SciDB User's Guide

SciDB User's Guide

Version 12.3
Copyright © 2008-2012 SciDB, Inc.

SciDB is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License, version 3, as published by
the Free Software Foundation.

SciDB is distributed "AS-1S* AND WITHOUT ANY WARRANTY OF ANY KIND, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESSFOR A PARTICULAR PURPOSE. Seethe GNU General Public Licenseat http://
www.gnu.org/licenses/ for the complete license terms.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Table of Contents

1. INtroducCtion t0 SCIDB ceuiiiiiiii ettt ettt 1
1.1, Array Data MOELoeniii e 1
1.2. BASIC ATCHITECIUIE ...ttt e e e e 2

1.2.1. Chunking and SCal@bilityccoeuuiiiiiiiiiei e 2
1.2.2. CHUNK OVEITAD ...ttt 3
1.3. SCIDB AITAY SEOMAOE ... eeeeetneeeeii ettt e ettt ettt e e e et et e et et eeae e e enaa e eennes 4
1.3.1. INSEANCE SEOFBGEcvvneieieiete ettt 4
1.3.2. SCIDB SysStem Cal@lOgueeeeriieiiiiie ettt e e et 5
1.3.3. TransaCtion MOE]cooouiniiiii e e 5
1.4, ATTY PIOCESSING ... eeeetneteiti ettt e e et e e et e e ettt e e et et e e e et e e e eetan e e e eebeneeeentanaaeenes 5
O N 4 = VA = o 0= L PP 5
1.4.2. Query Building BIOCKSiiiiiiiiiii e 6
1.4.3. Pipelined Array PrOCESSINGccuuuieiiitnieeiiti ettt e et e eeeat e e eeat e eentaaaeeees 6
1.5, Clients aNd CONNECTOIS ... ceeitieeieiti e ettt e ettt e e ettt e e ettt e e e e et e e e eeb e e eert e e eentaaaeees 6
1.6. Conventions Used in thiS DOCUMENToeiiiitiiiiiiiiie e 7

2. SciDB Installation and AMINISIIELONuuuieierii e 8

2.1, INSAING SCIDB ... ieeiiieieit et 8
2.1.1. Preparing the Platformcoooiiiiiii e 8
2.1.2. Install SCiDB from binary packagecoeevuieiiiiiiieeiie e 11

2.2. Configuring SCIDBciiiiiii e 13
2.2.1. SCIDB Configuration Fileooooiiiiiiiiiiiiec e 13
2.2.2. Cluster Configuration EXamMpPleuiiiiiiiiiiiiii e 13
2.2.3. LOgging CONFIQUIBLIONcuuuneieitieeeiiii ettt et e e 15

2.3. Initializing and Starting SCIDBccccuuuiiiiiiiiee e 16
2.3.1. The SCIaD.PY SCHPL ... eeeeeii ettt ettt et r e e e eeees 16

2.4.Upgrading SCIDBuuiiiiiiiieii et 17
240 UBUNEU ettt 17
2.4.2. Red Hat and FEAOIAc.vuieiiiii et 17
2.4.3. AAAITIONEL SEEPSeeeeeiii e 18

3. Getting Started with SCIDB DEVEIOPMENTvuiiiiiiii e 19
3.1 USINg the iqUEry CIIENTcouuieeii e et e e e e e e e 19
3.2, 1QUENY CONFIQUIBLION ...ttt ettt e et e e e et eeeeriaeeees 21
3.3, EXAMPIE IQUENY SESSION ...ttt ettt ettt e e e e e e e 21

4. Creating and ReMOVING SCIDB AITAYScccuuuiieiiiiii et 25
4.0, CrEatE @N ATTAY ...eeeieiiie ittt ettt et et e 25
A.2. ATray ATIITDULES ...ttt e e et e eee 27

4.2.1. NULL and Default Attribute VEIUESooiiiiiiiiiiicc e 27
4.2.2. Codes fOr MiSSING Dalaccevuiieiiiiiieee it 28

4.3, ATTAY DIMENSIONSiiitiee ettt ettt e et ettt e e et e e et et e e e e aaa s 28
4.3.1. ChUNK OVEITED ..ot e e 29
4.3.2. UNbounded DIMENSIONScccvuuueiieiiieieeii et e et e e e e e e eneens 29
4.3.3. Noninteger Dimensions and Mapping AITaYSceeeueniereriiieeeeiiaeeeeiieeeeneens 29

4.4. Changing ATTay NAITIEScoouuiiiiiii ettt eeaa s 30

A5, DAADESE DESIGN .vueiiiii et 30
4.5.1. Selecting Dimensions and AHHBULESccouviiiiiiiii e 30
4.5.2. Chunk Size SEECHIONuueiiiiie et 31

I oo [oo B D - = NPT PR 32
5.1. SIMPle Data LOBOINGcevvueiiiiiei et 32
5.2. Data With SPeCial ValUESiiiiiiiiiiii e 34
5.3. Sparse LOad FOMMELoiiiiiieeiii ettt 34

5.3.1. Sparse Loatd ChUNKScocuuiiiiii et 35

SciDB User's Guide

5.4, Parallel LOBOcouniiiiiiii et 36

5.5. Saving Data from a SciDB Array to aFile.......ccocovviiiiiiii e, 36

O = S Tol AN g VA I S 38
6.1. Selecting Data FrOM @N ATTAYcovuiiiieeiiiee e e e e e e e e e e e e e et e e e eaanas 38
6.1.1. The SELECT SEAEMENTuieiiiiiieeeiiiiee et e e e et e e e et e e e eetis s e e eeaenaeeeerinaeaees 38

LS N = VAN o] P 39

8.3, AlIBSES .. ittt 41

6.4. NEStEA SUDQUETTESuuiiiiieiii e et e e e e e et e e e e e e et e e et e eeanaees 41

6.5, Data SAMPIING ...vuiiiiieiie e 41

e [0 =0 = (< TP 43
7.1, Grand AQOrEOAEES . ..uuiiii i eiii e e et e e e 44

T7.2. GrOUP-BY AQOIOQALESvuiiiiiiie ittt 45

PR € [0 I Ao o (= 0 (- P 46

7.4, WiNAOW AQOrEOAEES . ..uuiiii e ee et e e e e e e e e e et e et e et e et eaanaas 47
STl = 1 g o I Ao 10 G - - PN 49
8.1. The UPDATE ... SET StBEMENEuiiiiiiieiiiiii et e et e e et s e e eeis s e e eetn e e e eeaineeeeees 49

A N = VA4 = £ Lo 0 S 49

9. Changing Array Schemas: Transforming Your SCIDB AITaycocouuveviiiiiiiiieiieecieeeeeeies 51
9.1. REAIMENSIONING 8N ATTAY ..eevuiiiiieiii et e et e e e e e e et e e et e e et e e st e e et eean e eateeeaneeenas 51
9.1.1. Redimensioning Arrays Containing Null Valuescocccoiviiiiiiiiiiecineciies 52

9.2. Array TranSfOrmMaionsuuiiiuniiiii eaes 53
9.2.1. Rearranging Array Dalalcccuuiiiiiiiiiii e 54

0.2.2. REAUCE 81N ATTAY 1.vuiiiiiieii et e e et e e e e e e e e e e e e et e e et e e aanees 55

9.3. Changing Array AttHBULEScooniiii i e 57

9.4. Changing Array DIMENSIONScouuiiiieeiii e ee e e e e e e e e e e e e e eaaas 58
9.4.1. Changing ChUNK SIZEiiiiiiiiiie e e 58

9.4.2. Appending @ DIMENSIONoiiuueiiieii e e ee e e e e e e e e e e e eeas 59

10. SCIDB AQQregate REFEIENCEcivu it e e e e e e e e e e e et e e e eeas 61
= LY o Tt 62
(0011 | PP 63

11T G PPN 64

0T o T PP 65

LS 01, U 66

L= 0 PP 67

Lz PPN 68

11. SCIDB FUNCHON REFEIEINCE . .oevvviieieiii ettt e e e e e er e 69
12. SCIDB Data TYPE REFEIENCEiviiieii e e e e e e e e aeas 71
13. SCIDB Operator REFEIENCE .. .ovui i e e e e e e e e eees 72
=0 [0 [0 [0 USSP 73
g 7 74

=10 o Y P 76

L] 01U (Y = 7= 0 1 T PN 77

11] o 0| (=== 78

= Y o T 79
o]0 T | PP 80
DEIWEEIN .o e e aan 82

o0 o PSP 83

o TUTT o T o= £ < 84

o7 o= PP 85

07 L PP 86

(00] o7 | PP PRPPR 87
(o011 | PP 88
(00015 PP 90

(o o1 o 11 1 91

SciDB User's Guide

e OIM e 93
(o111 15T 0] 1P 94
(0TS 1]) T PPN 95
= 0 TP 96
EXPlAIN _[OQICEL .. .cvuiiii e 97
L= N 98
=T o TS 99
3]0 L | PP PPRPRPR 100
1012 £ PPN 101
o1 PP 102
T PR 103
L= o I 11 =1 104
oo (0 o O 105
17 G PP 107
LT 0 PP 108
011 P PP 109
010 T P 110
L9104 007= 7P 111
0] 0= AP 112
(=0 1011015 T o) o PP 113
=0 =i To A (o] (TP 115
=0 [0S J o 111 o 1 PPN 117
1= 0o 118
1500 P 119
150210 01 PP P 120
1= 0= o PRSPPI 121
1= 7= 1SN 122
(SN £ PP PP RPN 123
5= 1010 124
LS Y PP PP 125
LS o | 1P 126
S (0] o PP PPPPRPP 127
LS 010 PPN 128
S o PP 129
S 0] PP 130
LS 0[SO 131
(0] = PP PP 132
LS o 133
LS 0 1 (= 134
SUITY ottt e 135
L1211 o PP 136
LU= 10 PP 138
0 a1 Koo [o] Y/ 139
0] 0 o 140
1SS PP 142
A= Lo 143
177110 (o 144
(0 o I 145

Chapter 1. Introduction to SciDB

SciDB is an al-in-one data management and advanced analytics platform. It provides massively scalable
complex analytics inside a next-generation database with data versioning to support the needs of
commercial and scientific applications. SciDB is an open source software platform that runs on a grid of
commodity hardware or in acloud.

Paradigm4 Enterprise SciDB with Paradigmd Extensions is an enterprise distribution of SciDB with
additional linear algebra operations, high availability options, and client connector features.

Unlike conventional relational databases designed around a row or column-oriented table data model,
SciDB is an array database. The native array data model provides compact data storage and high
performance operations on ordered data such as spatial (location-based) data, temporal (time series) data,
and matrix-based data for linear algebra operations.

This document is a User's Guide, written for scientists and developers in various application areas who
want to use SciDB as their scalable data management and analytic platform.

This chapter introduces the key technical concepts in SciDB—its array data model, basic system
architecture including distributed data management, salient features of the local storage manager, and
the system catalog. It aso provides an introduction to SciDB's array languages—Array Query Language
(AQL) and Array Functional Language (AFL)—and an overview of transactionsin SciDB.

1.1. Array Data Model

SciDB uses multidimensional arrays asits basic storage and processing unit. A user creates a SciDB array
by specifying dimensions and attributes of the array.

Dimensions

An n-dimensional SciDB array has dimensions di, d2, ..., dn. The size of the dimension is the number of
ordered values in that dimension. For example, a 2-dimensional array may have dimensionsi and j, each
withvalues (4, 2, 3, ..., 10) and (1, 2, ..., 30) respectively.

Basic array dimensions are 64-hit integers. SciDB also supports arrays with one or more noninteger
dimensions, such as variable-length strings (alpha, beta, gamma, ...) or floating-point values (1.2, 2.76,
4.3, ..).

When the total number of values or cardinality of adimension is known in advance, the SciDB array can
be declared with a bounded dimension. However, in many cases, the cardinality of the dimension may
not be known at array creation time. In such cases, the SciDB array can be declared with an unbounded
dimension.

Attributes

Each combination of dimension values identifies a cell or element of the array, which can hold multiple
data values called attributes (al, a2, ..., am). Each datavalueisreferred to as an attribute, and belongs to
one of the supported datatypesin SciDB.

At array creation time, the user must specify:
e Anarray name.

 Array dimensions. The name and size of each dimension must be declared.

Introduction to SciDB

* Array attributes of the array. The name and data type of the each attribute must be declared.

Once you have created a SciDB database and defined the arrays, you must prepare and load data into it.
L oaded data is then available to be accessed and queried using SciDB's built-in analytics capabilities.

1.2. Basic Architecture

1.2.1.

SciDB uses a shared-nothing architecture which is shown in the illustration below.

SciDB Coordinator Instance

SciDB
. . Engine —
$C|DB Client R PostgreSQL
(iquery,Python) < System Catalog
Local. bt
. Store :

I ‘.| PostgresqQL
I ' : Connections

< Y

SciDB SciDB { sciDB SciDB
Engine Engine: {1 Engine Engine
Q. (........................ .
R
Local Local Local Local
Store Store Store Store
e —— N — ——

SciDB Worker Instances

SciDB isdeployed on acluster of servers, each with processing, memory, and local storage, interconnected
using a standard ethernet and TCP/IP network. Each physical server hosts a SciDB instance that is
responsible for local storage and processing.

External applications, when they connect to a SciDB database, connect to one of theinstancesinthecluster.
While al instances in the SciDB cluster participate in query execution and data storage, one server isthe
coordinator and orchestrates query execution and result fetching. It isthe responsibility of the coordinator
instance to mediate all communication between the SciDB external client and the entire SciDB database.
Therest of the system instances are referred to as worker instances and work on behalf of the coordinator
for query processing.

SciDB's scale-out architecture is ideally suited for hardware grids as well as clouds, where additional
severs may be added to scale the total capacity.

Chunking and Scalability

When data is loaded, it is partitioned and stored on each instance of the SciDB database. SciDB uses
chunking, a partitioning technique for multidimensional arrays where each instance is responsible for
storing and updating a subset of the array locally, and for executing queries that use the locally stored

Introduction to SciDB

1.2.2.

data. By distributing data uniformly across all instances, SciDB is ableto deliver scalable performance on
computationally or I/O intensive analytic operations on very large data sets.

The details of chunking are shown in this section. Remember that you do not need to manage chunk
distribution beyond specifying chunk size.

Chunking is specified for each array as follows. Each dimension of an array is divided into chunks. For
example, an array with dimensionsi and j , wherei isof length 10 and chunk size 5andj is of length
30 and chunk size 10 would be chunked as follows:

-

J >

11 12 13

21 23 23

Chunks are arranged in row-major order in this example, and stored within the cluster using a round-robin
distribution asfollows. Suppose acluster hasinstances 1 through 4, the placement of datais shown below.

Cyp>serverl
Cio -> server 2
Ci3-> server 3
Co1 -> server 4
Cy->sarver 1
Co3 -> server 2

This scheme is generalized to arrays with more dimensions by arranging the chunks in left-to-right
dimension order.

Chunk Overlap

It is sometimes advantageous to have neighboring chunks of an array overlap with each other. Overlap is
specified for each dimension of an array. For example, consider an array A asfollows:

A<a: int32>[i=1:10,5,1, j=1:30, 10, 5]

Introduction to SciDB

1.3.1.

Array A has has two dimensions, i and j . Dimension i is of length 10, chunk size 5, and had chunk
overlap 1. Dimensionj has length 30, chunk size 10, and chunk overlap 5. This overlap causes SciDB to
store adjoining cells in each dimension from the overlap area in both chunks.

Some advantages of chunk overlap are:

» Speeding up nearest-neighbor queries, where each chunk may need access to a few elements from its

neighboring chunks,

» Detecting data clusters or data features that straddle more than one chunk.

SciDB supports operators that can be used to add or change the chunk overlap within an existing array.

1.3. SciDB Array Storage

SciDB arrays consist of array chunk storage and array metadata stored in the system catalog. When arrays
are created, updated, or removed, they are done using transactions. Transactions span array storage and
the system catal og and ensure consistency of the overall database as queries are executed.

The following sections describe SciDB's instance storage, system catalog, and transaction model.

Instance Storage

Vertical partitioning

Storage of array versions

Storage segments

Each local SciDB instance divides logical chunks of an array into
per-attribute chunks, atechniquereferred to asvertical partitioning.
All basic array processing steps—storage, query processing,
and data transfer between instances—use single-attribute chunks.
SciDB uses run-length encoding internally to compress repeated
values or commonly occurring patterns typical in scientific
applications. Frequently accessed chunks are maintained in an in-
memory cache and accelerate query processing by eliminating
expensive disk fetches for repeatedly accessed data.

SciDB uses a "no overwrite" storage model. No overwrite means
that data is never overwritten; each query that stores or updates
existing arrays writes a new full chunk or a new delta chunk. Delta
chunksare calculated by differencing the new version with the prior
version and only storing the difference. The SciDB storage manager
stores "reverse" deltas—this means that the most recent version is
maintained as a full chunk, and prior versions are maintained as
alist or chain of reverse deltas. The delta chain is stored in the
"reserve" portion of each chunk, an additional area over and above
the total size of the chunk. If the reserve areafor the chunk fills up,
anew chunk isallocated within the same segment or anew segment
and linked into the delta chain.

The local storage manager manages space alocation, placement,
and reclamation within the local storage manager using segments.
A storage segment is a contiguous portion of the storage file
reserved for successive chunks of the same array. Thisis designed
to optimize queries issued on a very large array to use sequential
disk I/0 and hence maximizetherate of datatransfer duringaquery.

Segments also serve as the unit of storage reclaim, so that as array
chunks are created, written, and ultimately removed, a segment

Introduction to SciDB

1.3.2.

1.3.3.

is reclaimed and reallocated for new chunks or arrays once all
its member chunks have been removed. This allows for reuse of
storage space.

Transient storage SciDB uses temporary data files or "scratch space” during query
execution. Thisis specified during initialization and start-up as the
t mp- pat h configuration setting. Temporary files are managed
using the operating system's tempfile mechanism. Data written to
tempfile only last for the lifetime of a query. They are removed
upon successful completion or abort of the query.

SciDB System Catalog

SciDB relies on a system catalog that is arepository of the following information:
» Configuration and status information about the SciDB cluster,

» Array-related metadata such as array definitions, array versions, and associations between arrays and
other related objects,

* Information about SciDB extensions, such as plug-in libraries containing user-defined objects, which
are described in the section "Array Processing."

The system catalog in current versions of SciDB is implemented as PostgresSQL tables. The tables are
shared between al SciDB instances within the cluster.

Transaction Model

SciDB combines traditional ACID semantics with versioned, no overwrite array storage. When using
versioned arrays, write transactions create new versions of the array—they do not modify pre-existing
versions of the array.

The scope of atransaction in SciDB is a single statement. Each statement involves many operations on
one or more arrays. Ultimately, the transaction stores the result into a destination array.

SciDB implements array-level locking. Locks are acquired at the beginning of atransaction and are used to
protect arrays during queries. Locks are rel eased upon completion of the query. If aquery aborts, pending
changes are undone at all instances in the system catal og, and the database is returned to a prior consistent
State.

1.4. Array Processing

1.4.1.

SciDB's query languages provide the basic framework for scalable array processing.

Array Language

SciDB provides two query language interfaces.

» AQL, the Array Query Language

e AFL, the Array Functional Language

SciDB'sArray Query Language (AQL) isahigh-level declarativelanguage for working with SciDB arrays.

It issimilar to the SQL language for relational databases, but uses an array-based data model and a more
comprehensive analytical query set compared with standard relational databases.

Introduction to SciDB

1.4.2.

1.4.3.

AQL represents the full set of data management and analytic capabilities including data loading, data
selection and projection, aggregation, and joins.

The AQL language includes two classes of queries:
» Data Definition Language (DDL) : commands to define arrays and load data.
» Data Manipulation Language (DML) : commands to access and operate on array data.

AQL statements are handled by the SciDB query compiler which translates and optimizes incoming
statements into an execution plan.

SciDB's Array Functional Language (AFL) is afunctional language for working with SciDB arrays. AFL
operators are used to compose queries or statements.

Query Building Blocks

There are four building blocks that you use to control and access your data. These building blocks are:

Operators SciDB operators, such as join, take one or more SciDB arrays as
input and return a SciDB array as output.

Functions SciDB functions, such as sgrt, take scalar values from literals or
SciDB arrays and return a scalar value.

Data types Data types define the classes of values that SciDB can store and
perform operations on.

Aggregates SciDB aggregatestake an arbitrarily large set of values asinput and
return ascalar value.

Any of these building blocks can be user-defined, that is, users can write new operators, data types,
functions, and aggregates.

Pipelined Array Processing

When a SciDB query is issued, it is setup as a pipeline of operators. Operators are responsible for data
processing and aggregation as well as intermediate data exchange and data storage.

Execution begins when the client issues a request to fetch a chunk from the result array. Data is then
scanned from array storage on all instances and streamed into and out of each operator one chunk at atime.
Thismodel of query execution is sometimes referred to as pull-based execution and the operators that use
this model are called streaming operators. Unless required by the data processing algorithm, al SciDB
operators are streaming operators. Some operators implement algorithms that require the entire array to
be materialized in memory at all instances at once. These are referred to as materializing operators.

1.5. Clients and Connectors

The SciDB software package that you downloaded contains a special command line utility called iquery
which provides an interactive Linux shell and supports both AQL and AFL. For more information about
iquery, see Getting Started With SciDB Devel opment.

Client applications connect to SciDB using an appropriate connector package which implementsthe client-
side of the SciDB client-server protocol. Once connected via the connector, the user may issue queries
written in either AFL or AQL, and fetch the result of a query using an iterator interface.

Introduction to SciDB

1.6. Conventions Used in this Document

Code to be typed in verbatim is shown in f i xed-wi dt h f ont. Code that is to be replaced with an
actual string is shown in italics. Optional arguments are shown in square brackets|[].

AQL commands are shown in FI XED- W DTH BOLD CAPS. When necessary, a line of code may be
preceded by the AQL%or AFL%prompt to show which language the query is issued from.

Chapter 2. SciDB Installation and

Administration
2.1. Installing SciDB

SciDB bhinaries are currently available for the following Linux platforms:

* Red Hat Enterprise Linux 5.4
» Fedorall

e Ubuntu 11.04

For virtual machine-based installs, you can use VMWare Player or VBox for desktop testing and Citrix

XenServer for production use.

The following terms are used to describe the SciDB installation and administration process:

Instance

Cluster

Sngle server

Virtual server

An independent SciDB process, that is, a single runnable copy
of SciDB. There may be a many-to-one mapping between SciDB
instances and asingle server.

A group of one or more single servers connected by TCP/IP,
working together asa single system, and sharing data. A cluster can
be a private grid or a public cloud.

A configuration that consists of a single machine with a processor
that may contain any number of cores, memory and attached
storage. A single server may be virtual or physical. A single server
is not connected to nor does it share data with any other serversin
acluster.

A server that shares hardware rather than having dedicated
hardware.

2.1.1. Preparing the Platform

2.1.1.1. Linux User Account

First, you will need to create a Linux user account, scidb. This account will be used to run all SciDB
processes and own al files created by SciDB. The scidb user account must have superuser privileges. It
isalso helpful to set up the account for access to the system without password entry.

To create the account, modify the/ et ¢/ sudoer s file asfollows:

Allow root to run any conmands anywhere
r oot ALL=(ALL) ALL
scidb ALL=(ALL) NOPASSWD: ALL

SciDB Installation and Administration

2.1.1.2. Postgres Installation and Configuration

SciDB has been tested with Postgres 8.4.X. A suitable version of Postgres (8.4.6 or 8.4.7) is typically
available on most Linux platforms.

On Ubuntu, you can use apt - get toinstall the post gresql - contri b package:
sudo apt-get install postgresql-contrib

On Red Hat and Fedora, you can useyum:

sudo yuminstall postgresql-contrib

By default, Postgres is configured to allow only local access via Unix-domain sockets. In a cluster
environment, the Postgres database needs to be configured to allow access from other instances in the
cluster. To do this:

1. Modify the pg_hba. conf file (usually at / et c/ postgresql/8.4/ main/ or /var/lib/
pgsql / dat a/) by adding the following line:

host al | al | 10.0.0.1/8 trust

2. In the pg_hba. conf file, change all instances of 'ident' to 'trust' (assuming your local network is
10.X.X.X).

3. Restart Postgres.

Warning

This Postgres configuration might pose security issues. When authentication is set to trust
PostgreSQL assumes that anyone who can connect to the server is authorized to access the
database. To make amore secure installation, you can list specific host | P addresses, user names,
and role mappings.

You can read more on the security details of Postgres client-authentication in the Postgres
documentation at http://www.postgresgl.org/docs/8.3/stati ¢/client-authentication.html.

Y ou might need to set the post gr esql . conf fileto haveit listen on the relevant port and | P address,
asit might belimitedto| ocal host by default.

If you are running a cluster with multiple servers, you will also need to modify the post gr esql . conf
fileto allow connections:

- Connection Settings -
listen_addresses = '*'

Y ou can verify that a PostgreSQL instance is running on the coordinator with the st at us command:

sudo /etc/init.d/ postgresqgl-8.4 status
sudo /etc/init.d/ postgresql-8.4 start

Note

* Red Hat Enterprise Linux 5.4 comes with PostgreSQL 8.1. We recommend upgrading to
version 8.4.7.

http://www.postgresql.org/docs/8.3/static/client-authentication.html

SciDB Installation and Administration

» Add Postgres startup scripts to the Linux initialization scripts to start Postgres automatically
after areboot.

* If your scidb user does not have sudo privileges, have your administrator use the following
procedure to initialize Postgres:

1. Create anew role or account (say testluser) with password (say testlpasswd).
2. Create a database for testing scidb (say test1) using the new account.
3. Create aschemain that newly created Postgres database to hold the SciDB catal og data:

root$ sudo -u postgres
[opt/scidb/12. 3/ bi n/ sci db- pr epar e- db. sh

The last step, after you have configured Postgres, is to add it to Linux system services. This means that
Postgres will be started automatically on system reboot:

sudo /sbi n/chkconfig --add postgresql

2.1.1.3. Remote Execution Configuration (ssh)

SciDB uses ssh for remote execution of cluster management commands. This is why the scidb user
account should have no-password s s h accessfrom the coordinator to the workers and from the coordinator
to itself.

The pyt hon- cr ypt o (64-bit) and pyt hon- par ani ko packages are required for SciDB on Red Hat
5.4. These packages are ssh packages in Python. You can install the Python ssh client packages as
follows:

sudo apt-get install python, python-crypto, python-param ko

There are several methods to configure no-password ssh between servers. We recommend the following
simple method.

1. Create akey:
ssh- keygen
2. Copy the key to the localhost (or coordinator) and to each worker:

ssh-copy-id sci db@wor ker
ssh-copy-id sci db@ ocal host

3. Login to remote host. Note that no password is required now:

ssh sci db@wor ker

2.1.1.4. Shared file system

To run SciDB in a cluster , export the / opt / sci db directory on the coordinator using NFS or samba.
To do this, configure the export and restart the NFS service like this:

Configure the export

10

SciDB Installation and Administration

2.1.2.

[opt/scidb *(ro, no_root_squash, sync)

Restart the nfs service
sudo /etc/init.d/nfs restart

Mount this on all workers using the same directory path (/ opt / sci db) asthe mount point. Add thisline
tothe/ et c/ f st ab file to mount the shared file system on each worker:

Sci DB coordi nat or nmount poi nt
coordi nator-ip:/opt/scidb /opt/scidb nfs
ro, rsize=8192, wsi ze=8192, ti meo=14, i ntr 00

The coordinators and workers access binaries, shared libraries, plugins, configuration files from / opt /
sci db.

The last step, after you have configured NFS, isto add it to Linux system services. This means that NFS
will be started automatically on system reboot:

sudo /shin/chkconfig --add nfs

Install SciDB from binary package

If you are installing a downloaded pre-built binary package, you can install it using dpkg for Ubuntu and
r pmor yumfor Red Hat. We currently provide packages for Ubuntu and RPMs for Red Hat and Fedora.

2.1.2.1. Ubuntu

Install

1. Install the libscidbclient package:
sudo dpkg ~-i I|ibscidbclient.*.deb
Y ou may want to install the optional debug symbols package:
sudo dpkg -i libscidbclient.*.deb

2. Ingtall the SciDB package:
sudo dpkg -i scidb.*. deb
Y ou may want to install the optional debug symbols package:
sudo dpkg -i sci db-dbg. *. deb

Note

dpkg does not resolve dependencies and you may need to manually install the dependencies or
use apt-get to resolve any unmet dependencies on the system. This could happen on either the
libscidbclient or SciDB package install. For example:

Fails due to unnmet dependenci es
sudo dpkg -i scidb.*. deb

11

SciDB Installation and Administration

Install s dependenci es
sudo apt-get -f install

Succeeds now
sudo dpkg -i scidb-Rel Wt hDebl nfo-12. 3. *. deb

Uninstall

Uninstall SciDB asfollows:
sudo dpkg -r sci db-dbg
sudo dpkg -r scidb

sudo dpkg -r libscidbclient-dbg
sudo dpkg -r libscidbclient

2.1.2.2. Red Hat and Fedora
Install:
1. Install the libscidbclient package:
sudo rpm--force -ivh |ibscidbclient-Rel WthDebl nfo-12.3.*.rpm
Y ou may want to install the optional debug symbols package:

sudo rpm --force -ivh
I'i bscidbclient-dbg.*.rpm

2. Next, install the SciDB server package:
sudo rpm--force -ivh scidb-12.3.*.rpm
Y ou may want to install the optional debug symbols package:
sudo rpm --force -ivh scidb-dbg.*.rpm
Uninstall:
To uninstall SciDB, do the following:
sudo rpm -e sci db-dbg
sudo rpm -e scidb

sudo rpm -e |ibscidbclient-dbhg
sudo rpm -e |ibscidbclient

2.1.2.3. Environment Variables

Now you need to configure the environment of the scidb user account. The following lines should be
added to the user's shell configuration file (often . profil e or. bashrc):

export SCI DB_VER=12. 3
export PATH=/ opt/ sci db/ $SClI DB_VER/ bi n:
/ opt / sci db/ $SCl DB_VER/ shar e/ sci db: $PATH
export LD LI BRARY_PATH=/ opt/ sci db/ $SCI DB _VER/ | i b: $LD_LI BRARY_PATH

12

SciDB Installation and Administration

2.2. Configuring SciDB

2.2.1.

2.2.2.

This chapter demonstrates how to configure SciDB prior to initialization, including checking that the
PostgreSQL DBM S isrunning, that the SciDB configuration file (usually / opt/ sci db/ 12. 3/ et c/
confi g. i ni)issetup, andthat logging is configured.

SciDB Configuration File

Y ou need to create a configuration file for SciDB. It isnamed confi g. i ni and it residesintheet c
sub-directory of theinstallation tree. (By defaultitis / opt/ sci db/ 12. 3/ etc/ config.ini.)The
configuration file can have multiple sections, one per service instance.

Theconfiguration 'test1' below isan exampl e of the configuration for asingle-instance system (coordinator
only):

[test1]

i nst ance- 0=l ocal host, 0

db_user =t est luser

db_passwd=t est 1passwd

install _root=/opt/scidb/12.3

nmet adat a=/ opt / sci db/ 12. 3/ shar e/ sci db/ net a. sql
pl ugi nsdi r=/ opt/scidb/12. 3/1i b/ sci db/ pl ugi ns
| ogconf =/ opt/ sci db/ 12. 3/ shar e/ sci db/ | og4cxx. properties
base- pat h=/ hone/ sci db/ dat a

base- port =1239

i nterface=et hO

no- wat chdog=t r ue

redundancy=1

nmer ge-sort - buf f er=1024

net wor k- buf f er =1024

mem ar r ay-t hr eshol d=1024

sngr - cache- si ze=1024

execution-threads=16

resul t - pref et ch- queue- si ze=4

resul t-prefetch-threads=4

chunk- segnent - si ze=10485760

Cluster Configuration Example

The following SciDB cluster configuration is called 'monolith’. This cluster consists of eight identical
virtual servers:

» X86 6-core processor

+ 8GB of RAM

1 TB direct attached storage

1Gbps Ethernet
« RHEL 54

The following configuration file applies to such a cluster and is explained in the following section.

13

SciDB Installation and Administration

[monol i t h]

server-id=lP,
server-0=10. 0. 20.
server-1=10. 0. 20.
server-2=10. 0. 20.
server-3=10. 0. 20.
server-4=10. 0. 20.
server-5=10. 0. 20.
server-6=10. 0. 20.
server-7=10. 0. 20.

db_user=nonol i th

nunber

of worker instances
231,0
232,1
233,1
234, 1
235,1
236, 1
237,1
238, 1

db_passwor d=nonol i th

install _root=/opt/scidb/12.3

nmet adat a=/ opt / sci db/ 12. 3/ shar e/ sci db/ met a. sql
pl ugi nsdi r=/ opt/sci db/12. 3/1i b/ sci db/ pl ugi ns
| ogconf =/ opt/ sci db/ | og4cxx. properties.trace
base- pat h=/ dat a/ nonol i t h_dat a

base- port =1239
i nt erface=et hO

Theinstall package contains a sample configuration file, sanpl e_confi g. i ni , with examples.

The following table describes the basic configuration file settings:

Basic Configuration

Key Value

Cluster name Name of the SciDB cluster. The cluster name must appear as a section heading
in the config.ini file, e.g., [clusterl]

server-N The host name or IP address used by server N and the number of worker
instances on it. Server 0 always has the coordinator running as instance 0, and
may have additional worker instances running as well.

db_user Username to use in the catalog connection string. This example uses testluser

db_passwd Password to use in the catalog connection string. This example uses
testlpasswd

install_root Path name of install root.

metadata Metadata definition file.

pluginsdir The folder or directory in which plugins are stored.

logconf log4xx configuration file.

The following table describes the cluster configuration file contents and how to set them:

Cluster Configuration

Key Value

base-path The root data directory for each SciDB instance. Each SciDB instance
initializesits data directory within the base-path. Path sci db/ 00n/ 1 will be
the path for instance n.

base-port Base port number. Connectionsto the coordinator (and thereforeto the system)

are via this number, while worker instances communicate at base-port +
instance number. The default number that i quer y expectsis 1239.

14

SciDB Installation and Administration

2.2.3.

interface

Ethernet interface that SciDB must use.

ssh-port (optional)

The port that ssh uses for communications within the cluster. Default:22.

key-file-list (optional)

Comma-separated list of filenames that include keys for ssh authentication.
Default: None.

tmp-path (optional)

The directory to use as temporary space.

no-watchdog (optional)

Set this to true if you do not want automatic restart of the SciDB server on a
software crash. Default: false.

The following table describes the configuration file elements for tuning your system performance:

Performance Configuration

Key

Value

save-ram (optional)

‘Truée, 'true’, ‘on' or 'On’ will enable this option. Off by default. This
alows you to store temporary datain memory. It is not advisable to
do this; it is better to store temporary datain files.

merge-sort-buffer (optional)

Size of memory buffer used in merge sort. Default: 512 MB.

mem-array-threshold (optional)

Maximum memory used for temporary arrays. Default: 1024 MB.

chunk-reserve (optional)

Percentage of chunk preallocated to store chunk deltas. Setting this
parameter to 0 disables the delta mechanism. Default: 10%.

chunk-segment-size (optional)

Size in bytes of a storage segment. A storage segment is a unit of
alocation and reclamation used by storage manager. If set to zero, no
space reuse or storage reclamation is done.

execution-threads (optional)

Size of thread pool available for query execution. Shared pool of
threads used by al queries for network 10 and some query execution
tasks. Default: 4.

operator-threads (optional)

Limit the number of threads allocated per (multithreaded) operator
in a query. If operator-threads is unspecified, SciDB automatically
detects the number of CPU cores and uses that value. If you are
running multiple instances on each server, operator-threads must be
set lower than the number of CPU cores since multipleinstances share
the same set of CPU cores.

result-prefetch-threads (optional)

Per-query threads available for prefetch. Default: 4.

result-prefetch-queue-size
(optional)

Per-query number of result chunks to prefetch. Default: 4.

smgr-cache-size (optional)

Size of buffer cache. Default: 256 MB

In the example above, db_user isset to testluser and db_passwd is set to testlpasswd.

Logging Configuration

SciDB uses Apache's logdexx (http://logging.apache.org/logdcxx/) for logging.

The logging configuration file, specified by the | ogconf variable in confi g. i ni, contains the
following Apache logdcxx logger settings:

#it#
Level s:
#it#

TRACE < DEBUG < | NFO < WARN < ERROR < FATAL

15

http://logging.apache.org/log4cxx/

SciDB Installation and Administration

| og4j . r oot Logger =DEBUG, fil e

| og4j . appender . fil e=org. apache. | og4j . Rol | i ngFi | eAppender

| og4j . appender.file.File=scidb.log

| og4j . appender.file. MaxFi | eSi ze=10000KB

| og4j . appender. fil e. MaxBackupl ndex=2

| og4j . appender.file. | ayout =org. apache. | og4j . Patt er nLayout

| og4j . appender.file.layout. ConversionPattern=%l [%] [% 5p]: % ¥mn

2.3. Initializing and Starting SciDB
2.3.1. The scidb.py Script

To begin a SciDB session, usethesci db. py script. In astandard SciDB build, this script is located at:
[opt / sci db/ ver si on. nunber/ bi n

The syntax for thesci db. py scriptis:

sci db. py command db conffile

The options for the command argument are:

initall Initialize the system catalog. Warning: This will remove any
existing SciDB arrays from the current namespace.

startall Start a SciDB instance.

st opal | Stop the current SciDB instance.

st at us Show the status of the current SciDB instance.

dbgi nfo Collect debugging information by getting all logs, cores, and
install files.

dbgi nfo-1t Collect only stack and log information for debugging.

versi on Show SciDB version number.

The db argument is the name of the SciDB cluster you want to create or get information about.

The configuration fileis set by default to/ opt / sci db/ 12. 3/ et ¢/ confi g. i ni . If youwant to use
a custom configuration file for a particular SciDB cluster, usetheconf f i | e argument.

Run the following command to initialize SciDB on the server. If the SciDB user has sudo privileges,
everything will be done automatically (otherwise see the previous section for additional Postgres
configuration steps):

scidb.py initall testl

Warning

This will reinitialize the SciDB database. Any arrays that you have created in previous SciDB
sessions will be removed and the memory reclaimed.

To start the set of local SciDB instances specified in your config.ini file, use the following command:

16

SciDB Installation and Administration

sci db. py startall testl

Thiswill report the status of the various instances:
sci db. py status testl

Thiswill stop all SciDB instances:

sci db. py stopall testl

SciDB logs are written to the file sci db. | og in the appropriate directories for each instance: base-
pat h/000/0 for the coordinator and base- pat h/MN the worker Minstance N.

2.4. Upgrading SciDB

The namet est 1 in the following examples refers to the SciDB database. All of the following steps are
performed as Linux user scidb.

* Shutdown SciDB:
sci db. py stopall testl

» Download and install the latest SciDB package using the standard package manager on your platform
(rpm or dpkg).

If you areinstalling adownloaded pre-built binary package, you caninstall it using dpkg for Ubuntu and
r pmor yumfor Red Hat. We currently provide packages for Ubuntu and RPMsfor Red Hat and Fedora.

2.4.1. Ubuntu

1. First, upgrade the libscidbclient package :
sudo dpkg -i libscidbclient.*.deb
Y ou may want to install the optional debug symbols:
sudo dpkg -i libscidbclient-dbg.*.deb
2. Theninstall the SciDB package:
sudo dpkg -i sci db- Rel Wt hDebl nf o-12. 3. deb
Y ou may want to install the optional debug symbols:

sudo dpkg -i sci db-dbg- Rel Wt hDebl nfo-12. 3. deb

2.4.2. Red Hat and Fedora

1. First, you need to install the libscidbclient package:
sudo rpm --force -Uvh |ibscidbclient-Rel WthDebl nfo-12.3.*.rpm
If you prefer, you can install with debug symbols:

sudo rpm --force -Uvh |ibscidbclient-dbg-Rel Wt hDebl nfo-12.3.*.rpm

17

SciDB Installation and Administration

2. Next, install the SciDB server package:
sudo rpm --force -UWvh scidb-12.3.*.rpm
If you prefer, you can install debug symbols:
sudo rpm --force -UWvh scidb-dbg-.*.rpm
3. Copy over the previousconfi g. i ni from your earlier version:

cp /opt/scidb/11.12/etc/config.ini /opt/scidb/12.3/etc/config.ini

2.4.3. Additional Steps

» Modify the config.ini file that you just copied. Change al references to your previous version to the
new version (ex: i nstal | _root=/opt/scidb/12. 3)

* Edit your environment and update PATH and LD_LIBRARY_PATH:

export SCI DB_VER=12. 3
export PATH=/ opt/sci db/ $SCl DB_VER/ bi n:
/ opt / sci db/ $SCl DB_VER/ shar e/ sci db: $PA\
TH
export LD LI BRARY_PATH=/ opt/sci db/ $SCI DB VER/ | i b: $LD LI BRARY_PATH

* NOTE: SciDB 12.3 does not accept storage filesfrom earlier versions. Y ou must reinitialize and rel oad
data:

whi ch scidb. py # Make sure you are running 12.3
scidb.py initall testl

sci db. py startall testl

sci db. py status test

18

Chapter 3. Getting Started with SciDB
Development

3.1. Using the iquery Client

Thei query executable is the basic command-line tool for communicating with SciDB. i query isthe
default SciDB client used to issue AQL and AFL commands. Start thei quer y client by typingi query
at the command line when a SciDB session is active:

scidb. py startall hostname
i query

By default, i quer y opensan AQL command prompt:
AQL%

Y ou can then enter AQL queries at the command prompt. To switch to AFL queries, usetheset | ang
command:

AQ.% set | ang afl;
AQL statements end with a semicolon (;).

To seetheinternal i quer y commands reference type hel p at the prompt:

AQL% hel p;

set - List current options

set lang afl - Set AFL as querying | anguage

set | ang aqgl - Set AQL as querying | anguage

set fetch - Start retrieving query results

set no fetch - Stop retrieving query results

set tiner - Start reporting query setup tine
set no tiner - Stop reporting query setup tine
set verbose - Start reporting details from engi ne
set no verbose - Stop reporting details from engine
quit or exit - End iquery session

You can pass an AQL query directly toi quer y from the command line using the -q flag:
iquery -q "my AQL statenent"

You can aso pass afile containing an AQL query toi quer y with the -f flag:

iquery -f ny_input fil enane

AQL isthe default language for i quer y. To switch to AFL, use the -aflag:

iquery -aq "nmy AFL statenment”

Each invocation of i quer y connectsto the SciDB coordinator instance, passesin aquery, and prints out
the coordinator instance'sresponse. i quer y connects by default to SciDB on port 1239. If you use a port
number that is not the default, specify it using the"-p" optionwithi quer y. For example, to use port 9999
to run an AFL query contained inthefilermy _fi | enane do this;

19

Getting Started with
SciDB Development

iquery -af ny_input_filename -p 9999

The query result will be printed to stdout. Use -r flag to redirect the output to afile:

i query -r
To change the output format, use the -o flag:

iquery -o csv -r

nmy_out put _filenanme -af ny_input fil enane

nmy_out put filename.csv -af nmy_input filenane

Available options for output format are csv, csv+, lcsv+, sparse, and Isparse. These options are described

in the following table:

Output Option Description

auto (default) SciDB array format.

csv Comma-separated values.

csv+ Comma-separated values with dimension indices.

lcsv+ Comma-separated values with dimension indices and a boolean
flag attribute Empty Tag showing if acell is empty.

sparse Sparse SciDB array format.

Isparse Sparse SciDB array format and aboolean flag attribute Empty Tag
showing if acell isempty.

To seealist of thei quer y switches and their descriptions, typei query -horiquery --helpat
the command line. The switches are explained in the following table:

iquery Switch Option

Description

-c [--host] host_nane Host of one of the cluster instances. Default is
'localhost'.

-p [--port] port_number Port for connection. Default is 1239.

-q [--query] query Query to be executed.

-f [--query-file] input _filenane |Filewithquery to beexecuted.

-r [--result] target _fil enane Filename with result array data.

-o [--format] fornmat Output format: auto, csv, csv+, lcsv+, sparse,
Isparse. Default is'auto'.

-v [--verbose] Print the debugging information. Disabled by
default.

-t [--timer] Query setup time (in seconds).

-n [--no-fetch] Skip data fetching. Disabled by default.

-a [--afl] Switch to AFL query language mode. Default is
AQL.

-u [--plugins]Jpath Path to the plugins directory.

-h [--help] Show help.

-V [--version] Show version information.

i gnore-errors

Ignore execution errorsin batch mode.

Thei query interface is case sensitive.

20

Getting Started with
SciDB Development

3.2. iquery Configuration

You can use a configuration file to save and restore your i quer y configuration. The file is stored in
~/ . confi g/ scidb/iquery. conf. Onceyou have created this file it will load automatically the
next timeyou start i quer y. The allowed options are:

host Host name for the cluster instance. Defaultis | ocal host .

port Port for connection. Default is 1239.

afl Start the session with the AFL command line.

timer Report query run-time (in seconds).

verbose Print debug information.

format Set the format of query output. Options are csv, csv+, lcsv+, sparse, and |sparse.
plugins Path to the plugins directory.

For example, your i quer y. conf filemight look like this:

{

"host ": " myhost nanme",
"port":9999,

“afl ":true,

"timer":fal se,

"ver bose": fal se
"format":"csv+",

"pl ugi ns":"./plugins"

}

The opening and closing braces at the beginning and end of the file must be present and each entry (except
the last one) should be followed by a comma.

3.3. Example iquery session

This section demonstrates how to use iquery to perform simple array tasks like:
e Create aSciDB array

» Prepare an ASCII filein the SciDB dense load file format

Load data from that file into the array.
» Execute basic queries on the array.
 Join two arrays containing related data.

The are more detailed examples on creating a SciDB array in the chapter " Creating and Removing SciDB
Arrays."

Thefollowing example creates an array, generates random numbers and storesthemin the array, and saves
the array data into a csv-formatted file.

1. Create an array called random_numbers with:

e 2dimensions, x =9andy = 10

21

Getting Started with
SciDB Development

» One double attribute called num
» Random numerical valuesin each cell

i query -aq "store(buil d(<num doubl e>[x=0:8, 1,0, y=0:9,1, 0],
random()), random nunbers) "

2. Savethevaluesin random_numbersin csv format to afilecalled/ t np/ r andom val ues. csv:
iquery -o csv -r /tnp/random val ues. csv -aq "scan(random numbers)"

Thefollowing example createsan array, |oads existing csv datainto the array, performssimple conversions
on the data, joins two arrays with related data set, and eliminates redundant data from the result.

1. Createan array, t ar get , in which you are going to place the values from the csv file:
iquery -aq "create array target <type:string, npg: doubl e>[x=0:*,1,0]"

2. Starting from a csv file, prepare afile to load into a SciDB array. Use the file datafile.csv, which is
contained inthedoc/ user / exanpl es/ directory of your SciDB installation:

Type, MPG

Truck, 23.5
Sedan, 48.7

SWV, 19.6
Convertible, 26.8

3. Convert thefileto SciDB format with the command csv2scidb:

csv2scidb -p SN -s 1 < doc/user/exanpl es/datafile.csv
> out put _path/datafile.scidb

Note: csv2sci db is a separate data-preparation utility provided with SciDB. To see all options
available for csv2scidb, type csv2sci db - - hel p at the command line.

4. Usetheload command to load the SciDB-formatted file you just created into t ar get :

iquery -aq "load(target, 'output_path/datafile.scidb")"
[("Truck", 23.5), ("Sedan", 48.7),
("Suv', 19.6), ("Convertible", 26.8)]

You will need to use the full pathname for out put _pat h. For example, if the file
dat afi | e. sci dbislocatedin/ hone/ user nane/ fi | es, you should use the string ' / hornre/
usernane/fil es/datafil e.csv' fortheload function argument.

5. By default, iquery always re-reads or retrieves the data that has just written to the array. To suppress
the print to screen when you use the load command, use the -n flag in iquery:

iquery -naq "load(target, '/output_ path/datafile.scidb')"

6. Now, suppose you want to convert miles-per-gallon to kilometers per liter. Use the apply function to
perform a calculation on the attribute values npg:

i query -aq "apply(target, kpl, npg*. 4251) "
[("Truck", 23.5,9.98985), ("Sedan", 48. 7, 20. 7024) ,

22

Getting Started with
SciDB Development

("SWV', 19. 6, 8. 33196) , (" Converti bl e", 26. 8, 11. 3927)]

Note that this does not updatet ar get . Instead, SciDB creates an result array with the new calculated
attribute kpl . To create an array containing the kpl attribute, use the st or e command:

iquery -aq "store(apply(target, kpl, npg*. 4251), target _new)"
7. Suppose you have arelated datafile, dat af i | e_pri ce. csv:

Make, Type, Pri ce
Handa, Tr uck, 26700

Tol ona, Sedan, 31000
Gerrd, SuvV, 42000

Maudi , Converti bl e, 45000

Y ou want to add the data on price and make to your array. Use csv2scidb to convert the file to SciDB
data format:

csv2scidb -p SSN -s 1 < doc/user/exanpl es/datafile price.csv >
out put _pat h/ datafil e_price. sci db

Create an array called storage:

iquery -aqg "create array storage
<meke:string, type:string, price:int64>
[x=0:*,1,0]"

Load the datafile price.scidb file into storage:
iquery -naq "l oad(storage, '/tnp/datafile price.scidb')"

8. Now, you want to combine the datain these two files so that each entry has amake, and model, a price,
an mpg, and akpl. You can join the arrays, with thej oi n operator:

i query -aqg "join(storage,target_new)"

[("Handa", " Truck", 26700, " Truck", 23. 5, 9. 98985) ,

(" Tol ona", " Sedan", 31000, " Sedan", 48. 7, 20. 7024) ,

("Gerrd"," SUV', 42000, "SUV', 19. 6, 8. 33196) ,

("Maudi ", " Converti bl e", 45000, " Converti bl e", 26. 8, 11. 3927)]

Note that attributes 2 and 4 are identical. Before you store the combined datain an array, you want to
get rid of duplicated data.

9. You can use the project operator to specify attributesin a specific order:

i query -aq project(target_new, npg, kpl)
[(23.5,9.98985), (48. 7, 20. 7024), (19. 6, 8. 33196), (26. 8, 11. 3927)]

Attributes that are not specified are not included in the output.

10.Usethej oi n and pr oj ect operatorsto put the car data together. For easier reading, use csv asthe
query output format:

iquery -o csv -ag "join(storage, project(target_new, npg, kpl))"
make, t ype, pri ce, npg, kpl

"Handa", " Truck", 26700, 23. 5, 9. 98985

"Tol ona", " Sedan", 31000, 48. 7, 20. 7024

23

Getting Started with
SciDB Development

"Gerrd"," SUV', 42000, 19. 6, 8. 33196
“Maudi ", " Converti bl e", 45000, 26. 8, 11. 3927

24

Chapter 4. Creating and Removing

SciDB Arrays

SciDB organizes data as a collection of multidimensional arrays. Just astherelational table isthe basis of
relational algebraand SQL, the multidimensional array isthe basisfor SciDB.

A SciDB database is organized into arrays that have:

* A name. Each array in a SciDB database has an identifier that distinguishes it from al other arraysin

the same database.

» A schema, which isthe array structure. The schema contains array attributes and dimensions.

1. Each attribute contains data being stored in the array's cells. A cell can contain multiple attributes.

2. Each dimension consists of alist of index values. At the most basic level the dimension of an array
isrepresented using 64-bit unsigned integers. The number of index valuesin adimension isreferred

to asthe dimension's size.

4.1. Create an Array

The AQL CREATE ARRAY statement creates a new array and specifies the array schema. The syntax
of the CREATE ARRAY statement for abounded array is:

CREATE ARRAY array_name <attributes> [di nensi ons]

The arguments for the CREATE ARRAY statement are as follows:

array_nanme

attributes

The array name that uniquely identifies the array in the database.
The maximum length of an array nameis 1024 bytes. Array names
may not contain the characters @, : , or dot (.) as these characters
arereserved for internal SciDB operations.

Thearray attributes contain the actual data. Y ou specify an attribute
with:

 Attribute name: Name of an attribute. The maximum length of

an attribute name is 1024 bytes. No two attributes in the same
array can share aname.

Attribute type: Type identifier. One of the data types supported
by SciDB. Usethel i st ('t ypes') command to see the list
of available data types.

NULL (optional): Userscan specify 'NULL' to indicate attributes
that are alowed to contain null values. If this keyword is not
used, all attributes must be non null, i.e. they cannot be assigned
the specia null value. If the user does not specify avaluefor such
an attribute, SciDB will automatically substitute a default value.

DEFAULT (optional): Allows the user to specify the value to
be automatically substituted when anon NULL attribute lacks a

25

Creating and Removing SciDB Arrays

value. If unspecified substitution uses system defaultsfor various
types (O for numeric types and "" for string). Note that if the
attribute is declared as NULL, this clause isignored.

di nensi ons Dimensions form the coordinate system for the array. The number
of dimensions in an array is the number of coordinates or indices
needed to specify an array cell. Y ou specify dimensions with:

Dimension name: Each dimension has a name. Just like
attributes, each dimension must be named, and dimension names
cannot be repeated in the same array. The maximum length of
a dimension name is 1024 bytes. Optionally, you may want to
create a noninteger dimension. In this case, you will need to
specify the dimension data type in the name argument like this:
di mensi on_nane(di nrensi on_dat aype).

Dimension start: The starting coordinate of a dimension. The
default data type is 64-hit integer. If you created a noninteger
dimension, this argument is omitted.

Dimension end or *: The ending coordinate of adimension, or *
if unbounded. The default datatypeis 64-bit integer for bounded
dimensions.

Dimension chunk size: Number of elements per chunk.

Dimension chunk overlap: Number of overlapping cells from a
neighboring chunk.

The AQL CREATE ARRAY statement creates an array with specified name and schema. This statement

creates an array:

AQ.% CREATE ARRAY A <x: double, err: double>
[i=0:99, 10,0, j=0:99,10,0];

The array this statement created has:
* Array name A

» An array schemawith:

1. Two attributes: one with name x and type doubl e and one with name er r and type doubl e

2. Two dimensions: one with namei

, starting coordinate 0, ending coordinate 99, chunk size 10, and

chunk overlap 0; one with namej , starting coordinate O, ending coordinate 99, chunk size 10, and

chunk overlap 0.

This statement creates a different array:

AQ.% CREATE ARRAY B <val : doubl e>[sanpl e(stri ng) =6, 6, 0] ;

Array B has one attribute named val

of type doubl e and one dimension named sanpl e of type

stri ng. Dimension sanpl e haslength 6, chunk size 6, and chunk overlap 0.

To delete an array with AQL, usethe DROP ARRAY statement:

AQL% DROP ARRAY A,

26

Creating and Removing SciDB Arrays

4.2. Array Attributes

4.2.1.

A SciDB array must have at least one attribute. The attributes of the array are used to store individual
datavaluesin array cells.

For example, you may want to create a product database. A 1-dimensional array can represent a simple
product database where each cell has a string attribute called nane, anumerical attribute called pri ce,
and a datetime attribute called sol d:

AQ.% CREATE ARRAY products
<nane: string, price:float, sold:dateti ne> [i=0:%*, 10, 0];

Attributes are by default set to not null. To allow an attribute to have value NULL, add NULL to the
attribute data type declaration:

AQL% CREATE ARRAY product nul |
<nane: string NULL, price:float NULL, sol d: datetine NULL>
[i=0:*,10,0];

This allows the attribute to store NULL values at dataload.

An attribute takes on adefault value of 0 when no other valueis provided. To set adefault value other than
0, set the DEFAULT value of the attribute. For example, this code will set the default value of pri ce
to 100 if no valueis provided:

CREATE ARRAY product dflt
<nane:string, price:float default 100.0, sol d: dateti ne>
[i=0:*,10,0];

NULL and Default Attribute Values

SciDB offers functionality to work with missing data. This chapter uses the data set m4x4_missing.txt,
shown here;

(0,100), (1,99),(2,98),(3,97)],
(4),(5,95),(6,94),(7,93)],
(8,92),(9,91),(),(11,89)],
(12, 88), (13), (14, 86), (15, 85)]

e

The array m4x4_missing has two issues: the second values in the cells (1,0) and (3,1) are missing, and
cell (2,2) iscompletely empty. You can tell SciDB how you want to handle the missing data with various
array options.

First, consider the case of the completely empty cell, (2,2). By default, SciDB will leave empty cellsempty
and replace missing attributes with O:

CREATE ARRAY mdx4_m ssing <val 1: doubl e, val 2: i nt 32>
[x=0: 3, 4, 0,y=0: 3, 4,0];
| oad(mdx4_m ssing, ' /tnp/ mix4_m ssing.txt');

[
[(0,100),(1,99),(2,98),(3,97)],

27

Creating and Removing SciDB Arrays

42.2.

[(4,0),(5,95),(6,94),(7,93)],
[(8,92),(9,91),().(11,89)],
[(12,88), (13,0), (14, 86), (15, 85)]
]

To change the default value, that is, the value the SciDB substitutes for the missing data, set the default
clause of the attribute option:

CREATE ARRAY mix4_m ssing
<val 1: doubl e, val 2:i nt 32 default 5468>
[x=0: 3, 4, 0,y=0: 3, 4,0];

(0,100), (1,99),(2,98),(3,97)],
(4,5468), (5, 95), (6,94), (7,93)],
(8,92),(9,91),(),(11,89)],

(12, 88), (13, 5468), (14, 86), (15, 85)]

T

Codes for Missing Data

In addition to simple single-valued NULL substitution described in the previous section, SciDB also
supports multi-valued NULLs using the notion of missing reason codes. Missing reason codes allow an
application to optionally specify multiple types of NULLs and treat each type differently.

For example, if afaulty instrument occasionally failsto report areading, that attribute could be represented
in a SciDB array as NULL. If an erroneous instrument reports readings that are out of valid bounds for
an attribute, that may also be represented as NULL.

NULL must be represented using the token 'null' or '? in place of the attribute value. In addition, NULL
values can be tagged with a"missing reason code" to help a SciDB application distinguish among different
types of null values—for example, assigning a unique code to the following types of errors: "instrument
error", "cloud cover", or "not enough data for statistically significant result”. Or, in the case of financial
market data, data may be missing because "market closed", "trading halted", or "data feed down".

The examples below show how to represent missing data in the load file. ? or null represent null values,
and 722 represents null value with areason code of 2.

[[(20, 4.5, "My String", "C), (10, 5.1, ?1, 'D),
(?2, 5.1, "Another String", ?)

or

[[(20, 4.5, "My String", "C), (10, 5.1, ?1, 'D),
(?2, 5.1, "Another String", null) .

Use the substitute operator to substitute different values for each type of NULL. For more information on
NULL substitution see the SciDB Operator Reference entry for substitute.

4.3. Array Dimensions

A SciDB array must have at least one dimension. Dimensions form the coordinate system for a SciDB
array. There are several special types of dimensions: dimensions with overlapping chunks, unbounded
dimensions, and noninteger dimensions.

28

Creating and Removing SciDB Arrays

4.3.1.

4.3.2.

4.3.3.

Note

The dimension sizeis determined by the range from the dimension start to end, so 0:99 and 1:100
would create the same dimension size.

Chunk Overlap

It is sometimes advantageous to have neighboring chunks of an array overlap with each other. Overlap is
specified for each dimension of an array. For example, consider an array A with the following schema:

A<a: int32>[i=1:10,5,1, j=1:30, 10, 5]

Array A has hastwo dimensions, i andj . Dimensioni has size 10, chunk size 5, and chunk overlap 1.
Dimensionj hassize 30, chunk size 10, and chunk overlap 5. SciDB stores cells from the chunk overlap
areain both of the neighboring chunks.

Some advantages of chunk overlap are:

 Speeding up nearest-neighbor queries, where each chunk may need access to a few elements from its
neighboring chunks,

 Detecting data clusters or data features that straddle more than one chunk.

Unbounded Dimensions

An array dimension can be created as an unbounded dimension by declaring the high boundary as ™.
When the high boundary is set as* the array boundaries are dynamically updated as new datais added to
the array. Thisis useful when the dimension sizeis not known at CREATE ARRAY time. For example,
this statement creates an array named open with two dimensions:

» Bounded dimension | of size 10, chunk size 10, and chunk overlap O
* Unbounded dimension J of size*, chunk size 10, and chunk overlap O.

AQ.% CREATE ARRAY open <val : doubl e>[| =0: 9, 10, 0, J=0: *, 10, 0] ;

Noninteger Dimensions and Mapping Arrays

Basic arraysin SciDB use the int64 data type for dimensions. SciDB also supports arrays with noninteger
dimensions. These arrays map dimension values of a declared type to an interna int64-array position.
Mapping is done through special mapping arrays interna to SciDB. Such arrays are useful when you are
transforming data into multidimensional format where some dimensions represent factors or categories.

For example, the array D has a noninteger dimension named ID:
AQ.% SELECT * FROM show(D) ;

[("D <val :int64 ,enpty_indicator:indicator >
[ID(string)=10,5,0]")]

The dimension indices of ID are:
AQ.% SELECT * FROM D: | D;

[("sanpl e-1"), ("sanpl e-10"), ("sanpl e-2"), ("sanpl e-3"),

29

Creating and Removing SciDB Arrays

("sanpl e-4"), ("sanpl e-5"), ("sanpl e-6"), ("sanple-7"),
("sanpl e-8"), ("sanpl e-9")]

The values of the attribute val of D are:
AQL% SELECT * FROM D
[(0),(90),(2),(6),(12),(20),(30), (42),(56),(72)]

Note

In the current version of SciDB, it is not possible to load data directly from an external file into
amapping array.

4.4. Changing Array Names

An array name is used to identify an array in the current SciDB namespace. You can use the AQL
SELECT ... INTO statement to rename an array.

AQL% SELECT * | NTO new_A FROM A;

This means that both A and new_A are in the current SciDB namespace. To change an array hame and
remove the old array name from the current SciDB namespace, use ther ename command:

AFL% r enanme(new_A, A backup);

You can usethe cast command to change the name of the array, array attributes, and array dimensions.
A single cast can be used to rename multipleitems at once, for example, one or more attribute names and/
or one or more dimension names. The input array and template arrays should have the same numbers and
types of attributes and the same numbers and types of dimensions.

AQL% SELECT * FROM show(A) ;
[("A<x:double ,err:double > [i=0:99, 10, 0, j =0: 99, 10, 0] ")]
This query creates an array new_A with attributesval 1 and val 2 and dimensionsx andy:

AQL% SELECT * | NTO new A
FROM cast (A, <val 1: doubl e, val 2: doubl e>
[x=0: 99, 10, 0, y=0: 99, 10,0] ") 1;

4.5. Database Design

4.5.1. Selecting Dimensions and Attributes

An important part of SciDB database design is selecting which values will be dimensions and which
will be attributes. Dimensions form a coordinate system for the array. Adding dimensions to an array
generally improves the performance of many types of queries by speeding up accessto array data. Hence,
the choice of dimensions depends on the types of queries expected to be run. Some guidelinesfor choosing
dimensions are;

» Dimensions provide selectivity and efficient accessto array data. Any coordinate along which selection
queries must be performed constitutes a good choice of dimension. If you want to select data subject

30

Creating and Removing SciDB Arrays

4.5.2.

to certain criteria (for example, all products of price greater than $100 whose brand name is longer
than six letters that were sold before 01/01/2010) you may want to design your database such that the
coordinates for those parameters are defined by dimensions.

 Array aggregation operators including group-by, window, or grid aggregates specify coordinates along
which grouping must be performed. Such values must be present as dimensions of the array. For spatia
and temporal applications, the space or time dimension is a good choice for a dimension.

* Inthe case of 2-dimensional arrays common in linear algebra applications, rows represent observations
and columns represent variables, factors, or components. Matrix operations such as multiply,
covariance, inverse, and best-fit linear equation solution are often performed on a 2-dimensional array
structure.

In the absence of thesefactors, choosing to represent values as attributesisgenerally agood idea. However,
SciDB offers the flexibility to transform data from one array definition to another even after it has been
loaded. This step is referred to as redimensioning the array and is especially useful when the same data
set must be used for different types of analytic queries. Redimensioning is used to transform attributes
to dimensions and vice-versa. Redimensioning an array is explained in the chapter "Changing Array
Schemas."

Chunk Size Selection

The selection of chunk size in a dimension plays an important role in how well you can query your data.
If achunk sizeistoo large or too small, it will negatively impact performance.

To optimize performance of your SciDB array, you want chunks to contain on order of 10 to 20 MB of
data. So, for example, if your data set consists entirely of double-precision humbers, you would want a
chunk size that contains somewhere between 500,000 and 1 million elements (assuming 8 bytes for every
double-precision number).

When a multiattribute SciDB array is stored, the array attributes are stored in different chunks, a process
known as vertical partitioning. Thisis a consideration when you are choosing a chunk size. The size of
an individual cell, or the number of attributes per cell, does not determine the total chunk size. Rather,
the number of cellsin the chunk is the number to use for determining chunk size. For arrays where every
dimension has a fixed number of cells and every cell has avalue you can do a straightforward calculation
to find the correct chunk size.

When the density of the data in a data set is highly skewed, that is, when the data is not evenly
distributed along array dimensions, the calculation of chunk size becomes more difficult. The calculation
isparticularly difficult when it isn't known at array creation time how skewed the dataiis. In this case, you
may want to use SciDB'srepartitioning functionality to change the chunk size as necessary. Repartitioning
an array is explained in the chapter "Changing Array Schemas."

31

Chapter 5. Loading Data

The key part of setting up your SciDB array is loading your data. This chapter begins by explaining the
simplest way to prepare and load a data file. Later, this chapter explains more complicated |oad scenarios
such as sparse loading and parallel loading. Finaly, this chapter shows you how to round-trip your data
by saving it from a SciDB array back out into acsv file.

The array data model is core to SciDB. When you define a schemafor an array you specify which aspects
of your data you want to be dimensions and which aspects you want to be attributes based on how you
want to conceptualize, access and operate on the data. Before loading data, you have to create an array
to load your data into. Refer to the chapter "Creating and Removing SciDB Arrays' for how to create a
SciDB array.

5.1. Simple Data Loading

This section describes how to do a simple data load procedure. The stepsin ssimple data loading are:

1. Saveyour datain comma-separated value (csv) format.

2. Usethe csv2scidb command to create a SciDB-formatted load file.

3. Create a 1-dimensional SciDB array to load the data into.

4. Usethe LOAD statement to load the data from the SciDB-formatted file into the array.

Consider the 20-line, csv-formatted filenum dat a. csv, thefirst few lines of which are shown here:

val , err

. 48306e+09, 1
. 80814e+08, 1
. 51079e+09, 1
. 16154e+09, 1
. 42655e+09, 1
. 06341e+09, 1

I I SN e [

This file has two entries per row, where the entries are labelled val and err. To prepare this file
for loading into a SciDB array, use the command csv2sci db. The csv2sci db command takes
multicolumn csv data and transforms it into 1-dimensional arrays with one attribute for every comma-
delimited column. The syntax of csv2sci db is:

csv2scidb [options] < input-file > output-file

Note

csv2sci db is accessed directly at the command-line and not through the i query client. To
seetheoptionsfor csv2sci db, typecsv2sci db - - hel p at thecommand line. The options
for csv2scidb are:

-v version of tool

-i PATH i nput file

-0 PATH out put file

-a PATH appended output file

32

Loading Data

-c INT I ength of chunk

-f INT starting chunk nunmber

-d char delimter,default is , (comm)

-p STR type pattern, N nunber, S string, s nullable
string, C char

-q Quote the input line exactly, sinply wap it in ()

-s INT skip Nlines at the beginning of the file

This code will transform num_dat a. csv to SciDB load file format:
csv2scidb -s 1 -p N < num data.csv > num dat a. sci db

The -s flag specifies the number of lines to skip at the beginning of the file. Since the file has a header,
you can strip that line, and provide that information as attribute names. The -p flag specifies the type of
datayou are loading. Possible values are N (number), S (string), s (nullable string), and C (char).

Thefilenum dat a. sci db lookslikethis:

(1. 48306e+09, 1),
(5.80814e+08, 1),
(1.51079e+09, 1),
(1.16154e+09, 1),
(1.42655e+09, 1),
(1.06341e+09, 1),
(4.9253e+08, 1),
(5. 6065e+08, 1),
(1. 60886e+08, 2),
(1.37844e+09, 1),
(4. 08495e+08, 1),
(5. 65393e+07, 1),
(1.47646€+09, 1),
(9. 52609e+08, 1),
(1.8548e+09, 1),
(1.42396e+09, 1),
(1.75107e+09, 1),
(1.52007e+09, 1),
(5. 4882e+08, 1),
(7.28928e+08, 1)

The square braces show the beginning and end of the array dimension. The parentheses show the cells of
the array. There are commas between attributesin cells and cellsin the dimension.

To create an array for this data, create an array with 1-dimension. The original data set had two column
headers of val and err, so you can name the attributesval anderr:

AQ.% CREATE ARRAY num dat a <val : doubl e, err: doubl e>[i];
To load the datainto the array num_dat a, use a LOAD statement:

AQ.% LOAD num dat a
FROM ' base- pat h/ doc/ user/ exanpl es/ num dat a. sci db' ;

Thebase- pat h isthe directory where your SciDB source files are stored.

33

Loading Data

5.2. Data with Special Values

Suppose you have aload file that is missing some values, like thisfile, v4. sci db:

[
(0,100),(1,99),(2,),(3,97)

]

The load file v4. sci db has amissing value in the third cell. If you create an array and load this data
set, SciDB will substitute O for the missing value:

AQL% CREATE ARRAY v4 <val 1:int8,val 2:int8>[i=0:3,4,0];
AQL% LOAD v4 FROM '/ exanpl es/ v4. sci db';

[
(0, 100), (1,99), (2,0),(3,97)

]

To changethedefault value, that is, the value the SciDB substitutesfor the missing data, set the DEFAULT
attribute option. This code creates an array v4_df | t with default attribute value set to 111:

AQL% CREATE ARRAY v4 dflt

<val 1:int8,val 2:int8 default 111>[i=0: 3, 4,0];
AQL% LOAD v4_dflt

FROM ' / exanpl es/ v4. sci db' ;

[
(0, 100), (1, 99), (2, 111), (3, 97)

]

Load files may also contain null values, such asin thisfile,v4_nul | . sci db:

[
(0,100),(1,99), (2, null), (3,97)

]

To preserve null values at load time, add the NULL option to the attribute type:

AQL% CREATE ARRAY v4_nul |
<val 1:int8,val 2:int8 NULL> [i=0:3, 4, 0];
AQL% LOAD v4_nul |

FROM ' / exanpl e/ v4_nul | . sci db’;

[
(0,100),(1,99), (2, null),(3,97)

]
5.3. Sparse Load Format

The sparse load format allows alarge number of cells to be unspecified. In the sparse load format, datais
listed by chunks. Chunks are delimited by two square brackets. There are semicolons between chunks.

[[chunk1]];
[[chunk2]];

Loading Data

5.3.1.

Within each chunk, the datais organized as alist of cells. Each cell includes the coordinate indices of the
cell in curly braces and the attributes of the cell (separated by commas) in parentheses.

[[{indexl,index2,...} (attributel,attribute2,...),
{indexm indexn} (attributelmattribute2n)]];

For example, aload file for adiagonal 2-D array with two chunks looks like this:

,0}(0,"A) . {1,1}(1,"B).{2,2}(2,"C).{3,3}(3,' D)

,4}(6,"G).{5,5}(7,"P),{6,6}(9,"H)

— N— O

Thisdatais stored like this:

Tip

In addition to storing the data, LOAD operator returns the data back to the client (or next operator
in the query). When the data set is very large, you may want to suppress the query output.
Thei query executable that accompanies SciDB includes the - n option for this purpose. See
"Getting Started with SciDB Development" for how to usei query.

Sparse Load Chunks

Consider aload filelike this:

0} (11),
, 0} (21),
1} (12)

» 2} (13)

, 0} (31),
3,0} (41),
(32),
3,1} (42)

2} (33),
3} (44)

, 0} (81),
1} (72),
1} (82)

L A A e 1 e A A 1 e A A A A 1 e A 1 e Ay Ay A —
N
=
—

35

Loading Data

[
{6,2} (73),
{7,2} (83),
{7,3} (84)
11;
[
{8,0} (91)
11;
[
{8,2} (93),
{8,3} (94)
1]

The chunk distribution in the load file requires that the array have chunks of size 2 in the first dimension
and chunks of size 2 in the second dimension. The array schemafor thisload fileis:

<attribute:intl6>]x=0:8,2,0,y=0:3,2,0];

5.4. Parallel Load

The simple dataloading procedure serially loads all the datafrom asingleload file. Y ou can set up parallel
loading for much faster loading. Parallel loading is more complex because it requires the creation of
multiple load files which are chunk-size specific. That is, they are custom constructed around a known
chunk size and have to be written with embedded chunk identifiers.

The optional id parameter instructs the LOAD command to open and load data from a particular instance
of SciDB. Possibleid values are;

id Value Description
0 Coordinator
1,2,..,N id of the instance that should perform the load where N is the number of

instances in the cluster.

-1 All instances in the cluster. The file path is assumed to be the same at all
instances. If an instance cannot open the data file, the load will continue
after logging awarning.

For parallel load, each instance must be given distinct chunks. To do this, chunks in the load file must be
prefixed with adistinct chunk header that lists the starting dimension values of the chunk.

If your SciDB cluster has 4 instances (with identifiers 1, 2, 3, and 4) and there are 20 chunks, you can
place chunks 1-5 on instance 1, chunks 6-10 on instance 2, and so on. The following load command will
simultaneously load all 20 chunks into the array and complete 4 times faster.

AFL% | oad (Array, '/tnp/load.data', -1);

5.5. Saving Data from a SciDB Array to a File

You can save al or part of the datathat is contained in a SciDB array to afile. Youcanusea SELECT
statement with the SAVE clause to save an entire array. For example, consider the following array
random nunbers:

AQ.% CREATE ARRAY random nunbers <val : doubl e>[i =0: 99, 100, 0] ;

36

Loading Data

AQL% SELECT * | NTO random numnber s
FROM bui | d(random _nunber s, randon{()) ;

Y ou can save the values stored in the array r andom_nunber s to afile with the following query:

AQ_% SAVE random nunber s
I NTO '/t np/ random dat a. t xt "' ;

This statement saves a SciDB-formatted file called r andom dat a. t xt .
To savethedatato csv format, set thei quer y output optionto csv:

% iquery -o csv -q "SAVE random nunbers
I NTO '/t np/ random dat a. csv' ;"

val , val _rand
1, 939618095
2,1011655774
3, 3620619210
4,2317057332
5, 6137260845
6, 10771327980
7, 4496569336
8, 10364290328
9, 2309513805
10, 1398261690

Note

Y ou will need to enter your iquery statement directly at the command line to change the output
optionto csv. Typeexi t; at the AQL%prompt to stop the current i quer y session.

37

Chapter 6. Basic Array Tasks

6.1. Selecting Data From an Array

6.1.1.

AQL's Data Manipulation Language (DML) provides queries to access and operate on array data. The
basisfor selecting datafrom a SciDB array isthe AQL SELECT statement with | NTO, FROM and WHERE
clauses. The syntax of the SELECT statement is:

SELECT list | *
[NTO target _array]

FROM array_expression | source_array

[WHERE expr essi on]
The arguments for the statement are:

list|*

target _array

array_expression|
source_array

expr essi on

SELECT | i st can select individual attributes and dimensions, as
well as constants and expressions. The wildcard character * means
select all attributes.

The | NTO clause can create an array to store the output of
the query. The target array may also be a pre-existing array in the
current SciDB

The FROM clause takes a SciDB array as argument. The
array_expressi on argument isan expression or subquery that
returns an array result. The source_array is an array in the
current SciDB namespace from which datais being selected.

The expr essi on argument of the WHERE clause allows to you
specify parameter that filter the query.

The SELECT Statement

AQL expressionsinthe SELECT listorthe WHERE clause are standard expressions over the attributes
and dimensions of the array. The simplest SELECT statement is SELECT *, which selects all data
from a specified array or array result. Consider two arrays, A and B:

AQL% CREATE ARRAY A <val _a: doubl e>[i =0:9, 10, 0] ;
AQL% CREATE ARRAY B <val _h: doubl e>[j =0:9, 10, 0] ;

These arrays contain data. To see al the datain the array, you can use a SELECT * statement with the
scan command. Thescan(A) command returns a SciDB array result containing the values of the array
datain A. By using scan(A) withaSELECT * statement, the query will return the entire array result

of scan(A):

AQL% SELECT * FROM scan(A);

[(1),(2),(3),(4),(5),(6),(7),(8),(9),(10)]
AQL% SELECT * FROM scan(B);

[(101),(102), (103), (104), (105),
(106), (107), (108), (109), (110)]

38

Basic Array Tasks

The show command returns an array result containing an array's schema. To see the entire schema, use
aSELECT * statement with the show command:

AQL% SELECT * FROM show(A) ;
[("A<val _a: doubl e> [i=0:9,10,0]")]
AQL% SELECT * FROM show(B);
[("B<val _b: doubl e> [j=0:9, 10,0]")]

To refine the result of the SELECT statement, use an argument that specifies part of an array result.
SELECT can take array dimensions or attributes as arguments:

SELECT j FROM B;
SELECT val _b FROM B;

The SELECT statement can also take an expression as an argument. For example, you can scale attribute
values by a certain amount:

AQL% SELECT val _b/ 10 FROM B;

[(10.1), (10.2), (10.3), (10.4), (10.5),
(10.6), (10.7),(10.8), (10.9), (11)]

The WHERE clause can also use built-in functions to create expressions. For example, you can choose
just the middle three cells of array B with the greater-than and less-than functions with the and operator:

SELECT j FROMB WHERE j > 3 and j < 7;

[O,0,0,0.04),035,(6),0),0,0]

You can also select an expression of the attribute values for the middle three cells of B by providing an
expression for the argument of both SELECT and WHERE . For example, this statement returns the
square root of the middle three cells of array B:

SELECT sqgrt(val _b) FROM B WHERE j >3 and j <7;
[O).0.0,0,(10.247),(10.2956), (10.3441), (). (). ()]

The FROM clause can take an array or any operation that outputs an array as an argument. The | NTO
clause stores the output of a query.

6.2. Array Joins

A join combines two or more arrays typically as a preprocessing step for subsequent operations. The
simplest type of join is for two arrays with the same number of dimensions, same dimension starting
coordinates, and same chunk size.

The syntax of asimple join statement is;
SELECT expression I NTO target _array FROM src_array
The natural join of these arrays joins the attributes:

SELECT * FROM A B;

39

Basic Array Tasks

Thisjoin produces:

[(1,101), (2, 102), (3, 103), (4, 104), (5, 105),
(6,106), (7, 107), (8, 108), (9, 109), (10, 110)]

You can store the output using the | NTO clause. For example, this code will store the attribute-attribute
joinof A and B inarray C:

AQL% SELECT * | NTO C FROM A, B;

Arraysdo not need to have the same number of attributesto be compatible aslong asthe dimension starting
indices, chunk sizes, and chunk overlaps are the same. For example, you can join the two-attribute array
C with the one-attribute array B:

AQL% SELECT * | NTO D FROM C, B;
This produces array D with the following schema:

[("D<val _a: doubl e,
val _b: doubl e,

val _b_2: doubl e>
[i=0:9,10,0]")]

If two arrays have an attribute with the same name, you can select the attributes to use with array dot
notation:

AQL% SELECT C.val b + D.val b FROM C, D

The JAON ... ON predicate caculates the multidimensional join of two arrays after applying the
constraints specified in the ON clause. The ON clause lists one or more constraints in the form of equality
predicates on dimensions or attributes. The syntax is:

SELECT list | *
[I NTO target _array]
FROM array_expression | source_array
JO N expression | attribute ON dinmension | attribute

A dimension-dimension equality predicate matches two compatible dimensions, one from each input. The
result of thisjoin is an array with higher number of dimensions—combining the dimensions of both its
inputs, less the matched dimensions. If no predicate is specified, the result is the full cross product array.
An attribute predicate in the ON clause is used to filter the output of the multidimensional array.

For example, consider a 2-dimensional array nBx 3schema and attributes values:

("nmBx3<a: doubl e> [i=1:3,3,0,j=1:3,3,0]")]

[

[
[(4).(5).(6)],
[(7).,(8),(9)],
][(10),(11),(12)]

Now consider also a 1-dimensional array vect or 3 schemaand attribute values:

[("vect or 3<b: doubl e> [k=1:3, 3,0]")]
[(21),(20.5), (20.3333)]

40

Basic Array Tasks

A dimension join returns a 2-dimensional array with coordinates{i, j } in which the cell at coordinate
{i,j} combinesthecell at{i,j} of "Bx3 withthecell at coordinate{ k=j } of vect or 3:

AQ % SELECT * FROM nBx3 JO N vector3 ON nBx3.j = vector3.Kk;

(4,21), (5, 20.5), (6, 20.3333)],
(7,21), (8, 20.5), (9, 20. 3333)],
(10, 21), (11, 20. 5), (12, 20. 3333)]

—t — — ——

6.3. Aliases

AQL provides away to refer to arrays and array attributes in a query via aliases. These are useful when
using the same array repeatedly in an AQL statement, or when abbreviating along array name. Aliases
are created by adding an "as" to the array or attribute name, followed by the alias. Future references to the
array can then use the alias. Once an alias has been assigned, all attributes and dimensions of the array can
use the fully qualified name using the dotted naming convention.

AQL% SELECT data.i*10 FROM A AS data WHERE A.i < 5;

[(0), (10),(20),(30),(40), (), (), (), (), O]

6.4. Nested Subqueries

You can nest AQL queriesto refine query resullts.

For example, you can nest SELECT statements beforea WHERE clause to select a subset of the
guery output. For example, this query

1. Sumstwo attributes from two different arrays and stores the output in an alias,
2. Selectsthe cells with indices greater than 5, and
3. Squares theresullt.

AQL% SELECT pow(c, 2) FROM
(SELECT A.val _a + B.val _b AS c FROMA B) WHERE i > 5;

[O.0.0.0.0.0,(12996), (13456), (13924), (14400)]

6.5. Data Sampling

SciDB provides operationsto sample array data. Theber noul | i command allowsyou to select a subset
of array cells based upon a given probability. For example, you can use the ber noul | i operator to
randomly sample data from an array one element at atime. The syntax of ber noul | i is:

bernoul l'i (array, probability:double [, seed:int64])
The sanpl e command allows you to randomly sample data one array chunk at atime:
sanpl e(array, probability:double [, seed:int64])

The probability isadouble between 0 and 1. The commandswork by generating arandom number for each
cell or chunk in the array and scaling it to the probability. If the random number is within the probability,

41

Basic Array Tasks

the cell/chunk isincluded. Both commands allow you to produce repeatable results by seeding the random
number generator. All callsto the random number generator with the same seed produce the same random
number. Seeds must be a 64-bit integer.

42

Chapter 7. Aggregates

SciDB supports commands to group datafrom an array and cal culate summaries over those groups. These
commands are called aggregates. SciDB provides the following types of aggregates based on how data
is grouped:

» Grand aggregates compute aggregates over entire arrays.

» Group-by aggregates compute summaries by grouping array data by dimension values.
 Grid aggregates compute summaries for nonoverlapping subarrays.

» Window aggregates compute summaries over amoving window in an array.

Thischapter usesexamplearraysmix4 andndx4_2at t r , which havethefollowing schemasand contain
the following values:

AFL% show(mix4) ;
[("mix4<attrl:doubl e> [x=0:3,4,0,y=0:3,4,0]")]

AFL% scan(mix4) ;

(0),(1),(2),(3)],
(4),(5),(6),(N],
(8),(9),(10), (11)],
(12),(13),(14), (15)]

T s

AFL% show mdx4 2attr);

[("mix4 2attr<attrl: doubl e, attr?2: doubl e>
[x=0:3,4,0,y=0:3,4,0]")]

AFL% scan(mix4_2attr);

(0,0),(1,2),(2,4),(3,6)],
(4,8),(5,10),(6,12), (7, 14)],
(8,16), (9, 18), (10, 20), (11, 22)],
(12, 24), (13, 26), (14, 28), (15, 30)]

s

SciDB offers the following built-in aggregates.

Aggregate Function Definition

avg Average value

count Number of nonempty elements (array count) and non-null elements
(attribute count).

max Largest value

nmn Smallest value

sum Sum of all elements

43

Aqggregates

st dev ‘ Standard deviation

var ‘Variance

7.1. Grand Aggregates

Grand aggregates in SciDB calculate aggregates or summaries of attributes across an entire array. The
syntax of the SELECT statement with asummary clauseis:

AQ.% SELECT aggregate(attribute),function(attribute), ...
| NTO dst-array
FROM src-array | array-expression
VWHERE wher e- expr essi on

The output is a SciDB array with one attribute named for the summary type in the query and array
dimensions determined by the size and shape of the result.

For example, to select the maximum and the minimum values of the attributeat t r 1 of the array mdx 4.
AQL% SELECT max(attrl),m n(attrl) FROM n#x4;

[(15,0)]

Y ou can store the output of a query into adestination array, mdx4_max_mi nwithan | NTO clause:

AQL% SELECT max(attrl),m n(attr1l)
| NTO mix4_max_min
FROM n¥x4,

The destination array mdx4_max_m n has schema:
[("mix4 _max_m n<max: doubl e NULL, mi n_1: doubl e NULL> [i=0:0,1,0]")]

To select the maximum value from the attribute val of mix4_2at t r and the minimum value from the
attributeval 2 of mix4_2attr:

AQ.% SELECT max(attr2),mn(attr)
FROM mdx4 2attr;

[(30,0)]

Note

In the special case of a one-attribute array, you can omit the attribute name. For example, to
select the maximum value from the attribute at t r 1 of the array mdx4, usethe AQL SELECT
statement:

AQ.% SELECT nmax(n#x4);
[(15)]

The AFL aggr egat e operator also computes grand aggregates. To select the maximum value from the
attribute val of mdx4_2at t r and the minimum value from the attribute val 2 of mdx4_2attr:

AFL% aggregat e(mix4_2attr, max(attr2), mn(attrl));

Aqggregates

[(30,0)]

SciDB functions exclude null-valued data. For example, consider the following array mdx4_nul | :

ul 1), (nul 1), (nul), (null)],
ull), (nul 1), (null), (null)]
), (0),(0),(0)],

ull), (nul 1), (null), (null)]

Thesyntaxescount (attr 1) and count (*) return different results:

AQ.% SELECT count (attrl1l) AS a, count(*) AS b
FROM midx4 _nul | ;

[(4,16)]

One syntax, count (attr 1), shows only cells that have values that are not NULL. The other syntax,
count (*), countsall of the present cells (both NULL and not NULL).

7.2. Group-By Aggregates

Group-by aggregates allow you to group array data by array dimensions and summarize the datain those
groups.

AQL GROUP BY aggregatestakealist of dimensionsasthe grouping criteriaand compute the aggregate
function for each group. The result is an array containing only the dimensions specified in the GROUP
BY clause and a single attribute per specified aggregate call. The syntax of the SELECT statement
for agroup-by aggregateis:

SELECT function(attribute), function(attribute),
| NTO dst-array
FROM src-array | array-expression
VWHERE wher e- expr essi on
GROUP BY di nensi on, di nension, ...;

For example, this query selects the maximum value from the attribute val of array ndx4 grouped by
dimension x:

AQL% SELECT max(attr1)
FROM x4
GROUP BY X;

This query outputs:

[(3),(7),(11),(15)]

which has schema:

<max: doubl e NULL> [x=0: 3, 4, 0]

This query selects the maximum values from attribute at t r 1 of array mdx4 grouped by dimensiony:
AQL% SELECT nax(attr1l) FROM mix4 GROUP BY y;

[(12),(13),(14),(15)]

45

Aqggregates

The AFL aggr egat e operator takes dimension arguments to support group-by functionality. This query
selects the maximum values from the dimension y and attribute val from the array mdx4 using AFL:

AFL% aggr egat e(mix4, max(attrl),y);

[(12),(13),(14),(15)]

7.3. Grid Aggregates

A grid aggregate selects nonoverlapping subarrays from an existing array and calculates an aggregate of
each subarray. For example, if you have a 4x4 array, you can create 4 nonoverlapping 2x2 regions and
calculate an aggregate for those regions. The array ndx4 would be divided into 2x2 grids as follows:

Grid 1 Grid 2

Grid 3

The syntax of agrid aggregate statement is:

AQ.% SELECT function(attribute), function(attribute),
| NTO dst-array
FROM src-array | array-expression
WHERE wher e- expr essi on
REGRI D di mensi onl-size, dinmension2-size, ...;

For example, this statement finds the maximum and minimum values for each of the four grids in the
previous figure:

AQ.% SELECT nmax(attrl1), min(attrl)
FROM mix4 REGRID 2, 2;

(5,0),(7,2)],
(13,8),(15,10)]

=

This output has schema:

<mex: doubl e NULL, mi n_1: doubl e NULL> [x=0:1, 2,0, y=0: 1, 2, 0]
In AFL, you can usether egr i d operator:

AFL% regrid(mix4, 2,2, max(attrl), mn(attrl));

[
[(5,0),(7,2)],

46

Aqggregates

[(13,8), (15, 10)]
]

7.4. Window Aggregates

Window aggregates allow you to specify groups with a moving window. The window is defined by asize
in each dimension. The window centroid starts at the first array element. The grouping starts at the first
element of the array and movesin stride-major order from the lowest to highest value in each dimension.
The syntax of awindow aggregate statement is:

AQ.% SELECT function(attribute), function(attribute),
| NTO dst-array
FROM src-array | array-expression
VWHERE wher e- expr essi on
W NDOW di nensi onl-si ze, di mensi on2-size, ...;

For example, you can use awindow to calculate a running sum for a 3x3 window on array n¥x4.

In AQL, you would use this statement:

AQL% SELECT sun{attr1)
FROM x4
W NDOW 3, 3;

Which returns values:

10),(18),(24),(18)],
27), (45),(54),(39)],
51),(81),(90), (63)],
42),(66), (72), (50)]

—— — ———
—~ A~

with schema:

47

Aqggregates

<sum doubl e NULL> [x=0: 3, 4, 0, y=0: 3, 4, 0]

Since thewindow centroid starts at cell { 0,0}, the region of the window that is outside the array boundary
is not counted in the aggregation. The window always returns the same dimensions as the input array. If
the window size is even, the query takes the preceding cells first. For example, a 1-dimensiona window
size of 4 means that the window takes the values of two 2 preceding cells, the value of the current cell,
and the value of 1 cell following.

In AFL, you would use thewi ndow operator:

AFL% wi ndow(mdx4, 3, 3, sum(attrl));

10),(18),(24),(18)],
27),(45),(54),(39)],
51),(81),(90),(63)],
42),(66),(72),(50)]

—— — ———
—~ A~~~

48

Chapter 8. Updating Your Data

SciDB uses a "no overwrite" storage model. No overwrite means that data in an array can be updated
but previous values can be accessed as long as the array exists in the SciDB namespace. Every time you
update datain an array, SciDB creates anew array version, much like source control systemsfor software
development.

8.1. The UPDATE ... SET statement

To update datain an existing SciDB array, use the statement:
AQ.% UPDATE array SET "attr = expr", ... [WHERE condition];
Consider the following 2-dimensional array, n¥x4:

(" mix4<val : doubl e> [x=0: 3,4, 0, y=0:3,4,0]")]

[
[
[(0),(1),(2),(3)],
[(4).(5).(6),(7N],
[(8),(9),(10), (11)],
}(12),(13),(14),(15)]

To change every valueinval toitsadditive inverse:

AQL% UPDATE n¥x4 SET val =-val ;

(0),(-1),(-2),(-3)],
(-4),(-5).,(-6),(-N],
(-8),(-9),(-10), (-11)],
(-12),(-13),(-14), (- 195)]

e

The WHERE clauseletsyou choose attributes based on conditions. For example, you can select just cells
with absolute values greater than 5 to set to their multiplicative inverse:

AQL% UPDATE mix4 SET val =pow(val ,-1) WHERE abs(val) > 5;

(01('1)1('2)1('3)]1
(-4),(-5),(-0.166667), (-0.142857)],

(-0.125), (-0.111111), (-0. 1), (- 0. 0909091)],
(_

)
4
0
0. 0833333), (- 0. 0769231), (- 0. 0714286) , (- 0. 0666667)]

T

8.2. Array Versions

When an array is updated, a new array version is created. SciDB stores the array versions. For example,
in the previous section, SciDB stored every version of m4x4 created by the UPDATE command. You
can see these versionswith ver si ons:

AQ % SELECT * FROM ver si ons(mix4);

49

Updating Y our Data

[(1,"2012-02-03 17:20:50"),
(2,"2012-02-06 14:51:20"),
(3,"2012-02-06 14:52:33")]

Y ou can see the contents of any previous version of the array by using the version number:

AQ % SELECT * FROM scan(ndx4@l) ;
[

[(0),(1),(2).(3)],
[(4),(5),(6),(7)],
[(8),(9),(10), (11)],
%(12),(13),(14),(15)]

Or the array timestamp:

AQ.% SELECT * FROM scan(mix4@lat eti me(' 2012- 02- 03 17:20:50'));
[

[(0),(1),(2),(3)],

[(4),(5),(6),(7)],

[(8),(9),(10), (11)],

}(12),(13),(14),(15)]

Y ou can use the array version name in any query. The unqualified name of the array aways refers to the
most recent version as of the start of the query.

50

Chapter 9. Changing Array Schemas:
Transforming Your SciDB Array

9.1. Redimensioning an Array

A common use case for creating and loading SciDB arraysis using data from a data warehouse. This data
set may be very large and formatted as a csv file. Y ou can use the csv2scidb utility to convert acsv file
to the 1-dimensiona array format and load the file into a SciDB array. Once you have a 1-dimensional
SciDB array, you can redimension the array to convert the attributes to dimensions.

For example, suppose you have acsv filelike this:

d, t,val

"devi ce-0","trial-0",0.01
"device-1","trial -0", 2. 04
"device-2","trial-0",6.09
"device-3","trial-0",12.16
"device-4","trial -0", 20. 25
"device-0","trial-1", 30. 36
"device-1","trial -1", 42. 49
"device-2","trial -1",56. 64
"device-3","trial-1",72.81
"device-4","trial-1",91
"device-0","trial-2",111.21
"device-1","trial -2", 133. 44
"device-2","trial-2",157. 69
"device-3","trial -2",183. 96
"device-4","trial -2",212. 25
"device-0","trial-3",242.56
"device-1","trial -3", 274. 89
"device-2","trial -3",309. 24
"device-3","trial-3", 345. 61
"device-4","trial -3", 384
"device-0","trial -4",424. 41
"device-1","trial -4", 466. 84
"device-2","trial -4",511. 29
"device-3","trial -4",557.76
"device-4","trial -4", 606. 25

Thisdatahasthree columns, two of which are stings and one which isafloating-point number. The column
headers are 'd','t',and 'val'. To load this data set, create a 1-dimensional SciDB array with three attributes
and load thedatainto it. For thisexample, the array isnamed expo. The dimension nameisi, the dimension
sizeis 25, the chunk sizeis 5. The attributes are s, of type string, p of type string, and val of type double.

AQL% SELECT * FROM show(device_trial);

[("device_trial<d:string,t:string,
val : doubl e> [i=1:25,5,0]")]

When you examine the data, notice that it could be expressed in a 2-dimensional format like this:

51

Changing Array Schemas;
Transforming Y our SciDB Array

9.1.1.

trial-0 trial-1 trial-2 trial-3 trial-4
device-0 0.01 30.36 111.21 242.56 424.41
device-1 204 42.49 133.44 274.89 466.84
device-2 6.09 56.64 157.69 309.24 511.29
device-3 12.16 72.81 183.96 345.61 557.76
device-4 20.25 91 212.25 384 606.25

SciDB alowsyou to redimension the data so that you can storeit in this 2-dimensional format. First, create
an array with 2 dimensions:

AFL% create array two_dim
<val : doubl e>
[d(string)=5,5,0, t(string)=5,5,0];

Each of the dimensionsis of size 5, corresponding to a dimension in the 5-by-5 table. Now, you can use
the redimension_store operator to redimension the array device_tria into the array two_dim:

AFL% r edi nensi on_store(device_trial, two _dim;

(0.01), (30.36), (111.21), (242.56), (424.41)],
(2.04), (42.49), (133.44), (274.89), (466.84)],
(6.09), (56.64), (157.69), (309. 24), (511.29)],
(12.16), (72.81), (183. 96), (345. 61), (557. 76)],
(20.25), (91), (212. 25), (384), (606. 25)]

e

Now the data is stored so that device and trial numbers are the dimensions of the array. This means that
you can use the dimension indices to select data from the array. For example, to select the second device
from the third trial, use the dimension indices:

AQ.% SELECT val FROM two_di m WHERE s='device-2' and p='trial-3";

Redimensioning is a powerful tool when you want to do array aggregation along the coordinate axes of a
data set. For example, you can find the average value of atrial for each device. This would be equivalent
to finding the average of every row in the table:

AFL% create array Ds
<av: doubl e NULL>[d(string)=5,5,0];
redi mensi on_store(device trial, Ds, true, avg(val) as av);

Or, you can find the average value of all the samplesfor asingletria. Thiswould be equivalent to finding
the average of every column in thetable:

AFL% create array Dp
<av: doubl e NULL>[d(string)=5,5,0];
AFL% r edi mensi on_store(device_trial, Dp, true, avg(val) as av);

Redimensioning Arrays Containing Null Values

Nullable attributes cannot be transformed into dimensions. For example, consider the 1-dimensional array
redim_missing:

AFL% show(r edi m_ni ssi ng) ; scan(redi m ni ssi ng);

[("redi m m ssing<val 1:string, val 2: stri ng NULL, val 3: doubl e>

52

Changing Array Schemas;
Transforming Y our SciDB Array

[i=0:9,10,0]")]
[("0","0", 1),
("0","1", 0.540302),
("0","2",-0.416147),
("0","3",-0.989992),
("0","4",-0.653644),
("1","null",.7),
("1","1", 0. 841471),
("1","2",0.909297),
("1","3",0.14112),
("1","4", -0.756802)
]

Suppose you want to change the first two attributes into dimension indices and store the third attribute in
a2-dimensional array. Create an array redim_target to store the redimension results:

AFL% CREATE ARRAY redi mtarget <val 3: doubl e>
[val 1(string)=2, 2,0, val 2(string)=5,5,0];

The array redim_missing contains a nullable attribute and a null-valued cell. You will need to use the
substitute operator to update redim_missing before redimensioning:

AFL% st or e(bui | d(<expl:string>[i=0:0,1,0],0),subst_array);
AFL% st ore(substitute(redi m m ssing, subst _array), redi m source);

This query outputs:

[

("0","0", 1),
("0","1",0.540302),
("0","2",-0.416147),
("0","3",-0.989992),
("0","4",-0.653644),
("1*,"0",.7),
("1","1",0.841471),
("1","2",0.909297),
("1","3",0.14112),
("1","4",-0.756802)
]

Y ou can now use redimension_store to turn redim_source into a 2-dimensional array:
AFL% r edi nensi on_store(redi m source, redi mtarget);
This query outputs:

(1), (0.540302), (-0.416147), (-0.989992), (- 0. 653644)],
(.7), (0.841471), (0.909297), (0. 14112), (- 0. 756802)]

T

9.2. Array Transformations

Once you have created, loaded, and redimensioned a SciDB array, you may want to change some aspect
of that array. SciDB offers functionality to transform the elements of the array schema (attributes and
dimensions).

53

Changing Array Schemas;
Transforming Y our SciDB Array

9.2.1.

The array transformation operations produce a result array with a new schema. They do not modify the
source array. Array transformation operations have the signature:

AQ.% SELECT * FROM oper ati on(source_array, par anet ers)
This query outputs a SciDB array. To store that array result, usethe | NTO clause:

AQ.% SELECT * INTO result _array FROM operati on(source_array, paramnet ers)

Rearranging Array Data

SciDB offers functionality to rearrange an array data:
» Reshaping an array by changing the dimension sizes. is performed with ther eshape command.

» Unpacking a multidimensiona array into a 1-dimensional array is performed with the unpack
command.

» Reversing the cellsin adimension is performed with ther ever se command.

For example, you might want to reshape your array from an m-by-n array to a 2m-by-n/2 array. The

r eshape command allows you to transform an array into another compatible schema. Consider a 4x4
array, mix4, with contents and schema as follows:

AFL% show(mix4) ; scan(ndx4) ;

[("mix4<val : doubl e> [i=0:3,4,0,j=0:3,4,0]")]
[

[(0),(1),(2),(3)],

[(4).(5).(6),(7)],

[(8),(9),(10),(11)],

][(12),(13),(14),(15)]

As long as the two array schemas have the same number of cells, you can use reshape to transform one

schema into the other. A 4x4 array has 16 cells, so you can use any schema with 16 cells, such as 8x2,
as the new schema:

AQL% SELECT * | NTO nBx2 FROM
r eshape(mix4, <val : doubl e>
[i2=0:7,8,0,j2=0:1,2,0]);

— — — — — — ————
AN AN AN AN AN S

A specia case of reshaping is unpacking a multidimensional array to a 1-dimensional array. When you
unpack an array, the coordinates of the array cells are stored in the attributes to the result array. Thisis
particularly useful isyou are planning to save your datato csv format.

Changing Array Schemas;
Transforming Y our SciDB Array

9.2.2.

The unpack command takes the second and higher dimensions of an array and transforms them into
attributes along the first dimension. The result array consists of the dimension values of the input array
with the attribute values from the corresponding cells appended. So, an attribute value val that wasin
row 1, column 3 of a2-dimensiona array will be transformed into a cell with attribute values 1,3,val .
For example, a2-dimensional, 1-attribute array will output a 1-dimensional, 3-attribute array as follows:

AQL% SELECT * FROM show(n8x3);
[("mBx3<val : doubl e> [i=0:2,3,0,j=0:2,3,0]")]
AQ.% SELECT * | NTO nll FROM unpack(nBx3, k) ;

[(0,0,0),
(0,1,1),
(0,2,2),
(1,0,3),
(1,1,4),
(1,2,5),
(2,0,6),
(2,1,7),
(2,2,8),
(0,0,0),
(0,0,0),
(0,0,0)]

AQL% SELECT * FROM show()

[("mi<i:int64,

j:int64,

val : doubl e>

[val 1=0: 15, 4,0]")]

Y ou can reverse the ordering of the datain each dimension of an array with ther ever se command:
AFL% show(mBx3) ; scan(nBx3) ;

[("mBx3<val : doubl e> [i=0:2,3,0,j=0:2,3,0]")]
[[(0),(1).(2)].[(3),(4).(5].[(6),(7).(8)]]

AQ.% SELECT * FROM reverse(nBx3);

(0)]]

[
[
[
[

—_~—~
N U1 00
Nt N N
—_~—~
BN~
Nt N N
—_~—~

6)
3)
0)

—_—

Reduce an Array

One common array task is sel ecting subsets of an array. SciDB allowsyou to reduce an array to contiguous
subsets of the array cells or noncontiguous subsets of the array's cells.

» A subarray is acontiguous block of cells from an array. This action is performed by the subar r ay
command.

e Anarray diceis a subset of the array defined by planes of the array. This action is performed by the
sl i ce command.

55

Changing Array Schemas;
Transforming Y our SciDB Array

» A dimension can be winnowed or thinned by selecting data at intervals along its entirety. This action
is performed by thet hi n command.

You can select part of an existing array into another array with the subar r ay command. For example,
you can select a 2-by-2 array of the last two values from each dimension of the array m4x4 with the
following subar r ay command:

AFL% show(mix4) ; scan(mix4) ;
[(" mix4<val : doubl e>
[i=0:3,4,0,j=0:3,4,0]")]

0),(1),(2),(3)1,
4),(5),(6), (NI,
8),(9), (10), (11)],
12),(13),(14), (15)]

e — — ———
A~ NS

AQ.% SELECT * FROM subarray(mix4, 2, 2, 3, 3);

(10), (11)],
(14), (15)]

— — — —

If you have a 3-dimensional array, you might want to select just a flat 2-dimensional dice, as like the
cross-hatched section of thisimage:

For example, you can select the datain a horizontal slice in the middle of a 3-dimensional array mBx3x3
by using the sl i ce command and specifying the value for dimension k:

AFL% show(mBx3x3) ; scan(nBx3x3) ;
[("mBx3x3<val : doubl e>
[i=0:2,3,0,j=0:2,3,0,k=0:2,3,0]")]

[

[[(0), (1),(2)]
[(4).(5),(6)],
][(8)-(9).(10)]

56

Changing Array Schemas;
Transforming Y our SciDB Array

[(7),(8),(9)],
(11),(12),(13)],
(15),(16), (17)]

(14),(15),(16)],
E;B),(19),(20)],

[
[
[
]
[
{
% 2),(23),(24)]
]

AFL% sl i ce(mBx3x3, k, 1) ;

(1), (5), (9],
(8),(12),(16)],
(15),(19),(23)]

e e e e

Y ou may want to sample data uniformly across an entire dimension. Thet hi n command selects elements
from given array dimensions at defined intervals. For example, you can select every other element from
every other row:

AFL% show(mix4) ; scan(n¥x4) ;
[("mix4<val : doubl e>
[1=0:3,4,0,j=0:3,4,0]")]

(0),(1).(2).(3)],
(4).(5).(6),(N],
(8),(9),(10), (11)],
(12),(13),(14),(15)]

s

AQL% SELECT * FROM t hi n(mix4, 1, 2, 0, 2) ;

(4).,(6)],
(12), (14)]

— — — —

9.3. Changing Array Attributes

An array's attributes contain the data stored in the array. Y ou can transform attributes by
» Changing the name of the attribute.

e Adding an attribute.

» Changing the order of attributesin a cell.

» Deleting an attribute.

Y ou can change the name of an attribute withtheat t r i but e_r ename command:

AQ.% SELECT * | NTO nBx3_new FROM attribute_rename(nBx3, val, val 2);

57

Changing Array Schemas;
Transforming Y our SciDB Array

— — — ——
—~ A~~~
o W O
~— — —
—~ A~~~
~N D
~— N —
—~ A~~~
Q0 U1 N
~— — —
—_— e —

AQ.% SELECT * FROM show(nBx3_new) ;
[("mx3_new<val 2: doubl e> [i=0:2,3,0,j=0:2,3,0]")]
Y ou can add attributes to an existing array with theappl y command:

AQL% SELECT *
| NTO nBx3_new attr
FROM appl y(nmBx3, val 2, val +10, val 3, powval , 2));

(0, 10,0, (1,11, 1), (2,12, 4],
(3,13,9), (4, 14, 16), (5, 15, 25)] ,
(6,16, 36), (7,17, 49), (8, 18, 64)]

— — — ——

AQ.% SELECT * FROM show(nBx3_new attr);

[("mBx3 _new attr
<val : doubl e, val 2: doubl e, val 3: doubl e>
[i=0:2,3,0,j=0:2,3,0]")]

Y ou can select a subset of an array's attributes and return them in any order with the pr oj ect command.
AQ.% SELECT * FROM proj ect (n8x3_new attr, val 3, val 2);
0,10),(1,11),(4,12)],

(
(9, 13), (16, 14), (25, 15)],
(36, 16), (49, 17), (64, 18)]

e

9.4. Changing Array Dimensions
9.4.1. Changing Chunk Size

If you have created an array with aparticular chunk size and then later find that you need a different chunk
size, you can use ther epart command to change the chunk size. For example, suppose you have an
array that is 1000-by-1000 with chunk size 100 in each dimension:

AQ.% SELECT * FROM show(chunks) ;

[("chunks<val 1: doubl e, val 2: doubl e>
[i=0:999, 100, 0, j =0: 999, 100, 0] ")]

Y ou can repartition the chunks to be 10 along one dimension and 1000 in the other:

AQL% SELECT *
I NTO chunks_part

58

Changing Array Schemas;
Transforming Y our SciDB Array

9.4.2.

FROM r epart (chunks, <val 1: doubl e, val 2: doubl e>
[i=0:999, 10, 0, j =0: 999, 1000, 0]) ;

AQ.% SELECT * FROM show(chunks part);

[("chunks_part <val 1: doubl e, val 2: doubl e>
[i=0:999, 10, 0, j =0: 999, 1000, 0] ")]

Repartitioning is also important if you want the change the chunk overlap to speed up nearest-neighbor
or window aggregate queries.

AQL% SELECT *
I NTO chunks_overl ap
FROM r epart (chunks, <val 1: doubl e, val 2: doubl e>
[i=0:999, 100, 10, j =0: 999, 100, 10]);

Appending a Dimension

Y ou may need to append dimensionsto existing arrays, particularly when you want to do more complicated
transformationsto your array. This example demonstrates how you can take slices from an existing array
and then reassemblethem into aarray with adifferent schema. Consider thefollowing 2-dimensional array:

AFL% show(Dsp) ; scan(Dsp) ;

[(" Dsp<val : doubl e>
[d(string)=5,5,0,t(string)=5,5,0]")]

(0.01), (30.36), (111.21), (242.56), (424. 41)],
(2.04), (42.49), (133. 44), (274.89), (466.84)],
(6.09), (56.64), (157.69), (309. 24), (511.29)],
(12.16), (72.81), (183. 96), (345. 61), (557. 76)],
(20.25), (91), (212. 25), (384), (606. 25)]

e,

Suppose you want to examine a sample plane from each dimension of the array. You can use the slice
command to select array dices from array Dsp:

AQL% SELECT * | NTO Dsp_slice_ 0 FROM slice(Dsp,s, " device-0");
AQ.% SELECT * INTO Dsp_slice 1 FROMslice(Dsp,s," ' device-1');
AQ.% SELECT * INTO Dsp_slice 2 FROMslice(Dsp,s, "' device-2');
The dlices are 1-dimensional .

AQL% SELECT * FROM show(Dsp_slice_0);

[("Dsp_slice O

<val : doubl e>

[t(string)=5,5,0]")]

Concatenating these slices will create a 1-d array:

AQ.% SELECT * | NTO Dsp_1d FROM concat (Dsp_slice_ 0, Dsp_slice_2);
AQL% SELECT * FROM show(Dsp_1d);

59

Changing Array Schemas;
Transforming Y our SciDB Array

[("Dsp_1ld<val : doubl e,
enpty_indi cator:indicator>
[t=0:9,5,0]")]

To concatenate these arraysinto a2-dimensional array, you need to add adimension to both. Theadddi m
command will add a stub dimension to the array to increase its dimensionality.

AQL% SELECT * | NTO Dsp_new

FROM concat (adddi m(Dsp_slice_0, s),
adddi m(Dsp_slice_2, d));

AQ.% SELECT * FROM show(Dsp_new) ;

[("Dsp_new<val : doubl e,
enpty_indi cator:indicator>
[d=0:1,1,0,t(string)=5,5,0]")]

60

Chapter 10. SciDB Aggregate
Reference

This chapter lists SciDB aggregates. Aggregates take as input a set of 1 or more values and return a scalar
value. SciDB aggregates havethe syntax aggregate call_N where an aggregate call isone of thefollowing:

* aggregate_nane(attribute_nane)
e aggregat e_nane(expressi on)
Note: theaggr egat e_name(expr essi on) syntax existsonly in AQL.

Aggregate calls can occur in AQL and AFL statements as follows:

AQL syntaxes

SELECT aggregate call 1[,aggregate call 2,...,aggregate call _N|
FROM arr ay;

SELECT aggregate call 1[,aggregate call 2,...,aggregate call _N|
FROM array GROUP BY di mensi onl[, di mensi on2] ;

SELECT aggregate call 1[,aggregate call 2,...,aggregate call _N|
FROM array WHERE expressi on;

SELECT aggregate call 1[,aggregate call 2,...,aggregate call _N|
FROM array REGRI D di nension_1, dinmension_2,...

SELECT aggregate call _1[,aggregate call 2,...,aggregate call _N|
FROM array W NDOW w ndow di m 1, wi ndow dim 2, ...

AFL syntaxes

aggregate(array, aggregate call 1

[, aggregate call _2,... aggregate call N

[,dinmension_1, dinmension 2,...])

wi ndow(array,grid 1,grid 2,...,grid N,

aggregate call 1 [,aggregate call _2,...,aggregate call _N]);
regrid(array,grid 1,grid 2,...,grid_N,

aggregate call _1[,aggregate call _2,...,aggregate call_N]);

61

SciDB Aggregate Reference

Name
avg — Average (mean) aggregate
Synopsis
AQ.% SELECT avg(attribute) FROM array;

AFL% aggr egat e(array, avg(attribute)[, di nensi on_1, di mension_2,...]

Summary

The avg aggregate takes a set of scalar values from an array attribute and returns the average of those
values.

The average of an empty set isNULL. avg of a set that contains only NULL valuesisaso NULL. If the
set contains NULL and NOT NULL values, the avg result is an average of the NOT NULL values only.

Example

This example finds the average of every column of a 3x3 matrix.
1. Create amatrix m3x3:
CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Putvalues of 0-8 into m3x3:
store(buil d(nBx3,i*3+j), mBx3);
(1), (2)],

(0)
(3).(4), (3],
(6).(7),(8)]

T —

3. Findthe average of every column of m3x3:
aggr egat e(n8x3, val , j)
This query returns:

[(3),(4),(5)]

62

SciDB Aggregate Reference

Name

count — Count nonempty el ements aggregate
Synopsis
AQ.% SELECT count (attri bute) FROM array;

AFL% aggregat e(array, count (attri bute)[, di mension_1, di nension_2,...)]

Summary

The count aggregate counts nonempty elements of an array's attributes. count(attrl), only countsthe cells
that have values that are NOT NULL. count(*), counts all of the cells present (both NULL and NOT
NULL).

Example

This example finds the number of nonempty cellsin a 3x3 matrix.
1. Create amatrix m3x3:
CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, =0: 2, 3, 0] ;
2. Putvalues1 aong the diagonal of m3x3 and leave the remaining cells empty:
store(buil d_sparse(nBx3,i=j, 1), nBx3);
3. Find the number of nonempty cellsin the array:
aggr egat e(n8x3, count (val));

This query returns:

[(6)]

63

SciDB Aggregate Reference

Name

max — Maximum value aggregate
Synopsis
AQ.% SELECT max(attribute) FROM array;

AFL% aggregate(array, max(attribute)[, di nension_1, di mension_2,...]

Summary

The max aggregate takes a set of scalar values from an array attribute and returns the maximum value.

The maximum value of an empty setisNULL. max of aset that containsonly NULL valuesisalso NULL.
If the set contains NULL and NOT NULL values, the max aggregate considers only NOT NULL values.

Example

This exampl e finds the maximum of every column of a 3x3 matrix.
1. Create amatrix m3x3:

CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Put values of 0-8 into m3x3:

store(bui |l d(nmBx3,i*3+j), Bx3);

N N N
o wo
N N N
N N N
~ bR
N N N
N N N
o 0N
N N N

3. Find the maximum value of each column:
aggr egat e(m8x3, max(val),j);
This query returns:

[(6),(7).(8)]

SciDB Aggregate Reference

Name

min — Minimum value aggregate
Synopsis
AQ.% SELECT min(attribute) FROM array;

AFL% aggregate(array, m n(attribute)[, di nension_1, di mension_2,...]

Summary

The min aggregate takes a set of scalar values from an array attribute and returns the minimum value.

The minimum value of an empty set isSNULL. min of aset that containsonly NULL valuesisalso NULL.
If the set contains NULL and NOT NULL values, the min aggregate considers only NOT NULL values.

Example

This example finds the minimum of every column of a 3x3 matrix.
1. Create amatrix m3x3:

CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Put values of 0-8 into m3x3:

store(bui |l d(nmBx3,i*3+j), Bx3);

N N N
o wo
N N N
N N N
~ bR
N N N
N N N
o 0N
N N N

3. Find the minimum vaue of every column of m3x3:
aggr egat e(nm8x3, m n(val), j);
This query returns:

[(0), (1), (2)]

65

SciDB Aggregate Reference

Name
stdev — Standard deviation aggregate

Synopsis
AQ.% SELECT stdev(attribute) FROM array;

AFL% aggregate(array, stdev(attribute)[, di mension_1,di mension_2,...]

Summary

The stdev aggregate takes a set of scalar values from an array attribute and returns the standard deviation
of those values.

The standard deviation of an empty setisNULL. The standard deviation of a set that contains only NULL
values is also NULL. If the set contains NULL and NOT NULL values, the stdev aggregate considers
only NOT NULL values.

Example

This example finds the standard deviation of every column of a 3x3 matrix.
1. Create amatrix m3x3:

CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Put random values between 1 and 9 into m3x3:

store(buil d(nBx3, randon() %0/ 1. 0), m8x3) ;

This query outputs:

2),(8),(0)],
5).(2),(6)],
2),(0).(2)]

—————
—~~ —~

3. Find the standard deviation of every column of m3x3:
aggr egat e(m8x3, stdev(val),j);
This query returns:

[(1.73205), (4.16333), (3. 05505)]

66

SciDB Aggregate Reference

Name
sum — Sum aggregate

Synopsis
AQ.% SELECT sum(attribute) FROM array;

AFL% aggregate(array, sun{attribute)[, di nension_1, di mension_2,...]

Summary

The sum aggregate cal cul ates the cumulative sum of a group of values.

The sum of an empty set is 0. The standard deviation of a set that contains only NULL valuesisalso O. If
the set contains NULL and NOT NULL values, the result is the sum of all the NOT NULL values.

Example

This exampl e finds the sum of every column of a 3x3 matrix.
1. Create amatrix m3x3:

CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Putvalues of 0-8 into m3x3:

store(bui |l d(nmBx3,i*3+j), Bx3);

N N N
o wo
N N N
N N N
~ bR
N N N
N N N
o 0N
N N N

3. Find the sum of each column in m3x3:
aggr egat e(n8x3, sun(val), j)
This query returns:

[(9),(12),(15)]

67

SciDB Aggregate Reference

Name

var — Variance aggregate
Synopsis
AQ.% SELECT var (attri bute) FROM array;

AFL% aggregate(array, var(attribute)[, di nensi on_1, di mension_2,...]

Summary

The var aggregate returns the variance of a set of values.

Thevariance of an empty setiSNULL. Thevariance of aset that containsonly NULL valuesisalso NULL.
If the set contains NULL and NOT NULL values, the var aggregate considers only NOT NULL values.

Example

This example finds the variance of every column of a 3x3 matrix.
1. Create amatrix m3x3:

CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Put random values between 1 and 9 into m3x3:

store(buil d(nBx3, randon() %0/ 1. 0), m8x3) ;

This query returns:

(2),(8),(0)],
(5).(2),(6)],
(2),(0),(2)]

— — — ——

3. Find the variance for each column of m3x3:
aggr egat e(n8x3, var (val), j)
This query returns:

[(3),(17.3333), (9. 33333)]

68

Chapter 11. SciDB Function Reference

This chapter lists the SciDB functions that are available for use in SciDB expressions. Expressions can
be used in the following types of syntaxes:

AQL Syntax:

SELECT expressi on FROM array;

SELECT expressi onl FROM array WHERE expressi on2;
AFL Syntax:

oper at or (array, expr essi on);

Function Name Description Category

% Remainder Arithmetic

* Multiplication Arithmetic

+ Addition Arithmetic

- Subtraction Arithmetic

/ Division Arithmetic

< Lessthan Logical

<= L ess than or equal Logical

<> Not equal Logica

= Equals Logical

> Greater than Logical

>= Greater than or equal Logical

abs Absolute value Arithmetic
acos Inverse (arc) cosine in radians Transcendental
and Boolean AND Logical
append_offset Change time and date by a given amount Timestamp
apply_offset Change time and date by a given amount Timestamp
asin Inverse (arc) sinein radians Transcendental
atan Inverse (arc) tangent in radians Transcendental
cell Round to next-highest integer Arithmetic
cos Cosine (input in radians) Transcendental
exp Exponential Transcendental
first Start of string Strings

floor Round to next-lowest integer Arithmetic
get_offset Returns time offset in seconds Timestamp
high String information Strings

iif Inline IF Logical

is nan Returns TRUE is attribute value is NaN Logica

69

SciDB Function Reference

Function Name Description Category

is null Returns TRUE is attribute valueis null Logical

last End of string String

length Get string length String

log Base-e logarithm Transcendental

log10 Base-10 logarithm Transcendental

low String query String

instanceid Return instanceid Troubleshooting

not Boolean NOT Logical

now Current array version Timestamp

or Boolean OR Logical

pow Raise to a power Arithmetic

random Random number Arithmetic

regex Search for regular expression Strings

sin Sine (input in radians) Transcendental

sort Square root Arithmetic

strchar Convert string to char Datatype conversion

strftime Convert string to datetime Datatype conversion

strip_offset disregards OFFSET and returns result as a| Timestamp
DATETIME

strlen Maximum string length Strings

substr Select substring Strings

tan Tangent (input in radians) Transcendental

togmt Switch to GMT from current time zone setting Timestamp

tznow Set time zone Timestamp

70

Chapter 12. SciDB Data Type
Reference

SciDB supportsthe following datatypes. Y ou can accessthislist by usingl i st (' t ypes') atthe AFL
command line.

Data Type Default Value Description

bool false Boolean TRUE (1) or FALSE (0)
char \0 Single-character
datetime 1970-01-01 00:00:00 Date and time

datetimetz 1970-01-01 00:00:00 -00:00 | Timezone

double 0 Double-precision decimal
float 0 Floating-point number
int8 0 Signed 8-bit integer

int16 0 Signed 16-bit integer
int32 0 Signed 32-bit integer
int64 0 Signed 64-bit integer
string Character string

uint8 0 Unsigned 8-bit integer
uint16 0 Unsigned 16-bit integer
uint32 0 Unsigned 32-hit integer
uinté4 0 Unsigned 64-bit integer

71

Chapter 13. SciDB Operator Reference

This reference guide lists the operators available in SciDB. Operators take a SciDB array as input and
return as SciDB array as output. Operators can be used in several waysin SciDB queries.

» Operators can be used in AQL in FROMclauses.

* Operators can be used at the AFL command line or, in some cases, nested with other AFL operators.
Operator syntaxes generally follow this pattern:

operator (array| array_expressi on| anonynous_schenm, ar gunent s) ;

Thefirst argument to an operator is generally an array that you have previously created and stored in your
current SciDB namespace. However, in many cases, the first argument may also be a SciDB operator. The
output of the nested operator serves as the input for the outer operator. Thisis called an array expression.

operator_1(operator_2(array, argunments_2),argunents_1);

Not all SciDB operators can take another operator as input. These exceptions are noted in the Synopsis
section of the operator's reference page. An operator argument that is specified asar r ay can aso be an
array expression. An operator argument that is specified asnamed_ar r ay can only be an array that you
have previously created and stored.

In addition, some operators can take an array schemaasinput instead of anamed array or array expression.
Thisis called an anonymous schema.

72

SciDB Operator Reference

Name

adddim — Increase array dimensionality

Synopsis

SELECT * FROM adddi m{ arr ay, new_di nensi on) ;

adddi m(arr ay, new_di nensi on) ;

Summary

The adddim operator adds a stub dimension to an array to increase its dimensionality. Thisis useful when
you want to concatenate two n-dimensional arraysinto an (n+1)-dimensional array.

Example

This example creates a 2-dimensional array from 1-dimensional arrays.

1

Create a vector of zeros:
store(buil d(<val : doubl e>[i =0: 4, 5,0], 0), vectorl);
Create a vector of ones:
store(buil d(<val : doubl e>[]j =0:4,5,0],1), vector2);

Concatenate these vectors without increasing their dimensionality. Note that the output is 1-
dimensional:

concat (vector 1, vect or 2) ;
This query outputs:
[(0),(0),(0),(0),(0),(1),(1),(1),(1),(1)]

Use adddim to add a dimension to both vectors and then concatenate them. The result will have two
dimensions:

concat (adddi m(vect or 1, x), adddi n(vector2,y));

This query outputs:

— — — —
—~
= O
~ —
—~
= O
~ —
—~
~ —
—~
= O
~ —
—~
= O
~ —
—_—

<xi:include></xi:include>

73

SciDB Operator Reference

Name
analyze — Analyze load file for chunk size
Synopsis
SELECT * FROM anal yze(array[, attributel, attribute2, ...])
anal yze(array[, attributel, attribute2, ...]);
Summary

The analyze operator helps you decide how to set chunk size when you are creating a SciDB array. The
analyze() operator takes as input a source array and a list of attributes in that source array. The operator
computes the range of values (the maximum and minimum values), population count, and an estimate of
the number of distinct valuesin the attribute (or combination of attributes).

Example

This example runs analyze on a 2-attribute, 1-dimensional array. The example uses the file doc/user/
examples/num_data.scidb, shown here:

{0}
(1.48306e+09, 1),
(5.80814e+08, 1),
(1.51079e+09, 1),
(1.16154e+09, 1),
(1.42655e+09, 1),
(1.06341e+09, 1),
(4.9253e+08, 1),
(5.6065e+08, 1),
(1. 60886e+08, 2),
(1.37844e+09, 1),
(4. 08495e+08, 1),
(5. 65393e+07, 1),
(1. 47646e+09, 1),
(9. 52609e+08, 1),
(1.8548e+09, 1),
(1.42396e+09, 1),
(1.75107e+09, 1),
(1.52007e+09, 1),
(5. 4882e+08, 1),
(7.28928e+08, 1)

]

1. Createan array anayze array with 1 unbounded dimension:

AQL% CREATE ARRAY anal yze array
<val 1: doubl e, val 2: doubl e> [|i ne=0: *, 10, 0] ;

2. Loadthefile num_data.scidb into analyze array:

AQL% LOAD anal yze_array
FROM ' pat h/ doc/ user/ exanpl es/ num dat a. sci db’ ;

74

SciDB Operator Reference

Analyzethe array for chunk sizes:

anal yze(anal yze_array);

This query returns:

[("val","5.65393e+07", " 1. 8548e+09", 20, 20), ("val 2", "1","2", 2, 20)]
The output array contains one attribute for every attribute in the input. Each attribute of the output

contains the attribute name, maximum value, minimum value, number of distinct elements, and total
number of elements.

75

SciDB Operator Reference

Name
apply — Apply expression to compute new éttribute values
Synopsis

SELECT * I NTO target _arrayFROM appl y(array, new attri butel, expressi onl
[, new attribute2, expressi on2]);

store(appl y(array, new attri butel, expressionl
[, new attribute2, expressi on2]),target _array);

Summary

Use the apply operator to compute new values from attributes and indexes of input arrays. The value(s)
computed in the apply are appended to the attributesin the input array.

Example

This example computes new attributes for an existing array.
1. Createan array called distance with an attribute called miles:
CREATE ARRAY di stance <m | es: doubl e> [i=0:9, 10, 0] ;
2. Storevalues of 100-1000 into the array:
store(buil d(di stance, i +100. 0), di st ance);
3. Apply the expression 1.6 * milesto distance and name the result kilometers:
appl y(di stance, kil ometers, 1. 6*nmi | es);
This query returns:

[(100, 160),
(200, 320),
(300, 480) ,
(400, 640),
(500, 800) ,
(600, 960) ,
(700, 1120) ,
(800, 1280) ,
(900, 1440),
(1000, 1600)]

76

SciDB Operator Reference

Name

attribute_rename — Rename an array attribute

Synopsis

SELECT * FROM attribute renane(array,old attributel, new attributel
[, old attribute2, new attribute2?]);

attribute renane(array,old attributel, new attri butel
[, old attribute2, new attribute2]);

Summary

Changes an attribute namein an array.

Example
1. Createan array called arrayl with an attribute called val:
CREATE ARRAY arrayl <val :doubl e>[i];
2. Renameval toval2:

attribute_renane(arrayl, val , val 2);

7

SciDB Operator Reference

Name
attributes — List array attributes

Synopsis
SELECT * FROM attri butes(named_array);

attri but es(naned_array);

Summary

The attributes operator lists al the attributes of an array. The output returns the attribute name, the
attribute data type, and a Boolean flag representing whether or not the attribute can be null. The argument
nanmed_ar r ay must be an array that was previously created and stored in the SciDB namespace.

78

SciDB Operator Reference

Name

avg — Average (mean) value

Synopsis

SELECT * FROM avg(array, attri bute[, di mensi onl, di nension2,...]);

Summary

The avg operator finds the average value of an array attribute.

Note

The avg operator provides the same functionality asthe avg aggregate, but has a different syntax.
See the avg aggregate reference page.

Example

This example finds the average value along the second dimension of a 4x4 matrix.

1.

Create an array named avg_array:
CREATE ARRAY avg_array<val : doubl e>[i =0: 3, 4, 0, j =0: 3, 4, 0] ;
Store values of 0-15in avg_array:

store(build(avg _array,i*4+j), avg_array);

0), (1), (2),(3)1,
4),(5),(6), (N1,
8),(9), (10), (11)],
12),(13), (14), (15)]

———mr—_———
—~ /S

Find the average value along the dimension j:
avg(avg _array, val,j);
This query outputs:

[(1.5),(5.5),(9.5),(13.5)]

79

SciDB Operator Reference

Name

bernoulli — Select random array cells
Synopsis
SELECT * FROM bernoul I'i (array, probability[, seed]);

bernoul | i (array, probability[, seed]);

Summary

The bernoulli operator evaluates each cell by generating arandom number and seeing if it liesin therange
(O, probability). If it does, the cell isincluded.

Example

This example select cells at random from a 4x4 matrix, and uses a seed value to select the same cellsin
successive trials.

1. Createan array called bernoulli_array:
CREATE ARRAY bernoul I'i _array<val : doubl e>[i =0: 3, 4, 0, j =0: 3, 4, 0] ;
2. Storevauesof 0—15in bernoulli_array:

store(buil d(bernoul li _array,i*4+j), bernoulli _array);

(0),(1),(2),(3)],
(4),(5),(6),(N],
(8),(9),(10), (11)],
(12),(13),(14), (15)]

e

3. Select cells at random with a probability of .5 that a cell will be included. Each successive call to
bernoulli will return different results.

AFL% ber noul I'i (bernoul I'i _array, .5);

), (), (3],
), (6), 01,
), (), (11)],
3),(14),()1]

= © 01 -

80

SciDB Operator Reference

4. Toreproduceearlier results, use aseed value. Seeds must be aninteger ontheinterval [0, INT_MAX].

bernoul I'i (bernoul li _array, .5,1);

81

SciDB Operator Reference

Name
between — Select array data from specified region

Synopsis

SELECT * FROM between(array, | ow _coordl[, | ow coord2,...],
hi gh_coordl1[, hi gh_coord2,...]);

bet ween(array, | ow coordl[, | ow coord2,...],
hi gh_coordl[, hi gh_coord2,...]);

Summary

The between operator accepts an input array and a set of coordinates specifying aregion within the array.
The number of coordinate pairs in the input must be equal to the number of dimensionsin the array. The
output isan array of the same shape asinput, where al cells outside of the given region are marked empty.

Example

This example selects 4 elements from a 16-element array.

1 Creaeasx4 array caled between_array:
CREATE ARRAY between_array <val : doubl e>[i =0: 3, 4, 0,] =0: 3, 4, 0] ;

2. store(build(between_array,i*4+j), between_array);

(0),(1),(2),(3)],
(4).(5).,(6),(7N],
(8),(9),(10), (11)],
(12),(13),(14),(195)]

e,

3. Sdect al values from the last two rows and last two columns from between_array:
bet ween(bet ween_array, 2, 2, 3, 3);

This query outputs:

82

SciDB Operator Reference

Name
build — Assign valuesto array attribute

Synopsis

SELECT * INTO target_array
FROM bui | d(naned_ar r ay| anonynous_schemna, expr essi on) ;

store(buil d(naned_array| anonynmous_schema, expr essi on), target _array;

Summary

The build operator proceeds through source array, cell by cell, using the value of expr essi on to
compute the value of each cell. The expression argument can be any combination of SciDB functions
applied to scalars or SciDB array attributes.

Example
Create an array of all ones:
bui | d(<val : doubl e>[i =0: 3, 4,0, =0:3,4,0],1);
Create an identity matrix:
bui | d(<val : doubl e>[i=0:3,4,0,j=0:3,4,0],iif(i=f,1,0));
Build an array of monotonically increasing values:
bui | d(<val : doubl e>[i =0:3,4,0,)=0:3,4,0],i*4+);
To storethe result from abuild operator, create an array and use the store operator with the build operator.

CREATE ARRAY identity matrix <val :double>[i=0:3,4,0,j=0:3,4,0];
store(build(identity matrix,iif(i=j,21,0)),identity_matrix);

Limitations

 Thebuild operator can only take arrays with one attribute.

» Thebuild operator can only take arrays with bounded dimensions.

83

SciDB Operator Reference

Name

build_sparse — Assign valuesto attributes of a sparse array
Synopsis

SELECT * INTO target_array

FROM bui | d_spar se(naned_arr ay| anonynmous_schena,

expr essi on, bool ean_expr essi on) ;

store(buil d_sparse(named_array| anonynous_schena
expr essi on, bool ean_expressi on)) ;

Summary

The build_sparse operator takes as input an array or anonymous schema, an expression that defines a
scalar value, and an expression that defines a Boolean value. The argument nanmed_ar r ay must be
an array that was previously created and stored in the SciDB namespace. The output of build_sparse
contains an array with the same schema as the input array or anonymous schema, the value specified
by expressi on wherever bool ean_expr essi on evauates to true, and empty cells wherever
bool ean_expr essi on evaluatesto false.

Example

Build a sparse-formatted identity matrix where the cells that would be occupied by 0 are empty:
bui | d_sparse(<val : doubl e>[i=0:3,4,0,j=0:3,4,0],1,i=j);
This query outputs:

[[{0,01(1),{1,1}(1),{2, 2}(1),{3,3}(1)]]
Limitations

» The build operator can only take arrays with one attribute.

 Thebuild operator can only take arrays with bounded dimensions.

SciDB Operator Reference

Name

cancel — Cancel aquery
Synopsis
cancel (query_id);

This operator is designed for internal use.

Summary

Cancel acurrently running query by query id.

Thequery id can be obtained from the SciDB log or viathelist() command. SciDB maintains query context
information for each completed and in-progress query in the server. If the user issues a "ctrl-C" or abort
from the client, the query is cancelled and its context is removed from the server.

85

SciDB Operator Reference

Name

cast — Change attribute and dimension names

Synopsis

SELECT * INTO target_array FROM cast(array, schem);

store(cast (array, schemn),target _array);

Summary

The cast operator allowsrenaming an array or any of itsattributesand dimensions. A single cast invocation
can be used to rename multiple items at once (one or more attribute names and/or one or more dimension
names). Theinput array and template arrays should have the same numbers and types of attributes and the
same numbers and types of dimension.

Example

This example changes the name of an array attribute and an array dimension. The arrays must be
compatible; that is, they must have the same number of dimensions and attributes, and the attributes and
dimensions must be of the same type.

1

Create an array called source with an attribute called val and adimension called i:
CREATE ARRAY source <val : doubl e>[i=0:9, 10, 0] ;

Use an anonymous schema to change the attribute name to num_val and the dimension name to x.
Store the result in an array called target:

store(cast (source, <num val:doubl e>[x=0:9, 10,0]),target);

Thisis useful when you are joining arrays and want to avoid naming conflicts. For example, doing
across_join on source and target will create an array with two attributes, val and num_val, and two
dimensions, i and x:

store(cross_joi n(source, target), new array);
show(new_arr ay) ;

[("new_ array<val : doubl e, num val : doubl e> [i =0: 9, 10, 0, x=0: 9, 10, 0] ")]

86

SciDB Operator Reference

Name
concat — Concatenate two arrays
Synopsis
SELECT * INTO target _array FROM concat (|l eft_array, right_array);

store(concat (l eft _array, right_array), target _array);

Summary

The concat operator concatenates two arrays with the name number of dimensions. Concatenation is
performed by the left-most dimension. All other dimensions of the input arrays must match. The left-most
dimension of both arrays must have a fixed size (not unbounded) and same chunk size and overlap. Both
inputs must have the same attributes.

Example

This example concatenates a 4x3 array and a 1x3 array.

1 Createa4x3 array left_array containing value Lin al cells:

create array left _array <val:double>[i=0:3,1,0,j=0:3,1,0];
store(build(left_array,1),left _array);

2. Createalx3 array right_array containing value O in all cells:

create array right _array <val:double>[i=0:1,1,0,j=0:2,1,0];
store(build(right _array, 0),right_array);

3. Concatentate left_array and right_array and store the result in concat_array:
store(concat (left_array, right_array), concat _array);
This produces an array concat_array with contents and schema as follows:
show(concat _array); scan(concat _array) ;

show(concat _array); scan(concat _array);
[("concat array<val : double> [i=0:5,1
(CCD)TTTICD) T TTSTI(D)]
{{El)]];[[(1)]];[[(1)]];[[(1)

0

]

]]

011 L)1 I(0)]]:[[(0)]]

e e e

1:[1(1)
1:10(1)
1:[1(0)

87

SciDB Operator Reference

Name

count — Count nonempty cells

Synopsis

SELECT * FROM count (array);

Summary

The count operator counts nonempty cells of theinput array. When dimensions are provided they are used
to do a group-by and a count per resulting group is returned.

Note

The count operator provides the same functionality as the count aggregate. See the count
aggregate page.

Example

This example finds the element count value along the second dimension of a 4x4 array where some cells
are empty.

1.

Create an array named source_array:
CREATE ARRAY source_array<val : doubl e>[i =0: 3, 4, 0,] =0: 3, 4, 0] ;
Store values of 015 in source_array:

store(buil d(source_array,i*4+j), source_array);

0),(1),(2),(3)],
4),(3),(6), (7],
8),(9),(10), (11)],
12), (13), (14),(15)]

—— e ——
—~ /S~

Use between to create some empty cellsin source_array and store the result in count_array:

store(between(source_array, 1,1, 1, 2), count _array);

~— =
— el —

Find the count of nonempty elementsin count_array:
count (count _array);

This query outputs:

88

SciDB Operator Reference

[(2)]

Count the nonempty elements along the dimensions of count_array:
count (count _array,i);

[(0).(2),(0),(0)]

count (count _array,j);

[(0), (1), (1), (0)]

89

SciDB Operator Reference

Name
cross — Cross-product join
Synopsis
SELECT * INTO target _array FROM cross(left_array,right_array);

cross(left_array, right_array);

Summary

Calculatesthefull cross product join of two arrays, for example A (m-dimensional) and B (n-dimensional),
such that the result is an m+n dimensional-array in which each cell is computed as the concatenation of
the attribute lists from corresponding cellsin arrays A and B. For example, consider a 2-dimensional array
A with dimensionsi, j, and a 1-dimensional array B with dimension k. The cell at coordinate position {i,
j» k} of the output is computed as the concatenation of cells{i, j} of A with cell at coordinate {k} of B.

Example

This example returns the cross-join of a 3x3 array with avector of length 2.

1 Createa3x3 array m3x3:

CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
2. Putvaluesof 0-8 into m3x3:

store(buil d(nBx3,i*3+j), nBx3);
3. Create avector of length 2 containing values 101 and 102:

store(buil d(<val : doubl e>[i=0:1,1,0],i+101), vector);
4. Find the cross of m3x3 and vector:

store(cross(nBx3, vector), cross_array);

This query returns:
0,101)],[(1,101)],[(2,101)

[

[[(1]
[[(3,101)],[(4,101)],[(5,101)]]
[[(6,101)],[(7,101)],[(8,101)]]

I;
(0,102)],[(1,102)], (2, 102)

(LI 1]
[[(3,102)],[(4,102)],[(5,102)]],
[[(6,102)],[(7,102)],[(8,102)]]]

The array cross_array has schema:
show(cross_array);

[("cross_array<val : doubl e, val _2: doubl e>
[i=0:2,3,0,j=0:2,3,0,i_2=0:1,1,0]")]

90

SciDB Operator Reference

Name
cross_join — Cross-product join with equality predicates
Synopsis

SELECT * INTO target_array
FROM cross_join(left_array,right_array, left_diml, right_dimt,...);

store(cross_join(left_array,right_array,left_diml,right_dint,...),
target _array);

Summary

Calculates the cross product join of two arrays, say A (m-dimensional array) and B (n-dimensional array)
with equality predicates applied to pairs of dimensions, one from each input. Predicates can only be
computed along dimension pairs that are aligned in their type, size, and chunking.

Assume p such predicates in the cross join, then the result is an m+n-p dimensional array in which each
cell is computed by concatenating the attributes as follows:

For a 2-dimensional array A with dimensions i, j, and a 1-dimensiona array B with dimension Kk,
cross join(A, B, j, k) resultsin a2-dimensional array with coordinates{i, j} inwhichthe cell at coordinate
position {i, j} of the output is computed as the concatenation of cells{i, j} of A with cell at coordinate
{k=j} of B.

If the join dimensions are different lengths, the cross-join will return the smaller dimension for the join
points.

Example

This example returns the cross-join of a 3x3 array with avector of length 3.
1. Createan array caled left_array:
CREATE ARRAY | eft _array<val : doubl e>[i =0: 2, 3,0, j=0:2,3,0];
2. Storevaues of 0-8into left array:
store(build(left_array,i*3+j),left_array);
3. Createan array caled right_array:
CREATE ARRAY right _array<val : doubl e>[k=0: 5, 3, 0] ;
4. Storevaluesof 101-106 into right_array:
store(build(right _array, k+101),ri ght _array);
5. Perform across-join on left_array and right_array along dimension j of |eft_array:
cross_join(left_array,right_array,j, k);
This query outputs:
[

91

SciDB Operator Reference

[(0,101),(1,102),(2,103)],
[(3,101), (4, 102), (5,103)],
[(6,101),(7,102), (8, 103)]
]

92

SciDB Operator Reference

Name
deldim — Reduce array dimensionality

Synopsis
SELECT * FROM del di n{array);

del di m(array);

Summary

Thedeldim operator del etes the left-most dimension from the array. Del eted dimension must have size= 1.

93

SciDB Operator Reference

Name

dimensions — List array dimensions
Synopsis

SELECT * FROM di mensi ons(named_array) ;

di mensi ons(naned_array) ;

Summary

The argument to the dimensions operator is the name of the array. It returns an array with the following
attributes: dimension-name, dimension start-index, dimension-length, chunk size, chunk overlap, low-
boundary-index, high-boundary-index, datatype. Theargument narmed_ar r ay must be an array that was
previously created and stored in the SciDB namespace.

Example

This example creates an array with one unbounded dimension and one string-type dimension:

CREATE ARRAY unbound_string_dim
<val : doubl e>[i =0: *, 10, 0, j (string) =10, 10, O] ;
di mensi ons(unbound_string_din;

This code outputs:

[("i",0,4611686018427387903, 10, 0, 4611686018427387903,
-4611686018427387903, "i nt 64"),
("j",0,10,10,0,4611686018427387903, - 4611686018427387903,
"string")]

94

SciDB Operator Reference

Name

diskinfo — Internal debugging: Check disk capacity
Synopsis

di ski nfo()

This operator is designed for internal use.

Summary

Get information about storage space. Returns an array with the following attributes:
* used

+ available

* clusterSize

* nFreeClusters

* nSegments

95

SciDB Operator Reference

Name
echo — Print string

Synopsis
echo(string)

This operator is designed for internal use.

Summary

Accepts a string and returns a single-element array containing the string.

96

SciDB Operator Reference

Name
explain_logical, explain_physical — Show query plan

Synopsis

expl ai n_l ogi cal (query: string, |anguage: string)
expl ai n_physi cal (query: string, |anguage: string)

This operator is designed for internal use.
Summary
The operators explain_logical and explain_physical can be used to emit a human-readable plan string for

aparticular query without running the query itself. SciDB first constructs alogical plan, optimizesit and
then tranglatesit into a physical plan.

97

SciDB Operator Reference

Name

filter — Select subset of data by boolean expression
Synopsis
SELECT * FROM filter(array, expression);

filter(array, expression);

Summary

The filter operator filters out data in an array based on an expression over the attribute and dimension
values. Thefilter operator returns an array the with the same schema as the input array but marks all cells
in the input that do not satisfy the predicate expression 'empty'.

Example

This example filters an array to remove outlying values.
1. Create an array m4x4.
CREATE ARRAY mAx4<val : doubl e>[i =0: 3, 4, 0,] =0: 3, 4, 0] ;

2. Put vaues between 0 and 15 into the nondiagonal elements of m4x4 and values greater than 100 into
the diagonal elements:

store(bui | d(x4, iif(i=j, 100+ ,i*4+), mix4)

100), (1), (2),(3)],
4),(101),(6),(7)],
8),(9),(102), (11)],
12), (13), (14), (103)]

—— e ——
—~

3. Filter all values of 100 or greater out of m4x4:
filter(mix4, val <100);

This query outputs:

(), (1), (2),(3)],
(4),0),(6),(7N],
(8),(9), (), (11)],
(12),(13),(14), O]

e

98

SciDB Operator Reference

Name
help — Operator signature

Synopsis
SELECT * FROM hel p(oper at or _nan®) ;

hel p(oper at or _nan®) ;

Summary

Accepts an operator name and returns an array containing a human-readabl e signature for that operator.

Example

This example returns the signature of the multiply operator.

hel p(* mul tiply');

99

SciDB Operator Reference

Name
input — Read asystem file
Synopsis

SELECT * INTO target_array
FROM i nput (naned_ar r ay| anonynous_schemg, fil enane[, i nstance]) ;

store(input (target _array| anonynous_schens, fil enane[, i nst ance]),
target _array);

Summary

Input works exactly the sameway asload, except it doesNOT store the dataunlessthe INTO clause or the
AFL store operator is present. The instance _id argument allows you to select which SciDB instance you
want to input into. To see alist of SciDB instances running on your system, type sci db. py st at us

host nane at the Unix command-line.

Example

This example reads a csv file from the examples directory.

i nput (MAx4, ' pat h/ t runk/ doc/ user/ exanpl es/ mix4_m ssi ng. t xt);

100

SciDB Operator Reference

Name

inverse — Matrix inverse
Synopsis
SELECT * FROM i nverse(array);

i nverse(array);

Summary

The inverse operator produces the matrix inverse of a square matrix. The input matrix must be invertible,
i.e., the determinant of the matrix must be nonzero.

Example

This example find the matrix inverse of a 3x3 matrix.
1. Create amatrix m3x3:
CREATE ARRAY <val : doubl e>[i=0: 2, 3,0, j=0: 2, 3,0];
2. Putvaluesof 1 and 2 into m3x3 to represent a nonsingular matrix:
store(build(nBx3,iif(i=j,1,2)), mMx3);

This query outputs:

1),(2),(2)],
2),(1),(2)],
2),(2),(1)]

T —
—~ A~ —~

3. inverse(nBx3);

This query outputs:

101

SciDB Operator Reference

Name

join— Join two arrays
Synopsis
SELECT * INTO target _array FROM join(left _array,right_array);

store(join(left _array,right _array),target_array);

Summary

Join combines the attributes of two input arrays at matching dimension values. The two arrays must have
the same dimension start coordinates, the same chunk size, and the same chunk overlap. The join result
has the same dimension names as the first input. If the the left-hand and right-hand arrays do not have the
same dimension size, join will return an array with the same dimensions as the smaller input array. If a
cell in either the left or right array is empty, the corresponding cell in the result is a'so empty.

Example

This example joins two arrays with different dimension lengths.

1 Createa3x3 array left_array containing value Lin al cells:
create array left _array <val:double>[i=0:2,3,0,j=0:2,3,0];
store(build(left_array,1),left _array);

2.

Create a 3x6 array right_array containing value O in all cells:

create array right _array <val:doubl e>[i=0:2,3,0,j=0:5,3,0];
store(build(right _array, 0),right_array);

3. Joinleft_array and right_array:
store(join(left_array,right_array),result_array);
This produces an array result_array with contents and schema as follows:
show(result_array); scan(result_array);
("result_array<val : doubl e, val _2:double> [i=0:2,3,0,j=0:2,3,0]")]
,0),(1,0),(1,0)],

(1
(1,0),(1,0),(1,0)1],
(1

[
[
[
[
][»0),(1,0),(1,0)]

102

SciDB Operator Reference

Name
list — List contents of SciDB hamespace

Synopsis
SELECT * FROM | i st (el ement)

list(el ement)

Summary

The list operator allows you to get a list of elements in the current SciDB instance. The input is one of

the following strings:

aggregates

Show all operators that take asinput a SciDB array
and return ascalar.

arrays

Show all functions. Each function will belisted with
its available dataypes and the library in functions
which it resides.

functions

Show dl libraries that are loaded in the current
SciDB instance.

instances

Show all SciDB instances. Each instance will be
listed with its port, id number, and time-and-date
stamps for when it came online.

libraries

Show dl libraries that are loaded in the current
SciDB session.

operators

Show all operators and the libraries in which they
reside.

types

Show all the dataypes the SciDB supports.

queries

Show all active queries. Each active query will have
an id, atime and date when it was queries initiated,
an error code, whether it generated any errors, and
a status (boolean flag where TRUE means that the
query isidle).

103

SciDB Operator Reference

Name
load library — Load aplugin

Synopsis

load library(library nane);

Summary
Load a SciDB plugin. The act of loading a plugin shared library first registers the library in the SciDB

system catalogs. Then it opens and examines the shared library to store its contents with SciDB's internal
extension management subsystem. Shared library module which are registered with the SciDB instance

will be loaded at system start time.

Example

load_library('librational")

104

SciDB Operator Reference

Name
lookup — Select array cells by dimension index

Synopsis
SELECT * FROM | ookup(pattern_array, source_array);

| ookup(pattern_array, source_array);

Summary

L ookup maps elements from the second array using the attributes of the first array as coordinatesinto the
second array. The result array has the same shape asfirst array and the same attributes as second array.

Example

This example selects arow from a 2-dimensional array.

1. Create an vector of ones called indicesl:
store(buil d(<val 1: doubl e>[i =0: 3, 4,0], 1), i ndi cesl);
[(1), (1), (1), (D]

2. Create avector with values between 0 and 3 called indices2:
store(buil d(<val 1: doubl e>[i=0: 3,4,0],i),indices2);
[(0),(1),(2).(3)]

3. Joinindicesl and indices2 into a two-attribute array called pattern_array:
store(join(indicesl,indices2), pattern_array);
[(1,0),(1,1),(1,2),(1,3)]

4. Createa2-dimensiona array called source_array with values between 100 and 115:
store(buil d(<val : doubl e>[i =0: 3, 4,0, j=0:3,4,0],i*4+] +100)

, source_array);

100), (101), (102), (103)],
104), (105), (106), (107)],
108), (109), (110), (111)],
112), (113), (114), (115)]

———r—_————
A~ N AN~

5. Use lookup to use the dimension coordinates array pattern_array to return the second row of
source_array:

| ookup(pattern_array, source_array);

This query outputs:

105

SciDB Operator Reference

[(104), (105), (106), (107)]

106

SciDB Operator Reference

Name

max — Select maximum value
Synopsis
SELECT * FROM max(array, attri bute[, di mensi onl, di nensi on2,...])

Summary

The max operator calculates the maximum of the specified attribute in the array. Result is an array with
single element containing maximum of specified attribute.

Note

The max operator provides the same functionality as the max aggregate. See the max aggregate
reference page for more information.

Example

This example find the maximum value of each row of a 2-dimensional array.
1. Create al-attribute, 2-dimensional array called m3x3:

CREATE ARRAY nBx3 <val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
2. Storevaluesof 0-8in m3x3:

store(buil d(nBx3,i*3+j), MBx3);

0),(1),(2)],
3).,(4),(5)],
6). (7). (8)]

—————
—~ —~

3. Select the maximum value of each row of m3x3:
max(nBx3, val ,i);
This query returns:

[(2),(3).(8)]

107

SciDB Operator Reference

Name

merge — Merge two arrays

Synopsis

SELECT * INTO target_array

FROM nerge(l eft _array, right _array);

store(nerge(l eft_array,right _array),target_array);

Summary

Merge combines elements from the input array the following way: for each cell in the two inputs, if the
cell of first (left) array is not empty, then the attributes from that cell are selected and placed in the output.
If the cell in the first array is marked as empty, then the attributes of the corresponding cell in the second

array are taken. If the cell is empty in both input arrays, the output's cell is set to empty.

Thetwo input arrays should have the same attribute list, number of dimensions, and dimension start index.
If the dimensions are not the same size, merge will return an output array the same size asthe larger input

array.
Example
This example merges two sparse arrays.
1. Createasparse array left_array and store value 1 in thefirst row:
CREATE ARRAY | eft _array <val :double>[i=0:2,3,0,j=0:5, 3,0];
store(build_sparse(left_array,1,i=0),left_array);
This query outputs:
[[{0,0}(1),{0,1}(1),{0,2}(1)]];
[[{0,3}(1),{0,4}(1),{0,5}(1)]]
2. Create asparseidentity matrix called right_array
CREATE ARRAY right _array <val:double>[i=0:2,3,0,j=0:2,3,0];
store(buil d_sparse(right_array,1,i=j),right_array);
This query outputs:
[[{0,0}(1),{1,1}(1).{2,2}(D)]]
3. Mergeleft_array and right_array:

merge(l eft _array, right _array);
This query outputs:

[[{0,0}(1),{0,1}(1),{0,2}(1),{1,1}(1),.{2, 2} (D)]];
[[{0,3}(1),{0,4}(1),{0,5}(1)]]

108

SciDB Operator Reference

Name

min — Select minimum value

Synopsis

SELECT * FROM min(array, attribute[, di mension_1,di nension_2,...]);

Summary

The min operator selects the minimum value from an array attribute.

Note

The min operator provides the same functionality as the min aggregate. See the min aggregate
reference page for more information.

Example

This exampl e finds the minimum value of each row of a 2-dimensional array.

1

Create a 1-attribute, 2-dimensional array called m3x3:
CREATE ARRAY nBx3 <val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
Store values of 0-8 in m3x3:

store(buil d(nBx3,i*3+j), MBx3);

0),(1),(2)],
3).,(4),(5)],
6). (7). (8)]

—————
—~ —~

Select the minimum value of each row of m3x3:
max(nBx3, val ,i);
This query returns:

[(0),(3),(6)]

109

SciDB Operator Reference

Name

multiply — Matrix multiplication

Synopsis

SELECT * FROM nmultiply(left_array, right _array);

mul tiply(left _array,right _array);

Summary

The multiply operator performs matrix multiplication on two input matrices and returns a result matrix.

Both inputs must be compatible for the multiply operation, and both must have a single attribute. To be
compatible, two matrices must have the same size of ‘inner' dimension and same chunk size along that
dimension.

Example

This example multiplies a 3x2 array and a 2x3 array.

1

Create a3x2 array |hs:
store(buil d(<val : doubl e>[i=0:2,3,0,j=0:1,2,0], (i +1)*3+j), 1 hs);

This query outputs:

© oW
N N N
NN N
=~ A
ES=

——— ——
—~ —~
—_—

Create a2x3 array rhs:

store(buil d(<val : doubl e>[i=0:1,2,0,j=0:2,3,0], (i+1)*3-j),rhs);

Multiply Ihs and rhs.

mul ti ply(lhs, rhs)

This query returns:
3).(26),(19)],

[

[(3

[(60), (47),(34)],
%(87),(68),(49)]

110

SciDB Operator Reference

Name

normalize — Divide each element of a 1-attribute vector by the square root of the sum of sgquares of the
elements

Synopsis
SELECT * FROM nornmal i ze(array);

nor mal i ze(array);

Summary

The normalize operator scales the values of avector.

Example

Scale a vector whose values are between 1 and 10.

st ore(bui | d(<val : doubl e>[i =0:9, 10, 0], (i +1)), unscal ed);
[(1).(2),(3).(4).(5),(6),(7).(8),(9),(10)]

nor mal i ze(unscal ed) ;

[(0. 0509647), (0.101929), (0. 152894), (0. 203859) , (0. 254824) ,
(0.305788), (0.356753), (0. 407718), (0. 458682) , (0. 509647)]

Limitations

The normalize operator can only take 1-dimensional, 1-attribute arrays.

111

SciDB Operator Reference

Name
project — Select array attributes

Synopsis

SELECT * INTO target_array
FROM proj ect (source_array, attributel, attribute2,...);

store(project(source_array, attributel,attribute2,...),target _array);

Summary

Project the input array on the specified attributes, in the specified order. Attributes that are not specified
are excluded from the output.

Example

This example takes an array with 3 attributes and returns an array with 2 attributes.

1. Createan array source _array:
store(buil d(<val 1: doubl e>[i=0:4,5,0], 1), source_array);
This query outputs:
[(1),(1), (1), (1), (1]

2. Create an attribute val2 and store val1 and val2 in the array:
store(appl y(source _array, val 2,i+1),two_attr);
[(1,1),(1,2),(1,3),(1,4),(1,9)]

3. Createan attribute called val3 and store val 1, val2, and val3 in an array three_attr:
store(appl y(two_attr,val 3,sin(val2/1.0)),three_attr);

[(1,1,0.841471), (1, 2,0.909297), (1,3, 0.14112),
(1,4,-0.756802), (1,5, -0.958924)]

4. Project attribute val3 and val2:
project(three_attr,val 3, val 2);
This query outputs:

[(0.841471, 1), (0. 909297, 2), (0. 14112, 3), (- 0. 756802, 4), (- 0. 958924, 5)]

112

SciDB Operator Reference

Name

redimension — Change attributes to dimensions
Synopsis
AFL% r edi mensi on(source_array, target _array| anonynous_schems)

Summary

The redimension operator changes attributes to dimensions. The input and target arrays must have
compatible schemas, and both commands determine the list of transformations (attribute to dimension) by
matching names in the attribute and dimension lists of the two arrays.

Example

This example redimensions a 2-attribute, 1-dimensional array into a2-dimensional, 1-attribute array. This
example uses the data set device _tria.txt, shown here:

s, p, val
"device-0","trial-0",0.01
"device-1","trial -0", 2. 04
"device-2","trial-0",6.09
"device-3","trial-0",12.16
"device-4","trial -0", 20. 25
"device-0","trial-1", 30. 36
"device-1","trial -1", 42. 49
"device-2","trial-1",56. 64
"device-3","trial-1",72.81
"device-4","trial-1", 91
"device-0","trial-2",111.21
"device-1","trial -2",133. 44
"device-2","trial -2",157. 69
"device-3","trial-2",183. 96
"device-4","trial -2",212. 25
"device-0","trial -3",242. 56
"device-1","trial -3", 274. 89
"device-2","trial -3", 309. 24
"device-3","trial -3",345.61
"device-4","trial -3", 384
"device-0","trial -4",424. 41
"device-1","trial -4", 466. 84
"device-2","trial -4",511. 29
"device-3","trial -4",557.76
"device-4","trial -4", 606. 25

1. Create an array named device_trial, with one cell for every row in device_trial.txt

CREATE ARRAY device_tri al
<s:string, p:string, val : doubl e>
[i=1:25,5, 0]

2. Convert thefiledevice_trial.txt to SciDB format. Y ou will need to exit your iquery session or do this
in anew termina window because the csv2scidb tool is run at the command line.

113

SciDB Operator Reference

csv2scidb -p SSN -s N < device_trial.txt > device_trial.scidb
Load the data device _trial.scidb into device tria:

LOAD device_trial FROM'/doc/exanpl es/device_ trial.scidb';
Create an array with anoninteger dimension to be the redimension target:

CREATE ARRAY Dsp
<val : doubl e>
[s(string)=5,5,0, p(string)=5,5,0];

Redimension device_trial into Dsp:
redi mensi on(device_trial, Dsp);

This query returns:

. 01), (30.36), (111.21), (242.56), (424.41)],
. 04), (42.49), (133. 44), (274. 89), (466.84)],
.09), (56.64), (157. 69), (309. 24), (511.29)],
2.16), (72.81), (183.96), (345. 61), (557. 76)],

(0
(2
(6
(1
(20.25), (91), (212. 25), (384), (606. 25)]

e

114

SciDB Operator Reference

Name

redimension_store — Transform attributes to dimensions
Synopsis
AFL% r edi mensi on_st ore(source_array, named_t arget _array);

Summary

redimension_store converts array attributes to dimensions. The redimension_store operator updates the
target_array and creates additional mapping arraysif necessary. Theargument nanmed_t ar get _arr ay
must be an array that was previously created and stored in the SciDB namespace.

Y ou can redimension the array and apply aggregates to duplicate cells.

The input and target arrays must have compatible schemas, and both commands determine the list of
transformations (attribute to dimension) by matching namesin the attribute and dimension lists of the two
arrays.

Example

This example redimensions a 2-attribute, 1-dimensional array into a2-dimensional, 1-attribute array. This
example uses the data set device_trial.txt, shown here:

s, p, val
"device-0","trial-0",0.01
"device-1","trial -0", 2. 04
"device-2","trial-0",6.09
"device-3","trial-0",12.16
"device-4","trial -0", 20. 25
"device-0","trial-1", 30. 36
"device-1","trial -1", 42. 49
"device-2","trial-1", 56. 64
"device-3","trial-1",72.81
"device-4","trial-1", 91
"device-0","trial-2",111. 21
"device-1","trial -2", 133. 44
"device-2","trial -2",157. 69
"device-3","trial-2",183. 96
"device-4","trial -2",212. 25
"device-0","trial -3",242. 56
"device-1","trial -3", 274. 89
"device-2","trial -3", 309. 24
"device-3","trial -3", 345. 61
"device-4","trial -3", 384
"device-0","trial -4",424. 41
"device-1","trial -4", 466. 84
"device-2","trial -4",511. 29
"device-3","trial -4",557.76
"device-4","trial -4", 606. 25

1. Create an array named device_trial, with one cell for every row in device trial.txt

115

SciDB Operator Reference

CREATE ARRAY device tri al
<s:string, p: string, val : doubl e>
[i=1:25,5, 0]

Convert thefile device_trial.txt to SciDB format. Y ou will need to exit your iquery session or do this
in anew terminal window because the csv2scidb tool is run at the command line.

csv2scidb -p SSN -s N < device_trial.txt > device_trial.scidb
Load the data device trial.scidb into device trial:

LOAD device trial FROM'/doc/exanpl es/device trial.scidb';
Create an array with a noninteger dimension to be the redimension target:

CREATE ARRAY Dsp
<val : doubl e>
[s(string)=5,5,0, p(string)=5,5,0];

Redimension device_trial and store the result in Dsp:
redi mensi on_store(device_trial, Dsp);

This query returns:

.01), (30.36), (111.21), (242. 56), (424. 41)],
. 04), (42.49), (133. 44), (274. 89), (466.84)],
.09), (56.64), (157. 69), (309. 24), (511.29)],
2.16), (72.81), (183.96), (345. 61), (557.76)],

(0
(2
(6
(1
(20.25), (91), (212. 25), (384), (606. 25)]

e

116

SciDB Operator Reference

Name
reduce_distro — Reduce the distribution of areplicated array

Synopsis
AFL% r educe_di stro(array, partitioning _schema: integer)

This operator is designed for internal use.

Summary

Internal only.

117

SciDB Operator Reference

Name
regrid — Select nonoverlapping subarrays
Synopsis
SELECT * FROM regrid(array,grid 1, grid 2[,...,grid_N],
aggregate call _1 [, aggregate call_2,...,aggregate call_N])
regrid(array,grid 1, grid 2[,...,grid N,
aggregate call _1 [, aggregate call _2,...,aggregate call_N])
Summary

The regrid operator partitions the cellsin the input array into blocks, and for each block, apply a specific
aggregate operation over the value(s) of some attribute in each block.

regrid does not allow grids to span array chunks and requires the chunk size to be a multiple of the grid
size in each dimension.

Example

This example divides a 4x4 array into 4 equal partitions and calculates the average of each one. This
processis known as spatial averaging.

1

Create an array mdx4:
CREATE ARRAY mix4 <val : doubl e> [i=0: 3, 4,0,j=0:3,4,0];

store(build (mix4, i*4+j), mix4);

(0),(1),(2),(3)],
(4),(5),(6),(N],
(8),(9),(10), (11)],
(12),(13),(14),(15)]

T

Regrid m4x4 into four partitions and find the average of each partition.
regrid(mix4, 2,2, sun(val));
This query outputs:

[[(2.5),(4.5)],[(10.5),(12.5)]]

118

SciDB Operator Reference

Name

remove — Remove an array from the SciDB namespace

Synopsis

AFL% r emove(named_array) ;

Summary

The AFL remove operator workslikethe AQL DROP ARRAY statement. Theargument naned_ar r ay
must be an array that was previously created and stored in the SciDB namespace.

Example

Create an array named source and then removeit:

store(buil d(<val : doubl e>[i =0:9, 10, 0], 1), source);
renove(source);

119

SciDB Operator Reference

Name

rename — Change array name
Synopsis
SELECT * FROM renanme(naned_array, new array) ;

renanme(named_array, new_array);

Summary

The AFL rename operator work similarly to the AQL statement SELECT * INTO except that the old array
name can be reused immediately with the rename operator. The rename operator is akin to using the Unix
mv command, whereas SELECT * INTO isakin to the Unix cp command. The argument nanmed_ar r ay
must be an array that was previously created and stored in the SciDB namespace.

Example

Create an array named source and rename source to target.

st ore(bui | d(<val : doubl e>[i=0:9, 10,0], 1), source) ;
renanme(source, target);

120

SciDB Operator Reference

Name

repart — Change array chunk sizes

Synopsis
SELECT * FROM repart (array,target_array| anonynous_schenan)

repart (array,target_array| anonynous_schems)

Summary

The repart operator changes the partitioning (chunking) of the array. The target array must have the same
attributes and dimensions, but chunk size may be different. Repart returns an array whose attributes are
taken from the input array, with the dimensions of the target.

Example

This example repartitions a4x4 array with chunk size 1 into an array with chunk size 2.
1. Create an array with chunk size of 1 called source:
CREATE ARRAY source <val : doubl e> [x=0: 3,1, 0,y=0: 3,1, 0];
2. Addvalues of 0-15 to source:
store(buil d(source, x*3+y), source) ;
3. Repartition the array into 2-by-2 chunks and store the result in an array called target:

store(repart(source, <val ues:double> [x=0:3,2,0, y=0:3,2,0]),target);

121

SciDB Operator Reference

Name

reshape — Change dimension sizes and array shape

Synopsis

SELECT * FROM reshape(array, array| anonynous_schema) ;

reshape(array, array| anonynous_schens) ;

Summary

The reshape operator changes the shape of an array to the rank and dimensions of agiven array or agiven
array schema. Thethe reshape command inputs must have the same number of total cellsand cell attributes.

Example

This example reshapes a 4x4 array into a 2x8 array.

1

Create an array called mdx4:

CREATE ARRAY mAX4 <val : doubl e>[i =0: 3, 4,0, =0: 3, 4,0];
Store values of 0-15 in m4x4:

store(buil d(x4, i*4+j), mx4);

This query outputs:

(0),(1),(2),(3)],
(4),(5),(6),(N],
(8),(9),(10), (11)],
(12),(13),(14), (15)]

e

Reshape m4x4 as 2-by-8:
r eshape(mix4, <val : doubl e>[i =0:7,8,0,j=0:1,2,0]);

This query returns:

— e — —
AN AN A A A A A

122

SciDB Operator Reference

Name

reverse — Reverse valuesin each array dimension
Synopsis

SELECT * INTO target_array
FROM r ever se(source_array);

store(reverse(source_array),target_array);

Summary

The reverse operator reverses all the values of each dimension in an array.
Example

This example reverses a 3x3 matrix.

1 Creaea3x3 array m3x3:
CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Put values of 0-8 into m3x3:

store(buil d(nmBx3,i*3+j), mBx3);

0),(1),(2)],
3),(4),(5)],
6),(7),(8)]

——— ——
—~ —~

3. Reversethevaluesin m3x3:
rever se(nmdx3);

This query outputs:

N N N
N U1 00
SN N N
N N N
NN
SN N N
N N N
o wo
SN N N

123

SciDB Operator Reference

Name

sample — Select random array chunks
Synopsis
SELECT * FROM sanpl e(array, probability);

sanpl e(array, probability);

Summary

The sample operator selects chunks from an array at random subject to a probability.

Example

This exampl e selects random chunks from a 1-dimensional 3-chunk array.

1. Createal-dimensional array with dimension size of 6 and chunk size of 2:
CREATE ARRAY vect or 1<val : doubl e>[i =0: 5, 2, 0] ;

2. Putvaluesof 0-5 into vectorl:
store(build(vectorl,i), vectorl);

3. Sample chunks from the array with the probability of 1/3 that a chunk is included:

sanpl e(vectorl, . 3);

124

SciDB Operator Reference

Name

save — Save array datato afile
Synopsis
AFL% save(array, fil epat h)

Summary

The AFL save operator works like the AQL SAVE clause. It saves the data from the cells of a SciDB
array into afile.

Example

This example creates a a matrix with two attributes and saves the cell valuesto afile.
1. Createa2-dimensional array containing values 100-108:
store(buil d(<val : doubl e>[i=0:2, 3,0,j=0:2,3,0],i*3+ +100), arrayl) ;
2. Createa2-dimensional array containing values 200-208:
store(buil d(<val : doubl e>[i=0:2,3,0,j=0:2,3,0],i*3+ +200), array?2) ;
3. Joinarrayl and array2 and store the output in an array storage array:
store(join(arrayl, array2), storage_array);
This query outputs:
[
[(100, 200), (101, 201), (102, 202)],
[(103, 203), (104, 204), (105, 205)],
[(106, 206), (107, 207), (108, 208)]
]
4. Savethe contents of storage array to afile.
save(storage_array,'/tnp/storage array.txt');
The contents of storage _array.txt are:
0, 0}
100, 200), (101, 201), (102, 202)],

(
(103, 203), (104, 204), (105, 205) 1,
(

{
[
|
[(106, 206), (107, 207), (108, 208)]
]

125

SciDB Operator Reference

Name

scan — Display cell values
Synopsis

SELECT * FROM scan(naned_arr ay) ;

scan(nanmed_array);

Summary

The scan operator displaysto contents of each cell in an array. The output of the scan operator is an array
the same size as naned_ar r ay. The argument narmed_ar r ay must be an array that was previously
created and stored in the SciDB namespace. Y ou can use scan with a WHERE clause to view subsets of
large arrays. To supress display of empty cells, set thei query - o spar se option.

Example
This example selects the second row from an array and shows the cell valuesin that row.

1 Createa3x3 array m3x3:
CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, =0: 2, 3, 0] ;
2. Putvaluesof 0-8 into m3x3:
store(buil d(nBx3,i*3+j), nBx3);
3. Usescaninan AQL FROMclause to display the middle row of m3x3:
SELECT val FROM scan(nB8x3) WHERE i =1;

This query outputs:

)1 ’
3), (4
)1 ’

~—

0,01,
(4),(9)],
0. 0]

—— — ——
—~ —~

4. You can supress the empty cellsin the output by setting the iquery output to sparse:

qui t;

i query -o sparse

AQ.% SELECT val FROM scan(nBx3) WHERE i =1;
{1,03[[{1,0}(3).{1,1}(4).{1,2}(5)]]

126

SciDB Operator Reference

Name
setopt — Set/get configuration option value at runtime.

Synopsis
setopt (opti on-nane [, new option-value])
This operator is designed for internal use.
Summary
Set/get configuration option value at runtime. Option value should be specified as string. If new valueis
not specified, then values of this configuration option at all instances are printed. If new valueis specified,

then value of option is updated at all instances and result array contains old and new values of the option
at al instances.

127

SciDB Operator Reference

Name

show — Show array schema

Synopsis
SELECT * FROM show(named_array| anonynous_schema) ;

show(nanmed_arr ay| anonynous_schens) ;

Summary

The show operator returns an array's schema. This is useful if you are changing array dimensions with
nested statements. The argument named_ar r ay must be an array that was previously created and stored
in the SciDB namespace.

Example

Show the schema that results from several nested operations:

st ore(subarray(bui | d(

<val : doubl e>[i =0: 2, 3, 0,] =0: 3, 4, 0, k=0: 4, 5, 0],
j+k),1,1,2,2,3,3),output_array);
show(out put _array) ;

The schema of output_array is.

[("out put _array<val : doubl e> [i=0:1,3,0,j=0:2,4,0,k=0:1,5,0]")]

128

SciDB Operator Reference

Name
dlice — Select subset of array along a plane

Synopsis
SELECT * FROM slice(array, di nensi onl, i ndex1[di nensi on2, i ndex2,...]);
slice(array, di nensi onl, i ndex1[di nensi on2, i ndex2,...]);

Summary
The dlice operator takes a sample of cells along a specified plane of an array. The result is a dice of the
input array corresponding to the given coordinate value(s). Number of dimensions of the result array is

equal to the number of dimensions of input array minus number of specified dimension, and the coordinate
value should be avalid dimension value of the input array.

Example

This exampl e selects the middle column from a 3x3 array.

1 Creaea3x3 array m3x3:
CREATE ARRAY nBx3<val : doubl e>[i =0: 2, 3, 0, j =0: 2, 3, 0] ;
2. Put values of 0-8 into m3x3:

store(buil d(nBx3,i*3+j), Bx3);

0),(1),(2)],
3),(4),(5)],
6),(7),(8)]

——— ——
—~ —~

3. Select the middle column of m3x3:
slice(nBx3,j,1);
This query outputs:

[(1),(4). (7]

129

SciDB Operator Reference

Name
sort — Sort by attribute value

Synopsis

SELECT * FROM sort(array, attribute[, option]);

Summary

Sort a one-dimensional array by one or more attributes. The sort attributes are specified using a 1-based
attribute number. The default is ascending order. Set the option argument to desc to sort in descending
order.

Example

Sort a set of random values from lowest to highest:
sort (buil d(<val : doubl e>[i=0:9, 10, 0], random() %40), val) ;

[(0),(1).(3),(4),(4).(5),(6),(7),(8),(9)]

130

SciDB Operator Reference

Name

stdev — Standard deviation

Synopsis

SELECT * FROM stdev(array, attri bute, di nensi onl, di nensi on2,...)

Summary

Note

The stdev operator providesthe samefunctionality asthe stdev aggregate. Seethe stdev aggregate
reference page for more information.

Example

This example finds the standard deviation of each row of a2-dimensional array.

1.

Create a 1-attribute, 2-dimensional array called m3x3:
CREATE ARRAY nBx3 <val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
Store values of random values between 0 and 1 in m3x3:

store(buil d(nBx3, randon{() %9/ 10. 0) , n8x3) ;

0.5),(0.6),(0)],
0.8),(0.8),(0.4)],
0.1),(0.8),(0.6)]

—————
—~ A~~~

Select the standard deviation of each row of m3x3:
var (nmB8x3, val ,i);
This query returns:

[(0.321455), (0. 23094) , (0. 360555)]

131

SciDB Operator Reference

Name
store— Store query output in a SciDB array
Synopsis

st ore(oper at or (operat or _args), naned_array) ;

Summary

store is a write operator, that is, one of the AFL operations that can update an array. Each execution of
store causes a new version of the array to be created. When an array is removed, so are al its versions.
The argument naned_ar r ay must be an array that was previously created and stored in the SciDB
namespace.

store() can be used to save the resultant output array into an existing/new array. It can also be used to
duplicate an array (by using the name of the source array in the first parameter and target_array in the
second parameter).

Note

The AFL store operator provides the same functionality asthe AQL SELECT * | NTO... FROM
... Statement.

Example

Build and store a 2-dimensional, 1-attribute matrix of zeros:
store(buil d(<val _doubl e>[i=0:2,3,0,j=0:2,3,0],0), zeros_array);

You can change the name of the array zeros array to ones array and the cell values to 1 with a store
Statement:

store(buil d(zeros_array, 1), ones_array);
Build and store a 2-dimensional, 1-attribute matrix of random numbers between 1 and 10:

store(buil d(random array, randon() %d0), random array) ;

—— — — —
—~—~ —~
o O O
N N N
—~—~ —~
—= 01
N N N
—~—~ —~
Wk Ww
N N N
— et —

Y ou can update the array with a different set of random numbers by re-running the store statement:

store(buil d(random array, randon() %d0), random arr ay) ;

(4),(5),(6)],
(5),(4),(6)],
(8),(4),(2)]

e e

132

SciDB Operator Reference

Name
subarray — Select contiguous area of cells

Synopsis
SELECT * FROM subarray(array, boundary _coord_1, boundary coord_2,...)
subarray(array, boundary coord_1, boundary coord 2,...)

Summary

Subarray selects ablock of cellsfrom an input array. The result is an array whose shape is defined by the
boundary coordinates specified by the subarray arguments. A boundary coordinate pair must be specified
for every dimension of theinput array.

Example

This example selects the values from the last two columns and the last two rows of a 4x4 matrix.

1

Create an array called mdx4:

CREATE ARRAY mAX4 <val : doubl e>[i =0: 3, 4,0, =0: 3, 4, 0];
Store values of 0-15 in m4x4:

store(buil d(x4, i *4+j), mx4);

This query outputs:

(0),(1),(2),(3)],
(4),(5),(6),(N],
(8),(9),(10), (11)],
(12),(13),(14), (15)]

e

Return an array containing the cells that were in both the last two columns and the last two rows
on méx4:

subarray(nmix4, 2, 2, 3, 3) ;

This query returns:

[
[(10), (11)],
%(14),(15)]

133

SciDB Operator Reference

Name

substitute — Substitute new value for null valuesin an array

Synopsis

SELECT * FROM substitute(null _array,
substitute array[, attribute 1,attribute 2,...]);

substitute(null _array,substitute array[,attribute 1,attribute 2,...]);

Summary

Substitute null valuesin one array with non-null values from another array. The arrays must have the same
dimension start index.

The substitute operator will render attributesinnul | _ar r ay non-nullable. If an attribute has null values,
you can use this operator to substitute null values in the array and change the nullability of the attribute

in the schema.
Example
This example replaces all null valuesin an array with zero.
1. Create an array m4x4_null with anullable attribute:
CREATE ARRAY mix4_nul |l <val : doubl e null>[i=0:3,4,0,j=0:3,4,0];
2. Storenull in the second row of m4x4 null and 100 in all the other cells:
store(build(mix4_null,iif(i=1,null,100)), mx4_null);
3. Createasingle-cell array called substitute_array
CREATE ARRAY substitute_array <m ssing: doubl e>[i=0:0, 1, 0] ;
4. Put value 0 into substitute array:
store(buil d(substitute_array, 0), substitute_array);
5. Usethe substitute operator to replace the null-valued cellsin mdx4 null with O-valued cells:

substitute(mix4_null,substitute array);

This query outputs:

100), (100), (100), (100)],
0),(0),(0),(0)],

100), (100), (100), (100)],
100), (100), (100), (100)]

— e —
—~ N~

134

SciDB Operator Reference

Name

sum — Sum attribute values

Synopsis

SELECT * FROM sum(array, attri bute[, di mensi onl, di nensi on2,...])

Summary

Note

The sum operator offersthe samefunctionality asthe sum aggregate. See sum aggregate reference
page for more information.

Example

This example sums the columns and rows of a 3x3 array.

1

Create a 1-attribute, 2-dimensional array called m3x3:
CREATE ARRAY nBx3 <val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
Store values of 0-8 in m3x3:

store(buil d(nBx3,i*3+j), Bx3);

0),(1),(2)],
3).(4).(5)],
6).(7).(8)]

—————
—~ —~

Sum the values of m3x3 along dimension j. This sums the columns of m3x3:
sum(mBx3, val ,j);

This query outputs:

[(9),(12),(15)]

Sum the values of m3x3 along dimension i. This sums the rows of m3x3:
sum(m8x3, val ,i);

This query outputs:

[(3),(12),(2D)]

135

SciDB Operator Reference

Name
thin — Select data from an array dimension at fixed intervals

Synopsis
SELECT * FROM thin(array,start_1,step _1,start _2,step 2,...);

thin(array,start_1,step 1,start _2,step_2,...);

Summary

The thin operator selects regularly spaced elements of the array in each dimension. The selection criteria
are specified by the starting dimension value st art _1 and the number of cellsto skip using step_1
for each dimension of theinput array. The dimension chunk size must be evenly divisible by the step size.

Example

This example selects values from a 6x6 array.
1. Create an array mo6xo6:

CREATE ARRAY nbx6 <val : doubl e>[i =0:5,6,0,j=0:5,6,0];
2. Put values of 1-35 into m6x6:

store(bui | d(nBx6, i *6+j), NBx6) ;

0).(1),(2),(3).(4).,(5)],
6).(7).(8),(9),(10), (11)],
12),(13),(14),(15),(16),(17)],
18),(19),(20),(21),(22),(23)],
24),(25),(26),(27),(28),(29)],
30), (31),(32),(33),(34),(35)]

——m e ——
AN AN AN AN S

3. Select every other column of m6x6, starting at the first column;
t hi n(m6x6, 0, 1, 0, 2);

This query outputs:

0),(2),(4)],
6),(8),(10)],
12),(14),(16)],

18),(20),(22)],
24),(26),(28)],

[
[
[
[
|
[(30),(32),(34)]]

AN AN AN A A/

4. Select every other row from m6x6, starting at the first row;

t hi n(n6x6, 0,1, 0, 2);

136

SciDB Operator Reference

This query outputs:

(0),(1),(2),(3),(4).(5)],
(12),(13),(14),(15),(16),(17)],
(24),(25),(26),(27),(28),(29)]

—t — — ——

Select every other value from m6x6, starting at the second column;
t hi n(n6x6, 1, 2, 1, 2);

This query outputs:

7),(9), (1],

(
(19),(21),(23)],
(31),(33),(39)]

—t — — ——

137

SciDB Operator Reference

Name

transpose — Matrix transpose
Synopsis
SELECT * FROM transpose(array)

transpose(array)

Summary

The transpose operator accepts an array which may contain any number of attributes and dimensions.
Attributes may be of any type. If the array contains dimensions d1, d2, d3, ..., dn the result contains the
dimensionsin reverse order dn, ..., d3, d2, d1.

Example

This example transposes a 3x3 matrix.
1. Create al-attribute, 2-dimensional array called m3x3:

CREATE ARRAY nBx3 <val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
2. Storevaluesof 0-8in m3x3:

store(buil d(nBx3,i*3+j), nBx3);

0),(1),(2)],
3).(4).(5)],
6).(7).(8)]

—————
—~ —~

3. Transpose m3x3:
transpose(nBx3);

This query outputs:

—r—_——
—~~ —~
N R O
— — —
—~~ —~
g1 b~ w
— — —
—~~ —~
0 N O
~— — —

138

SciDB Operator Reference

Name
unload_library — Unload a plugin

Synopsis
unload_library('library _nanme')
Summary

Unload a plug-in from the current SciDB instance.

Note

The unload_library operator provides the same functionality as the AQL UNLOAD LIBRARY
'i brary_nane' statement.

Example

This example loads and unloads the example plug-in librational .so.

load library('librational"')
unload library ('librational")

Thefile extension is not included in the library name.

139

SciDB Operator Reference

Name

unpack — Transform multidimensional array to single dimension
Synopsis
SELECT * | NTO vector FROM unpack(array, attribute nane)

store(unpack(array, attri bute_nane), vect or)

Summary

The unpack operator unpacks a multidimensional array into a single-dimensional array creating new
attributes to represent source array dimension values. The result array has a single zero-based dimension
and arguments combining attributes of the input array. The name for the new single dimension is passed
to the operator as the second argument.

Example

This exampl e takes 2-dimensional, 1-attribute array and outputs a 1-dimensional, 3-attribute array.
1. Createal-attribute, 2-dimensional array called m3x3:
CREATE ARRAY nBx3 <val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
2. Storevaluesof 0-8in m3x3:
store(buil d(nBx3,i*3+j), nBx3);
(1), (2)],

(0)
(3),(4),(9)],
(6),(7),(8)]

— — — ——

3. Create a new attribute called val2 containing values 100-108 and store the resulting array as
m3x3_2attr:

store(appl y(nBx3, val 2, val +100) , nBx3_2attr);
This query outputs:
0, 100), (1, 101), (2,102)],

(
(3,103), (4, 104),(5,105)],
(6, 106),(7,107),(8,108)]

— — — ——

4. Unpack m3x3_2attr into a 1-dimensional array.

This query outputs:

[
(0,0, 0, 100),

140

SciDB Operator Reference

,101),
, 102),
,103),
, 104)
, 105),
, 106) ,
, 107),
, 108)

NFPONRFRONEPR
O~NO U A WNP

(0
(0
(1
(1
(1
(2
(2
(2
]

The first two values in each cell are the dimensional indices, and the second two are the attribute
values.

141

SciDB Operator Reference

Name

var — Variance

Synopsis

SELECT * FROM var (array, attri but e[, di mensi onl, di nensi on2,...])

Summary

The var operator returns the variance of a set of values taken from an array attribute.

Note

The var operator provides the same functionality as the var aggregate. See the var aggregate
reference page for more information.

Example

This example finds the variance of each row of a 2-dimensional array.

1

Create a 1-attribute, 2-dimensional array called m3x3:
CREATE ARRAY nBx3 <val : doubl e>[i =0: 2, 3,0, j =0: 2, 3, 0] ;
Store values of random values between 0 and 1 in m3x3:

store(buil d(n8x3, randon{) %9/ 10. 0) , n8x3) ;

0.5),(0.6),(0)],
0.8),(0.8),(0.4)],
0.1),(0.8),(0.6)]

—————
—~ —~

Select the variance of each row of m3x3:
var (nmB8x3, val ,i);
This query returns:

[(0.103333), (0. 0533333), (0. 13)]

142

SciDB Operator Reference

Name

versions — Show array versions
Synopsis
SELECT * FROM versi ons(naned_array) ;

versi ons(naned_array) ;

Summary

The versions operator lists all versions of an array in the SciDB namespace. The output of the versions
command isalist of versions, each of which hasaversion ID and a datestamp which is the date and time
of creation of that version. The argument naned_ar r ay must be an array that was previously created
and stored in the SciDB namespace.

Example

This example creates an array, updates it twice, and then returns the first version of the array.
1. Createanarray caled ml:
CREATE ARRAY ml <val : doubl e>[i=0: 9, 10, 0] ;
2. Storelineach cell of ml:
store(build(nt, 1), nl);
3. Update every cell to have value 100:
store(buil d(nt, 100), n) ;
4. Usethe versions command to see the two versions of ml that you created:
versi ons(nl) ;
5. Usethe scan operator and the ‘@21 array name extension to display the first version of m1.
scan(mL@) ;
This query outputs:

[(1), (1), (1), (1), (1), (1), (1), (1), (1), (1]

143

SciDB Operator Reference

Name

window — Compute aggregates over moving window
Synopsis

SELECT * FROM wi ndow(array,grid _1,grid_2,...,grid_N,
aggregate call _1[, aggrgegate call _2, ...]

Summary

Compute one or more aggregates of any of an array's attributes over a moving window.

Note

The AFL window operator provides the same functionality as the AQL SELECT ... FROM ...
W NDOWSstatement. See the User's Guide chapter on Aggregates for more information.

Example

This example calculates a running sum for a 3x3 window on a4x4 array.
1. Createan array caled mdx4:

CREATE ARRAY mAX4 <val : doubl e>[i =0: 3, 4,0, =0: 3, 4, 0];
2. Storevauesof 0-15in m4x4:

store(buil d(mdx4,i*4+j), mx4);

This query outputs:

(0),(1),(2),(3)],
(4),(5),(6),(N],
(8),(9),(10), (11)],
(12),(13),(14), (15)]

e

3. Return the maximum and minimum values on a movi ng 3x3 window on m4x4:
wi ndow(mdx4, 3, 3, max(val), m n(val));

This query returns:

5,0),(6,0),(7,1),(7,2)],

9,0),(10,0),(11,1), (11,2)],
13, 4), (14, 4), (15, 5), (15, 6)],
13, 8), (14, 8), (15, 9), (15, 10)]

—— e ——
—~ /A~

144

SciDB Operator Reference

Name
xgrid — Expand single array element to grid

Synopsis
SELECT * FROM xgrid(array, scale_1[,scale 2,..., scale N)
xgrid(array,scale 1[,scale 2,..., scale N])

Summary

The xgrid operators scales an input array by repeating cells of the original array specified number of times
in a contiguous subregion. xgrid takes one scal e argument for every dimension in ar r ay. The output
array has the same number of dimensions and attributes as the input array.

Example

This example scales each cell of a2-dimensional array into a 2x2 subarray.
1. Createan array called m3x3:
CREATE ARRAY nBx3 <val : doubl e> [i=0:2, 3,0,j=0:2,3,0];
2. Putvaluesof 0-8 into m3x3:
store(buil d(nBx3,i*3+j), nBx3);
3. Expand each cell of m3x3 into a 2x2 subgrid. Store the resulting array as m6x6:
store(xgrid(nBx3, 2, 2), nbx6) ;

This query returns:

(0),(1),(1),(2),(2
(0),(1),(1),(2),(2
(3),(4).,(4),(5).(5
(3),(4),(4,(5),(5
(6
(6

), (7),(7),(8),(8
), (7)., (7),(8),(8

OO W wo o
N N N N N
N N N N N

]
]
1,
]
]
]

— e, —
AN AN AN A A

145

