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Complex Workflows

 Workflows in scientific computing enable:
— Multiple calculations to proceed in parallel
— Conditional entry into a subset of calculations
— Automated error recovery
— “Assembly-line” formalism for your calculations

— Can make your calculations almost “data
agnostic” — reuse same process management
code again and again

* Balance queue-wait times against
calculation times to ensure efficiency
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GComplex Workflows: Examples

Mostly Serial with pipelining Mostly Parallel with barrier Tree!
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Pattern 1: Mostly Serial

* Series of steps where one (or more) are
repeated

— Results of next step depend on the current

_ a Y
calculation
— Completion of a step could spawn a
subsequent analysis process
\ y v/

* Post-processing like a Free Energy Purturbation
calculation

* Data transfer (e.g. to archive)
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Pattern 1: Mostly Serial

* Basic Implementation Strategy

— Implement all logic in code to be executed
on compute node (possibly in batch script)

—  Script will resubmit itself to achieve looping —
must have termination criteria!

—  Script will (optionally) submit step-specific
post-processing jobs
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Pattern 1: Mostly Serial

Pseudo-code — Job Chaining

currldx = 0

endIdx = 200 HOpper: oK
errCnt = 0 Carver: OK
maxErrors = 5 Genepool: OK
If getenv (START) :

currldx = getenv (START)
If getenv (ERRORS) :
errCnt = getenv (ERRORS)

If (currldx > endIdx) OR (errCnt >= maxErrors):
exit

exitStatus = runCalculation (currldx)
If (checkForErrors (currIdx, exitStatus)):
errCnt += 1

if (errCnt < maxErrors):
gsub —-v START=currldx, ERRORS=errCnt thisScript

exit exitStatus

, Advantages:
gsub -v START=currlIdx dependentJob.script .
. Robust error checking
If currldx < endIdx: .
gsub -v START=(currIdx+1l),ERRORS=errCnt thisScript No wasted queue-wait time
Disadvantages:
exit exitStatus Warning: Avoid jOb chaining in the . Node failure can disrupt pipeline

~
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Pattern 1: Mostly Serial

Pseudo-code — Job Chaining and Job Dependency

currldx = 0

endIdx = 200

errCnt = 0 HOpper: OK

maxErrors = 5 ]

If getenv (START) : Carver: OK
currldx = getenv (START) Genep00|: OK

If getenv (ERRORS) :
errCnt = getenv (ERRORS)

If (currIdx > endIdx) OR (errCnt >= maxErrors):
exit

If (currldx > 0 AND checkForErrors (currIdx - 1)):
errCnt += 1
if (errCnt >= maxExrrors) :
exit 1
currldx -= 1

If currldx < endIdx:
if (torque) jobDep = “-W afterany:” + getenv(“"PBS O JOBID”)
if (gridengine) jobDep = “-hold jid “ + getenv (“JOBID”)
gsub -v START=(currIdx+l),ERRORS=errCnt (jobDep) thisScript

Advantages:

* Robust error checking

* Job dependency ensures tasks
recover from most failures

exit exitStatus . .
Warning: Avoid job chaining in the Disadvantages:
* Some implementations could have
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Pattern 1: Mostly Serial

* More Advanced Implementation Concepts

1. Loop within the script to complete multiple
segments per execution

. Works better with job-dependency model, need
robust error checking / checkpointing for restarting
(or continuing) incomplete tasks

2. Combine multiple segements for post-analysis

Using strategy (1) or (2) depends on expected per-
segment walltime of main calculation vs. post-
processing. Also, queue structure on target machine
may affect (e.g. if there are eligible-job limits)
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Reversion: Pattern 0, Single Calculation

* Asingle calculation
— gsub, and done; right?
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Reversion: Pattern 0, Single Calculation

* Asingle calculation
— qgsub, and done; right?

* Not quite, the script should attempt to
detect errors, and recover

e Also, it needs to determine if workflow the
termination point has been reached
— Run the next task if needed

 The code will be similar to the serial-repeat
pattern
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Pattern 2: Tasks in Parallel

* One calculation which is trivially
parallelized
— Calculation is independent of its peer

calculations (e.g. bootstrap resamples, for-
loop splitting)

— Once all jobs are completed, spawn a new
job

* To merge the results, continue the workflow etc.
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Pattern 2: Tasks in Parallel

* Constant first step:

— Subdivide calculations into “indexable” sub-
tasks

» Strategies to run tasks

1. Alarge single job submission which will run
each sub-task in parallel
 |deal on hopper

2. Asingle job “task array” job submission

where each array task will run a single sub-
tasks

 Job Arrays do not work on hopper
3. A bunch of jobs (many separate gsubs)
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Pattern 2: Tasks in Parallel- Running

Strategy 1: A large single job submission which will run each sub-task
in parallel

— On asingle node: i1
e Start up several single-core tasks, and wait for completion: -;East i z

. as
./task 4 &

wait

— On multiple nodes:
* Use mpirun or pbsdsh to start n serial tasks in parallel

— General case, TaskFarmer
* Can start new tasks as old tasks finish
* Don’t need 1:1 parity between cores & jobs

— See the NERSC website for detailed information on each strategy:

http://www.nersc.gov/users/computational-systems/
carver/running-jobs/batch-jobs
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Pattern 2: Tasks in Parallel

e Strategies to detect all tasks completed an
run a dependent task

1. Using job-dependencies

 Similar to job dependencies for the serial-repeat

pattern; some schedulers require different syntax
for job-array dependencies

2. Attempt to detect completion of all sub-tasks
at end of sub-task script

Check for completion and reasonable output of
all other tasks in the task batch-script, if true then

this is the last running task, gsub the next job.

3. Processrunning-onlogin-node-constantly
rorning-gstat—NO — you will hear from the
NERSC, this is hard on the system

4,

Process that you personally run on the login
node to check on the file outputs (not gstat!)
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Pattern 3: Complex Tree-like Workflow

* To construct more complex workflows,
decompose the tree into simpler
components resembling

— Pattern 0 — Single task nodes
— Pattern 1 — Serial-repeat task nodes
— Pattern 2 — Parallel task groups

* At minimum, the script for each node
needs to be aware of it’s own
calculation and subordinate
calculations

— ldeally, each node should check over the
outputs of the previous step (i.e. its input)
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Scripting for Complex Workflows

* Use any language you like:
— Bash, csh, perl, python, tcl
— Chc;\ose the language that you are most likely to be successful
wit
* Be careful to exit with the return code that your
program delivered to the script:
— The batch scheduler will in turn tell you; this can help with error
detection and debugging
* Do take advantage of job dependencies, job arrays, or
other services the batch scheduler provides

— Possible on carver, genepool

* External monitoring to watch running tasks, and start
new jobs introduces brittle failure points

— And is hard on the scheduler or filesystem, use job chaining
where possible
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Scripting for Complex Workflows

* Error Checking
— Checking that return status O is good, but

— Checking output files is better; ensure:
* Files exist, with proper names

* Have reasonable size, content

— If another step, or peer-task instance, will be checking this
script:
* Won’t have access to calculation exit status

* Often, renaming the pertinent outputs can be a definitive show of
success

Pseudo-code:
If errorCheck (taskIdx, returnCode) == 0:
mv rawOutputFile.StaskIdx.dat completedOutputFile.StaskIdx.dat
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