
SciDB User's Guide

SciDB User's Guide
Version 12.3
Copyright © 2008–2012 SciDB, Inc.

SciDB is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License, version 3, as published by
the Free Software Foundation.

SciDB is distributed "AS-IS" AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License at http://
www.gnu.org/licenses/ for the complete license terms.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

iii

Table of Contents
1. Introduction to SciDB .. 1

1.1. Array Data Model .. 1
1.2. Basic Architecture .. 2

1.2.1. Chunking and Scalability ... 2
1.2.2. Chunk Overlap .. 3

1.3. SciDB Array Storage .. 4
1.3.1. Instance Storage .. 4
1.3.2. SciDB System Catalog .. 5
1.3.3. Transaction Model ... 5

1.4. Array Processing .. 5
1.4.1. Array Language ... 5
1.4.2. Query Building Blocks ... 6
1.4.3. Pipelined Array Processing .. 6

1.5. Clients and Connectors .. 6
1.6. Conventions Used in this Document .. 7

2. SciDB Installation and Administration .. 8
2.1. Installing SciDB ... 8

2.1.1. Preparing the Platform .. 8
2.1.2. Install SciDB from binary package .. 11

2.2. Configuring SciDB ... 13
2.2.1. SciDB Configuration File .. 13
2.2.2. Cluster Configuration Example ... 13
2.2.3. Logging Configuration .. 15

2.3. Initializing and Starting SciDB .. 16
2.3.1. The scidb.py Script ... 16

2.4. Upgrading SciDB ... 17
2.4.1. Ubuntu ... 17
2.4.2. Red Hat and Fedora .. 17
2.4.3. Additional Steps ... 18

3. Getting Started with SciDB Development .. 19
3.1. Using the iquery Client .. 19
3.2. iquery Configuration ... 21
3.3. Example iquery session .. 21

4. Creating and Removing SciDB Arrays .. 25
4.1. Create an Array .. 25
4.2. Array Attributes ... 27

4.2.1. NULL and Default Attribute Values .. 27
4.2.2. Codes for Missing Data ... 28

4.3. Array Dimensions ... 28
4.3.1. Chunk Overlap .. 29
4.3.2. Unbounded Dimensions ... 29
4.3.3. Noninteger Dimensions and Mapping Arrays ... 29

4.4. Changing Array Names .. 30
4.5. Database Design ... 30

4.5.1. Selecting Dimensions and Attributes .. 30
4.5.2. Chunk Size Selection .. 31

5. Loading Data .. 32
5.1. Simple Data Loading ... 32
5.2. Data with Special Values ... 34
5.3. Sparse Load Format .. 34

5.3.1. Sparse Load Chunks ... 35

SciDB User's Guide

iv

5.4. Parallel Load ... 36
5.5. Saving Data from a SciDB Array to a File .. 36

6. Basic Array Tasks ... 38
6.1. Selecting Data From an Array ... 38

6.1.1. The SELECT Statement .. 38
6.2. Array Joins .. 39
6.3. Aliases .. 41
6.4. Nested Subqueries .. 41
6.5. Data Sampling ... 41

7. Aggregates ... 43
7.1. Grand Aggregates ... 44
7.2. Group-By Aggregates .. 45
7.3. Grid Aggregates ... 46
7.4. Window Aggregates .. 47

8. Updating Your Data .. 49
8.1. The UPDATE ... SET statement .. 49
8.2. Array Versions ... 49

9. Changing Array Schemas: Transforming Your SciDB Array ... 51
9.1. Redimensioning an Array ... 51

9.1.1. Redimensioning Arrays Containing Null Values ... 52
9.2. Array Transformations ... 53

9.2.1. Rearranging Array Data ... 54
9.2.2. Reduce an Array .. 55

9.3. Changing Array Attributes .. 57
9.4. Changing Array Dimensions ... 58

9.4.1. Changing Chunk Size ... 58
9.4.2. Appending a Dimension .. 59

10. SciDB Aggregate Reference .. 61
avg ... 62
count .. 63
max .. 64
min ... 65
stdev ... 66
sum .. 67
var ... 68

11. SciDB Function Reference .. 69
12. SciDB Data Type Reference .. 71
13. SciDB Operator Reference .. 72

adddim .. 73
analyze .. 74
apply .. 76
attribute_rename ... 77
attributes ... 78
avg ... 79
bernoulli .. 80
between ... 82
build ... 83
build_sparse ... 84
cancel ... 85
cast ... 86
concat ... 87
count .. 88
cross ... 90
cross_join .. 91

SciDB User's Guide

v

deldim .. 93
dimensions ... 94
diskinfo ... 95
echo ... 96
explain_logical ... 97
filter ... 98
help .. 99
input ... 100
inverse .. 101
join ... 102
list .. 103
load_library .. 104
lookup ... 105
max .. 107
merge .. 108
min ... 109
multiply ... 110
normalize ... 111
project ... 112
redimension .. 113
redimension_store .. 115
reduce_distro .. 117
regrid .. 118
remove .. 119
rename .. 120
repart .. 121
reshape .. 122
reverse .. 123
sample ... 124
save .. 125
scan .. 126
setopt .. 127
show ... 128
slice .. 129
sort ... 130
stdev ... 131
store .. 132
subarray ... 133
substitute ... 134
sum .. 135
thin ... 136
transpose ... 138
unload_library ... 139
unpack .. 140
var .. 142
versions ... 143
window ... 144
xgrid ... 145

1

Chapter 1. Introduction to SciDB
SciDB is an all-in-one data management and advanced analytics platform. It provides massively scalable
complex analytics inside a next-generation database with data versioning to support the needs of
commercial and scientific applications. SciDB is an open source software platform that runs on a grid of
commodity hardware or in a cloud.

Paradigm4 Enterprise SciDB with Paradigm4 Extensions is an enterprise distribution of SciDB with
additional linear algebra operations, high availability options, and client connector features.

Unlike conventional relational databases designed around a row or column-oriented table data model,
SciDB is an array database. The native array data model provides compact data storage and high
performance operations on ordered data such as spatial (location-based) data, temporal (time series) data,
and matrix-based data for linear algebra operations.

This document is a User's Guide, written for scientists and developers in various application areas who
want to use SciDB as their scalable data management and analytic platform.

This chapter introduces the key technical concepts in SciDB—its array data model, basic system
architecture including distributed data management, salient features of the local storage manager, and
the system catalog. It also provides an introduction to SciDB's array languages—Array Query Language
(AQL) and Array Functional Language (AFL)—and an overview of transactions in SciDB.

1.1. Array Data Model
SciDB uses multidimensional arrays as its basic storage and processing unit. A user creates a SciDB array
by specifying dimensions and attributes of the array.

Dimensions

An n-dimensional SciDB array has dimensions d1, d2, ..., dn. The size of the dimension is the number of
ordered values in that dimension. For example, a 2-dimensional array may have dimensions i and j, each
with values (1, 2, 3, ..., 10) and (1, 2, ..., 30) respectively.

Basic array dimensions are 64-bit integers. SciDB also supports arrays with one or more noninteger
dimensions, such as variable-length strings (alpha, beta, gamma, ...) or floating-point values (1.2, 2.76,
4.3, ...).

When the total number of values or cardinality of a dimension is known in advance, the SciDB array can
be declared with a bounded dimension. However, in many cases, the cardinality of the dimension may
not be known at array creation time. In such cases, the SciDB array can be declared with an unbounded
dimension.

Attributes

Each combination of dimension values identifies a cell or element of the array, which can hold multiple
data values called attributes (a1, a2, ..., am). Each data value is referred to as an attribute, and belongs to
one of the supported datatypes in SciDB.

At array creation time, the user must specify:

• An array name.

• Array dimensions. The name and size of each dimension must be declared.

Introduction to SciDB

2

• Array attributes of the array. The name and data type of the each attribute must be declared.

Once you have created a SciDB database and defined the arrays, you must prepare and load data into it.
Loaded data is then available to be accessed and queried using SciDB's built-in analytics capabilities.

1.2. Basic Architecture
SciDB uses a shared-nothing architecture which is shown in the illustration below.

SciDB is deployed on a cluster of servers, each with processing, memory, and local storage, interconnected
using a standard ethernet and TCP/IP network. Each physical server hosts a SciDB instance that is
responsible for local storage and processing.

External applications, when they connect to a SciDB database, connect to one of the instances in the cluster.
While all instances in the SciDB cluster participate in query execution and data storage, one server is the
coordinator and orchestrates query execution and result fetching. It is the responsibility of the coordinator
instance to mediate all communication between the SciDB external client and the entire SciDB database.
The rest of the system instances are referred to as worker instances and work on behalf of the coordinator
for query processing.

SciDB's scale-out architecture is ideally suited for hardware grids as well as clouds, where additional
severs may be added to scale the total capacity.

1.2.1. Chunking and Scalability
When data is loaded, it is partitioned and stored on each instance of the SciDB database. SciDB uses
chunking, a partitioning technique for multidimensional arrays where each instance is responsible for
storing and updating a subset of the array locally, and for executing queries that use the locally stored

Introduction to SciDB

3

data. By distributing data uniformly across all instances, SciDB is able to deliver scalable performance on
computationally or I/O intensive analytic operations on very large data sets.

The details of chunking are shown in this section. Remember that you do not need to manage chunk
distribution beyond specifying chunk size.

Chunking is specified for each array as follows. Each dimension of an array is divided into chunks. For
example, an array with dimensions i and j, where i is of length 10 and chunk size 5 and j is of length
30 and chunk size 10 would be chunked as follows:

Chunks are arranged in row-major order in this example, and stored within the cluster using a round-robin
distribution as follows. Suppose a cluster has instances 1 through 4, the placement of data is shown below.

C11 -> server 1

C12 -> server 2

C13 -> server 3

C21 -> server 4

C22 -> server 1

C23 -> server 2

This scheme is generalized to arrays with more dimensions by arranging the chunks in left-to-right
dimension order.

1.2.2. Chunk Overlap
It is sometimes advantageous to have neighboring chunks of an array overlap with each other. Overlap is
specified for each dimension of an array. For example, consider an array A as follows:

A<a: int32>[i=1:10,5,1, j=1:30,10,5]

Introduction to SciDB

4

Array A has has two dimensions, i and j. Dimension i is of length 10, chunk size 5, and had chunk
overlap 1. Dimension j has length 30, chunk size 10, and chunk overlap 5. This overlap causes SciDB to
store adjoining cells in each dimension from the overlap area in both chunks.

Some advantages of chunk overlap are:

• Speeding up nearest-neighbor queries, where each chunk may need access to a few elements from its
neighboring chunks,

• Detecting data clusters or data features that straddle more than one chunk.

SciDB supports operators that can be used to add or change the chunk overlap within an existing array.

1.3. SciDB Array Storage
SciDB arrays consist of array chunk storage and array metadata stored in the system catalog. When arrays
are created, updated, or removed, they are done using transactions. Transactions span array storage and
the system catalog and ensure consistency of the overall database as queries are executed.

The following sections describe SciDB's instance storage, system catalog, and transaction model.

1.3.1. Instance Storage
Vertical partitioning Each local SciDB instance divides logical chunks of an array into

per-attribute chunks, a technique referred to as vertical partitioning.
All basic array processing steps—storage, query processing,
and data transfer between instances—use single-attribute chunks.
SciDB uses run-length encoding internally to compress repeated
values or commonly occurring patterns typical in scientific
applications. Frequently accessed chunks are maintained in an in-
memory cache and accelerate query processing by eliminating
expensive disk fetches for repeatedly accessed data.

Storage of array versions SciDB uses a "no overwrite" storage model. No overwrite means
that data is never overwritten; each query that stores or updates
existing arrays writes a new full chunk or a new delta chunk. Delta
chunks are calculated by differencing the new version with the prior
version and only storing the difference. The SciDB storage manager
stores "reverse" deltas—this means that the most recent version is
maintained as a full chunk, and prior versions are maintained as
a list or chain of reverse deltas. The delta chain is stored in the
"reserve" portion of each chunk, an additional area over and above
the total size of the chunk. If the reserve area for the chunk fills up,
a new chunk is allocated within the same segment or a new segment
and linked into the delta chain.

Storage segments The local storage manager manages space allocation, placement,
and reclamation within the local storage manager using segments.
A storage segment is a contiguous portion of the storage file
reserved for successive chunks of the same array. This is designed
to optimize queries issued on a very large array to use sequential
disk I/O and hence maximize the rate of data transfer during a query.

Segments also serve as the unit of storage reclaim, so that as array
chunks are created, written, and ultimately removed, a segment

Introduction to SciDB

5

is reclaimed and reallocated for new chunks or arrays once all
its member chunks have been removed. This allows for reuse of
storage space.

Transient storage SciDB uses temporary data files or "scratch space" during query
execution. This is specified during initialization and start-up as the
tmp-path configuration setting. Temporary files are managed
using the operating system's tempfile mechanism. Data written to
tempfile only last for the lifetime of a query. They are removed
upon successful completion or abort of the query.

1.3.2. SciDB System Catalog
SciDB relies on a system catalog that is a repository of the following information:

• Configuration and status information about the SciDB cluster,

• Array-related metadata such as array definitions, array versions, and associations between arrays and
other related objects,

• Information about SciDB extensions, such as plug-in libraries containing user-defined objects, which
are described in the section "Array Processing."

The system catalog in current versions of SciDB is implemented as PostgresSQL tables. The tables are
shared between all SciDB instances within the cluster.

1.3.3. Transaction Model
SciDB combines traditional ACID semantics with versioned, no overwrite array storage. When using
versioned arrays, write transactions create new versions of the array—they do not modify pre-existing
versions of the array.

The scope of a transaction in SciDB is a single statement. Each statement involves many operations on
one or more arrays. Ultimately, the transaction stores the result into a destination array.

SciDB implements array-level locking. Locks are acquired at the beginning of a transaction and are used to
protect arrays during queries. Locks are released upon completion of the query. If a query aborts, pending
changes are undone at all instances in the system catalog, and the database is returned to a prior consistent
state.

1.4. Array Processing
SciDB's query languages provide the basic framework for scalable array processing.

1.4.1. Array Language
SciDB provides two query language interfaces.

• AQL, the Array Query Language

• AFL, the Array Functional Language

SciDB's Array Query Language (AQL) is a high-level declarative language for working with SciDB arrays.
It is similar to the SQL language for relational databases, but uses an array-based data model and a more
comprehensive analytical query set compared with standard relational databases.

Introduction to SciDB

6

AQL represents the full set of data management and analytic capabilities including data loading, data
selection and projection, aggregation, and joins.

The AQL language includes two classes of queries:

• Data Definition Language (DDL) : commands to define arrays and load data.

• Data Manipulation Language (DML) : commands to access and operate on array data.

AQL statements are handled by the SciDB query compiler which translates and optimizes incoming
statements into an execution plan.

SciDB's Array Functional Language (AFL) is a functional language for working with SciDB arrays. AFL
operators are used to compose queries or statements.

1.4.2. Query Building Blocks
There are four building blocks that you use to control and access your data. These building blocks are:

Operators SciDB operators, such as join, take one or more SciDB arrays as
input and return a SciDB array as output.

Functions SciDB functions, such as sqrt, take scalar values from literals or
SciDB arrays and return a scalar value.

Data types Data types define the classes of values that SciDB can store and
perform operations on.

Aggregates SciDB aggregates take an arbitrarily large set of values as input and
return a scalar value.

Any of these building blocks can be user-defined, that is, users can write new operators, data types,
functions, and aggregates.

1.4.3. Pipelined Array Processing
When a SciDB query is issued, it is setup as a pipeline of operators. Operators are responsible for data
processing and aggregation as well as intermediate data exchange and data storage.

Execution begins when the client issues a request to fetch a chunk from the result array. Data is then
scanned from array storage on all instances and streamed into and out of each operator one chunk at a time.
This model of query execution is sometimes referred to as pull-based execution and the operators that use
this model are called streaming operators. Unless required by the data processing algorithm, all SciDB
operators are streaming operators. Some operators implement algorithms that require the entire array to
be materialized in memory at all instances at once. These are referred to as materializing operators.

1.5. Clients and Connectors
The SciDB software package that you downloaded contains a special command line utility called iquery
which provides an interactive Linux shell and supports both AQL and AFL. For more information about
iquery, see Getting Started With SciDB Development.

Client applications connect to SciDB using an appropriate connector package which implements the client-
side of the SciDB client-server protocol. Once connected via the connector, the user may issue queries
written in either AFL or AQL, and fetch the result of a query using an iterator interface.

Introduction to SciDB

7

1.6. Conventions Used in this Document
Code to be typed in verbatim is shown in fixed-width font. Code that is to be replaced with an
actual string is shown in italics. Optional arguments are shown in square brackets [].

AQL commands are shown in FIXED-WIDTH BOLD CAPS. When necessary, a line of code may be
preceded by the AQL% or AFL% prompt to show which language the query is issued from.

8

Chapter 2. SciDB Installation and
Administration

2.1. Installing SciDB
SciDB binaries are currently available for the following Linux platforms:

• Red Hat Enterprise Linux 5.4

• Fedora 11

• Ubuntu 11.04

For virtual machine–based installs, you can use VMWare Player or VBox for desktop testing and Citrix
XenServer for production use.

The following terms are used to describe the SciDB installation and administration process:

Instance An independent SciDB process, that is, a single runnable copy
of SciDB. There may be a many-to-one mapping between SciDB
instances and a single server.

Cluster A group of one or more single servers connected by TCP/IP,
working together as a single system, and sharing data. A cluster can
be a private grid or a public cloud.

Single server A configuration that consists of a single machine with a processor
that may contain any number of cores, memory and attached
storage. A single server may be virtual or physical. A single server
is not connected to nor does it share data with any other servers in
a cluster.

Virtual server A server that shares hardware rather than having dedicated
hardware.

2.1.1. Preparing the Platform

2.1.1.1. Linux User Account

First, you will need to create a Linux user account, scidb. This account will be used to run all SciDB
processes and own all files created by SciDB. The scidb user account must have superuser privileges. It
is also helpful to set up the account for access to the system without password entry.

To create the account, modify the /etc/sudoers file as follows:

Allow root to run any commands anywhere
root ALL=(ALL) ALL
scidb ALL=(ALL) NOPASSWD: ALL

SciDB Installation and Administration

9

2.1.1.2. Postgres Installation and Configuration

SciDB has been tested with Postgres 8.4.X. A suitable version of Postgres (8.4.6 or 8.4.7) is typically
available on most Linux platforms.

On Ubuntu, you can use apt-get to install the postgresql-contrib package:

sudo apt-get install postgresql-contrib

On Red Hat and Fedora, you can use yum :

sudo yum install postgresql-contrib

By default, Postgres is configured to allow only local access via Unix-domain sockets. In a cluster
environment, the Postgres database needs to be configured to allow access from other instances in the
cluster. To do this:

1. Modify the pg_hba.conf file (usually at /etc/postgresql/8.4/main/ or /var/lib/
pgsql/data/) by adding the following line:

host all all 10.0.0.1/8 trust

2. In the pg_hba.conf file, change all instances of 'ident' to 'trust' (assuming your local network is
10.x.x.x).

3. Restart Postgres.

Warning

This Postgres configuration might pose security issues. When authentication is set to trust
PostgreSQL assumes that anyone who can connect to the server is authorized to access the
database. To make a more secure installation, you can list specific host IP addresses, user names,
and role mappings.

You can read more on the security details of Postgres client-authentication in the Postgres
documentation at http://www.postgresql.org/docs/8.3/static/client-authentication.html.

You might need to set the postgresql.conf file to have it listen on the relevant port and IP address,
as it might be limited to localhost by default.

If you are running a cluster with multiple servers, you will also need to modify the postgresql.conf
file to allow connections:

- Connection Settings -
listen_addresses = '*'

You can verify that a PostgreSQL instance is running on the coordinator with the status command:

sudo /etc/init.d/postgresql-8.4 status
sudo /etc/init.d/postgresql-8.4 start

Note

• Red Hat Enterprise Linux 5.4 comes with PostgreSQL 8.1. We recommend upgrading to
version 8.4.7.

http://www.postgresql.org/docs/8.3/static/client-authentication.html

SciDB Installation and Administration

10

• Add Postgres startup scripts to the Linux initialization scripts to start Postgres automatically
after a reboot.

• If your scidb user does not have sudo privileges, have your administrator use the following
procedure to initialize Postgres:

1. Create a new role or account (say test1user) with password (say test1passwd).

2. Create a database for testing scidb (say test1) using the new account.

3. Create a schema in that newly created Postgres database to hold the SciDB catalog data:

root$ sudo -u postgres
 /opt/scidb/12.3/bin/scidb-prepare-db.sh

The last step, after you have configured Postgres, is to add it to Linux system services. This means that
Postgres will be started automatically on system reboot:

sudo /sbin/chkconfig --add postgresql

2.1.1.3. Remote Execution Configuration (ssh)

SciDB uses ssh for remote execution of cluster management commands. This is why the scidb user
account should have no-password ssh access from the coordinator to the workers and from the coordinator
to itself.

The python-crypto (64-bit) and python-paramiko packages are required for SciDB on Red Hat
5.4. These packages are ssh packages in Python. You can install the Python ssh client packages as
follows:

sudo apt-get install python, python-crypto, python-paramiko

There are several methods to configure no-password ssh between servers. We recommend the following
simple method.

1. Create a key:

ssh-keygen

2. Copy the key to the localhost (or coordinator) and to each worker:

ssh-copy-id scidb@worker
ssh-copy-id scidb@localhost

3. Login to remote host. Note that no password is required now:

ssh scidb@worker

2.1.1.4. Shared file system

To run SciDB in a cluster , export the /opt/scidb directory on the coordinator using NFS or samba.
To do this, configure the export and restart the NFS service like this:

Configure the export

SciDB Installation and Administration

11

/opt/scidb *(ro,no_root_squash,sync)

Restart the nfs service
sudo /etc/init.d/nfs restart

Mount this on all workers using the same directory path (/opt/scidb) as the mount point. Add this line
to the /etc/fstab file to mount the shared file system on each worker:

SciDB coordinator mount point
coordinator-ip:/opt/scidb /opt/scidb nfs
 ro,rsize=8192,wsize=8192,timeo=14,intr 0 0

The coordinators and workers access binaries, shared libraries, plugins, configuration files from /opt/
scidb.

The last step, after you have configured NFS, is to add it to Linux system services. This means that NFS
will be started automatically on system reboot:

sudo /sbin/chkconfig --add nfs

2.1.2. Install SciDB from binary package
If you are installing a downloaded pre-built binary package, you can install it using dpkg for Ubuntu and
rpm or yum for Red Hat. We currently provide packages for Ubuntu and RPMs for Red Hat and Fedora.

2.1.2.1. Ubuntu

Install

1. Install the libscidbclient package:

sudo dpkg -i libscidbclient.*.deb

You may want to install the optional debug symbols package:

sudo dpkg -i libscidbclient.*.deb

2. Install the SciDB package:

sudo dpkg -i scidb.*.deb

You may want to install the optional debug symbols package:

sudo dpkg -i scidb-dbg.*.deb

Note

dpkg does not resolve dependencies and you may need to manually install the dependencies or
use apt-get to resolve any unmet dependencies on the system. This could happen on either the
libscidbclient or SciDB package install. For example:

Fails due to unmet dependencies
sudo dpkg -i scidb.*.deb

SciDB Installation and Administration

12

Installs dependencies
sudo apt-get -f install

Succeeds now
sudo dpkg -i scidb-RelWithDebInfo-12.3.*.deb

Uninstall

Uninstall SciDB as follows:

sudo dpkg -r scidb-dbg
sudo dpkg -r scidb
sudo dpkg -r libscidbclient-dbg
sudo dpkg -r libscidbclient

2.1.2.2. Red Hat and Fedora

Install:

1. Install the libscidbclient package:

sudo rpm --force -ivh libscidbclient-RelWithDebInfo-12.3.*.rpm

You may want to install the optional debug symbols package:

sudo rpm --force -ivh
libscidbclient-dbg.*.rpm

2. Next, install the SciDB server package:

sudo rpm --force -ivh scidb-12.3.*.rpm

You may want to install the optional debug symbols package:

sudo rpm --force -ivh scidb-dbg.*.rpm

Uninstall:

To uninstall SciDB, do the following:

sudo rpm -e scidb-dbg
sudo rpm -e scidb
sudo rpm -e libscidbclient-dbg
sudo rpm -e libscidbclient

2.1.2.3. Environment Variables

Now you need to configure the environment of the scidb user account. The following lines should be
added to the user's shell configuration file (often .profile or .bashrc):

export SCIDB_VER=12.3
export PATH=/opt/scidb/$SCIDB_VER/bin:
 /opt/scidb/$SCIDB_VER/share/scidb:$PATH
export LD_LIBRARY_PATH=/opt/scidb/$SCIDB_VER/lib:$LD_LIBRARY_PATH

SciDB Installation and Administration

13

2.2. Configuring SciDB
This chapter demonstrates how to configure SciDB prior to initialization, including checking that the
PostgreSQL DBMS is running, that the SciDB configuration file (usually /opt/scidb/12.3/etc/
config.ini) is set up, and that logging is configured.

2.2.1. SciDB Configuration File
You need to create a configuration file for SciDB. It is named config.ini and it resides in the etc
sub-directory of the installation tree. (By default it is /opt/scidb/12.3/etc/config.ini.) The
configuration file can have multiple sections, one per service instance.

The configuration 'test1' below is an example of the configuration for a single-instance system (coordinator
only):

[test1]
instance-0=localhost,0
db_user=test1user
db_passwd=test1passwd
install_root=/opt/scidb/12.3
metadata=/opt/scidb/12.3/share/scidb/meta.sql
pluginsdir=/opt/scidb/12.3/lib/scidb/plugins
logconf=/opt/scidb/12.3/share/scidb/log4cxx.properties
base-path=/home/scidb/data
base-port=1239
interface=eth0
no-watchdog=true
redundancy=1
merge-sort-buffer=1024
network-buffer=1024
mem-array-threshold=1024
smgr-cache-size=1024
execution-threads=16
result-prefetch-queue-size=4
result-prefetch-threads=4
chunk-segment-size=10485760

2.2.2. Cluster Configuration Example
The following SciDB cluster configuration is called 'monolith'. This cluster consists of eight identical
virtual servers:

• x86 6-core processor

• 8 GB of RAM

• 1 TB direct attached storage

• 1Gbps Ethernet

• RHEL 5.4

The following configuration file applies to such a cluster and is explained in the following section.

SciDB Installation and Administration

14

[monolith]
server-id=IP, number of worker instances
server-0=10.0.20.231,0
server-1=10.0.20.232,1
server-2=10.0.20.233,1
server-3=10.0.20.234,1
server-4=10.0.20.235,1
server-5=10.0.20.236,1
server-6=10.0.20.237,1
server-7=10.0.20.238,1
db_user=monolith
db_password=monolith
install_root=/opt/scidb/12.3
metadata=/opt/scidb/12.3/share/scidb/meta.sql
pluginsdir=/opt/scidb/12.3/lib/scidb/plugins
logconf=/opt/scidb/log4cxx.properties.trace
base-path=/data/monolith_data
base-port=1239
interface=eth0

The install package contains a sample configuration file, sample_config.ini, with examples.

The following table describes the basic configuration file settings:

Basic Configuration

Key Value

Cluster name Name of the SciDB cluster. The cluster name must appear as a section heading
in the config.ini file, e.g., [cluster1]

server-N The host name or IP address used by server N and the number of worker
instances on it. Server 0 always has the coordinator running as instance 0, and
may have additional worker instances running as well.

db_user Username to use in the catalog connection string. This example uses test1user

db_passwd Password to use in the catalog connection string. This example uses
test1passwd

install_root Path name of install root.

metadata Metadata definition file.

pluginsdir The folder or directory in which plugins are stored.

logconf log4xx configuration file.

The following table describes the cluster configuration file contents and how to set them:

Cluster Configuration

Key Value

base-path The root data directory for each SciDB instance. Each SciDB instance
initializes its data directory within the base-path. Path scidb/00n/1 will be
the path for instance n.

base-port Base port number. Connections to the coordinator (and therefore to the system)
are via this number, while worker instances communicate at base-port +
instance number. The default number that iquery expects is 1239.

SciDB Installation and Administration

15

interface Ethernet interface that SciDB must use.

ssh-port (optional) The port that ssh uses for communications within the cluster. Default:22.

key-file-list (optional) Comma-separated list of filenames that include keys for ssh authentication.
Default: None.

tmp-path (optional) The directory to use as temporary space.

no-watchdog (optional) Set this to true if you do not want automatic restart of the SciDB server on a
software crash. Default: false.

The following table describes the configuration file elements for tuning your system performance:

Performance Configuration

Key Value

save-ram (optional) 'True', 'true', 'on' or 'On' will enable this option. Off by default. This
allows you to store temporary data in memory. It is not advisable to
do this; it is better to store temporary data in files.

merge-sort-buffer (optional) Size of memory buffer used in merge sort. Default: 512 MB.

mem-array-threshold (optional) Maximum memory used for temporary arrays. Default: 1024 MB.

chunk-reserve (optional) Percentage of chunk preallocated to store chunk deltas. Setting this
parameter to 0 disables the delta mechanism. Default: 10%.

chunk-segment-size (optional) Size in bytes of a storage segment. A storage segment is a unit of
allocation and reclamation used by storage manager. If set to zero, no
space reuse or storage reclamation is done.

execution-threads (optional) Size of thread pool available for query execution. Shared pool of
threads used by all queries for network IO and some query execution
tasks. Default: 4.

operator-threads (optional) Limit the number of threads allocated per (multithreaded) operator
in a query. If operator-threads is unspecified, SciDB automatically
detects the number of CPU cores and uses that value. If you are
running multiple instances on each server, operator-threads must be
set lower than the number of CPU cores since multiple instances share
the same set of CPU cores.

result-prefetch-threads (optional) Per-query threads available for prefetch. Default: 4.

result-prefetch-queue-size
(optional)

Per-query number of result chunks to prefetch. Default: 4.

smgr-cache-size (optional) Size of buffer cache. Default: 256 MB

In the example above, db_user is set to test1user and db_passwd is set to test1passwd.

2.2.3. Logging Configuration
SciDB uses Apache's log4cxx (http://logging.apache.org/log4cxx/) for logging.

The logging configuration file, specified by the logconf variable in config.ini, contains the
following Apache log4cxx logger settings:

###
Levels: TRACE < DEBUG < INFO < WARN < ERROR < FATAL
###

http://logging.apache.org/log4cxx/

SciDB Installation and Administration

16

log4j.rootLogger=DEBUG, file

log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.File=scidb.log
log4j.appender.file.MaxFileSize=10000KB
log4j.appender.file.MaxBackupIndex=2
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d [%t] [%-5p]: %m%n

2.3. Initializing and Starting SciDB

2.3.1. The scidb.py Script
To begin a SciDB session, use the scidb.py script. In a standard SciDB build, this script is located at:

/opt/scidb/version.number/bin

The syntax for the scidb.py script is:

scidb.py command db conffile

The options for the command argument are:

initall Initialize the system catalog. Warning: This will remove any
existing SciDB arrays from the current namespace.

startall Start a SciDB instance.

stopall Stop the current SciDB instance.

status Show the status of the current SciDB instance.

dbginfo Collect debugging information by getting all logs, cores, and
install files.

dbginfo-lt Collect only stack and log information for debugging.

version Show SciDB version number.

The db argument is the name of the SciDB cluster you want to create or get information about.

The configuration file is set by default to /opt/scidb/12.3/etc/config.ini. If you want to use
a custom configuration file for a particular SciDB cluster, use the conffile argument.

Run the following command to initialize SciDB on the server. If the SciDB user has sudo privileges,
everything will be done automatically (otherwise see the previous section for additional Postgres
configuration steps):

scidb.py initall test1

Warning

This will reinitialize the SciDB database. Any arrays that you have created in previous SciDB
sessions will be removed and the memory reclaimed.

To start the set of local SciDB instances specified in your config.ini file, use the following command:

SciDB Installation and Administration

17

scidb.py startall test1

This will report the status of the various instances:

scidb.py status test1

This will stop all SciDB instances:

scidb.py stopall test1

SciDB logs are written to the file scidb.log in the appropriate directories for each instance: base-
path/000/0 for the coordinator and base-path/M/N the worker M instance N.

2.4. Upgrading SciDB
The name test1 in the following examples refers to the SciDB database. All of the following steps are
performed as Linux user scidb.

• Shutdown SciDB:

scidb.py stopall test1

• Download and install the latest SciDB package using the standard package manager on your platform
(rpm or dpkg).

If you are installing a downloaded pre-built binary package, you can install it using dpkg for Ubuntu and
rpm or yum for Red Hat. We currently provide packages for Ubuntu and RPMs for Red Hat and Fedora.

2.4.1. Ubuntu
1. First, upgrade the libscidbclient package :

sudo dpkg -i libscidbclient.*.deb

You may want to install the optional debug symbols:

sudo dpkg -i libscidbclient-dbg.*.deb

2. Then install the SciDB package:

sudo dpkg -i scidb-RelWithDebInfo-12.3.deb

You may want to install the optional debug symbols:

sudo dpkg -i scidb-dbg-RelWithDebInfo-12.3.deb

2.4.2. Red Hat and Fedora
1. First, you need to install the libscidbclient package:

sudo rpm --force -Uvh libscidbclient-RelWithDebInfo-12.3.*.rpm

If you prefer, you can install with debug symbols:

sudo rpm --force -Uvh libscidbclient-dbg-RelWithDebInfo-12.3.*.rpm

SciDB Installation and Administration

18

2. Next, install the SciDB server package:

sudo rpm --force -Uvh scidb-12.3.*.rpm

If you prefer, you can install debug symbols:

sudo rpm --force -Uvh scidb-dbg-.*.rpm

3. Copy over the previous config.ini from your earlier version:

cp /opt/scidb/11.12/etc/config.ini /opt/scidb/12.3/etc/config.ini

2.4.3. Additional Steps
• Modify the config.ini file that you just copied. Change all references to your previous version to the

new version (ex: install_root=/opt/scidb/12.3)

• Edit your environment and update PATH and LD_LIBRARY_PATH:

export SCIDB_VER=12.3
export PATH=/opt/scidb/$SCIDB_VER/bin:
 /opt/scidb/$SCIDB_VER/share/scidb:$PA\
TH
export LD_LIBRARY_PATH=/opt/scidb/$SCIDB_VER/lib:$LD_LIBRARY_PATH

• NOTE: SciDB 12.3 does not accept storage files from earlier versions. You must reinitialize and reload
data:

which scidb.py # Make sure you are running 12.3
scidb.py initall test1
scidb.py startall test1
scidb.py status test

19

Chapter 3. Getting Started with SciDB
Development
3.1. Using the iquery Client

The iquery executable is the basic command-line tool for communicating with SciDB. iquery is the
default SciDB client used to issue AQL and AFL commands. Start the iquery client by typing iquery
at the command line when a SciDB session is active:

scidb.py startall hostname
iquery

By default, iquery opens an AQL command prompt:

AQL%

You can then enter AQL queries at the command prompt. To switch to AFL queries, use the set lang
command:

AQL% set lang afl;

AQL statements end with a semicolon (;).

To see the internal iquery commands reference type help at the prompt:

AQL% help;
set - List current options
set lang afl - Set AFL as querying language
set lang aql - Set AQL as querying language
set fetch - Start retrieving query results
set no fetch - Stop retrieving query results
set timer - Start reporting query setup time
set no timer - Stop reporting query setup time
set verbose - Start reporting details from engine
set no verbose - Stop reporting details from engine
quit or exit - End iquery session

You can pass an AQL query directly to iquery from the command line using the -q flag:

iquery -q "my AQL statement"

You can also pass a file containing an AQL query to iquery with the -f flag:

iquery -f my_input_filename

AQL is the default language for iquery. To switch to AFL, use the -a flag:

iquery -aq "my AFL statement"

Each invocation of iquery connects to the SciDB coordinator instance, passes in a query, and prints out
the coordinator instance's response. iquery connects by default to SciDB on port 1239. If you use a port
number that is not the default, specify it using the "-p" option with iquery. For example, to use port 9999
to run an AFL query contained in the file my_filename do this:

Getting Started with
SciDB Development

20

iquery -af my_input_filename -p 9999

The query result will be printed to stdout. Use -r flag to redirect the output to a file:

iquery -r my_output_filename -af my_input_filename

To change the output format, use the -o flag:

iquery -o csv -r my_output_filename.csv -af my_input_filename

Available options for output format are csv, csv+, lcsv+, sparse, and lsparse. These options are described
in the following table:

Output Option Description

auto (default) SciDB array format.

csv Comma-separated values.

csv+ Comma-separated values with dimension indices.

lcsv+ Comma-separated values with dimension indices and a boolean
flag attribute EmptyTag showing if a cell is empty.

sparse Sparse SciDB array format.

lsparse Sparse SciDB array format and a boolean flag attribute EmptyTag
showing if a cell is empty.

To see a list of the iquery switches and their descriptions, type iquery -h or iquery --help at
the command line. The switches are explained in the following table:

iquery Switch Option Description

-c [--host] host_name Host of one of the cluster instances. Default is
'localhost'.

-p [--port] port_number Port for connection. Default is 1239.

-q [--query] query Query to be executed.

-f [--query-file] input_filename File with query to be executed.

-r [--result] target_filename Filename with result array data.

-o [--format] format Output format: auto, csv, csv+, lcsv+, sparse,
lsparse. Default is 'auto'.

-v [--verbose] Print the debugging information. Disabled by
default.

-t [--timer] Query setup time (in seconds).

-n [--no-fetch] Skip data fetching. Disabled by default.

-a [--afl] Switch to AFL query language mode. Default is
AQL.

-u [--plugins]path Path to the plugins directory.

-h [--help] Show help.

-V [--version] Show version information.

ignore-errors Ignore execution errors in batch mode.

The iquery interface is case sensitive.

Getting Started with
SciDB Development

21

3.2. iquery Configuration
You can use a configuration file to save and restore your iquery configuration. The file is stored in
~/.config/scidb/iquery.conf. Once you have created this file it will load automatically the
next time you start iquery. The allowed options are:

host Host name for the cluster instance. Default is localhost.

port Port for connection. Default is 1239.

afl Start the session with the AFL command line.

timer Report query run-time (in seconds).

verbose Print debug information.

format Set the format of query output. Options are csv, csv+, lcsv+, sparse, and lsparse.

plugins Path to the plugins directory.

For example, your iquery.conf file might look like this:

{
"host":"myhostname",
"port":9999,
"afl":true,
"timer":false,
"verbose":false,
"format":"csv+",
"plugins":"./plugins"
}

The opening and closing braces at the beginning and end of the file must be present and each entry (except
the last one) should be followed by a comma.

3.3. Example iquery session
This section demonstrates how to use iquery to perform simple array tasks like:

• Create a SciDB array

• Prepare an ASCII file in the SciDB dense load file format

• Load data from that file into the array.

• Execute basic queries on the array.

• Join two arrays containing related data.

The are more detailed examples on creating a SciDB array in the chapter "Creating and Removing SciDB
Arrays."

The following example creates an array, generates random numbers and stores them in the array, and saves
the array data into a csv-formatted file.

1. Create an array called random_numbers with:

• 2 dimensions, x = 9 and y = 10

Getting Started with
SciDB Development

22

• One double attribute called num

• Random numerical values in each cell

iquery -aq "store(build(<num:double>[x=0:8,1,0, y=0:9,1,0],
random()),random_numbers)"

2. Save the values in random_numbers in csv format to a file called /tmp/random_values.csv:

iquery -o csv -r /tmp/random_values.csv -aq "scan(random_numbers)"

The following example creates an array, loads existing csv data into the array, performs simple conversions
on the data, joins two arrays with related data set, and eliminates redundant data from the result.

1. Create an array, target, in which you are going to place the values from the csv file:

iquery -aq "create array target <type:string,mpg:double>[x=0:*,1,0]"

2. Starting from a csv file, prepare a file to load into a SciDB array. Use the file datafile.csv, which is
contained in the doc/user/examples/ directory of your SciDB installation:

Type,MPG
Truck, 23.5
Sedan, 48.7
SUV, 19.6
Convertible, 26.8

3. Convert the file to SciDB format with the command csv2scidb:

csv2scidb -p SN -s 1 < doc/user/examples/datafile.csv
 > output_path/datafile.scidb

Note: csv2scidb is a separate data-preparation utility provided with SciDB. To see all options
available for csv2scidb, type csv2scidb --help at the command line.

4. Use the load command to load the SciDB-formatted file you just created into target:

iquery -aq "load(target, 'output_path/datafile.scidb')"
[("Truck",23.5),("Sedan",48.7),
("SUV",19.6),("Convertible",26.8)]

You will need to use the full pathname for output_path. For example, if the file
datafile.scidb is located in /home/username/files, you should use the string '/home/
username/files/datafile.csv' for the load function argument.

5. By default, iquery always re-reads or retrieves the data that has just written to the array. To suppress
the print to screen when you use the load command, use the -n flag in iquery:

iquery -naq "load(target, '/output_path/datafile.scidb')"

6. Now, suppose you want to convert miles-per-gallon to kilometers per liter. Use the apply function to
perform a calculation on the attribute values mpg:

iquery -aq "apply(target,kpl,mpg*.4251)"

 [("Truck",23.5,9.98985),("Sedan",48.7,20.7024),

Getting Started with
SciDB Development

23

 ("SUV",19.6,8.33196),("Convertible",26.8,11.3927)]

Note that this does not update target. Instead, SciDB creates an result array with the new calculated
attribute kpl. To create an array containing the kpl attribute, use the store command:

iquery -aq "store(apply(target,kpl,mpg*.4251),target_new)"

7. Suppose you have a related data file, datafile_price.csv:

Make,Type,Price
Handa,Truck,26700
Tolona,Sedan,31000
Gerrd, SUV,42000
Maudi,Convertible,45000

You want to add the data on price and make to your array. Use csv2scidb to convert the file to SciDB
data format:

csv2scidb -p SSN -s 1 < doc/user/examples/datafile_price.csv >
output_path/datafile_price.scidb

Create an array called storage:

iquery -aq "create array storage
<make:string, type:string, price:int64>
[x=0:*,1,0]"

Load the datafile_price.scidb file into storage:

iquery -naq "load(storage, '/tmp/datafile_price.scidb')"

8. Now, you want to combine the data in these two files so that each entry has a make, and model, a price,
an mpg, and a kpl. You can join the arrays, with the join operator:

iquery -aq "join(storage,target_new)"
[("Handa","Truck",26700,"Truck",23.5,9.98985),
("Tolona","Sedan",31000,"Sedan",48.7,20.7024),
("Gerrd"," SUV",42000,"SUV",19.6,8.33196),
("Maudi","Convertible",45000,"Convertible",26.8,11.3927)]

Note that attributes 2 and 4 are identical. Before you store the combined data in an array, you want to
get rid of duplicated data.

9. You can use the project operator to specify attributes in a specific order:

iquery -aq project(target_new,mpg,kpl)
[(23.5,9.98985),(48.7,20.7024),(19.6,8.33196),(26.8,11.3927)]

Attributes that are not specified are not included in the output.

10. Use the join and project operators to put the car data together. For easier reading, use csv as the
query output format:

iquery -o csv -aq "join(storage,project(target_new,mpg,kpl))"
make,type,price,mpg,kpl
"Handa","Truck",26700,23.5,9.98985
"Tolona","Sedan",31000,48.7,20.7024

Getting Started with
SciDB Development

24

"Gerrd"," SUV",42000,19.6,8.33196
"Maudi","Convertible",45000,26.8,11.3927

25

Chapter 4. Creating and Removing
SciDB Arrays

SciDB organizes data as a collection of multidimensional arrays. Just as the relational table is the basis of
relational algebra and SQL, the multidimensional array is the basis for SciDB.

A SciDB database is organized into arrays that have:

• A name. Each array in a SciDB database has an identifier that distinguishes it from all other arrays in
the same database.

• A schema, which is the array structure. The schema contains array attributes and dimensions.

1. Each attribute contains data being stored in the array's cells. A cell can contain multiple attributes.

2. Each dimension consists of a list of index values. At the most basic level the dimension of an array
is represented using 64-bit unsigned integers. The number of index values in a dimension is referred
to as the dimension's size.

4.1. Create an Array
The AQL CREATE ARRAY statement creates a new array and specifies the array schema. The syntax
of the CREATE ARRAY statement for a bounded array is:

CREATE ARRAY array_name <attributes> [dimensions]

The arguments for the CREATE ARRAY statement are as follows:

array_name The array name that uniquely identifies the array in the database.
The maximum length of an array name is 1024 bytes. Array names
may not contain the characters @ , :, or dot (.) as these characters
are reserved for internal SciDB operations.

attributes The array attributes contain the actual data. You specify an attribute
with:

• Attribute name: Name of an attribute. The maximum length of
an attribute name is 1024 bytes. No two attributes in the same
array can share a name.

• Attribute type: Type identifier. One of the data types supported
by SciDB. Use the list('types') command to see the list
of available data types.

• NULL (optional): Users can specify 'NULL' to indicate attributes
that are allowed to contain null values. If this keyword is not
used, all attributes must be non null, i.e. they cannot be assigned
the special null value. If the user does not specify a value for such
an attribute, SciDB will automatically substitute a default value.

• DEFAULT (optional): Allows the user to specify the value to
be automatically substituted when a non NULL attribute lacks a

Creating and Removing SciDB Arrays

26

value. If unspecified substitution uses system defaults for various
types (0 for numeric types and "" for string). Note that if the
attribute is declared as NULL, this clause is ignored.

dimensions Dimensions form the coordinate system for the array. The number
of dimensions in an array is the number of coordinates or indices
needed to specify an array cell. You specify dimensions with:

• Dimension name: Each dimension has a name. Just like
attributes, each dimension must be named, and dimension names
cannot be repeated in the same array. The maximum length of
a dimension name is 1024 bytes. Optionally, you may want to
create a noninteger dimension. In this case, you will need to
specify the dimension data type in the name argument like this:
dimension_name(dimension_dataype).

• Dimension start: The starting coordinate of a dimension. The
default data type is 64-bit integer. If you created a noninteger
dimension, this argument is omitted.

• Dimension end or *: The ending coordinate of a dimension, or *
if unbounded. The default data type is 64-bit integer for bounded
dimensions.

• Dimension chunk size: Number of elements per chunk.

• Dimension chunk overlap: Number of overlapping cells from a
neighboring chunk.

The AQL CREATE ARRAY statement creates an array with specified name and schema. This statement
creates an array:

AQL% CREATE ARRAY A <x: double, err: double>
 [i=0:99,10,0, j=0:99,10,0];

The array this statement created has:

• Array name A

• An array schema with:

1. Two attributes: one with name x and type double and one with name err and type double

2. Two dimensions: one with name i, starting coordinate 0, ending coordinate 99, chunk size 10, and
chunk overlap 0; one with name j, starting coordinate 0, ending coordinate 99, chunk size 10, and
chunk overlap 0.

This statement creates a different array:

AQL% CREATE ARRAY B <val:double>[sample(string)=6,6,0];

Array B has one attribute named val of type double and one dimension named sample of type
string. Dimension sample has length 6, chunk size 6, and chunk overlap 0.

To delete an array with AQL, use the DROP ARRAY statement:

AQL% DROP ARRAY A;

Creating and Removing SciDB Arrays

27

4.2. Array Attributes
A SciDB array must have at least one attribute. The attributes of the array are used to store individual
data values in array cells.

For example, you may want to create a product database. A 1-dimensional array can represent a simple
product database where each cell has a string attribute called name, a numerical attribute called price,
and a datetime attribute called sold:

AQL% CREATE ARRAY products
 <name:string,price:float,sold:datetime> [i=0:*,10,0];

Attributes are by default set to not null. To allow an attribute to have value NULL, add NULL to the
attribute data type declaration:

AQL% CREATE ARRAY product_null
 <name:string NULL,price:float NULL,sold:datetime NULL>
 [i=0:*,10,0];

This allows the attribute to store NULL values at data load.

An attribute takes on a default value of 0 when no other value is provided. To set a default value other than
0, set the DEFAULT value of the attribute. For example, this code will set the default value of price
to 100 if no value is provided:

CREATE ARRAY product_dflt
<name:string, price:float default 100.0, sold:datetime>
[i=0:*,10,0];

4.2.1. NULL and Default Attribute Values
SciDB offers functionality to work with missing data. This chapter uses the data set m4x4_missing.txt,
shown here:

[
[(0,100),(1,99),(2,98),(3,97)],
[(4),(5,95),(6,94),(7,93)],
[(8,92),(9,91),(),(11,89)],
[(12,88),(13),(14,86),(15,85)]
]

The array m4x4_missing has two issues: the second values in the cells (1,0) and (3,1) are missing, and
cell (2,2) is completely empty. You can tell SciDB how you want to handle the missing data with various
array options.

First, consider the case of the completely empty cell, (2,2). By default, SciDB will leave empty cells empty
and replace missing attributes with 0:

CREATE ARRAY m4x4_missing <val1:double,val2:int32>
[x=0:3,4,0,y=0:3,4,0];
load(m4x4_missing,'/tmp/m4x4_missing.txt');

[
[(0,100),(1,99),(2,98),(3,97)],

Creating and Removing SciDB Arrays

28

[(4,0),(5,95),(6,94),(7,93)],
[(8,92),(9,91),(),(11,89)],
[(12,88),(13,0),(14,86),(15,85)]
]

To change the default value, that is, the value the SciDB substitutes for the missing data, set the default
clause of the attribute option:

CREATE ARRAY m4x4_missing
<val1:double,val2:int32 default 5468>
[x=0:3,4,0,y=0:3,4,0];

[
[(0,100),(1,99),(2,98),(3,97)],
[(4,5468),(5,95),(6,94),(7,93)],
[(8,92),(9,91),(),(11,89)],
[(12,88),(13,5468),(14,86),(15,85)]
]

4.2.2. Codes for Missing Data
In addition to simple single-valued NULL substitution described in the previous section, SciDB also
supports multi-valued NULLs using the notion of missing reason codes. Missing reason codes allow an
application to optionally specify multiple types of NULLs and treat each type differently.

For example, if a faulty instrument occasionally fails to report a reading, that attribute could be represented
in a SciDB array as NULL. If an erroneous instrument reports readings that are out of valid bounds for
an attribute, that may also be represented as NULL.

NULL must be represented using the token 'null' or '?' in place of the attribute value. In addition, NULL
values can be tagged with a "missing reason code" to help a SciDB application distinguish among different
types of null values—for example, assigning a unique code to the following types of errors: "instrument
error", "cloud cover", or "not enough data for statistically significant result". Or, in the case of financial
market data, data may be missing because "market closed", "trading halted", or "data feed down".

The examples below show how to represent missing data in the load file. ? or null represent null values,
and ?2 represents null value with a reason code of 2.

[[(10, 4.5, "My String", 'C'), (10, 5.1, ?1, 'D'),
(?2, 5.1, "Another String", ?) ...

or

[[(10, 4.5, "My String", 'C'), (10, 5.1, ?1, 'D'),
(?2, 5.1, "Another String", null) ...

Use the substitute operator to substitute different values for each type of NULL. For more information on
NULL substitution see the SciDB Operator Reference entry for substitute.

4.3. Array Dimensions
A SciDB array must have at least one dimension. Dimensions form the coordinate system for a SciDB
array. There are several special types of dimensions: dimensions with overlapping chunks, unbounded
dimensions, and noninteger dimensions.

Creating and Removing SciDB Arrays

29

Note

The dimension size is determined by the range from the dimension start to end, so 0:99 and 1:100
would create the same dimension size.

4.3.1. Chunk Overlap
It is sometimes advantageous to have neighboring chunks of an array overlap with each other. Overlap is
specified for each dimension of an array. For example, consider an array A with the following schema:

A<a: int32>[i=1:10,5,1, j=1:30,10,5]

Array A has has two dimensions, i and j. Dimension i has size 10, chunk size 5, and chunk overlap 1.
Dimension j has size 30, chunk size 10, and chunk overlap 5. SciDB stores cells from the chunk overlap
area in both of the neighboring chunks.

Some advantages of chunk overlap are:

• Speeding up nearest-neighbor queries, where each chunk may need access to a few elements from its
neighboring chunks,

• Detecting data clusters or data features that straddle more than one chunk.

4.3.2. Unbounded Dimensions
An array dimension can be created as an unbounded dimension by declaring the high boundary as '*'.
When the high boundary is set as * the array boundaries are dynamically updated as new data is added to
the array. This is useful when the dimension size is not known at CREATE ARRAY time. For example,
this statement creates an array named open with two dimensions:

• Bounded dimension I of size 10, chunk size 10, and chunk overlap 0

• Unbounded dimension J of size *, chunk size 10, and chunk overlap 0.

AQL% CREATE ARRAY open <val:double>[I=0:9,10,0,J=0:*,10,0];

4.3.3. Noninteger Dimensions and Mapping Arrays
Basic arrays in SciDB use the int64 data type for dimensions. SciDB also supports arrays with noninteger
dimensions. These arrays map dimension values of a declared type to an internal int64-array position.
Mapping is done through special mapping arrays internal to SciDB. Such arrays are useful when you are
transforming data into multidimensional format where some dimensions represent factors or categories.

For example, the array D has a noninteger dimension named ID:

AQL% SELECT * FROM show(D);

[("D <val:int64 ,empty_indicator:indicator >
[ID(string)=10,5,0]")]

The dimension indices of ID are:

AQL% SELECT * FROM D:ID;

[("sample-1"),("sample-10"),("sample-2"),("sample-3"),

Creating and Removing SciDB Arrays

30

("sample-4"),("sample-5"),("sample-6"),("sample-7"),
("sample-8"),("sample-9")]

The values of the attribute val of D are:

AQL% SELECT * FROM D;

[(0),(90),(2),(6),(12),(20),(30),(42),(56),(72)]

Note

In the current version of SciDB, it is not possible to load data directly from an external file into
a mapping array.

4.4. Changing Array Names
An array name is used to identify an array in the current SciDB namespace. You can use the AQL
SELECT ... INTO statement to rename an array.

AQL% SELECT * INTO new_A FROM A;

This means that both A and new_A are in the current SciDB namespace. To change an array name and
remove the old array name from the current SciDB namespace, use the rename command:

AFL% rename(new_A, A_backup);

You can use the cast command to change the name of the array, array attributes, and array dimensions.
A single cast can be used to rename multiple items at once, for example, one or more attribute names and/
or one or more dimension names. The input array and template arrays should have the same numbers and
types of attributes and the same numbers and types of dimensions.

AQL% SELECT * FROM show(A);

[("A<x:double ,err:double > [i=0:99,10,0,j=0:99,10,0]")]

This query creates an array new_A with attributes val1 and val2 and dimensions x and y:

AQL% SELECT * INTO new_A
FROM cast(A,<val1:double,val2:double>
[x=0:99,10,0,y=0:99,10,0]")];

4.5. Database Design

4.5.1. Selecting Dimensions and Attributes
An important part of SciDB database design is selecting which values will be dimensions and which
will be attributes. Dimensions form a coordinate system for the array. Adding dimensions to an array
generally improves the performance of many types of queries by speeding up access to array data. Hence,
the choice of dimensions depends on the types of queries expected to be run. Some guidelines for choosing
dimensions are:

• Dimensions provide selectivity and efficient access to array data. Any coordinate along which selection
queries must be performed constitutes a good choice of dimension. If you want to select data subject

Creating and Removing SciDB Arrays

31

to certain criteria (for example, all products of price greater than $100 whose brand name is longer
than six letters that were sold before 01/01/2010) you may want to design your database such that the
coordinates for those parameters are defined by dimensions.

• Array aggregation operators including group-by, window, or grid aggregates specify coordinates along
which grouping must be performed. Such values must be present as dimensions of the array. For spatial
and temporal applications, the space or time dimension is a good choice for a dimension.

• In the case of 2-dimensional arrays common in linear algebra applications, rows represent observations
and columns represent variables, factors, or components. Matrix operations such as multiply,
covariance, inverse, and best-fit linear equation solution are often performed on a 2-dimensional array
structure.

In the absence of these factors, choosing to represent values as attributes is generally a good idea. However,
SciDB offers the flexibility to transform data from one array definition to another even after it has been
loaded. This step is referred to as redimensioning the array and is especially useful when the same data
set must be used for different types of analytic queries. Redimensioning is used to transform attributes
to dimensions and vice-versa. Redimensioning an array is explained in the chapter "Changing Array
Schemas."

4.5.2. Chunk Size Selection
The selection of chunk size in a dimension plays an important role in how well you can query your data.
If a chunk size is too large or too small, it will negatively impact performance.

To optimize performance of your SciDB array, you want chunks to contain on order of 10 to 20 MB of
data. So, for example, if your data set consists entirely of double-precision numbers, you would want a
chunk size that contains somewhere between 500,000 and 1 million elements (assuming 8 bytes for every
double-precision number).

When a multiattribute SciDB array is stored, the array attributes are stored in different chunks, a process
known as vertical partitioning. This is a consideration when you are choosing a chunk size. The size of
an individual cell, or the number of attributes per cell, does not determine the total chunk size. Rather,
the number of cells in the chunk is the number to use for determining chunk size. For arrays where every
dimension has a fixed number of cells and every cell has a value you can do a straightforward calculation
to find the correct chunk size.

When the density of the data in a data set is highly skewed, that is, when the data is not evenly
distributed along array dimensions, the calculation of chunk size becomes more difficult. The calculation
is particularly difficult when it isn't known at array creation time how skewed the data is. In this case, you
may want to use SciDB's repartitioning functionality to change the chunk size as necessary. Repartitioning
an array is explained in the chapter "Changing Array Schemas."

32

Chapter 5. Loading Data
The key part of setting up your SciDB array is loading your data. This chapter begins by explaining the
simplest way to prepare and load a data file. Later, this chapter explains more complicated load scenarios
such as sparse loading and parallel loading. Finally, this chapter shows you how to round-trip your data
by saving it from a SciDB array back out into a csv file.

The array data model is core to SciDB. When you define a schema for an array you specify which aspects
of your data you want to be dimensions and which aspects you want to be attributes based on how you
want to conceptualize, access and operate on the data. Before loading data, you have to create an array
to load your data into. Refer to the chapter "Creating and Removing SciDB Arrays" for how to create a
SciDB array.

5.1. Simple Data Loading
This section describes how to do a simple data load procedure. The steps in simple data loading are:

1. Save your data in comma-separated value (csv) format.

2. Use the csv2scidb command to create a SciDB-formatted load file.

3. Create a 1-dimensional SciDB array to load the data into.

4. Use the LOAD statement to load the data from the SciDB-formatted file into the array.

Consider the 20-line, csv-formatted file num_data.csv, the first few lines of which are shown here:

val,err
1.48306e+09,1
5.80814e+08,1
1.51079e+09,1
1.16154e+09,1
1.42655e+09,1
1.06341e+09,1

This file has two entries per row, where the entries are labelled val and err. To prepare this file
for loading into a SciDB array, use the command csv2scidb. The csv2scidb command takes
multicolumn csv data and transforms it into 1-dimensional arrays with one attribute for every comma-
delimited column. The syntax of csv2scidb is:

csv2scidb [options] < input-file > output-file

Note

csv2scidb is accessed directly at the command-line and not through the iquery client. To
see the options for csv2scidb, type csv2scidb --help at the command line. The options
for csv2scidb are:

-v version of tool
-i PATH input file
-o PATH output file
-a PATH appended output file

Loading Data

33

-c INT length of chunk
-f INT starting chunk number
-d char delimiter,default is , (comma)
-p STR type pattern, N number, S string, s nullable
 string, C char
-q Quote the input line exactly, simply wrap it in ()
-s INT skip N lines at the beginning of the file

This code will transform num_data.csv to SciDB load file format:

csv2scidb -s 1 -p N < num_data.csv > num_data.scidb

The -s flag specifies the number of lines to skip at the beginning of the file. Since the file has a header,
you can strip that line, and provide that information as attribute names. The -p flag specifies the type of
data you are loading. Possible values are N (number), S (string), s (nullable string), and C (char).

The file num_data.scidb looks like this:

[
(1.48306e+09,1),
(5.80814e+08,1),
(1.51079e+09,1),
(1.16154e+09,1),
(1.42655e+09,1),
(1.06341e+09,1),
(4.9253e+08,1),
(5.6065e+08,1),
(1.60886e+08,2),
(1.37844e+09,1),
(4.08495e+08,1),
(5.65393e+07,1),
(1.47646e+09,1),
(9.52609e+08,1),
(1.8548e+09,1),
(1.42396e+09,1),
(1.75107e+09,1),
(1.52007e+09,1),
(5.4882e+08,1),
(7.28928e+08,1)
]

The square braces show the beginning and end of the array dimension. The parentheses show the cells of
the array. There are commas between attributes in cells and cells in the dimension.

To create an array for this data, create an array with 1-dimension. The original data set had two column
headers of val and err, so you can name the attributes val and err:

AQL% CREATE ARRAY num_data <val:double,err:double>[i];

To load the data into the array num_data, use a LOAD statement:

AQL% LOAD num_data
 FROM 'base-path/doc/user/examples/num_data.scidb';

The base-path is the directory where your SciDB source files are stored.

Loading Data

34

5.2. Data with Special Values
Suppose you have a load file that is missing some values, like this file, v4.scidb:

[
 (0,100),(1,99),(2,),(3,97)
]

The load file v4.scidb has a missing value in the third cell. If you create an array and load this data
set, SciDB will substitute 0 for the missing value:

AQL% CREATE ARRAY v4 <val1:int8,val2:int8>[i=0:3,4,0];
AQL% LOAD v4 FROM '/examples/v4.scidb';

[
(0,100),(1,99),(2,0),(3,97)
]

To change the default value, that is, the value the SciDB substitutes for the missing data, set the DEFAULT
attribute option. This code creates an array v4_dflt with default attribute value set to 111:

AQL% CREATE ARRAY v4_dflt
 <val1:int8,val2:int8 default 111>[i=0:3,4,0];
AQL% LOAD v4_dflt
 FROM '/examples/v4.scidb';

[
(0,100),(1,99),(2,111),(3,97)
]

Load files may also contain null values, such as in this file, v4_null.scidb:

[
 (0,100),(1,99),(2,null),(3,97)
]

To preserve null values at load time, add the NULL option to the attribute type:

AQL% CREATE ARRAY v4_null
<val1:int8,val2:int8 NULL> [i=0:3,4,0];
AQL% LOAD v4_null
 FROM '/example/v4_null.scidb';

[
(0,100),(1,99),(2,null),(3,97)
]

5.3. Sparse Load Format
The sparse load format allows a large number of cells to be unspecified. In the sparse load format, data is
listed by chunks. Chunks are delimited by two square brackets. There are semicolons between chunks.

[[chunk1]];
[[chunk2]];

Loading Data

35

Within each chunk, the data is organized as a list of cells. Each cell includes the coordinate indices of the
cell in curly braces and the attributes of the cell (separated by commas) in parentheses.

[[{index1,index2,...} (attribute1,attribute2,...), ...
 {indexm,indexn} (attribute1m,attribute2n)]];

For example, a load file for a diagonal 2-D array with two chunks looks like this:

[[
{0,0}(0,'A'),{1,1}(1,'B'),{2,2}(2,'C'),{3,3}(3,'D')
]];
[[
{4,4}(6,'G'),{5,5}(7,'P'),{6,6}(9,'H')
]]

This data is stored like this:

Tip

In addition to storing the data, LOAD operator returns the data back to the client (or next operator
in the query). When the data set is very large, you may want to suppress the query output.
The iquery executable that accompanies SciDB includes the -n option for this purpose. See
"Getting Started with SciDB Development" for how to use iquery.

5.3.1. Sparse Load Chunks
Consider a load file like this:

[[
{0,0} (11),
{1,0} (21),
{0,1} (12)
]];
[[
{0,2} (13)
]];
[[
{2,0} (31),
{3,0} (41),
{2,1} (32),
{3,1} (42)
]];
[[
{2,2} (33),
{3,3} (44)
]];
[[
{7,0} (81),
{6,1} (72),
{7,1} (82)
]];

Loading Data

36

[[
{6,2} (73),
{7,2} (83),
{7,3} (84)
]];
[[
{8,0} (91)
]];
[[
{8,2} (93),
{8,3} (94)
]]

The chunk distribution in the load file requires that the array have chunks of size 2 in the first dimension
and chunks of size 2 in the second dimension. The array schema for this load file is:

<attribute:int16>[x=0:8,2,0,y=0:3,2,0];

5.4. Parallel Load
The simple data loading procedure serially loads all the data from a single load file. You can set up parallel
loading for much faster loading. Parallel loading is more complex because it requires the creation of
multiple load files which are chunk-size specific. That is, they are custom constructed around a known
chunk size and have to be written with embedded chunk identifiers.

The optional id parameter instructs the LOAD command to open and load data from a particular instance
of SciDB. Possible id values are:

id Value Description

0 Coordinator

1,2, ..., N id of the instance that should perform the load where N is the number of
instances in the cluster.

–1 All instances in the cluster. The file path is assumed to be the same at all
instances. If an instance cannot open the data file, the load will continue
after logging a warning.

For parallel load, each instance must be given distinct chunks. To do this, chunks in the load file must be
prefixed with a distinct chunk header that lists the starting dimension values of the chunk.

If your SciDB cluster has 4 instances (with identifiers 1, 2, 3, and 4) and there are 20 chunks, you can
place chunks 1–5 on instance 1, chunks 6–10 on instance 2, and so on. The following load command will
simultaneously load all 20 chunks into the array and complete 4 times faster.

AFL% load (Array, '/tmp/load.data', -1);

5.5. Saving Data from a SciDB Array to a File
You can save all or part of the data that is contained in a SciDB array to a file. You can use a SELECT
statement with the SAVE clause to save an entire array. For example, consider the following array
random_numbers:

AQL% CREATE ARRAY random_numbers <val:double>[i=0:99,100,0];

Loading Data

37

AQL% SELECT * INTO random_numbers
 FROM build(random_numbers,random());

You can save the values stored in the array random_numbers to a file with the following query:

AQL% SAVE random_numbers
 INTO '/tmp/random_data.txt';

This statement saves a SciDB-formatted file called random_data.txt.

To save the data to csv format, set the iquery output option to csv:

% iquery -o csv -q "SAVE random_numbers
 INTO '/tmp/random_data.csv';"

val,val_rand
1,939618095
2,1011655774
3,3620619210
4,2317057332
5,6137260845
6,10771327980
7,4496569336
8,10364290328
9,2309513805
10,1398261690

Note

You will need to enter your iquery statement directly at the command line to change the output
option to csv. Type exit; at the AQL% prompt to stop the current iquery session.

38

Chapter 6. Basic Array Tasks
6.1. Selecting Data From an Array

AQL's Data Manipulation Language (DML) provides queries to access and operate on array data. The
basis for selecting data from a SciDB array is the AQL SELECT statement with INTO, FROM, and WHERE
clauses. The syntax of the SELECT statement is:

SELECT list | *
 [INTO target_array]
 FROM array_expression | source_array
 [WHERE expression]

The arguments for the statement are:

list | * SELECT list can select individual attributes and dimensions, as
well as constants and expressions. The wildcard character * means
select all attributes.

target_array The INTO clause can create an array to store the output of
the query. The target array may also be a pre-existing array in the
current SciDB

array_expression |
source_array

The FROM clause takes a SciDB array as argument. The
array_expression argument is an expression or subquery that
returns an array result. The source_array is an array in the
current SciDB namespace from which data is being selected.

expression The expression argument of the WHERE clause allows to you
specify parameter that filter the query.

6.1.1. The SELECT Statement
AQL expressions in the SELECT list or the WHERE clause are standard expressions over the attributes
and dimensions of the array. The simplest SELECT statement is SELECT *, which selects all data
from a specified array or array result. Consider two arrays, A and B:

AQL% CREATE ARRAY A <val_a:double>[i=0:9,10,0];
AQL% CREATE ARRAY B <val_b:double>[j=0:9,10,0];

These arrays contain data. To see all the data in the array, you can use a SELECT * statement with the
scan command. The scan(A) command returns a SciDB array result containing the values of the array
data in A. By using scan(A) with a SELECT * statement, the query will return the entire array result
of scan(A):

AQL% SELECT * FROM scan(A);

[(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)]

AQL% SELECT * FROM scan(B);

[(101),(102),(103),(104),(105),
(106),(107),(108),(109),(110)]

Basic Array Tasks

39

The show command returns an array result containing an array's schema. To see the entire schema, use
a SELECT * statement with the show command:

AQL% SELECT * FROM show(A);

[("A<val_a:double> [i=0:9,10,0]")]

AQL% SELECT * FROM show(B);

[("B<val_b:double> [j=0:9,10,0]")]

To refine the result of the SELECT statement, use an argument that specifies part of an array result.
SELECT can take array dimensions or attributes as arguments:

SELECT j FROM B;
SELECT val_b FROM B;

The SELECT statement can also take an expression as an argument. For example, you can scale attribute
values by a certain amount:

AQL% SELECT val_b/10 FROM B;

[(10.1),(10.2),(10.3),(10.4),(10.5),
(10.6),(10.7),(10.8),(10.9),(11)]

The WHERE clause can also use built-in functions to create expressions. For example, you can choose
just the middle three cells of array B with the greater-than and less-than functions with the and operator:

SELECT j FROM B WHERE j > 3 and j < 7;

[(),(),(),(),(4),(5),(6),(),(),()]

You can also select an expression of the attribute values for the middle three cells of B by providing an
expression for the argument of both SELECT and WHERE . For example, this statement returns the
square root of the middle three cells of array B:

SELECT sqrt(val_b) FROM B WHERE j>3 and j<7;

[(),(),(),(),(10.247),(10.2956),(10.3441),(),(),()]

The FROM clause can take an array or any operation that outputs an array as an argument. The INTO
clause stores the output of a query.

6.2. Array Joins
A join combines two or more arrays typically as a preprocessing step for subsequent operations. The
simplest type of join is for two arrays with the same number of dimensions, same dimension starting
coordinates, and same chunk size.

The syntax of a simple join statement is:

SELECT expression INTO target_array FROM src_array

The natural join of these arrays joins the attributes:

SELECT * FROM A,B;

Basic Array Tasks

40

This join produces:

[(1,101),(2,102),(3,103),(4,104),(5,105),
(6,106),(7,107),(8,108),(9,109),(10,110)]

You can store the output using the INTO clause. For example, this code will store the attribute-attribute
join of A and B in array C:

AQL% SELECT * INTO C FROM A,B;

Arrays do not need to have the same number of attributes to be compatible as long as the dimension starting
indices, chunk sizes, and chunk overlaps are the same. For example, you can join the two-attribute array
C with the one-attribute array B:

AQL% SELECT * INTO D FROM C,B;

This produces array D with the following schema:

[("D<val_a:double,
val_b:double,
val_b_2:double>
[i=0:9,10,0]")]

If two arrays have an attribute with the same name, you can select the attributes to use with array dot
notation:

AQL% SELECT C.val_b + D.val_b FROM C,D;

The JOIN ... ON predicate calculates the multidimensional join of two arrays after applying the
constraints specified in the ON clause. The ON clause lists one or more constraints in the form of equality
predicates on dimensions or attributes. The syntax is:

SELECT list | *
 [INTO target_array]
 FROM array_expression | source_array
 JOIN expression | attribute ON dimension | attribute

A dimension-dimension equality predicate matches two compatible dimensions, one from each input. The
result of this join is an array with higher number of dimensions—combining the dimensions of both its
inputs, less the matched dimensions. If no predicate is specified, the result is the full cross product array.

An attribute predicate in the ON clause is used to filter the output of the multidimensional array.

For example, consider a 2-dimensional array m3x3schema and attributes values:

[("m3x3<a:double> [i=1:3,3,0,j=1:3,3,0]")]
[
[(4),(5),(6)],
[(7),(8),(9)],
[(10),(11),(12)]
]

Now consider also a 1-dimensional array vector3 schema and attribute values:

[("vector3<b:double> [k=1:3,3,0]")]
[(21),(20.5),(20.3333)]

Basic Array Tasks

41

A dimension join returns a 2-dimensional array with coordinates {i,j} in which the cell at coordinate
{i,j} combines the cell at {i,j} of m3x3 with the cell at coordinate {k=j} of vector3:

AQL% SELECT * FROM m3x3 JOIN vector3 ON m3x3.j = vector3.k;

[
[(4,21),(5,20.5),(6,20.3333)],
[(7,21),(8,20.5),(9,20.3333)],
[(10,21),(11,20.5),(12,20.3333)]
]

6.3. Aliases
AQL provides a way to refer to arrays and array attributes in a query via aliases. These are useful when
using the same array repeatedly in an AQL statement, or when abbreviating a long array name. Aliases
are created by adding an "as" to the array or attribute name, followed by the alias. Future references to the
array can then use the alias. Once an alias has been assigned, all attributes and dimensions of the array can
use the fully qualified name using the dotted naming convention.

AQL% SELECT data.i*10 FROM A AS data WHERE A.i < 5;

[(0),(10),(20),(30),(40),(),(),(),(),()]

6.4. Nested Subqueries
You can nest AQL queries to refine query results.

For example, you can nest SELECT statements before a WHERE clause to select a subset of the
query output. For example, this query

1. Sums two attributes from two different arrays and stores the output in an alias,

2. Selects the cells with indices greater than 5, and

3. Squares the result.

AQL% SELECT pow(c,2) FROM
 (SELECT A.val_a + B.val_b AS c FROM A,B) WHERE i > 5;

[(),(),(),(),(),(),(12996),(13456),(13924),(14400)]

6.5. Data Sampling
SciDB provides operations to sample array data. The bernoulli command allows you to select a subset
of array cells based upon a given probability. For example, you can use the bernoulli operator to
randomly sample data from an array one element at a time. The syntax of bernoulli is:

bernoulli(array, probability:double [, seed:int64])

The sample command allows you to randomly sample data one array chunk at a time:

sample(array, probability:double [, seed:int64])

The probability is a double between 0 and 1. The commands work by generating a random number for each
cell or chunk in the array and scaling it to the probability. If the random number is within the probability,

Basic Array Tasks

42

the cell/chunk is included. Both commands allow you to produce repeatable results by seeding the random
number generator. All calls to the random number generator with the same seed produce the same random
number. Seeds must be a 64-bit integer.

43

Chapter 7. Aggregates
SciDB supports commands to group data from an array and calculate summaries over those groups. These
commands are called aggregates. SciDB provides the following types of aggregates based on how data
is grouped:

• Grand aggregates compute aggregates over entire arrays.

• Group-by aggregates compute summaries by grouping array data by dimension values.

• Grid aggregates compute summaries for nonoverlapping subarrays.

• Window aggregates compute summaries over a moving window in an array.

This chapter uses example arrays m4x4 and m4x4_2attr, which have the following schemas and contain
the following values:

AFL% show(m4x4);

[("m4x4<attr1:double> [x=0:3,4,0,y=0:3,4,0]")]

AFL% scan(m4x4);

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

AFL% show(m4x4_2attr);

[("m4x4_2attr<attr1:double,attr2:double>
[x=0:3,4,0,y=0:3,4,0]")]

AFL% scan(m4x4_2attr);

[
[(0,0),(1,2),(2,4),(3,6)],
[(4,8),(5,10),(6,12),(7,14)],
[(8,16),(9,18),(10,20),(11,22)],
[(12,24),(13,26),(14,28),(15,30)]
]

SciDB offers the following built-in aggregates.

Aggregate Function Definition

avg Average value

count Number of nonempty elements (array count) and non-null elements
(attribute count).

max Largest value

min Smallest value

sum Sum of all elements

Aggregates

44

stdev Standard deviation

var Variance

7.1. Grand Aggregates
Grand aggregates in SciDB calculate aggregates or summaries of attributes across an entire array. The
syntax of the SELECT statement with a summary clause is:

AQL% SELECT aggregate(attribute),function(attribute),...
 INTO dst-array
 FROM src-array | array-expression
 WHERE where-expression

The output is a SciDB array with one attribute named for the summary type in the query and array
dimensions determined by the size and shape of the result.

For example, to select the maximum and the minimum values of the attribute attr1 of the array m4x4:

AQL% SELECT max(attr1),min(attr1) FROM m4x4;

[(15,0)]

You can store the output of a query into a destination array, m4x4_max_min with an INTO clause:

AQL% SELECT max(attr1),min(attr1)
 INTO m4x4_max_min
 FROM m4x4;

The destination array m4x4_max_min has schema:

[("m4x4_max_min<max:double NULL,min_1:double NULL> [i=0:0,1,0]")]

To select the maximum value from the attribute val of m4x4_2attr and the minimum value from the
attribute val2 of m4x4_2attr:

AQL% SELECT max(attr2),min(attr)
 FROM m4x4_2attr;

[(30,0)]

Note

In the special case of a one-attribute array, you can omit the attribute name. For example, to
select the maximum value from the attribute attr1 of the array m4x4, use the AQL SELECT
statement:

AQL% SELECT max(m4x4);

[(15)]

The AFL aggregate operator also computes grand aggregates. To select the maximum value from the
attribute val of m4x4_2attr and the minimum value from the attribute val2 of m4x4_2attr:

AFL% aggregate(m4x4_2attr, max(attr2),min(attr1));

Aggregates

45

[(30,0)]

SciDB functions exclude null-valued data. For example, consider the following array m4x4_null:

[
[(null),(null),(null),(null)],
[(null),(null),(null),(null)],
[(0),(0),(0),(0)],
[(null),(null),(null),(null)]
]

The syntaxes count(attr1) and count(*) return different results:

AQL% SELECT count(attr1) AS a, count(*) AS b
 FROM m4x4_null;

[(4,16)]

One syntax, count(attr1), shows only cells that have values that are not NULL. The other syntax,
count(*), counts all of the present cells (both NULL and not NULL).

7.2. Group-By Aggregates
Group-by aggregates allow you to group array data by array dimensions and summarize the data in those
groups.

AQL GROUP BY aggregates take a list of dimensions as the grouping criteria and compute the aggregate
function for each group. The result is an array containing only the dimensions specified in the GROUP
BY clause and a single attribute per specified aggregate call. The syntax of the SELECT statement
for a group-by aggregate is:

SELECT function(attribute), function(attribute), ...
 INTO dst-array
 FROM src-array | array-expression
 WHERE where-expression
 GROUP BY dimension, dimension, ...;

For example, this query selects the maximum value from the attribute val of array m4x4 grouped by
dimension x:

AQL% SELECT max(attr1)
 FROM m4x4
 GROUP BY x;

This query outputs:

[(3),(7),(11),(15)]

which has schema:

<max:double NULL> [x=0:3,4,0]

This query selects the maximum values from attribute attr1 of array m4x4 grouped by dimension y:

AQL% SELECT max(attr1) FROM m4x4 GROUP BY y;

[(12),(13),(14),(15)]

Aggregates

46

The AFL aggregate operator takes dimension arguments to support group-by functionality. This query
selects the maximum values from the dimension y and attribute val from the array m4x4 using AFL:

AFL% aggregate(m4x4, max(attr1),y);

[(12),(13),(14),(15)]

7.3. Grid Aggregates
A grid aggregate selects nonoverlapping subarrays from an existing array and calculates an aggregate of
each subarray. For example, if you have a 4x4 array, you can create 4 nonoverlapping 2x2 regions and
calculate an aggregate for those regions. The array m4x4 would be divided into 2x2 grids as follows:

The syntax of a grid aggregate statement is:

AQL% SELECT function(attribute), function(attribute), ...
 INTO dst-array
 FROM src-array | array-expression
 WHERE where-expression
 REGRID dimension1-size, dimension2-size, ...;

For example, this statement finds the maximum and minimum values for each of the four grids in the
previous figure:

AQL% SELECT max(attr1), min(attr1)
 FROM m4x4 REGRID 2,2;

[
[(5,0),(7,2)],
[(13,8),(15,10)]
]

This output has schema:

<max:double NULL,min_1:double NULL> [x=0:1,2,0,y=0:1,2,0]

In AFL, you can use the regrid operator:

AFL% regrid(m4x4, 2,2, max(attr1),min(attr1));

[
[(5,0),(7,2)],

Aggregates

47

[(13,8),(15,10)]
]

7.4. Window Aggregates
Window aggregates allow you to specify groups with a moving window. The window is defined by a size
in each dimension. The window centroid starts at the first array element. The grouping starts at the first
element of the array and moves in stride-major order from the lowest to highest value in each dimension.
The syntax of a window aggregate statement is:

AQL% SELECT function(attribute), function(attribute), ...
 INTO dst-array
 FROM src-array | array-expression
 WHERE where-expression
 WINDOW dimension1-size, dimension2-size, ...;

For example, you can use a window to calculate a running sum for a 3x3 window on array m4x4.

In AQL, you would use this statement:

AQL% SELECT sum(attr1)
 FROM m4x4
 WINDOW 3,3;

Which returns values:

[
[(10),(18),(24),(18)],
[(27),(45),(54),(39)],
[(51),(81),(90),(63)],
[(42),(66),(72),(50)]
]

with schema:

Aggregates

48

<sum:double NULL> [x=0:3,4,0,y=0:3,4,0]

Since the window centroid starts at cell {0,0}, the region of the window that is outside the array boundary
is not counted in the aggregation. The window always returns the same dimensions as the input array. If
the window size is even, the query takes the preceding cells first. For example, a 1-dimensional window
size of 4 means that the window takes the values of two 2 preceding cells, the value of the current cell,
and the value of 1 cell following.

In AFL, you would use the window operator:

AFL% window(m4x4,3,3,sum(attr1));

[
[(10),(18),(24),(18)],
[(27),(45),(54),(39)],
[(51),(81),(90),(63)],
[(42),(66),(72),(50)]
]

49

Chapter 8. Updating Your Data
SciDB uses a "no overwrite" storage model. No overwrite means that data in an array can be updated
but previous values can be accessed as long as the array exists in the SciDB namespace. Every time you
update data in an array, SciDB creates a new array version, much like source control systems for software
development.

8.1. The UPDATE ... SET statement
To update data in an existing SciDB array, use the statement:

AQL% UPDATE array SET "attr = expr", ... [WHERE condition];

Consider the following 2-dimensional array, m4x4:

[("m4x4<val:double> [x=0:3,4,0,y=0:3,4,0]")]
[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

To change every value in val to its additive inverse:

AQL% UPDATE m4x4 SET val=-val;

[
[(0),(-1),(-2),(-3)],
[(-4),(-5),(-6),(-7)],
[(-8),(-9),(-10),(-11)],
[(-12),(-13),(-14),(-15)]
]

The WHERE clause lets you choose attributes based on conditions. For example, you can select just cells
with absolute values greater than 5 to set to their multiplicative inverse:

AQL% UPDATE m4x4 SET val=pow(val,-1) WHERE abs(val) > 5;

[
[(0),(-1),(-2),(-3)],
[(-4),(-5),(-0.166667),(-0.142857)],
[(-0.125),(-0.111111),(-0.1),(-0.0909091)],
[(-0.0833333),(-0.0769231),(-0.0714286),(-0.0666667)]
]

8.2. Array Versions
When an array is updated, a new array version is created. SciDB stores the array versions. For example,
in the previous section, SciDB stored every version of m4x4 created by the UPDATE command. You
can see these versions with versions:

AQL% SELECT * FROM versions(m4x4);

Updating Your Data

50

[(1,"2012-02-03 17:20:50"),
(2,"2012-02-06 14:51:20"),
(3,"2012-02-06 14:52:33")]

You can see the contents of any previous version of the array by using the version number:

AQL% SELECT * FROM scan(m4x4@1);
[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

Or the array timestamp:

AQL% SELECT * FROM scan(m4x4@datetime('2012-02-03 17:20:50'));
[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

You can use the array version name in any query. The unqualified name of the array always refers to the
most recent version as of the start of the query.

51

Chapter 9. Changing Array Schemas:
Transforming Your SciDB Array

9.1. Redimensioning an Array
A common use case for creating and loading SciDB arrays is using data from a data warehouse. This data
set may be very large and formatted as a csv file. You can use the csv2scidb utility to convert a csv file
to the 1-dimensional array format and load the file into a SciDB array. Once you have a 1-dimensional
SciDB array, you can redimension the array to convert the attributes to dimensions.

For example, suppose you have a csv file like this:

d,t,val
"device-0","trial-0",0.01
"device-1","trial-0",2.04
"device-2","trial-0",6.09
"device-3","trial-0",12.16
"device-4","trial-0",20.25
"device-0","trial-1",30.36
"device-1","trial-1",42.49
"device-2","trial-1",56.64
"device-3","trial-1",72.81
"device-4","trial-1",91
"device-0","trial-2",111.21
"device-1","trial-2",133.44
"device-2","trial-2",157.69
"device-3","trial-2",183.96
"device-4","trial-2",212.25
"device-0","trial-3",242.56
"device-1","trial-3",274.89
"device-2","trial-3",309.24
"device-3","trial-3",345.61
"device-4","trial-3",384
"device-0","trial-4",424.41
"device-1","trial-4",466.84
"device-2","trial-4",511.29
"device-3","trial-4",557.76
"device-4","trial-4",606.25

This data has three columns, two of which are stings and one which is a floating-point number. The column
headers are 'd','t',and 'val'. To load this data set, create a 1-dimensional SciDB array with three attributes
and load the data into it. For this example, the array is named expo. The dimension name is i, the dimension
size is 25, the chunk size is 5. The attributes are s, of type string, p of type string, and val of type double.

AQL% SELECT * FROM show(device_trial);

[("device_trial<d:string,t:string,
val:double> [i=1:25,5,0]")]

When you examine the data, notice that it could be expressed in a 2-dimensional format like this:

Changing Array Schemas:
Transforming Your SciDB Array

52

trial-0 trial-1 trial-2 trial-3 trial-4

device-0 0.01 30.36 111.21 242.56 424.41

device-1 2.04 42.49 133.44 274.89 466.84

device-2 6.09 56.64 157.69 309.24 511.29

device-3 12.16 72.81 183.96 345.61 557.76

device-4 20.25 91 212.25 384 606.25

SciDB allows you to redimension the data so that you can store it in this 2-dimensional format. First, create
an array with 2 dimensions:

AFL% create array two_dim
<val:double>
[d(string)=5,5,0, t(string)=5,5,0];

Each of the dimensions is of size 5, corresponding to a dimension in the 5-by-5 table. Now, you can use
the redimension_store operator to redimension the array device_trial into the array two_dim:

AFL% redimension_store(device_trial, two_dim);

[
[(0.01),(30.36),(111.21),(242.56),(424.41)],
[(2.04),(42.49),(133.44),(274.89),(466.84)],
[(6.09),(56.64),(157.69),(309.24),(511.29)],
[(12.16),(72.81),(183.96),(345.61),(557.76)],
[(20.25),(91),(212.25),(384),(606.25)]
]

Now the data is stored so that device and trial numbers are the dimensions of the array. This means that
you can use the dimension indices to select data from the array. For example, to select the second device
from the third trial, use the dimension indices:

AQL% SELECT val FROM two_dim WHERE s='device-2' and p='trial-3';

Redimensioning is a powerful tool when you want to do array aggregation along the coordinate axes of a
data set. For example, you can find the average value of a trial for each device. This would be equivalent
to finding the average of every row in the table:

AFL% create array Ds
<av:double NULL>[d(string)=5,5,0];
redimension_store(device_trial, Ds, true, avg(val) as av);

Or, you can find the average value of all the samples for a single trial. This would be equivalent to finding
the average of every column in the table:

AFL% create array Dp
<av:double NULL>[d(string)=5,5,0];
AFL% redimension_store(device_trial, Dp, true, avg(val) as av);

9.1.1. Redimensioning Arrays Containing Null Values
Nullable attributes cannot be transformed into dimensions. For example, consider the 1-dimensional array
redim_missing:

AFL% show(redim_missing);scan(redim_missing);

[("redim_missing<val1:string,val2:string NULL,val3:double>

Changing Array Schemas:
Transforming Your SciDB Array

53

[i=0:9,10,0]")]
[("0","0",1),
("0","1",0.540302),
("0","2",-0.416147),
("0","3",-0.989992),
("0","4",-0.653644),
("1","null",.7),
("1","1",0.841471),
("1","2",0.909297),
("1","3",0.14112),
("1","4",-0.756802)
]

Suppose you want to change the first two attributes into dimension indices and store the third attribute in
a 2-dimensional array. Create an array redim_target to store the redimension results:

AFL% CREATE ARRAY redim_target <val3:double>
 [val1(string)=2,2,0,val2(string)=5,5,0];

The array redim_missing contains a nullable attribute and a null-valued cell. You will need to use the
substitute operator to update redim_missing before redimensioning:

AFL% store(build(<exp1:string>[i=0:0,1,0],0),subst_array);
AFL% store(substitute(redim_missing,subst_array),redim_source);

This query outputs:

[
("0","0",1),
("0","1",0.540302),
("0","2",-0.416147),
("0","3",-0.989992),
("0","4",-0.653644),
("1","0",.7),
("1","1",0.841471),
("1","2",0.909297),
("1","3",0.14112),
("1","4",-0.756802)
]

You can now use redimension_store to turn redim_source into a 2-dimensional array:

AFL% redimension_store(redim_source,redim_target);

This query outputs:

[
[(1),(0.540302),(-0.416147),(-0.989992),(-0.653644)],
[(.7),(0.841471),(0.909297),(0.14112),(-0.756802)]
]

9.2. Array Transformations
Once you have created, loaded, and redimensioned a SciDB array, you may want to change some aspect
of that array. SciDB offers functionality to transform the elements of the array schema (attributes and
dimensions).

Changing Array Schemas:
Transforming Your SciDB Array

54

The array transformation operations produce a result array with a new schema. They do not modify the
source array. Array transformation operations have the signature:

AQL% SELECT * FROM operation(source_array,parameters)

This query outputs a SciDB array. To store that array result, use the INTO clause:

AQL% SELECT * INTO result_array FROM operation(source_array,parameters)

9.2.1. Rearranging Array Data
SciDB offers functionality to rearrange an array data:

• Reshaping an array by changing the dimension sizes. is performed with the reshape command.

• Unpacking a multidimensional array into a 1-dimensional array is performed with the unpack
command.

• Reversing the cells in a dimension is performed with the reverse command.

For example, you might want to reshape your array from an m-by-n array to a 2m-by-n/2 array. The

reshape command allows you to transform an array into another compatible schema. Consider a 4×4
array, m4x4, with contents and schema as follows:

AFL% show(m4x4);scan(m4x4);
[("m4x4<val:double> [i=0:3,4,0,j=0:3,4,0]")]
[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

As long as the two array schemas have the same number of cells, you can use reshape to transform one

schema into the other. A 4×4 array has 16 cells, so you can use any schema with 16 cells, such as 8×2,
as the new schema:

AQL% SELECT * INTO m8x2 FROM
reshape(m4x4,<val:double>
[i2=0:7,8,0,j2=0:1,2,0]);

[
[(0),(1)],
[(2),(3)],
[(4),(5)],
[(6),(7)],
[(8),(9)],
[(10),(11)],
[(12),(13)],
[(14),(15)]
]

A special case of reshaping is unpacking a multidimensional array to a 1-dimensional array. When you
unpack an array, the coordinates of the array cells are stored in the attributes to the result array. This is
particularly useful is you are planning to save your data to csv format.

Changing Array Schemas:
Transforming Your SciDB Array

55

The unpack command takes the second and higher dimensions of an array and transforms them into
attributes along the first dimension. The result array consists of the dimension values of the input array
with the attribute values from the corresponding cells appended. So, an attribute value val that was in
row 1, column 3 of a 2-dimensional array will be transformed into a cell with attribute values 1,3,val.
For example, a 2-dimensional, 1-attribute array will output a 1-dimensional, 3-attribute array as follows:

AQL% SELECT * FROM show(m3x3);

[("m3x3<val:double> [i=0:2,3,0,j=0:2,3,0]")]

AQL% SELECT * INTO m1 FROM unpack(m3x3,k);

[(0,0,0),
(0,1,1),
(0,2,2),
(1,0,3),
(1,1,4),
(1,2,5),
(2,0,6),
(2,1,7),
(2,2,8),
(0,0,0),
(0,0,0),
(0,0,0)]

AQL% SELECT * FROM show(m1);

[("m1<i:int64,
j:int64,
val:double>
[val1=0:15,4,0]")]

You can reverse the ordering of the data in each dimension of an array with the reverse command:

AFL% show(m3x3);scan(m3x3);

[("m3x3<val:double> [i=0:2,3,0,j=0:2,3,0]")]
[[(0),(1),(2)],[(3),(4),(5)],[(6),(7),(8)]]

AQL% SELECT * FROM reverse(m3x3);

[
[(8),(7),(6)],
[(5),(4),(3)],
[(2),(1),(0)]]

9.2.2. Reduce an Array
One common array task is selecting subsets of an array. SciDB allows you to reduce an array to contiguous
subsets of the array cells or noncontiguous subsets of the array's cells.

• A subarray is a contiguous block of cells from an array. This action is performed by the subarray
command.

• An array slice is a subset of the array defined by planes of the array. This action is performed by the
slice command.

Changing Array Schemas:
Transforming Your SciDB Array

56

• A dimension can be winnowed or thinned by selecting data at intervals along its entirety. This action
is performed by the thin command.

You can select part of an existing array into another array with the subarray command. For example,
you can select a 2-by-2 array of the last two values from each dimension of the array m4x4 with the
following subarray command:

AFL% show(m4x4);scan(m4x4);
[("m4x4<val:double>
[i=0:3,4,0,j=0:3,4,0]")]

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

AQL% SELECT * FROM subarray(m4x4,2,2,3,3);

[
[(10),(11)],
[(14),(15)]
]

If you have a 3-dimensional array, you might want to select just a flat 2-dimensional slice, as like the
cross-hatched section of this image:

For example, you can select the data in a horizontal slice in the middle of a 3-dimensional array m3x3x3
by using the slice command and specifying the value for dimension k:

AFL% show(m3x3x3);scan(m3x3x3);
[("m3x3x3<val:double>
[i=0:2,3,0,j=0:2,3,0,k=0:2,3,0]")]

[
[[(0),(1),(2)],
[(4),(5),(6)],
[(8),(9),(10)]
],

Changing Array Schemas:
Transforming Your SciDB Array

57

[[(7),(8),(9)],
[(11),(12),(13)],
[(15),(16),(17)]
],
[
[(14),(15),(16)],
[(18),(19),(20)],
[(22),(23),(24)]
]
]

AFL% slice(m3x3x3,k,1);

[
[(1),(5),(9)],
[(8),(12),(16)],
[(15),(19),(23)]
]

You may want to sample data uniformly across an entire dimension. The thin command selects elements
from given array dimensions at defined intervals. For example, you can select every other element from
every other row:

AFL% show(m4x4);scan(m4x4);
[("m4x4<val:double>
[i=0:3,4,0,j=0:3,4,0]")]

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

AQL% SELECT * FROM thin(m4x4,1,2,0,2);

[
[(4),(6)],
[(12),(14)]
]

9.3. Changing Array Attributes
An array's attributes contain the data stored in the array. You can transform attributes by

• Changing the name of the attribute.

• Adding an attribute.

• Changing the order of attributes in a cell.

• Deleting an attribute.

You can change the name of an attribute with the attribute_rename command:

AQL% SELECT * INTO m3x3_new FROM attribute_rename(m3x3,val,val2);

Changing Array Schemas:
Transforming Your SciDB Array

58

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

AQL% SELECT * FROM show(m3x3_new);

[("m3x3_new<val2:double> [i=0:2,3,0,j=0:2,3,0]")]

You can add attributes to an existing array with the apply command:

AQL% SELECT *
 INTO m3x3_new_attr
 FROM apply(m3x3,val2,val+10,val3,pow(val,2));

[
[(0,10,0),(1,11,1),(2,12,4)],
[(3,13,9),(4,14,16),(5,15,25)],
[(6,16,36),(7,17,49),(8,18,64)]
]

AQL% SELECT * FROM show(m3x3_new_attr);

[("m3x3_new_attr
<val:double,val2:double,val3:double>
[i=0:2,3,0,j=0:2,3,0]")]

You can select a subset of an array's attributes and return them in any order with the project command.

AQL% SELECT * FROM project(m3x3_new_attr,val3,val2);

[
[(0,10),(1,11),(4,12)],
[(9,13),(16,14),(25,15)],
[(36,16),(49,17),(64,18)]
]

9.4. Changing Array Dimensions

9.4.1. Changing Chunk Size
If you have created an array with a particular chunk size and then later find that you need a different chunk
size, you can use the repart command to change the chunk size. For example, suppose you have an
array that is 1000-by-1000 with chunk size 100 in each dimension:

AQL% SELECT * FROM show(chunks);

[("chunks<val1:double,val2:double>
[i=0:999,100,0,j=0:999,100,0]")]

You can repartition the chunks to be 10 along one dimension and 1000 in the other:

AQL% SELECT *
 INTO chunks_part

Changing Array Schemas:
Transforming Your SciDB Array

59

 FROM repart(chunks,<val1:double,val2:double>
 [i=0:999,10,0,j=0:999,1000,0]);

AQL% SELECT * FROM show(chunks_part);

[("chunks_part<val1:double,val2:double>
 [i=0:999,10,0,j=0:999,1000,0]")]

Repartitioning is also important if you want the change the chunk overlap to speed up nearest-neighbor
or window aggregate queries.

AQL% SELECT *
 INTO chunks_overlap
 FROM repart(chunks,<val1:double,val2:double>
 [i=0:999,100,10,j=0:999,100,10]);

9.4.2. Appending a Dimension
You may need to append dimensions to existing arrays, particularly when you want to do more complicated
transformations to your array. This example demonstrates how you can take slices from an existing array
and then reassemble them into a array with a different schema. Consider the following 2-dimensional array:

AFL% show(Dsp);scan(Dsp);

[("Dsp<val:double>
[d(string)=5,5,0,t(string)=5,5,0]")]

[
[(0.01),(30.36),(111.21),(242.56),(424.41)],
[(2.04),(42.49),(133.44),(274.89),(466.84)],
[(6.09),(56.64),(157.69),(309.24),(511.29)],
[(12.16),(72.81),(183.96),(345.61),(557.76)],
[(20.25),(91),(212.25),(384),(606.25)]
]

Suppose you want to examine a sample plane from each dimension of the array. You can use the slice
command to select array slices from array Dsp:

AQL% SELECT * INTO Dsp_slice_0 FROM slice(Dsp,s,'device-0');

AQL% SELECT * INTO Dsp_slice_1 FROM slice(Dsp,s,'device-1');

AQL% SELECT * INTO Dsp_slice_2 FROM slice(Dsp,s,'device-2');

The slices are 1-dimensional.

AQL% SELECT * FROM show(Dsp_slice_0);

[("Dsp_slice_0
<val:double>
[t(string)=5,5,0]")]

Concatenating these slices will create a 1-d array:

AQL% SELECT * INTO Dsp_1d FROM concat(Dsp_slice_0,Dsp_slice_2);
AQL% SELECT * FROM show(Dsp_1d);

Changing Array Schemas:
Transforming Your SciDB Array

60

[("Dsp_1d<val:double,
empty_indicator:indicator>
[t=0:9,5,0]")]

To concatenate these arrays into a 2-dimensional array, you need to add a dimension to both. The adddim
command will add a stub dimension to the array to increase its dimensionality.

AQL% SELECT * INTO Dsp_new
FROM concat(adddim(Dsp_slice_0, s),
adddim(Dsp_slice_2, d));
AQL% SELECT * FROM show(Dsp_new);

[("Dsp_new<val:double,
empty_indicator:indicator>
[d=0:1,1,0,t(string)=5,5,0]")]

61

Chapter 10. SciDB Aggregate
Reference

This chapter lists SciDB aggregates. Aggregates take as input a set of 1 or more values and return a scalar
value. SciDB aggregates have the syntax aggregate_call_N where an aggregate call is one of the following:

• aggregate_name(attribute_name)

• aggregate_name(expression)

Note: the aggregate_name(expression) syntax exists only in AQL.

Aggregate calls can occur in AQL and AFL statements as follows:

AQL syntaxes

SELECT aggregate_call_1[,aggregate_call_2,...,aggregate_call_N]
FROM array;

SELECT aggregate_call_1[,aggregate_call_2,...,aggregate_call_N]
FROM array GROUP BY dimension1[,dimension2];

SELECT aggregate_call_1[,aggregate_call_2,...,aggregate_call_N]
FROM array WHERE expression;

SELECT aggregate_call_1[,aggregate_call_2,...,aggregate_call_N]
FROM array REGRID dimension_1, dimension_2,...

SELECT aggregate_call_1[,aggregate_call_2,...,aggregate_call_N]
FROM array WINDOW window_dim_1, window_dim_2,...

AFL syntaxes

aggregate(array, aggregate_call_1
[, aggregate_call_2,... aggregate_call_N]
[,dimension_1, dimension_2,...])

window(array,grid_1,grid_2,...,grid_N,
aggregate_call_1 [,aggregate_call_2,...,aggregate_call_N]);

regrid(array,grid_1,grid_2,...,grid_N,
aggregate_call_1[,aggregate_call_2,...,aggregate_call_N]);

SciDB Aggregate Reference

62

Name
avg — Average (mean) aggregate

Synopsis
AQL% SELECT avg(attribute) FROM array;

AFL% aggregate(array,avg(attribute)[,dimension_1,dimension_2,...]

Summary
The avg aggregate takes a set of scalar values from an array attribute and returns the average of those
values.

The average of an empty set is NULL. avg of a set that contains only NULL values is also NULL. If the
set contains NULL and NOT NULL values, the avg result is an average of the NOT NULL values only.

Example

This example finds the average of every column of a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Find the average of every column of m3x3:

aggregate(m3x3,val,j)

This query returns:

[(3),(4),(5)]

SciDB Aggregate Reference

63

Name
count — Count nonempty elements aggregate

Synopsis
AQL% SELECT count(attribute) FROM array;

AFL% aggregate(array,count(attribute)[,dimension_1,dimension_2,...)]

Summary
The count aggregate counts nonempty elements of an array's attributes. count(attr1), only counts the cells
that have values that are NOT NULL. count(*), counts all of the cells present (both NULL and NOT
NULL).

Example

This example finds the number of nonempty cells in a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values 1 along the diagonal of m3x3 and leave the remaining cells empty:

store(build_sparse(m3x3,i=j,1),m3x3);

3. Find the number of nonempty cells in the array:

aggregate(m3x3,count(val));

This query returns:

[(6)]

SciDB Aggregate Reference

64

Name
max — Maximum value aggregate

Synopsis
AQL% SELECT max(attribute) FROM array;

AFL% aggregate(array,max(attribute)[,dimension_1,dimension_2,...]

Summary
The max aggregate takes a set of scalar values from an array attribute and returns the maximum value.

The maximum value of an empty set is NULL. max of a set that contains only NULL values is also NULL.
If the set contains NULL and NOT NULL values, the max aggregate considers only NOT NULL values.

Example

This example finds the maximum of every column of a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Find the maximum value of each column:

aggregate(m3x3,max(val),j);

This query returns:

[(6),(7),(8)]

SciDB Aggregate Reference

65

Name
min — Minimum value aggregate

Synopsis
AQL% SELECT min(attribute) FROM array;

AFL% aggregate(array,min(attribute)[,dimension_1,dimension_2,...]

Summary
The min aggregate takes a set of scalar values from an array attribute and returns the minimum value.

The minimum value of an empty set is NULL. min of a set that contains only NULL values is also NULL.
If the set contains NULL and NOT NULL values, the min aggregate considers only NOT NULL values.

Example

This example finds the minimum of every column of a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Find the minimum value of every column of m3x3:

aggregate(m3x3,min(val),j);

This query returns:

[(0),(1),(2)]

SciDB Aggregate Reference

66

Name
stdev — Standard deviation aggregate

Synopsis
AQL% SELECT stdev(attribute) FROM array;

AFL% aggregate(array,stdev(attribute)[,dimension_1,dimension_2,...]

Summary
The stdev aggregate takes a set of scalar values from an array attribute and returns the standard deviation
of those values.

The standard deviation of an empty set is NULL. The standard deviation of a set that contains only NULL
values is also NULL. If the set contains NULL and NOT NULL values, the stdev aggregate considers
only NOT NULL values.

Example

This example finds the standard deviation of every column of a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put random values between 1 and 9 into m3x3:

store(build(m3x3,random()%10/1.0),m3x3);

This query outputs:

[
[(2),(8),(0)],
[(5),(2),(6)],
[(2),(0),(2)]
]

3. Find the standard deviation of every column of m3x3:

aggregate(m3x3,stdev(val),j);

This query returns:

[(1.73205),(4.16333),(3.05505)]

SciDB Aggregate Reference

67

Name
sum — Sum aggregate

Synopsis
AQL% SELECT sum(attribute) FROM array;

AFL% aggregate(array,sum(attribute)[,dimension_1,dimension_2,...]

Summary
The sum aggregate calculates the cumulative sum of a group of values.

The sum of an empty set is 0. The standard deviation of a set that contains only NULL values is also 0. If
the set contains NULL and NOT NULL values, the result is the sum of all the NOT NULL values.

Example

This example finds the sum of every column of a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Find the sum of each column in m3x3:

aggregate(m3x3,sum(val),j)

This query returns:

[(9),(12),(15)]

SciDB Aggregate Reference

68

Name
var — Variance aggregate

Synopsis
AQL% SELECT var(attribute) FROM array;

AFL% aggregate(array,var(attribute)[,dimension_1,dimension_2,...]

Summary
The var aggregate returns the variance of a set of values.

The variance of an empty set is NULL. The variance of a set that contains only NULL values is also NULL.
If the set contains NULL and NOT NULL values, the var aggregate considers only NOT NULL values.

Example

This example finds the variance of every column of a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put random values between 1 and 9 into m3x3:

store(build(m3x3,random()%10/1.0),m3x3);

This query returns:

[
[(2),(8),(0)],
[(5),(2),(6)],
[(2),(0),(2)]
]

3. Find the variance for each column of m3x3:

aggregate(m3x3,var(val),j)

This query returns:

[(3),(17.3333),(9.33333)]

69

Chapter 11. SciDB Function Reference
This chapter lists the SciDB functions that are available for use in SciDB expressions. Expressions can
be used in the following types of syntaxes:

AQL Syntax:

SELECT expression FROM array;

SELECT expression1 FROM array WHERE expression2;

AFL Syntax:

operator(array,expression);

Function Name Description Category

% Remainder Arithmetic

* Multiplication Arithmetic

+ Addition Arithmetic

- Subtraction Arithmetic

/ Division Arithmetic

< Less than Logical

<= Less than or equal Logical

<> Not equal Logical

= Equals Logical

> Greater than Logical

>= Greater than or equal Logical

abs Absolute value Arithmetic

acos Inverse (arc) cosine in radians Transcendental

and Boolean AND Logical

append_offset Change time and date by a given amount Timestamp

apply_offset Change time and date by a given amount Timestamp

asin Inverse (arc) sine in radians Transcendental

atan Inverse (arc) tangent in radians Transcendental

ceil Round to next-highest integer Arithmetic

cos Cosine (input in radians) Transcendental

exp Exponential Transcendental

first Start of string Strings

floor Round to next-lowest integer Arithmetic

get_offset Returns time offset in seconds Timestamp

high String information Strings

iif Inline IF Logical

is_nan Returns TRUE is attribute value is NaN Logical

SciDB Function Reference

70

Function Name Description Category

is_null Returns TRUE is attribute value is null Logical

last End of string String

length Get string length String

log Base-e logarithm Transcendental

log10 Base-10 logarithm Transcendental

low String query String

instanceid Return instance id Troubleshooting

not Boolean NOT Logical

now Current array version Timestamp

or Boolean OR Logical

pow Raise to a power Arithmetic

random Random number Arithmetic

regex Search for regular expression Strings

sin Sine (input in radians) Transcendental

sqrt Square root Arithmetic

strchar Convert string to char Datatype conversion

strftime Convert string to datetime Datatype conversion

strip_offset disregards OFFSET and returns result as a
DATETIME

Timestamp

strlen Maximum string length Strings

substr Select substring Strings

tan Tangent (input in radians) Transcendental

togmt Switch to GMT from current time zone setting Timestamp

tznow Set time zone Timestamp

71

Chapter 12. SciDB Data Type
Reference

SciDB supports the following data types. You can access this list by using list('types') at the AFL
command line.

Data Type Default Value Description

bool false Boolean TRUE (1) or FALSE (0)

char \0 Single-character

datetime 1970-01-01 00:00:00 Date and time

datetimetz 1970-01-01 00:00:00 -00:00 Timezone

double 0 Double-precision decimal

float 0 Floating-point number

int8 0 Signed 8-bit integer

int16 0 Signed 16-bit integer

int32 0 Signed 32-bit integer

int64 0 Signed 64-bit integer

string "" Character string

uint8 0 Unsigned 8-bit integer

uint16 0 Unsigned 16-bit integer

uint32 0 Unsigned 32-bit integer

uint64 0 Unsigned 64-bit integer

72

Chapter 13. SciDB Operator Reference
This reference guide lists the operators available in SciDB. Operators take a SciDB array as input and
return as SciDB array as output. Operators can be used in several ways in SciDB queries.

• Operators can be used in AQL in FROM clauses.

• Operators can be used at the AFL command line or, in some cases, nested with other AFL operators.

Operator syntaxes generally follow this pattern:

operator(array|array_expression|anonymous_schema,arguments);

The first argument to an operator is generally an array that you have previously created and stored in your
current SciDB namespace. However, in many cases, the first argument may also be a SciDB operator. The
output of the nested operator serves as the input for the outer operator. This is called an array expression.

operator_1(operator_2(array,arguments_2),arguments_1);

Not all SciDB operators can take another operator as input. These exceptions are noted in the Synopsis
section of the operator's reference page. An operator argument that is specified as array can also be an
array expression. An operator argument that is specified as named_array can only be an array that you
have previously created and stored.

In addition, some operators can take an array schema as input instead of a named array or array expression.
This is called an anonymous schema.

SciDB Operator Reference

73

Name
adddim — Increase array dimensionality

Synopsis
SELECT * FROM adddim(array,new_dimension);

adddim(array,new_dimension);

Summary
The adddim operator adds a stub dimension to an array to increase its dimensionality. This is useful when
you want to concatenate two n-dimensional arrays into an (n+1)-dimensional array.

Example
This example creates a 2-dimensional array from 1-dimensional arrays.

1. Create a vector of zeros:

store(build(<val:double>[i=0:4,5,0],0),vector1);

2. Create a vector of ones:

store(build(<val:double>[j=0:4,5,0],1),vector2);

3. Concatenate these vectors without increasing their dimensionality. Note that the output is 1-
dimensional:

concat(vector1,vector2);

This query outputs:

[(0),(0),(0),(0),(0),(1),(1),(1),(1),(1)]

4. Use adddim to add a dimension to both vectors and then concatenate them. The result will have two
dimensions:

concat(adddim(vector1,x),adddim(vector2,y));

This query outputs:

[
[(0),(0),(0),(0),(0)],
[(1),(1),(1),(1),(1)]
]

<xi:include></xi:include>

SciDB Operator Reference

74

Name
analyze — Analyze load file for chunk size

Synopsis
SELECT * FROM analyze(array[, attribute1, attribute2, ...])

analyze(array[, attribute1, attribute2, ...]);

Summary
The analyze operator helps you decide how to set chunk size when you are creating a SciDB array. The
analyze() operator takes as input a source array and a list of attributes in that source array. The operator
computes the range of values (the maximum and minimum values), population count, and an estimate of
the number of distinct values in the attribute (or combination of attributes).

Example
This example runs analyze on a 2-attribute, 1-dimensional array. The example uses the file doc/user/
examples/num_data.scidb, shown here:

{0}[
(1.48306e+09,1),
(5.80814e+08,1),
(1.51079e+09,1),
(1.16154e+09,1),
(1.42655e+09,1),
(1.06341e+09,1),
(4.9253e+08,1),
(5.6065e+08,1),
(1.60886e+08,2),
(1.37844e+09,1),
(4.08495e+08,1),
(5.65393e+07,1),
(1.47646e+09,1),
(9.52609e+08,1),
(1.8548e+09,1),
(1.42396e+09,1),
(1.75107e+09,1),
(1.52007e+09,1),
(5.4882e+08,1),
(7.28928e+08,1)
]

1. Create an array analyze_array with 1 unbounded dimension:

AQL% CREATE ARRAY analyze_array
<val1:double,val2:double> [line=0:*,10,0];

2. Load the file num_data.scidb into analyze_array:

AQL% LOAD analyze_array
FROM 'path/doc/user/examples/num_data.scidb';

SciDB Operator Reference

75

3. Analyze the array for chunk sizes:

analyze(analyze_array);

This query returns:

[("val","5.65393e+07","1.8548e+09",20,20),("val2","1","2",2,20)]

The output array contains one attribute for every attribute in the input. Each attribute of the output
contains the attribute name, maximum value, minimum value, number of distinct elements, and total
number of elements.

SciDB Operator Reference

76

Name
apply — Apply expression to compute new attribute values

Synopsis
SELECT * INTO target_arrayFROM apply(array,new_attribute1,expression1
[,new_attribute2,expression2]);

store(apply(array,new_attribute1,expression1
[,new_attribute2,expression2]),target_array);

Summary
Use the apply operator to compute new values from attributes and indexes of input arrays. The value(s)
computed in the apply are appended to the attributes in the input array.

Example
This example computes new attributes for an existing array.

1. Create an array called distance with an attribute called miles:

CREATE ARRAY distance <miles:double> [i=0:9,10,0];

2. Store values of 100–1000 into the array:

store(build(distance,i+100.0),distance);

3. Apply the expression 1.6 * miles to distance and name the result kilometers:

apply(distance,kilometers,1.6*miles);

This query returns:

[(100,160),
(200,320),
(300,480),
(400,640),
(500,800),
(600,960),
(700,1120),
(800,1280),
(900,1440),
(1000,1600)]

SciDB Operator Reference

77

Name
attribute_rename — Rename an array attribute

Synopsis
SELECT * FROM attribute_rename(array,old_attribute1,new_attribute1
[, old_attribute2,new_attribute2]);

attribute_rename(array,old_attribute1,new_attribute1
[, old_attribute2,new_attribute2]);

Summary
Changes an attribute name in an array.

Example
1. Create an array called array1 with an attribute called val:

CREATE ARRAY array1 <val:double>[i];

2. Rename val to val2:

attribute_rename(array1,val,val2);

SciDB Operator Reference

78

Name
attributes — List array attributes

Synopsis
SELECT * FROM attributes(named_array);

attributes(named_array);

Summary
The attributes operator lists all the attributes of an array. The output returns the attribute name, the
attribute data type, and a Boolean flag representing whether or not the attribute can be null. The argument
named_array must be an array that was previously created and stored in the SciDB namespace.

SciDB Operator Reference

79

Name
avg — Average (mean) value

Synopsis
SELECT * FROM avg(array,attribute[,dimension1,dimension2,...]);

Summary
The avg operator finds the average value of an array attribute.

Note

The avg operator provides the same functionality as the avg aggregate, but has a different syntax.
See the avg aggregate reference page.

Example

This example finds the average value along the second dimension of a 4×4 matrix.

1. Create an array named avg_array:

CREATE ARRAY avg_array<val:double>[i=0:3,4,0,j=0:3,4,0];

2. Store values of 0–15 in avg_array:

store(build(avg_array,i*4+j),avg_array);

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Find the average value along the dimension j:

avg(avg_array,val,j);

This query outputs:

[(1.5),(5.5),(9.5),(13.5)]

SciDB Operator Reference

80

Name
bernoulli — Select random array cells

Synopsis
SELECT * FROM bernoulli(array,probability[, seed]);

bernoulli(array,probability[, seed]);

Summary
The bernoulli operator evaluates each cell by generating a random number and seeing if it lies in the range
(0, probability). If it does, the cell is included.

Example

This example select cells at random from a 4×4 matrix, and uses a seed value to select the same cells in
successive trials.

1. Create an array called bernoulli_array:

CREATE ARRAY bernoulli_array<val:double>[i=0:3,4,0,j=0:3,4,0];

2. Store values of 0–15 in bernoulli_array:

store(build(bernoulli_array,i*4+j),bernoulli_array);

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Select cells at random with a probability of .5 that a cell will be included. Each successive call to
bernoulli will return different results.

AFL% bernoulli(bernoulli_array,.5);

[
[(),(1),(),(3)],
[(4),(),(),()],
[(),(9),(),(11)],
[(12),(),(14),(15)]
]

bernoulli(bernoulli_array,.5);

[
[(),(1),(),(3)],
[(),(5),(6),()],
[(),(9),(),(11)],
[(),(13),(14),()]]

SciDB Operator Reference

81

4. To reproduce earlier results, use a seed value. Seeds must be an integer on the interval [0, INT_MAX].

bernoulli(bernoulli_array,.5,1);

[
[(),(),(2),()],
[(),(),(6),(7)],
[(8),(9),(),(11)],
[(12),(),(),()]
]

AFL% bernoulli(bernoulli_array,.5,1);

[
[(),(),(2),()],
[(),(),(6),(7)],
[(8),(9),(),(11)],
[(12),(),(),()]
]

SciDB Operator Reference

82

Name
between — Select array data from specified region

Synopsis
SELECT * FROM between(array,low_coord1[,low_coord2,...],
high_coord1[,high_coord2,...]);

between(array,low_coord1[,low_coord2,...],
high_coord1[,high_coord2,...]);

Summary
The between operator accepts an input array and a set of coordinates specifying a region within the array.
The number of coordinate pairs in the input must be equal to the number of dimensions in the array. The
output is an array of the same shape as input, where all cells outside of the given region are marked empty.

Example
This example selects 4 elements from a 16-element array.

1. Create a 4×4 array called between_array:

CREATE ARRAY between_array <val:double>[i=0:3,4,0,j=0:3,4,0];

2. store(build(between_array,i*4+j),between_array);

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Select all values from the last two rows and last two columns from between_array:

between(between_array,2,2,3,3);

This query outputs:

[
[(),(),(),()],
[(),(),(),()],
[(),(),(10),(11)],
[(),(),(14),(15)]
]

SciDB Operator Reference

83

Name
build — Assign values to array attribute

Synopsis
SELECT * INTO target_array
FROM build(named_array|anonymous_schema,expression);

store(build(named_array|anonymous_schema,expression),target_array;

Summary
The build operator proceeds through source_array, cell by cell, using the value of expression to
compute the value of each cell. The expression argument can be any combination of SciDB functions
applied to scalars or SciDB array attributes.

Example
Create an array of all ones:

build(<val:double>[i=0:3,4,0,j=0:3,4,0],1);

Create an identity matrix:

build(<val:double>[i=0:3,4,0,j=0:3,4,0],iif(i=j,1,0));

Build an array of monotonically increasing values:

build(<val:double>[i=0:3,4,0,j=0:3,4,0],i*4+j);

To store the result from a build operator, create an array and use the store operator with the build operator.

CREATE ARRAY identity_matrix <val:double>[i=0:3,4,0,j=0:3,4,0];
store(build(identity_matrix,iif(i=j,1,0)),identity_matrix);

Limitations
• The build operator can only take arrays with one attribute.

• The build operator can only take arrays with bounded dimensions.

SciDB Operator Reference

84

Name
build_sparse — Assign values to attributes of a sparse array

Synopsis
SELECT * INTO target_array
FROM build_sparse(named_array|anonymous_schema,
expression,boolean_expression);

store(build_sparse(named_array|anonymous_schema,
expression,boolean_expression));

Summary
The build_sparse operator takes as input an array or anonymous schema, an expression that defines a
scalar value, and an expression that defines a Boolean value. The argument named_array must be
an array that was previously created and stored in the SciDB namespace. The output of build_sparse
contains an array with the same schema as the input array or anonymous schema, the value specified
by expression wherever boolean_expression evaluates to true, and empty cells wherever
boolean_expression evaluates to false.

Example
Build a sparse-formatted identity matrix where the cells that would be occupied by 0 are empty:

build_sparse(<val:double>[i=0:3,4,0,j=0:3,4,0],1,i=j);

This query outputs:

[[{0,0}(1),{1,1}(1),{2,2}(1),{3,3}(1)]]

Limitations
• The build operator can only take arrays with one attribute.

• The build operator can only take arrays with bounded dimensions.

SciDB Operator Reference

85

Name
cancel — Cancel a query

Synopsis
cancel(query_id);

This operator is designed for internal use.

Summary
Cancel a currently running query by query id.

The query id can be obtained from the SciDB log or via the list() command. SciDB maintains query context
information for each completed and in-progress query in the server. If the user issues a "ctrl-C" or abort
from the client, the query is cancelled and its context is removed from the server.

SciDB Operator Reference

86

Name
cast — Change attribute and dimension names

Synopsis
SELECT * INTO target_array FROM cast(array, schema);

store(cast(array,schema),target_array);

Summary
The cast operator allows renaming an array or any of its attributes and dimensions. A single cast invocation
can be used to rename multiple items at once (one or more attribute names and/or one or more dimension
names). The input array and template arrays should have the same numbers and types of attributes and the
same numbers and types of dimension.

Example
This example changes the name of an array attribute and an array dimension. The arrays must be
compatible; that is, they must have the same number of dimensions and attributes, and the attributes and
dimensions must be of the same type.

1. Create an array called source with an attribute called val and a dimension called i:

CREATE ARRAY source <val:double>[i=0:9,10,0];

2. Use an anonymous schema to change the attribute name to num_val and the dimension name to x.
Store the result in an array called target:

store(cast(source, <num_val:double>[x=0:9,10,0]),target);

This is useful when you are joining arrays and want to avoid naming conflicts. For example, doing
a cross_join on source and target will create an array with two attributes, val and num_val, and two
dimensions, i and x:

store(cross_join(source,target),new_array);
show(new_array);

[("new_array<val:double,num_val:double> [i=0:9,10,0,x=0:9,10,0]")]

SciDB Operator Reference

87

Name
concat — Concatenate two arrays

Synopsis
SELECT * INTO target_array FROM concat(left_array,right_array);

store(concat(left_array,right_array),target_array);

Summary
The concat operator concatenates two arrays with the name number of dimensions. Concatenation is
performed by the left-most dimension. All other dimensions of the input arrays must match. The left-most
dimension of both arrays must have a fixed size (not unbounded) and same chunk size and overlap. Both
inputs must have the same attributes.

Example

This example concatenates a 4×3 array and a 1×3 array.

1. Create a 4×3 array left_array containing value 1 in all cells:

create array left_array <val:double>[i=0:3,1,0,j=0:3,1,0];
store(build(left_array,1),left_array);

2. Create a 1×3 array right_array containing value 0 in all cells:

create array right_array <val:double>[i=0:1,1,0,j=0:2,1,0];
store(build(right_array,0),right_array);

3. Concatentate left_array and right_array and store the result in concat_array:

store(concat(left_array,right_array),concat_array);

This produces an array concat_array with contents and schema as follows:

show(concat_array);scan(concat_array);

show(concat_array);scan(concat_array);
[("concat_array<val:double> [i=0:5,1,0,j=0:2,1,0]")]
[[(1)]];[[(1)]];[[(1)]];[[(1)]];[[(1)]];[[(1)]];
[[(1)]];[[(1)]];[[(1)]];[[(1)]];[[(1)]];[[(1)]];
[[(0)]];[[(0)]];[[(0)]];[[(0)]];[[(0)]];[[(0)]]

SciDB Operator Reference

88

Name
count — Count nonempty cells

Synopsis
SELECT * FROM count(array);

Summary
The count operator counts nonempty cells of the input array. When dimensions are provided they are used
to do a group-by and a count per resulting group is returned.

Note

The count operator provides the same functionality as the count aggregate. See the count
aggregate page.

Example

This example finds the element count value along the second dimension of a 4×4 array where some cells
are empty.

1. Create an array named source_array:

CREATE ARRAY source_array<val:double>[i=0:3,4,0,j=0:3,4,0];

2. Store values of 0–15 in source_array:

store(build(source_array,i*4+j),source_array);

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Use between to create some empty cells in source_array and store the result in count_array:

store(between(source_array,1,1,1,2),count_array);

[
[(),(),(),()],
[(),(5),(6),()],
[(),(),(),()],
[(),(),(),()]
]

4. Find the count of nonempty elements in count_array:

count(count_array);

This query outputs:

SciDB Operator Reference

89

[(2)]

5. Count the nonempty elements along the dimensions of count_array:

count(count_array,i);

[(0),(2),(0),(0)]

count(count_array,j);

[(0),(1),(1),(0)]

SciDB Operator Reference

90

Name
cross — Cross-product join

Synopsis
SELECT * INTO target_array FROM cross(left_array,right_array);

cross(left_array,right_array);

Summary
Calculates the full cross product join of two arrays, for example A (m-dimensional) and B (n-dimensional),
such that the result is an m+n dimensional-array in which each cell is computed as the concatenation of
the attribute lists from corresponding cells in arrays A and B. For example, consider a 2-dimensional array
A with dimensions i, j, and a 1-dimensional array B with dimension k. The cell at coordinate position {i,
j, k} of the output is computed as the concatenation of cells {i, j} of A with cell at coordinate {k} of B.

Example

This example returns the cross-join of a 3×3 array with a vector of length 2.

1. Create a 3×3 array m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

3. Create a vector of length 2 containing values 101 and 102:

store(build(<val:double>[i=0:1,1,0],i+101),vector);

4. Find the cross of m3x3 and vector:

store(cross(m3x3,vector),cross_array);

This query returns:

[
[[(0,101)],[(1,101)],[(2,101)]],
[[(3,101)],[(4,101)],[(5,101)]],
[[(6,101)],[(7,101)],[(8,101)]]];

[[[(0,102)],[(1,102)],[(2,102)]],
[[(3,102)],[(4,102)],[(5,102)]],
[[(6,102)],[(7,102)],[(8,102)]]]

The array cross_array has schema:

show(cross_array);

[("cross_array<val:double,val_2:double>
[i=0:2,3,0,j=0:2,3,0,i_2=0:1,1,0]")]

SciDB Operator Reference

91

Name
cross_join — Cross-product join with equality predicates

Synopsis
SELECT * INTO target_array
 FROM cross_join(left_array,right_array,left_dim1,right_dim1,...);

store(cross_join(left_array,right_array,left_dim1,right_dim1,...),
 target_array);

Summary
Calculates the cross product join of two arrays, say A (m-dimensional array) and B (n-dimensional array)
with equality predicates applied to pairs of dimensions, one from each input. Predicates can only be
computed along dimension pairs that are aligned in their type, size, and chunking.

Assume p such predicates in the cross_join, then the result is an m+n-p dimensional array in which each
cell is computed by concatenating the attributes as follows:

For a 2-dimensional array A with dimensions i, j, and a 1-dimensional array B with dimension k,
cross_join(A, B, j, k) results in a 2-dimensional array with coordinates {i, j} in which the cell at coordinate
position {i, j} of the output is computed as the concatenation of cells {i, j} of A with cell at coordinate
{k=j} of B.

If the join dimensions are different lengths, the cross-join will return the smaller dimension for the join
points.

Example

This example returns the cross-join of a 3×3 array with a vector of length 3.

1. Create an array called left_array:

CREATE ARRAY left_array<val:double>[i=0:2,3,0, j=0:2,3,0];

2. Store values of 0–8 into left array:

store(build(left_array,i*3+j),left_array);

3. Create an array called right_array:

CREATE ARRAY right_array<val:double>[k=0:5,3,0];

4. Store values of 101–106 into right_array:

store(build(right_array,k+101),right_array);

5. Perform a cross-join on left_array and right_array along dimension j of left_array:

cross_join(left_array,right_array,j,k);

This query outputs:

[

SciDB Operator Reference

92

[(0,101),(1,102),(2,103)],
[(3,101),(4,102),(5,103)],
[(6,101),(7,102),(8,103)]
]

SciDB Operator Reference

93

Name
deldim — Reduce array dimensionality

Synopsis
SELECT * FROM deldim(array);

deldim(array);

Summary
The deldim operator deletes the left-most dimension from the array. Deleted dimension must have size = 1.

SciDB Operator Reference

94

Name
dimensions — List array dimensions

Synopsis
SELECT * FROM dimensions(named_array);

dimensions(named_array);

Summary
The argument to the dimensions operator is the name of the array. It returns an array with the following
attributes: dimension-name, dimension start-index, dimension-length, chunk size, chunk overlap, low-
boundary-index, high-boundary-index, datatype. The argument named_array must be an array that was
previously created and stored in the SciDB namespace.

Example
This example creates an array with one unbounded dimension and one string-type dimension:

CREATE ARRAY unbound_string_dim
<val:double>[i=0:*,10,0,j(string)=10,10,0];
dimensions(unbound_string_dim);

This code outputs:

[("i",0,4611686018427387903,10,0,4611686018427387903,
-4611686018427387903,"int64"),
("j",0,10,10,0,4611686018427387903,-4611686018427387903,
"string")]

SciDB Operator Reference

95

Name
diskinfo — Internal debugging: Check disk capacity

Synopsis
diskinfo()

This operator is designed for internal use.

Summary
Get information about storage space. Returns an array with the following attributes:

• used

• available

• clusterSize

• nFreeClusters

• nSegments

SciDB Operator Reference

96

Name
echo — Print string

Synopsis
echo(string)

This operator is designed for internal use.

Summary
Accepts a string and returns a single-element array containing the string.

SciDB Operator Reference

97

Name
explain_logical, explain_physical — Show query plan

Synopsis
explain_logical(query: string, language: string)
explain_physical(query: string, language: string)

This operator is designed for internal use.

Summary
The operators explain_logical and explain_physical can be used to emit a human-readable plan string for
a particular query without running the query itself. SciDB first constructs a logical plan, optimizes it and
then translates it into a physical plan.

SciDB Operator Reference

98

Name
filter — Select subset of data by boolean expression

Synopsis
SELECT * FROM filter(array,expression);

filter(array,expression);

Summary
The filter operator filters out data in an array based on an expression over the attribute and dimension
values. The filter operator returns an array the with the same schema as the input array but marks all cells
in the input that do not satisfy the predicate expression 'empty'.

Example
This example filters an array to remove outlying values.

1. Create an array m4x4:

CREATE ARRAY m4x4<val:double>[i=0:3,4,0,j=0:3,4,0];

2. Put values between 0 and 15 into the nondiagonal elements of m4x4 and values greater than 100 into
the diagonal elements:

store(build(m4x4,iif(i=j,100+i,i*4+j),m4x4);

[
[(100),(1),(2),(3)],
[(4),(101),(6),(7)],
[(8),(9),(102),(11)],
[(12),(13),(14),(103)]
]

3. Filter all values of 100 or greater out of m4x4:

filter(m4x4,val<100);

This query outputs:

[
[(),(1),(2),(3)],
[(4),(),(6),(7)],
[(8),(9),(),(11)],
[(12),(13),(14),()]
]

SciDB Operator Reference

99

Name
help — Operator signature

Synopsis
SELECT * FROM help(operator_name);

help(operator_name);

Summary
Accepts an operator name and returns an array containing a human-readable signature for that operator.

Example
This example returns the signature of the multiply operator.

help('multiply');

SciDB Operator Reference

100

Name
input — Read a system file

Synopsis
SELECT * INTO target_array
 FROM input(named_array|anonymous_schema,filename[,instance]);

store(input(target_array|anonymous_schema,filename[,instance]),
 target_array);

Summary
Input works exactly the same way as load, except it does NOT store the data unless the INTO clause or the
AFL store operator is present. The instance_id argument allows you to select which SciDB instance you
want to input into. To see a list of SciDB instances running on your system, type scidb.py status
hostname at the Unix command-line.

Example
This example reads a csv file from the examples directory.

input(m4x4,'path/trunk/doc/user/examples/m4x4_missing.txt);

SciDB Operator Reference

101

Name
inverse — Matrix inverse

Synopsis
SELECT * FROM inverse(array);

inverse(array);

Summary
The inverse operator produces the matrix inverse of a square matrix. The input matrix must be invertible,
i.e., the determinant of the matrix must be nonzero.

Example

This example find the matrix inverse of a 3×3 matrix.

1. Create a matrix m3x3:

CREATE ARRAY <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 1 and 2 into m3x3 to represent a nonsingular matrix:

store(build(m3x3,iif(i=j,1,2)),m3x3);

This query outputs:

[
[(1),(2),(2)],
[(2),(1),(2)],
[(2),(2),(1)]
]

3. inverse(m3x3);

This query outputs:

[
[(-0.6),(0.4),(0.4)],
[(0.4),(-0.6),(0.4)],
[(0.4),(0.4),(-0.6)]
]

SciDB Operator Reference

102

Name
join — Join two arrays

Synopsis
SELECT * INTO target_array FROM join(left_array,right_array);

store(join(left_array,right_array),target_array);

Summary
Join combines the attributes of two input arrays at matching dimension values. The two arrays must have
the same dimension start coordinates, the same chunk size, and the same chunk overlap. The join result
has the same dimension names as the first input. If the the left-hand and right-hand arrays do not have the
same dimension size, join will return an array with the same dimensions as the smaller input array. If a
cell in either the left or right array is empty, the corresponding cell in the result is also empty.

Example
This example joins two arrays with different dimension lengths.

1. Create a 3×3 array left_array containing value 1 in all cells:

create array left_array <val:double>[i=0:2,3,0,j=0:2,3,0];
store(build(left_array,1),left_array);

2. Create a 3×6 array right_array containing value 0 in all cells:

create array right_array <val:double>[i=0:2,3,0,j=0:5,3,0];
store(build(right_array,0),right_array);

3. Join left_array and right_array:

store(join(left_array,right_array),result_array);

This produces an array result_array with contents and schema as follows:

show(result_array);scan(result_array);

[("result_array<val:double,val_2:double> [i=0:2,3,0,j=0:2,3,0]")]
[
[(1,0),(1,0),(1,0)],
[(1,0),(1,0),(1,0)],
[(1,0),(1,0),(1,0)]
]

SciDB Operator Reference

103

Name
list — List contents of SciDB namespace

Synopsis
SELECT * FROM list(element)

list(element)

Summary
The list operator allows you to get a list of elements in the current SciDB instance. The input is one of
the following strings:

aggregates Show all operators that take as input a SciDB array
and return a scalar.

arrays Show all functions. Each function will be listed with
its available dataypes and the library in functions
which it resides.

functions Show all libraries that are loaded in the current
SciDB instance.

instances Show all SciDB instances. Each instance will be
listed with its port, id number, and time-and-date
stamps for when it came online.

libraries Show all libraries that are loaded in the current
SciDB session.

operators Show all operators and the libraries in which they
reside.

types Show all the dataypes the SciDB supports.

queries Show all active queries. Each active query will have
an id, a time and date when it was queries initiated,
an error code, whether it generated any errors, and
a status (boolean flag where TRUE means that the
query is idle).

SciDB Operator Reference

104

Name
load_library — Load a plugin

Synopsis
load_library(library_name);

Summary
Load a SciDB plugin. The act of loading a plugin shared library first registers the library in the SciDB
system catalogs. Then it opens and examines the shared library to store its contents with SciDB's internal
extension management subsystem. Shared library module which are registered with the SciDB instance
will be loaded at system start time.

Example
load_library('librational')

SciDB Operator Reference

105

Name
lookup — Select array cells by dimension index

Synopsis
SELECT * FROM lookup(pattern_array,source_array);

lookup(pattern_array,source_array);

Summary
Lookup maps elements from the second array using the attributes of the first array as coordinates into the
second array. The result array has the same shape as first array and the same attributes as second array.

Example
This example selects a row from a 2-dimensional array.

1. Create an vector of ones called indices1:

store(build(<val1:double>[i=0:3,4,0],1),indices1);

[(1),(1),(1),(1)]

2. Create a vector with values between 0 and 3 called indices2:

store(build(<val1:double>[i=0:3,4,0],i),indices2);

[(0),(1),(2),(3)]

3. Join indices1 and indices2 into a two-attribute array called pattern_array:

store(join(indices1,indices2),pattern_array);

[(1,0),(1,1),(1,2),(1,3)]

4. Create a 2-dimensional array called source_array with values between 100 and 115:

store(build(<val:double>[i=0:3,4,0,j=0:3,4,0],i*4+j+100)
 ,source_array);

[
[(100),(101),(102),(103)],
[(104),(105),(106),(107)],
[(108),(109),(110),(111)],
[(112),(113),(114),(115)]
]

5. Use lookup to use the dimension coordinates array pattern_array to return the second row of
source_array:

lookup(pattern_array,source_array);

This query outputs:

SciDB Operator Reference

106

[(104),(105),(106),(107)]

SciDB Operator Reference

107

Name
max — Select maximum value

Synopsis
SELECT * FROM max(array,attribute[,dimension1,dimension2,...])

Summary
The max operator calculates the maximum of the specified attribute in the array. Result is an array with
single element containing maximum of specified attribute.

Note

The max operator provides the same functionality as the max aggregate. See the max aggregate
reference page for more information.

Example
This example find the maximum value of each row of a 2-dimensional array.

1. Create a 1-attribute, 2-dimensional array called m3x3:

CREATE ARRAY m3x3 <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Store values of 0–8 in m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Select the maximum value of each row of m3x3:

max(m3x3,val,i);

This query returns:

[(2),(5),(8)]

SciDB Operator Reference

108

Name
merge — Merge two arrays

Synopsis
SELECT * INTO target_array
 FROM merge(left_array,right_array);

store(merge(left_array,right_array),target_array);

Summary
Merge combines elements from the input array the following way: for each cell in the two inputs, if the
cell of first (left) array is not empty, then the attributes from that cell are selected and placed in the output.
If the cell in the first array is marked as empty, then the attributes of the corresponding cell in the second
array are taken. If the cell is empty in both input arrays, the output's cell is set to empty.

The two input arrays should have the same attribute list, number of dimensions, and dimension start index.
If the dimensions are not the same size, merge will return an output array the same size as the larger input
array.

Example
This example merges two sparse arrays.

1. Create a sparse array left_array and store value 1 in the first row:

CREATE ARRAY left_array <val:double>[i=0:2,3,0,j=0:5,3,0];
store(build_sparse(left_array,1,i=0),left_array);

This query outputs:

[[{0,0}(1),{0,1}(1),{0,2}(1)]];
[[{0,3}(1),{0,4}(1),{0,5}(1)]]

2. Create a sparse identity matrix called right_array

CREATE ARRAY right_array <val:double>[i=0:2,3,0,j=0:2,3,0];
store(build_sparse(right_array,1,i=j),right_array);

This query outputs:

[[{0,0}(1),{1,1}(1),{2,2}(1)]]

3. Merge left_array and right_array:

merge(left_array,right_array);

This query outputs:

[[{0,0}(1),{0,1}(1),{0,2}(1),{1,1}(1),{2,2}(1)]];
[[{0,3}(1),{0,4}(1),{0,5}(1)]]

SciDB Operator Reference

109

Name
min — Select minimum value

Synopsis
SELECT * FROM min(array,attribute[,dimension_1,dimension_2,...]);

Summary
The min operator selects the minimum value from an array attribute.

Note

The min operator provides the same functionality as the min aggregate. See the min aggregate
reference page for more information.

Example
This example finds the minimum value of each row of a 2-dimensional array.

1. Create a 1-attribute, 2-dimensional array called m3x3:

CREATE ARRAY m3x3 <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Store values of 0–8 in m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Select the minimum value of each row of m3x3:

max(m3x3,val,i);

This query returns:

[(0),(3),(6)]

SciDB Operator Reference

110

Name
multiply — Matrix multiplication

Synopsis
SELECT * FROM multiply(left_array,right_array);

multiply(left_array,right_array);

Summary
The multiply operator performs matrix multiplication on two input matrices and returns a result matrix.

Both inputs must be compatible for the multiply operation, and both must have a single attribute. To be
compatible, two matrices must have the same size of 'inner' dimension and same chunk size along that
dimension.

Example

This example multiplies a 3×2 array and a 2×3 array.

1. Create a 3×2 array lhs:

store(build(<val:double>[i=0:2,3,0,j=0:1,2,0],(i+1)*3+j),lhs);

This query outputs:

[
[(3),(4)],
[(6),(7)],
[(9),(10)]
]

2. Create a 2×3 array rhs:

store(build(<val:double>[i=0:1,2,0,j=0:2,3,0],(i+1)*3-j),rhs);

[
[(3),(2),(1)],
[(6),(5),(4)]
]

3. Multiply lhs and rhs.

multiply(lhs,rhs)

This query returns:

[
[(33),(26),(19)],
[(60),(47),(34)],
[(87),(68),(49)]
]

SciDB Operator Reference

111

Name
normalize — Divide each element of a 1-attribute vector by the square root of the sum of squares of the
elements

Synopsis
SELECT * FROM normalize(array);

normalize(array);

Summary
The normalize operator scales the values of a vector.

Example
Scale a vector whose values are between 1 and 10.

store(build(<val:double>[i=0:9,10,0],(i+1)),unscaled);

[(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)]

normalize(unscaled);

[(0.0509647),(0.101929),(0.152894),(0.203859),(0.254824),
 (0.305788),(0.356753),(0.407718),(0.458682),(0.509647)]

Limitations
The normalize operator can only take 1-dimensional, 1-attribute arrays.

SciDB Operator Reference

112

Name
project — Select array attributes

Synopsis
SELECT * INTO target_array
 FROM project(source_array, attribute1, attribute2,...);

store(project(source_array,attribute1,attribute2,...),target_array);

Summary
Project the input array on the specified attributes, in the specified order. Attributes that are not specified
are excluded from the output.

Example
This example takes an array with 3 attributes and returns an array with 2 attributes.

1. Create an array source_array:

store(build(<val1:double>[i=0:4,5,0],1),source_array);

This query outputs:

[(1),(1),(1),(1),(1)]

2. Create an attribute val2 and store val1 and val2 in the array:

store(apply(source_array,val2,i+1),two_attr);

[(1,1),(1,2),(1,3),(1,4),(1,5)]

3. Create an attribute called val3 and store val1, val2, and val3 in an array three_attr:

store(apply(two_attr,val3,sin(val2/1.0)),three_attr);

[(1,1,0.841471),(1,2,0.909297),(1,3,0.14112),
 (1,4,-0.756802),(1,5,-0.958924)]

4. Project attribute val3 and val2:

project(three_attr,val3,val2);

This query outputs:

[(0.841471,1),(0.909297,2),(0.14112,3),(-0.756802,4),(-0.958924,5)]

SciDB Operator Reference

113

Name
redimension — Change attributes to dimensions

Synopsis
AFL% redimension(source_array,target_array|anonymous_schema)

Summary
The redimension operator changes attributes to dimensions. The input and target arrays must have
compatible schemas, and both commands determine the list of transformations (attribute to dimension) by
matching names in the attribute and dimension lists of the two arrays.

Example
This example redimensions a 2-attribute, 1-dimensional array into a 2-dimensional, 1-attribute array. This
example uses the data set device_trial.txt, shown here:

s,p,val
"device-0","trial-0",0.01
"device-1","trial-0",2.04
"device-2","trial-0",6.09
"device-3","trial-0",12.16
"device-4","trial-0",20.25
"device-0","trial-1",30.36
"device-1","trial-1",42.49
"device-2","trial-1",56.64
"device-3","trial-1",72.81
"device-4","trial-1",91
"device-0","trial-2",111.21
"device-1","trial-2",133.44
"device-2","trial-2",157.69
"device-3","trial-2",183.96
"device-4","trial-2",212.25
"device-0","trial-3",242.56
"device-1","trial-3",274.89
"device-2","trial-3",309.24
"device-3","trial-3",345.61
"device-4","trial-3",384
"device-0","trial-4",424.41
"device-1","trial-4",466.84
"device-2","trial-4",511.29
"device-3","trial-4",557.76
"device-4","trial-4",606.25

1. Create an array named device_trial, with one cell for every row in device_trial.txt

CREATE ARRAY device_trial
<s:string,p:string,val:double>
[i=1:25,5,0]

2. Convert the file device_trial.txt to SciDB format. You will need to exit your iquery session or do this
in a new terminal window because the csv2scidb tool is run at the command line.

SciDB Operator Reference

114

csv2scidb -p SSN -s N < device_trial.txt > device_trial.scidb

3. Load the data device_trial.scidb into device_trial:

LOAD device_trial FROM '/doc/examples/device_trial.scidb';

4. Create an array with a noninteger dimension to be the redimension target:

CREATE ARRAY Dsp
<val:double>
[s(string)=5,5,0, p(string)=5,5,0];

5. Redimension device_trial into Dsp:

redimension(device_trial, Dsp);

This query returns:

[
[(0.01),(30.36),(111.21),(242.56),(424.41)],
[(2.04),(42.49),(133.44),(274.89),(466.84)],
[(6.09),(56.64),(157.69),(309.24),(511.29)],
[(12.16),(72.81),(183.96),(345.61),(557.76)],
[(20.25),(91),(212.25),(384),(606.25)]
]

SciDB Operator Reference

115

Name
redimension_store — Transform attributes to dimensions

Synopsis
AFL% redimension_store(source_array,named_target_array);

Summary
redimension_store converts array attributes to dimensions. The redimension_store operator updates the
target_array and creates additional mapping arrays if necessary. The argument named_target_array
must be an array that was previously created and stored in the SciDB namespace.

You can redimension the array and apply aggregates to duplicate cells.

The input and target arrays must have compatible schemas, and both commands determine the list of
transformations (attribute to dimension) by matching names in the attribute and dimension lists of the two
arrays.

Example
This example redimensions a 2-attribute, 1-dimensional array into a 2-dimensional, 1-attribute array. This
example uses the data set device_trial.txt, shown here:

s,p,val
"device-0","trial-0",0.01
"device-1","trial-0",2.04
"device-2","trial-0",6.09
"device-3","trial-0",12.16
"device-4","trial-0",20.25
"device-0","trial-1",30.36
"device-1","trial-1",42.49
"device-2","trial-1",56.64
"device-3","trial-1",72.81
"device-4","trial-1",91
"device-0","trial-2",111.21
"device-1","trial-2",133.44
"device-2","trial-2",157.69
"device-3","trial-2",183.96
"device-4","trial-2",212.25
"device-0","trial-3",242.56
"device-1","trial-3",274.89
"device-2","trial-3",309.24
"device-3","trial-3",345.61
"device-4","trial-3",384
"device-0","trial-4",424.41
"device-1","trial-4",466.84
"device-2","trial-4",511.29
"device-3","trial-4",557.76
"device-4","trial-4",606.25

1. Create an array named device_trial, with one cell for every row in device_trial.txt

SciDB Operator Reference

116

CREATE ARRAY device_trial
<s:string,p:string,val:double>
[i=1:25,5,0]

2. Convert the file device_trial.txt to SciDB format. You will need to exit your iquery session or do this
in a new terminal window because the csv2scidb tool is run at the command line.

csv2scidb -p SSN -s N < device_trial.txt > device_trial.scidb

3. Load the data device_trial.scidb into device_trial:

LOAD device_trial FROM '/doc/examples/device_trial.scidb';

4. Create an array with a noninteger dimension to be the redimension target:

CREATE ARRAY Dsp
<val:double>
[s(string)=5,5,0, p(string)=5,5,0];

5. Redimension device_trial and store the result in Dsp:

redimension_store(device_trial, Dsp);

This query returns:

[
[(0.01),(30.36),(111.21),(242.56),(424.41)],
[(2.04),(42.49),(133.44),(274.89),(466.84)],
[(6.09),(56.64),(157.69),(309.24),(511.29)],
[(12.16),(72.81),(183.96),(345.61),(557.76)],
[(20.25),(91),(212.25),(384),(606.25)]
]

SciDB Operator Reference

117

Name
reduce_distro — Reduce the distribution of a replicated array

Synopsis
AFL% reduce_distro(array, partitioning_schema: integer)

This operator is designed for internal use.

Summary
Internal only.

SciDB Operator Reference

118

Name
regrid — Select nonoverlapping subarrays

Synopsis
SELECT * FROM regrid(array,grid_1, grid_2[,...,grid_N],
 aggregate_call_1 [, aggregate_call_2,...,aggregate_call_N])

 regrid(array,grid_1, grid_2[,...,grid_N],
 aggregate_call_1 [, aggregate_call_2,...,aggregate_call_N])

Summary
The regrid operator partitions the cells in the input array into blocks, and for each block, apply a specific
aggregate operation over the value(s) of some attribute in each block.

regrid does not allow grids to span array chunks and requires the chunk size to be a multiple of the grid
size in each dimension.

Example

This example divides a 4×4 array into 4 equal partitions and calculates the average of each one. This
process is known as spatial averaging.

1. Create an array m4x4:

CREATE ARRAY m4x4 <val:double> [i=0:3,4,0,j=0:3,4,0];

2. store(build (m4x4, i*4+j), m4x4);

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Regrid m4x4 into four partitions and find the average of each partition.

regrid(m4x4, 2,2, sum(val));

This query outputs:

[[(2.5),(4.5)],[(10.5),(12.5)]]

SciDB Operator Reference

119

Name
remove — Remove an array from the SciDB namespace

Synopsis
AFL% remove(named_array);

Summary
The AFL remove operator works like the AQL DROP ARRAY statement. The argument named_array
must be an array that was previously created and stored in the SciDB namespace.

Example
Create an array named source and then remove it:

store(build(<val:double>[i=0:9,10,0],1),source);
remove(source);

SciDB Operator Reference

120

Name
rename — Change array name

Synopsis
SELECT * FROM rename(named_array,new_array);

rename(named_array,new_array);

Summary
The AFL rename operator work similarly to the AQL statement SELECT * INTO except that the old array
name can be reused immediately with the rename operator. The rename operator is akin to using the Unix
mv command, whereas SELECT * INTO is akin to the Unix cp command. The argument named_array
must be an array that was previously created and stored in the SciDB namespace.

Example
Create an array named source and rename source to target.

store(build(<val:double>[i=0:9,10,0],1),source);
rename(source,target);

SciDB Operator Reference

121

Name
repart — Change array chunk sizes

Synopsis
SELECT * FROM repart(array,target_array|anonymous_schema)

repart(array,target_array|anonymous_schema)

Summary
The repart operator changes the partitioning (chunking) of the array. The target array must have the same
attributes and dimensions, but chunk size may be different. Repart returns an array whose attributes are
taken from the input array, with the dimensions of the target.

Example

This example repartitions a 4×4 array with chunk size 1 into an array with chunk size 2.

1. Create an array with chunk size of 1 called source:

CREATE ARRAY source <val:double> [x=0:3,1,0,y=0:3,1,0];

2. Add values of 0–15 to source:

store(build(source,x*3+y),source);

3. Repartition the array into 2-by-2 chunks and store the result in an array called target:

store(repart(source, <values:double> [x=0:3,2,0, y=0:3,2,0]),target);

SciDB Operator Reference

122

Name
reshape — Change dimension sizes and array shape

Synopsis
SELECT * FROM reshape(array,array|anonymous_schema);

reshape(array,array|anonymous_schema);

Summary
The reshape operator changes the shape of an array to the rank and dimensions of a given array or a given
array schema. The the reshape command inputs must have the same number of total cells and cell attributes.

Example

This example reshapes a 4×4 array into a 2×8 array.

1. Create an array called m4x4:

CREATE ARRAY m4X4 <val:double>[i=0:3,4,0,j=0:3,4,0];

2. Store values of 0–15 in m4x4:

store(build(m4x4,i*4+j),m4x4);

This query outputs:

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Reshape m4x4 as 2-by-8:

reshape(m4x4,<val:double>[i=0:7,8,0,j=0:1,2,0]);

This query returns:

[
[(0),(1)],
[(2),(3)],
[(4),(5)],
[(6),(7)],
[(8),(9)],
[(10),(11)],
[(12),(13)],
[(14),(15)]
]

SciDB Operator Reference

123

Name
reverse — Reverse values in each array dimension

Synopsis
SELECT * INTO target_array
 FROM reverse(source_array);

store(reverse(source_array),target_array);

Summary
The reverse operator reverses all the values of each dimension in an array.

Example

This example reverses a 3×3 matrix.

1. Create a 3×3 array m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Reverse the values in m3x3:

reverse(m3x3);

This query outputs:

[
[(8),(7),(6)],
[(5),(4),(3)],
[(2),(1),(0)]
]

SciDB Operator Reference

124

Name
sample — Select random array chunks

Synopsis
SELECT * FROM sample(array,probability);

sample(array,probability);

Summary
The sample operator selects chunks from an array at random subject to a probability.

Example
This example selects random chunks from a 1-dimensional 3-chunk array.

1. Create a 1-dimensional array with dimension size of 6 and chunk size of 2:

CREATE ARRAY vector1<val:double>[i=0:5,2,0];

2. Put values of 0–5 into vector1:

store(build(vector1,i),vector1);

3. Sample chunks from the array with the probability of 1/3 that a chunk is included:

sample(vector1,.3);

SciDB Operator Reference

125

Name
save — Save array data to a file

Synopsis
AFL% save(array,filepath)

Summary
The AFL save operator works like the AQL SAVE clause. It saves the data from the cells of a SciDB
array into a file.

Example
This example creates a a matrix with two attributes and saves the cell values to a file.

1. Create a 2-dimensional array containing values 100–108:

store(build(<val:double>[i=0:2,3,0,j=0:2,3,0],i*3+j+100),array1);

2. Create a 2-dimensional array containing values 200–208:

store(build(<val:double>[i=0:2,3,0,j=0:2,3,0],i*3+j+200),array2);

3. Join array1 and array2 and store the output in an array storage_array:

store(join(array1,array2),storage_array);

This query outputs:

[
[(100,200),(101,201),(102,202)],
[(103,203),(104,204),(105,205)],
[(106,206),(107,207),(108,208)]
]

4. Save the contents of storage_array to a file.

save(storage_array,'/tmp/storage_array.txt');

The contents of storage_array.txt are:

{0,0}
[
[(100,200),(101,201),(102,202)],
[(103,203),(104,204),(105,205)],
[(106,206),(107,207),(108,208)]
]

SciDB Operator Reference

126

Name
scan — Display cell values

Synopsis
SELECT * FROM scan(named_array);

scan(named_array);

Summary
The scan operator displays to contents of each cell in an array. The output of the scan operator is an array
the same size as named_array. The argument named_array must be an array that was previously
created and stored in the SciDB namespace. You can use scan with a WHERE clause to view subsets of
large arrays. To supress display of empty cells, set the iquery -o sparse option.

Example
This example selects the second row from an array and shows the cell values in that row.

1. Create a 3×3 array m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

3. Use scan in an AQL FROM clause to display the middle row of m3x3:

SELECT val FROM scan(m3x3) WHERE i=1;

This query outputs:

[
[(),(),()],
[(3),(4),(5)],
[(),(),()]
]

4. You can supress the empty cells in the output by setting the iquery output to sparse:

quit;
iquery -o sparse
AQL% SELECT val FROM scan(m3x3) WHERE i=1;
{1,0}[[{1,0}(3),{1,1}(4),{1,2}(5)]]

SciDB Operator Reference

127

Name
setopt — Set/get configuration option value at runtime.

Synopsis
setopt(option-name [,new-option-value])

This operator is designed for internal use.

Summary
Set/get configuration option value at runtime. Option value should be specified as string. If new value is
not specified, then values of this configuration option at all instances are printed. If new value is specified,
then value of option is updated at all instances and result array contains old and new values of the option
at all instances.

SciDB Operator Reference

128

Name
show — Show array schema

Synopsis
SELECT * FROM show(named_array|anonymous_schema);

show(named_array|anonymous_schema);

Summary
The show operator returns an array's schema. This is useful if you are changing array dimensions with
nested statements. The argument named_array must be an array that was previously created and stored
in the SciDB namespace.

Example
Show the schema that results from several nested operations:

store(subarray(build(
 <val:double>[i=0:2,3,0,j=0:3,4,0,k=0:4,5,0],
 j+k),1,1,2,2,3,3),output_array);
show(output_array);

The schema of output_array is:

[("output_array<val:double> [i=0:1,3,0,j=0:2,4,0,k=0:1,5,0]")]

SciDB Operator Reference

129

Name
slice — Select subset of array along a plane

Synopsis
SELECT * FROM slice(array,dimension1,index1[dimension2,index2,...]);

slice(array,dimension1,index1[dimension2,index2,...]);

Summary
The slice operator takes a sample of cells along a specified plane of an array. The result is a slice of the
input array corresponding to the given coordinate value(s). Number of dimensions of the result array is
equal to the number of dimensions of input array minus number of specified dimension, and the coordinate
value should be a valid dimension value of the input array.

Example

This example selects the middle column from a 3×3 array.

1. Create a 3×3 array m3x3:

CREATE ARRAY m3x3<val:double>[i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Select the middle column of m3x3:

slice(m3x3,j,1);

This query outputs:

[(1),(4),(7)]

SciDB Operator Reference

130

Name
sort — Sort by attribute value

Synopsis
SELECT * FROM sort(array,attribute[,option]);

Summary
Sort a one-dimensional array by one or more attributes. The sort attributes are specified using a 1-based
attribute number. The default is ascending order. Set the option argument to desc to sort in descending
order.

Example
Sort a set of random values from lowest to highest:

sort(build(<val:double>[i=0:9,10,0],random()%10),val);

[(0),(1),(3),(4),(4),(5),(6),(7),(8),(9)]

SciDB Operator Reference

131

Name
stdev — Standard deviation

Synopsis
SELECT * FROM stdev(array,attribute,dimension1,dimension2,...)

Summary

Note

The stdev operator provides the same functionality as the stdev aggregate. See the stdev aggregate
reference page for more information.

Example
This example finds the standard deviation of each row of a 2-dimensional array.

1. Create a 1-attribute, 2-dimensional array called m3x3:

CREATE ARRAY m3x3 <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Store values of random values between 0 and 1 in m3x3:

store(build(m3x3,random()%9/10.0),m3x3);

[
[(0.5),(0.6),(0)],
[(0.8),(0.8),(0.4)],
[(0.1),(0.8),(0.6)]
]

3. Select the standard deviation of each row of m3x3:

var(m3x3,val,i);

This query returns:

[(0.321455),(0.23094),(0.360555)]

SciDB Operator Reference

132

Name
store — Store query output in a SciDB array

Synopsis
store(operator(operator_args),named_array);

Summary
store is a write operator, that is, one of the AFL operations that can update an array. Each execution of
store causes a new version of the array to be created. When an array is removed, so are all its versions.
The argument named_array must be an array that was previously created and stored in the SciDB
namespace.

store() can be used to save the resultant output array into an existing/new array. It can also be used to
duplicate an array (by using the name of the source array in the first parameter and target_array in the
second parameter).

Note

The AFL store operator provides the same functionality as the AQL SELECT * INTO ... FROM
... statement.

Example
Build and store a 2-dimensional, 1-attribute matrix of zeros:

store(build(<val_double>[i=0:2,3,0,j=0:2,3,0],0),zeros_array);

You can change the name of the array zeros_array to ones_array and the cell values to 1 with a store
statement:

store(build(zeros_array,1),ones_array);

Build and store a 2-dimensional, 1-attribute matrix of random numbers between 1 and 10:

store(build(random_array,random()%10),random_array);

[
[(6),(8),(3)],
[(6),(5),(1)],
[(6),(1),(3)]
]

You can update the array with a different set of random numbers by re-running the store statement:

store(build(random_array,random()%10),random_array);

[
[(4),(5),(6)],
[(5),(4),(6)],
[(8),(4),(2)]
]

SciDB Operator Reference

133

Name
subarray — Select contiguous area of cells

Synopsis
SELECT * FROM subarray(array,boundary_coord_1,boundary_coord_2,...)

subarray(array,boundary_coord_1,boundary_coord_2,...)

Summary
Subarray selects a block of cells from an input array. The result is an array whose shape is defined by the
boundary coordinates specified by the subarray arguments. A boundary coordinate pair must be specified
for every dimension of the input array.

Example

This example selects the values from the last two columns and the last two rows of a 4×4 matrix.

1. Create an array called m4x4:

CREATE ARRAY m4X4 <val:double>[i=0:3,4,0,j=0:3,4,0];

2. Store values of 0–15 in m4x4:

store(build(m4x4,i*4+j),m4x4);

This query outputs:

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Return an array containing the cells that were in both the last two columns and the last two rows
on m4x4:

subarray(m4x4,2,2,3,3);

This query returns:

[
[(10),(11)],
[(14),(15)]
]

SciDB Operator Reference

134

Name
substitute — Substitute new value for null values in an array

Synopsis
SELECT * FROM substitute(null_array,
substitute_array[, attribute_1,attribute_2,...]);

substitute(null_array,substitute_array[,attribute_1,attribute_2,...]);

Summary
Substitute null values in one array with non-null values from another array. The arrays must have the same
dimension start index.

The substitute operator will render attributes in null_array non-nullable. If an attribute has null values,
you can use this operator to substitute null values in the array and change the nullability of the attribute
in the schema.

Example
This example replaces all null values in an array with zero.

1. Create an array m4x4_null with a nullable attribute:

CREATE ARRAY m4x4_null <val:double null>[i=0:3,4,0,j=0:3,4,0];

2. Store null in the second row of m4x4_null and 100 in all the other cells:

store(build(m4x4_null,iif(i=1,null,100)),m4x4_null);

3. Create a single-cell array called substitute_array

CREATE ARRAY substitute_array <missing:double>[i=0:0,1,0];

4. Put value 0 into substitute_array:

store(build(substitute_array,0),substitute_array);

5. Use the substitute operator to replace the null-valued cells in m4x4_null with 0-valued cells:

substitute(m4x4_null,substitute_array);

This query outputs:

[
[(100),(100),(100),(100)],
[(0),(0),(0),(0)],
[(100),(100),(100),(100)],
[(100),(100),(100),(100)]
]

SciDB Operator Reference

135

Name
sum — Sum attribute values

Synopsis
SELECT * FROM sum(array,attribute[,dimension1,dimension2,...])

Summary

Note

The sum operator offers the same functionality as the sum aggregate. See sum aggregate reference
page for more information.

Example

This example sums the columns and rows of a 3×3 array.

1. Create a 1-attribute, 2-dimensional array called m3x3:

CREATE ARRAY m3x3 <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Store values of 0–8 in m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Sum the values of m3x3 along dimension j. This sums the columns of m3x3:

sum(m3x3,val,j);

This query outputs:

[(9),(12),(15)]

4. Sum the values of m3x3 along dimension i. This sums the rows of m3x3:

sum(m3x3,val,i);

This query outputs:

[(3),(12),(21)]

SciDB Operator Reference

136

Name
thin — Select data from an array dimension at fixed intervals

Synopsis
SELECT * FROM thin(array,start_1,step_1,start_2,step_2,...);

thin(array,start_1,step_1,start_2,step_2,...);

Summary
The thin operator selects regularly spaced elements of the array in each dimension. The selection criteria
are specified by the starting dimension value start_1 and the number of cells to skip using step_1
for each dimension of the input array. The dimension chunk size must be evenly divisible by the step size.

Example

This example selects values from a 6×6 array.

1. Create an array m6x6:

CREATE ARRAY m6x6 <val:double>[i=0:5,6,0,j=0:5,6,0];

2. Put values of 1–35 into m6x6:

store(build(m6x6,i*6+j),m6x6);

[
[(0),(1),(2),(3),(4),(5)],
[(6),(7),(8),(9),(10),(11)],
[(12),(13),(14),(15),(16),(17)],
[(18),(19),(20),(21),(22),(23)],
[(24),(25),(26),(27),(28),(29)],
[(30),(31),(32),(33),(34),(35)]
]

3. Select every other column of m6x6, starting at the first column;

thin(m6x6,0,1,0,2);

This query outputs:

[
[(0),(2),(4)],
[(6),(8),(10)],
[(12),(14),(16)],
[(18),(20),(22)],
[(24),(26),(28)],
[(30),(32),(34)]]

4. Select every other row from m6x6, starting at the first row;

thin(m6x6,0,1,0,2);

SciDB Operator Reference

137

This query outputs:

[
[(0),(1),(2),(3),(4),(5)],
[(12),(13),(14),(15),(16),(17)],
[(24),(25),(26),(27),(28),(29)]
]

5. Select every other value from m6x6, starting at the second column;

thin(m6x6,1,2,1,2);

This query outputs:

[
[(7),(9),(11)],
[(19),(21),(23)],
[(31),(33),(35)]
]

SciDB Operator Reference

138

Name
transpose — Matrix transpose

Synopsis
SELECT * FROM transpose(array)

transpose(array)

Summary
The transpose operator accepts an array which may contain any number of attributes and dimensions.
Attributes may be of any type. If the array contains dimensions d1, d2, d3, ..., dn the result contains the
dimensions in reverse order dn, ..., d3, d2, d1.

Example
This example transposes a 3×3 matrix.

1. Create a 1-attribute, 2-dimensional array called m3x3:

CREATE ARRAY m3x3 <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Store values of 0–8 in m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Transpose m3x3:

transpose(m3x3);

This query outputs:

[
[(0),(3),(6)],
[(1),(4),(7)],
[(2),(5),(8)]]

SciDB Operator Reference

139

Name
unload_library — Unload a plugin

Synopsis
unload_library('library_name')

Summary
Unload a plug-in from the current SciDB instance.

Note

The unload_library operator provides the same functionality as the AQL UNLOAD LIBRARY
'library_name' statement.

Example
This example loads and unloads the example plug-in librational.so.

load_library('librational')
unload_library ('librational')

The file extension is not included in the library name.

SciDB Operator Reference

140

Name
unpack — Transform multidimensional array to single dimension

Synopsis
SELECT * INTO vector FROM unpack(array,attribute_name)

store(unpack(array,attribute_name),vector)

Summary
The unpack operator unpacks a multidimensional array into a single-dimensional array creating new
attributes to represent source array dimension values. The result array has a single zero-based dimension
and arguments combining attributes of the input array. The name for the new single dimension is passed
to the operator as the second argument.

Example
This example takes 2-dimensional, 1-attribute array and outputs a 1-dimensional, 3-attribute array.

1. Create a 1-attribute, 2-dimensional array called m3x3:

CREATE ARRAY m3x3 <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Store values of 0–8 in m3x3:

store(build(m3x3,i*3+j),m3x3);

[
[(0),(1),(2)],
[(3),(4),(5)],
[(6),(7),(8)]
]

3. Create a new attribute called val2 containing values 100–108 and store the resulting array as
m3x3_2attr:

store(apply(m3x3,val2,val+100),m3x3_2attr);

This query outputs:

[
[(0,100),(1,101),(2,102)],
[(3,103),(4,104),(5,105)],
[(6,106),(7,107),(8,108)]
]

4. Unpack m3x3_2attr into a 1-dimensional array.

This query outputs:

[
(0,0,0,100),

SciDB Operator Reference

141

(0,1,1,101),
(0,2,2,102),
(1,0,3,103),
(1,1,4,104),
(1,2,5,105),
(2,0,6,106),
(2,1,7,107),
(2,2,8,108)
]

The first two values in each cell are the dimensional indices, and the second two are the attribute
values.

SciDB Operator Reference

142

Name
var — Variance

Synopsis
SELECT * FROM var(array,attribute[,dimension1,dimension2,...])

Summary
The var operator returns the variance of a set of values taken from an array attribute.

Note

The var operator provides the same functionality as the var aggregate. See the var aggregate
reference page for more information.

Example
This example finds the variance of each row of a 2-dimensional array.

1. Create a 1-attribute, 2-dimensional array called m3x3:

CREATE ARRAY m3x3 <val:double>[i=0:2,3,0,j=0:2,3,0];

2. Store values of random values between 0 and 1 in m3x3:

store(build(m3x3,random()%9/10.0),m3x3);

[
[(0.5),(0.6),(0)],
[(0.8),(0.8),(0.4)],
[(0.1),(0.8),(0.6)]
]

3. Select the variance of each row of m3x3:

var(m3x3,val,i);

This query returns:

[(0.103333),(0.0533333),(0.13)]

SciDB Operator Reference

143

Name
versions — Show array versions

Synopsis
SELECT * FROM versions(named_array);

versions(named_array);

Summary
The versions operator lists all versions of an array in the SciDB namespace. The output of the versions
command is a list of versions, each of which has a version ID and a datestamp which is the date and time
of creation of that version. The argument named_array must be an array that was previously created
and stored in the SciDB namespace.

Example
This example creates an array, updates it twice, and then returns the first version of the array.

1. Create an array called m1:

CREATE ARRAY m1 <val:double>[i=0:9,10,0];

2. Store 1 in each cell of m1:

store(build(m1,1),m1);

3. Update every cell to have value 100:

store(build(m1,100),m1);

4. Use the versions command to see the two versions of m1 that you created:

versions(m1);

5. Use the scan operator and the '@1' array name extension to display the first version of m1.

scan(m1@1);

This query outputs:

[(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)]

SciDB Operator Reference

144

Name
window — Compute aggregates over moving window

Synopsis
SELECT * FROM window(array,grid_1,grid_2,...,grid_N,
aggregate_call_1[,aggrgegate_call_2, ...]

Summary
Compute one or more aggregates of any of an array's attributes over a moving window.

Note

The AFL window operator provides the same functionality as the AQL SELECT ... FROM ...
WINDOW statement. See the User's Guide chapter on Aggregates for more information.

Example
This example calculates a running sum for a 3×3 window on a 4×4 array.

1. Create an array called m4x4:

CREATE ARRAY m4X4 <val:double>[i=0:3,4,0,j=0:3,4,0];

2. Store values of 0–15 in m4x4:

store(build(m4x4,i*4+j),m4x4);

This query outputs:

[
[(0),(1),(2),(3)],
[(4),(5),(6),(7)],
[(8),(9),(10),(11)],
[(12),(13),(14),(15)]
]

3. Return the maximum and minimum values on a moving 3×3 window on m4x4:

window(m4x4,3,3,max(val),min(val));

This query returns:

[
[(5,0),(6,0),(7,1),(7,2)],
[(9,0),(10,0),(11,1),(11,2)],
[(13,4),(14,4),(15,5),(15,6)],
[(13,8),(14,8),(15,9),(15,10)]
]

SciDB Operator Reference

145

Name
xgrid — Expand single array element to grid

Synopsis
SELECT * FROM xgrid(array,scale_1[,scale_2,..., scale_N])

xgrid(array,scale_1[,scale_2,..., scale_N])

Summary
The xgrid operators scales an input array by repeating cells of the original array specified number of times
in a contiguous subregion. xgrid takes one scale argument for every dimension in array. The output
array has the same number of dimensions and attributes as the input array.

Example

This example scales each cell of a 2-dimensional array into a 2×2 subarray.

1. Create an array called m3x3:

CREATE ARRAY m3x3 <val:double> [i=0:2,3,0,j=0:2,3,0];

2. Put values of 0–8 into m3x3:

store(build(m3x3,i*3+j),m3x3);

3. Expand each cell of m3x3 into a 2×2 subgrid. Store the resulting array as m6x6:

store(xgrid(m3x3,2,2),m6x6);

This query returns:

[
[(0),(0),(1),(1),(2),(2)],
[(0),(0),(1),(1),(2),(2)],
[(3),(3),(4),(4),(5),(5)],
[(3),(3),(4),(4),(5),(5)],
[(6),(6),(7),(7),(8),(8)],
[(6),(6),(7),(7),(8),(8)]
]

