
Parallelware Tools: Software
Performance Optimization

Manuel Arenaz | March 2021

©Appentra Solutions S.L.

NUG Monthly Meeting at NERSC

Impact of Parallelware tools on performance

2

Application areas
Parallel code created by

Parallelware tools

Performance gain on multicore CPU
(including multithreading)

Performance gain on GPU

[% time faster] [No. times faster] [% time faster] [No. times faster]

High Performance Computing
(HPC)

PI +73% 3.83x +97% 41.94x

COULOMB +89% 9.68x - -

HEAT +77% 4.41x +89% 9.63x

MATMUL +79% 4.92x +99% 128.33x

ATMUX +58% 2.40x -79% 0.56x

LULESHmk +73% 3.75x +95% 24.40x

NPB CG - 20.52x - -

ZPIC +17% 1.22x +33% 1.49x

Embedded systems
Canny

+23% 1.30x - -

Speedups measured at NERSC CORI system (Cray XC40), GPU nodes:
 CPU: 2 x Intel Xeon Gold 6148 ('Skylake') @ 2.40 GHz (16 threads allocated)
 MEMORY: 384 GB DDR4 memory (32 GB allocated)
 GPU: 8 x NVIDIA V100, each with 16 GB HBM2 memory, connected with NVLink interconnect (2 allocated)

The runtime was reduced up to 89% (9x faster) on multicores and up to 99% (128x faster) on GPUs

https://www.appentra.com/training/courses/parallelware-training-introductory/
https://www.appentra.com/parallelware-training-intermediate/
https://www.appentra.com/parallelware-training-intermediate/
https://www.appentra.com/training/courses/parallelware-training-advanced/
https://www.appentra.com/training/courses/parallelware-training-introductory/
https://www.nas.nasa.gov/publications/npb.html
https://www.appentra.com/training/courses/parallelware-training-advanced/

Parallelware Analyzer for SIMD: Intel AVX-512

3

Use case: Canny (Image processing)
Code versions using SIMD, multithreading and offloading parallelism

Clang 10.0
(seconds)

GCC 8.2
(seconds)

Canny SERIAL
(serial version, maximum optimization without auto-vectorization)

 11,08 12,03

Canny AUTO
(auto-vectorized serial version, maximum optimization)

10,64 [3.9%]
 [1.04x]

11,63 [3.4%]
 [1.04x]

Canny PWA SIMD (*)
(PWA SIMD + auto-vectorized serial version, maximum optimization)

 4,97 [55.1%]
 [2.23x]

 5,61 [53.4%]
 [2.14x]

Canny PWA MULTI+SIMD
(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization)

 3,72 [66.4%]
 [2.98x]

 4,08 [66.1%]
 [2.95x]

Canny PWA GPU+SIMD
(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

- -

CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz (EPEEC cluster)
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD.

Higher %
is faster

The runtime was reduced up to 66% (~3x faster) on multicores using the Clang and GCC compilers

Parallelware Analyzer for SIMD: Arm NEON

4

Use case: Canny (Image processing)
Code versions using SIMD, multithreading and offloading parallelism

Clang 7.0
(seconds)

GCC 8.3
(seconds)

Canny SERIAL
(serial version, maximum optimization without auto-vectorization)

 66,87 66,75

Canny AUTO
(auto-vectorized serial version, maximum optimization)

65,20 [2.5%]
 [1.03x]

66,11 [0.9%]
 [1.01x]

Canny PWA SIMD (*)
(PWA SIMD + auto-vectorized serial version, maximum optimization)

 39,18 [41.4%]
 [1.71x]

 40,36 [39.5%]
 [1.65x]

Canny PWA MULTI+SIMD
(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization)

 24,79 [62.9%]
 [2.70x]

 25,63 [61.6%]
 [2.60x]

Canny PWA GPU+SIMD
(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

- -

CPU: ARM Cortex-A72
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD.

The runtime was reduced up to 62% (~3x faster) on multicores using the Clang and GCC compilers

Higher %
is faster

Parallelware Analyzer for SIMD: Intel SSE4

5

Use case: Canny (Image processing)
Code versions using SIMD, multithreading and offloading parallelism

Clang 10.0
(seconds)

GCC 8.2
(seconds)

Canny SERIAL
(serial version, maximum optimization without auto-vectorization)

 11,86 12,26

Canny AUTO
(auto-vectorized serial version, maximum optimization)

11,51 [2.9%]
 [1.03x]

11,85 [3.3%]
 [1.03x]

Canny PWA SIMD (*)
(PWA SIMD + auto-vectorized serial version, maximum optimization)

 5,60 [52.8%]
 [2.12x]

 5,72 [53.4%]
 [2.14x]

Canny PWA MULTI+SIMD
(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization)

 4,25 [64.1%]
 [2.79x]

 4,24 [65.4%]
 [2.89x]

Canny PWA GPU+SIMD
(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

- -

CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz (EPEEC cluster)
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD.

The runtime was reduced up to 64% (~3x faster) on multicores using the Clang and GCC compilers

Higher %
is faster

Parallelware Analyzer for SIMD: AMD AVX-2

6

Use case: Canny (Image processing)
Code versions using SIMD, multithreading and offloading parallelism

Clang 10.0
(seconds)

GCC 9.3
(seconds)

Canny SERIAL
(serial version, maximum optimization without auto-vectorization)

 10,00 10,92

Canny AUTO
(auto-vectorized serial version, maximum optimization)

 8,88 [11.2%]
 [1.13x]

10,33 [5.4%]
 [1.06x]

Canny PWA SIMD (*)
(PWA SIMD + auto-vectorized serial version, maximum optimization)

 4,51 [54.9%]
 [2.22x]

 5,09 [53.4%]
 [2.15x]

Canny PWA MULTI+SIMD
(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization)

 3,48 [65.2%]
 [2.88x]

 3,81 [65.2%]
 [2.87x]

Canny PWA GPU+SIMD
(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

- -

CPU: AMD Ryzen 7 4800H with Radeon Graphics
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD.

The runtime was reduced up to 65% (~3x faster) on multicores using the Clang and GCC compilers

Higher %
is faster

7

Major challenges in CPU+GPU programming

● The development and maintenance of bug-free C/C++/Fortran parallel code is far more
complex than that of sequential software.

● Parallel bugs are difficult to find and fix because a buggy parallel code might run correctly
99% of the time and fail just the remaining 1%.

● This is even more difficult for Graphical Processing Units (GPUs).

● In order to take advantage of the performance promised by CPU+GPUs, developers must
address two main challenges:

○ Challenge #1: Data movement (i.e. ensure the proper data synchronization between the CPU memory and the GPU
memory)

○ Challenge #2: Data races (i.e. running the computations on the GPU correctly without race conditions between the
GPU threads)

8

How can we help CPU+GPU programmers?

● CPU+GPU programming is very hard and very intrusive because it usually requires
major changes in the code

● Major efforts by the CPU+GPU programmer focus on:

○ #1: Detect and fix data races and data movement issues

○ #2: Verify that parallel code is free of data races and data movement issues

○ #3: Discover opportunities in the code to be executed in parallel in CPU+GPU systems

○ #4: Implement versions of the code for CPU+GPU systems

● New Dev tools to improve programmer’s productivity on CPU+GPUs are needed

○ Helping to find and fix parallel bugs

○ Helping to prevent parallel bugs

Parallel Programming Best Practices

9

Start Deploy
Stage 1:

Preparation of the code for
parallelism

Stage 3:
Optimize your parallel code

Stage 2:
Create a parallel version

of your code

Analyze the source code to assess if the
code is well suited for parallelism

(e.g. AoS vs SoA)

Modify the source code accordingly to
write code adapted to parallelism

(e.g. refactor AoS as SoA)

Analyze the source code to identify
opportunities for parallelization

(e.g. loops, reductions)

Modify the source code to write correct
parallel code for CPU

Optimize concurrency (synchronization)

Optimize data distribution

Optimize communication

Optimize load balancing

Optimize data locality

Optimize data affinity

Verify the correctness of the new source
code adapted to parallelism
(e.g. debugging & testing)

Verify the correctness of the new parallel
code

(e.g. debugging & testing, data-race free)

Verify the correctness of the optimized
parallel code

(e.g. debugging & testing, free of data
races and data movement issues)

Modify the source code to write correct
parallel code for GPU

Modify the source code to write
performance-portable parallel code

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Ensuring Parallel Programming
Best Practices

Products based on the Parallelware static
code analysis technology are the first tools

supporting this innovative catalog by reporting

race conditions, data movement issues and

best-practice recommendations to create

efficient and bug-free parallel code.

Discover Parallelware tools ›

Tools to automate time-consuming
development tasks

Open catalog of defects and recommendations
for parallel programming built in collaboration

with experts in multicore and GPU programming

to establish parallel programming best practices.

Open set of curated example codes that clearly

describe errors commonly seen in

C/C++/Fortran parallel codes.

Discover open catalog of checks ›

https://www.appentra.com/knowledge/checks/

Open catalog of defects & recommendations

2020

https://www.appentra.com/products/
https://www.appentra.com/checks
https://www.appentra.com/knowledge/checks/

https://www.appentra.com/knowledge/checks/

Defects

PWD001: Invalid OpenMP multithreading
datascoping

PWD002: Unprotected multithreading
reduction operation

PWD003: Missing array range in data copy
to accelerator device

PWD004: Out-of-memory-bounds array
access

PWD005: Array range copied to the GPU
does not cover the used range

PWD006: Missing deep copy of
non-contiguous data to the GPU

PWD007: Unprotected multithreading
recurrence

PWD008: Unprotected multithreading
recurrence due to out-of-dimension-bounds
array access

Recommendations

PWR001: Declare global variables as function parameters

PWR002: Declare scalar variables in the smallest possible scope

PWR003: Explicitly declare pure functions

PWR004: Declare OpenMP scoping for all variables

PWR005: Disable default OpenMP scoping

PWR006: Avoid privatization of read-only variables

PWR007: Disable implicit declaration of variables

PWR008: Declare the intent for each procedure parameter

PWR009: Use OpenMP teams to offload work to GPU

PWR010: Avoid column-major array access in C/C++

PWR011: Outline loop to increase compiler and tooling code
coverage

PWR012: Pass only required fields from derived data types as
parameters

PWR013: Avoid copying unused variables to the GPU

PWR014: Out-of-dimension-bounds array access

PWR015: Avoid copying unnecessary array elements to the GPU

PWR016: Use separate arrays instead of an Array-of-Structs

Download the PDF

https://www.appentra.com/knowledge/checks/
https://www.appentra.com/download/12837/
https://www.appentra.com/knowledge/checks/pwd001/
https://www.appentra.com/knowledge/checks/pwd001/
https://www.appentra.com/knowledge/checks/pwd002/
https://www.appentra.com/knowledge/checks/pwd002/
https://www.appentra.com/knowledge/checks/pwd003/
https://www.appentra.com/knowledge/checks/pwd003/
https://www.appentra.com/knowledge/checks/pwd006/
https://www.appentra.com/knowledge/checks/pwd006/
https://appentra.com/knowledge/checks/pwr001
https://appentra.com/knowledge/checks/pwr002
https://appentra.com/knowledge/checks/pwr003
https://appentra.com/knowledge/checks/pwr004
https://appentra.com/knowledge/checks/pwr005
https://appentra.com/knowledge/checks/pwr006
https://www.appentra.com/knowledge/checks/pwr007/
https://www.appentra.com/knowledge/checks/pwr008/
https://www.appentra.com/knowledge/checks/pwr009/
https://www.appentra.com/knowledge/checks/pwr010/
https://appentra.com/knowledge/checks/pwr011
https://appentra.com/knowledge/checks/pwr011
https://appentra.com/knowledge/checks/pwr012
https://appentra.com/knowledge/checks/pwr012
https://www.appentra.com/knowledge/checks/pwr013
https://www.appentra.com/knowledge/checks/pwr014/
https://www.appentra.com/knowledge/checks/pwr015
https://www.appentra.com/knowledge/checks/pwr016
https://www.appentra.com/download/12837/

A static code analyzer specializing in parallelism

Command Line Interface (CLI)

Parallelware Tools
1. Enforce parallel programming best practice recommendations in order to

prepare the code for parallelization.

2. Detect and fix defects in parallel code (i.e. race conditions).

3. Verify data-race free parallel code.

4. Discover opportunities for parallelization.

5. Quickly design and implement parallel code for CPU/GPU using
OpenMP/OpenACC.

Learn parallel programming faster and at your own pace

Graphical User Interface (GUI)

2.Identify defects related to parallelism while coding.
Tool “pwcheck”

3.Identify opportunities for parallelization.
Tool “pwloops”

4.Guided generation of parallel code for multicore CPUs and
GPUs, with OpenMP and OpenACC, using multithreading,
offloading and tasking.
Tool “pwdirectives”

2.Identify defects related to
parallelism while debugging
Tool “pwcheck”

1.High-level overview of your code: summary of parallelized
regions, defects, recommendations and opportunities.
Tool “pwreport”

Parallel
Software

Development
Workflow

Emerging
Technologies

Parallelware Analyzer
2020

Parallel Programming Best Practices

14

Start Deploy
Stage 1:

Preparation of the code for
parallelism

Stage 3:
Optimize your parallel code

Stage 2:
Create a parallel version

of your code

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Stage 1: Prepare the code for parallelism

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

15

Start Deploy
Stage 1:

Preparation of the code for
parallelism

Stage 3:
Optimize your parallel code

Stage 2:
Create a parallel version

of your code

Analyze the source code to assess if the
code is well suited for parallelism

(e.g. AoS vs SoA)

Modify the source code accordingly to
write code adapted to parallelism

(e.g. refactor AoS as SoA)

Verify the correctness of the new source
code adapted to parallelism
(e.g. debugging & testing)

PWR002: Declare
scalar variables in
the smallest
possible scope

16

www.appentra.com/knowledge/checks/pwr002/

Prevent parallel bugs

http://www.appentra.com/knowledge/checks/pwr002/

PWR016: Use
separate arrays
instead of an
Array-of-Structs

17

www.appentra.com/knowledge/checks/pwr016/

Improve code coverage
of tools and compilers

http://www.appentra.com/knowledge/checks/pwr016/

The tool “pwreport”: Entry point and status

18

$ pwreport NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common
Compiler flags: -I NPB3.3-OMP-C/common

CODE COVERAGE
 Analyzable files: 78 / 79 (98.73 %)
 Analyzable functions: 66 / 726 (9.09 %)
 Analyzable loops: 785 / 1588 (49.43 %)
 Parallelized SLOCs: 0 / 0

METRICS SUMMARY
 Total defects: 0
 Total recommendations: 3597
 Total opportunities: 205
 Total data races: 0
 Total data-race-free: 17

SUGGESTIONS

 1 file could not be analyzed, get more information by enabling error reporting:
 pwreport --show-failures NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

 803 loops could not be analyzed, get more information with pwloops:
 pwloops --non-analyzable NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

 3597 recommendations were found in your code, get more information with pwcheck:
 pwcheck --only-recommendations NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

 205 opportunities for parallelization were found in your code, get more information with pwloops:
 pwloops NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

78 files successfully analyzed and 1 failure in 12356 ms

The tool “pwcheck”: Defects and Recommendations

19

$ pwcheck NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

…
FUNCTION BEGIN at NPB3.3-OMP-C/common/randdp.c:vranlc:71:1

71: void vranlc(int n, double *x, double a, double y[])

LOOP BEGIN at NPB3.3-OMP-C/common/randdp.c:vranlc:122:3

 122: for (i = 0; i < n; i++) {

 [PWR002] NPB3.3-OMP-C/common/randdp.c:108:34 'x1' not declared in the innermost scope possible

 108: double t1, t2, t3, t4, a1, a2, x1, x2, z;

 [PWR002] NPB3.3-OMP-C/common/randdp.c:108:10 't1' not declared in the innermost scope possible

 108: double t1, t2, t3, t4, a1, a2, x1, x2, z;

 [PWR002] NPB3.3-OMP-C/common/randdp.c:108:14 't2' not declared in the innermost scope possible

 108: double t1, t2, t3, t4, a1, a2, x1, x2, z;

 [PWR002] NPB3.3-OMP-C/common/randdp.c:108:22 't4' not declared in the innermost scope possible

 108: double t1, t2, t3, t4, a1, a2, x1, x2, z;

 [PWR002] NPB3.3-OMP-C/common/randdp.c:108:38 'x2' not declared in the innermost scope possible

 108: double t1, t2, t3, t4, a1, a2, x1, x2, z;

 [PWR002] NPB3.3-OMP-C/common/randdp.c:108:42 'z' not declared in the innermost scope possible

 108: double t1, t2, t3, t4, a1, a2, x1, x2, z;

 [PWR002] NPB3.3-OMP-C/common/randdp.c:108:18 't3' not declared in the innermost scope possible

 108: double t1, t2, t3, t4, a1, a2, x1, x2, z;

LOOP END

FUNCTION END

…
PWR001 PWR002 PWR003 PWR004 PWR005 PWR009 PWR010 PWR011 PWR012 PWR013 PWR014 PWR015 PWR016 PWD001 PWD002 PWD003 PWD004 PWD005 PWD006 PWD007 PWD008

 1433 1179 4 123 125 0 0 450 0 0 0 0 283 0 0 0 0 0 0

0 0

Found a total of 3597 checks in 78 files successfully analyzed and 1 failure in 11489 ms

Stage 2: Create a parallel version of the code

20

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Start Deploy
Stage 1:

Preparation of the code for
parallelism

Stage 3:
Optimize your parallel code

Stage 2:
Create a parallel version

of your code

Analyze the source code to identify
opportunities for parallelization

(e.g. loops, reductions)

Modify the source code to write correct
parallel code for CPU

Verify the correctness of the new parallel
code

(e.g. debugging & testing, data-race free)

Modify the source code to write correct
parallel code for GPU

Modify the source code to write
performance-portable parallel code

PWD001:
Invalid OpenMP
multithreading
datascoping

21

www.appentra.com/knowledge/checks/pwd001/

Find & fix bugs

https://www.appentra.com/knowledge/checks/pwd001/

PWD003:
Missing array
range in data
copy to the GPU

22

www.appentra.com/knowledge/checks/pwd003/

Find & fix bugs

https://www.appentra.com/knowledge/checks/pwd003/

PWD004:
Out-of-memory-
bounds array
access

23

www.appentra.com/knowledge/checks/pwd004/

Find & fix bugs

https://www.appentra.com/knowledge/checks/pwd004/

The tool “pwloops”: Parallelization Opportunities

24

$ pwloops NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common

Compiler flags: -I NPB3.3-OMP-C/common

Loop Analyzable Compute patterns Opportunity Auto-Parallelizable Parallelized

--------------------------- ---------- ---------------- ----------- ------------------- ------------

NPB3.3-OMP-C/SP/error.c

|- rhs_norm:95:3 x forall simd, multi x

|- rhs_norm:102:5 x forall x

|- rhs_norm:106:5 x sparse x

| `- rhs_norm:107:7 x sparse x

| `- rhs_norm:108:9 x sparse x

| `- rhs_norm:109:11 x forall simd x x

|- rhs_norm:116:5 x forall x

|- rhs_norm:122:3 x n/a

| `- rhs_norm:123:5 x n/a

NPB3.3-OMP-C/BT/error.c

|- rhs_norm:95:3 x forall simd, multi x

|- rhs_norm:102:3 x forall x

|- rhs_norm:106:3 x sparse x

| `- rhs_norm:107:5 x sparse x

| `- rhs_norm:108:7 x sparse x

| `- rhs_norm:109:9 x forall simd x x

|- rhs_norm:116:3 x forall x

`- rhs_norm:122:3 x n/a

 `- rhs_norm:123:5 x n/a

Loop : loop name following the syntax <file>:<function>:<line>:<column>

Analyzable : all C/C++/Fortran language features present in the loop are supported by Parallelware

Compute patterns : compute patterns found in the loop ('forall', 'scalar' or 'sparse' reduction, 'recurrence', 'dep(endency)')

Opportunity : whether the loop is a parallelization opportunity and for which paradigms ('multi' for multi-threading or 'simd' for vectorization)

Auto-Parallelizable : loop can be parallelized by Parallelware

Parallelized : loop is already parallelized, for instance with OpenMP or OpenACC directives

SUGGESTIONS

 Get more details about the data scoping of each variable within a loop, e.g.:

 pwloops --datascoping --loop NPB3.3-OMP-C/SP/error.c:rhs_norm:95:3 NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common

 Print the code annotated with opportunities, e.g.:

 pwloops --code --function NPB3.3-OMP-C/SP/error.c:rhs_norm NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common

 Parallelize an auto-parallelizable loop, e.g.:

 pwdirectives NPB3.3-OMP-C/SP/error.c:rhs_norm:95:3 -o <output_file> -- -I NPB3.3-OMP-C/common

Some file could not be analyzed, to get more details:

 pwloops --show-failures NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common

78 files successfully analyzed and 1 failure in 2465 ms

The tool “pwdirectives”: Parallel Code Generation

25

$ pwdirectives atmux.c:31 --out-file atmux_offload.c --omp offload -- -I lib

Compiler flags: -I lib

Results for file 'atmux.c':

 Successfully parallelized loop at 'atmux.c:atmux:31:5' [using offloading]:

 31:5: [INFO] Parallel sparse reduction pattern identified for variable 'y' with associative, commutative operator '+'

 31:5: [INFO] Available parallelization strategies for variable 'y'

 31:5: [INFO] #1 OpenMP atomic access (* implemented)

 31:5: [INFO] #2 OpenMP explicit privatization

 31:5: [INFO] Complete access range for variables: 'col_ind', 'val', 'y'

 31:5: [INFO] Loop parallelized with teams using OpenMP directive 'target teams distribute parallel for'

Successfully created atmux_offload.c

$ sed -n 31,37p atmux_offload.c

 #pragma omp target teams distribute parallel for shared(col_ind, n, row_ptr, val, x) map(to: col_ind[:], n, row_ptr[0:n+1], val[:], x[0:n]) private(k)

map(tofrom: y[:]) schedule(auto)

 for (i = 0; i < n; i++) {

 for (k = row_ptr[i]; k < row_ptr[i + 1]; k++) {

 #pragma omp atomic update

 y[col_ind[k]] = y[col_ind[k]] + x[i] * val[k];

 }

 }

Parallelware Trainer

26

Project Explorer Code Editor Version Manager

Output Consoles

Test the
correctness

 Introduce
Parallelism

Identifying
opportunities for

parallelization

1 2 3 4 5 6

Performance
tuning

Test
performance

Understanding
your code

Parallelization opportunity

Non auto-parallelizable opportunity

Incomplete opportunity analysis

Failed opportunity analysis

Recommendation

Defect

Parallel code generation with “pwdirectives”

27

Step 1:

● Find opportunities
for parallelization in
your code.

● Click on the “green
circles”...

Generate directives with Parallelware Trainer GUI

28

Step 1:
● Find opportunities for

parallelization in your
code.

● Click on the “green
circles”...

Step 2:

● Select a setup:
Standard, Device &
Paradigm

● Click on the button
“Parallelize”...

Stage 3: Optimize parallel code

29

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Start Deploy
Stage 1:

Preparation of the code for
parallelism

Stage 3:
Optimize your parallel code

Stage 2:
Create a parallel version

of your code

Optimize concurrency (synchronization)

Optimize data distribution

Optimize communication

Optimize load balancing

Optimize data locality

Optimize data affinity

Verify the correctness of the optimized
parallel code

(e.g. debugging & testing, free of data
races and data movement issues)

PWR010: Avoid
column-major
array access in
C/C++

30

www.appentra.com/knowledge/checks/pwr010/

Optimize performance

http://www.appentra.com/knowledge/checks/pwr010/

PWR009: Use
OpenMP teams to
offload work to
GPU

31

www.appentra.com/knowledge/checks/pwr009/

Optimize performance

http://www.appentra.com/knowledge/checks/pwr009/

32

Parallelware Tools:
Software
Performance
Optimization

www.appentra.com

Sign up for our newsletter: appentra.com/newsletter/

Email us at: info@appentra.com

https://www.appentra.com/blog/newsletter/
mailto:info@appentra.com

