error checking

* Job dependency ensures tasks
recover from most failures

exit exitStatus . .
Warning: Avoid job chaining in the Disadvantages:
* Some implementations could have

us.oeearTvenT o | Office of| debug queues! Small tests are OK.

ENERGY Science

exitStatus = runCalculation (currIdx)
gsub -v START=currIdx dependentJob.script

Pattern 1: Mostly Serial

* More Advanced Implementation Concepts

1. Loop within the script to complete multiple
segments per execution

. Works better with job-dependency model, need
robust error checking / checkpointing for restarting
(or continuing) incomplete tasks

2. Combine multiple segements for post-analysis

Using strategy (1) or (2) depends on expected per-
segment walltime of main calculation vs. post-
processing. Also, queue structure on target machine
may affect (e.g. if there are eligible-job limits)

53 U.S. DEPARTMENT OF Ofﬁce of

/ ENERGY science 8-

<
A
rrrrrrr ""l

Reversion: Pattern 0, Single Calculation

* Asingle calculation
— gsub, and done; right?

Office of

U.S. DEPARTMENT OF
ENERGY Science -9-

Reversion: Pattern 0, Single Calculation

* Asingle calculation
— qgsub, and done; right?

* Not quite, the script should attempt to
detect errors, and recover

e Also, it needs to determine if workflow the
termination point has been reached
— Run the next task if needed

 The code will be similar to the serial-repeat
pattern

Office of
-10 -

U.S. DEPARTMENT OF
@ ENERGY scence

Pattern 2: Tasks in Parallel

* One calculation which is trivially
parallelized
— Calculation is independent of its peer

calculations (e.g. bootstrap resamples, for-
loop splitting)

— Once all jobs are completed, spawn a new
job

* To merge the results, continue the workflow etc.

Office of

f%&, U.S. DEPARTMENT OF
@ ENERGY science

Pattern 2: Tasks in Parallel

* Constant first step:

— Subdivide calculations into “indexable” sub-
tasks

» Strategies to run tasks

1. Alarge single job submission which will run
each sub-task in parallel
 |deal on hopper

2. Asingle job “task array” job submission

where each array task will run a single sub-
tasks

 Job Arrays do not work on hopper
3. A bunch of jobs (many separate gsubs)

Office of

‘;7\"\1,{ U.S. DEPARTMENT OF
ENERGY science “12-

Pattern 2: Tasks in Parallel- Running

Strategy 1: A large single job submission which will run each sub-task
in parallel

— On asingle node: i1
e Start up several single-core tasks, and wait for completion: -;East i z

. as
./task 4 &

wait

— On multiple nodes:
* Use mpirun or pbsdsh to start n serial tasks in parallel

— General case, TaskFarmer
* Can start new tasks as old tasks finish
* Don’t need 1:1 parity between cores & jobs

— See the NERSC website for detailed information on each strategy:

http://www.nersc.gov/users/computational-systems/
carver/running-jobs/batch-jobs

U.S. DEPARTMENT OF Ofﬂce Of

ENERGY Science -13- WE&B

<
A
rrrrrrr H

ST,
£l \&)
()
% /5
2 5
S

Pattern 2: Tasks in Parallel

e Strategies to detect all tasks completed an
run a dependent task

1. Using job-dependencies

 Similar to job dependencies for the serial-repeat

pattern; some schedulers require different syntax
for job-array dependencies

2. Attempt to detect completion of all sub-tasks
at end of sub-task script

Check for completion and reasonable output of
all other tasks in the task batch-script, if true then

this is the last running task, gsub the next job.

3. Processrunning-onlogin-node-constantly
rorning-gstat—NO — you will hear from the
NERSC, this is hard on the system

4,

Process that you personally run on the login
node to check on the file outputs (not gstat!)

U.S. DEPARTMENT OF

Office of
ENERGY Science

LT
1S e)
A (7])i
), 4
S i O

-14 -

<
A
rrrrrrr ‘"'|

BERKELEY LAB

Pattern 3: Complex Tree-like Workflow

* To construct more complex workflows,
decompose the tree into simpler
components resembling

— Pattern 0 — Single task nodes
— Pattern 1 — Serial-repeat task nodes
— Pattern 2 — Parallel task groups

* At minimum, the script for each node
needs to be aware of it’s own
calculation and subordinate
calculations

— ldeally, each node should check over the
outputs of the previous step (i.e. its input)

Office of

Science -15-

Scripting for Complex Workflows

* Use any language you like:
— Bash, csh, perl, python, tcl
— Chc;\ose the language that you are most likely to be successful
wit
* Be careful to exit with the return code that your
program delivered to the script:
— The batch scheduler will in turn tell you; this can help with error
detection and debugging
* Do take advantage of job dependencies, job arrays, or
other services the batch scheduler provides

— Possible on carver, genepool

* External monitoring to watch running tasks, and start
new jobs introduces brittle failure points

— And is hard on the scheduler or filesystem, use job chaining
where possible

Office of

Science -16-

Scripting for Complex Workflows

* Error Checking
— Checking that return status O is good, but

— Checking output files is better; ensure:
* Files exist, with proper names

* Have reasonable size, content

— If another step, or peer-task instance, will be checking this
script:
* Won’t have access to calculation exit status

* Often, renaming the pertinent outputs can be a definitive show of
success

Pseudo-code:
If errorCheck (taskIdx, returnCode) == 0:
mv rawOutputFile.StaskIdx.dat completedOutputFile.StaskIdx.dat

U.S. DEPARTMENT OF Offlce Of

ENERGY Science -17- WE&B

<
A
rrrrrrr H

T
g &
: @ ;
g 3
A 5
2 4
S i

Office of

/\ Py
& ENERGY sconce

