Parallelware Tools: Software
Performance Optimization

NUG Monthly Meeting at NERSC

Manuel Arenaz | March 2021 m \. appent ra
©Appentra Solutions S.L.

Impact of Parallelware tools on performance
The runtime was reduced up to 89% (9x faster) on multicores and up to 99% (128x faster) on GPUs

Performance gain on multicore CPU
Parallel code created by (including multithreading)
Parallelware tools

Performance gain on GPU
Application areas

[% time faster] | [No.times faster] | [% time faster] | [No.times faster]

Pl +73% 3.83x +97% 41.94x
COULOMB +89% 9.68x - -
HEAT +77% 4.41x +89% 9.63x
High Performance Computing MATMUL +79% 4.92x +99% 128.33x
(HPC) ATMUX +58% 2.40x -79% 0.56x
LULESHmk +73% 3.75x +95% 24.40x
NPB CG - 20.52x - -
ZPIC +17% 1.22x +33% 1.49x
Embedded systems Canny +23% 1.30x - -

Speedups measured at NERSC CORI system (Cray XC40), GPU nodes:
CPU: 2 x Intel Xeon Gold 6148 ('Skylake') @ 2.40 GHz (16 threads allocated)
MEMORY: 384 GB DDR4 memory (32 GB allocated) < % appentra 2
GPU: 8 x NVIDIA V100, each with 16 GB HBM2 memory, connected with NVLink interconnect (2 allocated) (4 pp |

https://www.appentra.com/training/courses/parallelware-training-introductory/
https://www.appentra.com/parallelware-training-intermediate/
https://www.appentra.com/parallelware-training-intermediate/
https://www.appentra.com/training/courses/parallelware-training-advanced/
https://www.appentra.com/training/courses/parallelware-training-introductory/
https://www.nas.nasa.gov/publications/npb.html
https://www.appentra.com/training/courses/parallelware-training-advanced/

Parallelware Analyzer for SIMD: Intel AVX-512

The runtime was reduced up to 66% (~3x faster) on multicores using the Clang and GCC compilers

Use case: Canny (Image processing) Clang 10.0 GCC8.2

Code versions using SIMD, multithreading and offloading parallelism (seconds) (seconds)

Canny SERIAL 11,08 12,03
(serial version, maximum optimization without auto-vectorization)
Canny AUTO 10,64 [3.9%] 11,63 [3.4%]
(auto-vectorized serial version, maximum optimization) 1.04 1.04
! Xl [Xl Higher %
Canny PWA SIMD (*) 4,97 [55.1%] 5,61 [53.4%] is faster
(PWA SIMD + auto-vectorized serial version, maximum optimization) [2.23X] [2_1 4X]
Canny PWA MULTI+SIMD 3,72 [66.4%)] 4,08 [66.1%]
(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization) [2.98X] [2.95X]

Canny PWA GPU+SIMD - -

(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz (EPEEC cluster)
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD.

g’),appentra

Parallelware Analyzer for SIMD: Arm NEON

The runtime was reduced up to 62% (~3x faster) on multicores using the Clang and GCC compilers

Use case: Canny (Image processing) Clang 7.0 GCC8.3

Code versions using SIMD, multithreading and offloading parallelism (seconds) (seconds)

Canny SERIAL 66,87 66,75

(serial version, maximum optimization without auto-vectorization)

Canny AUTO 65,20 [2.5%)] 66,11 [0.9%]

(auto-vectorized serial version, maximum optimization) [1 .03X] [1 .01 X] H igher %
Canny PWA SIMD (*) 39,18 [41.4%] 40,36 [39.5%] is faster
(PWA SIMD + auto-vectorized serial version, maximum optimization) [1 .71X] [1 .65X]

Canny PWA MULTI+SIMD 24,79 [62.9%] 25,63 [61.6%]

(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization) [2.70X] [2.60X]

Canny PWA GPU+SIMD - -

(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

CPU: ARM Cortex-A72
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD.), appentra
Q’; pp 4

Parallelware Analyzer for SIMD: Intel SSE4

The runtime was reduced up to 64% (~3x faster) on multicores using the Clang and GCC compilers

Use case: Canny (Image processing) Clang 10.0 GCC8.2

Code versions using SIMD, multithreading and offloading parallelism (seconds) (seconds)

Canny SERIAL 11,86 12,26

(serial version, maximum optimization without auto-vectorization)

Canny AUTO 11,51 [2.9%] 11,85 [3.3%]

(auto-vectorized serial version, maximum optimization) [1 .03X] [1 .O3X] Higher %
Canny PWA SIMD (*) 5,60 [52.8%] 5,72 [53.4%] is faster
(PWA SIMD + auto-vectorized serial version, maximum optimization) [2_1 2X] [2_1 4X]

Canny PWA MULTI+SIMD 4,25 [64.1%] 4,24 [65.4%)]

(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization) [2.79X] [2.89X]

Canny PWA GPU+SIMD - -

(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz (EPEEC cluster)
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD.), appentra
Q’; pp 5

Parallelware Analyzer for SIMD: AMD AV X-2

The runtime was reduced up to 65% (~3x faster) on multicores using the Clang and GCC compilers

Use case: Canny (Image processing) Clang 10.0 GCC9.3

Code versions using SIMD, multithreading and offloading parallelism (seconds) (seconds)

Canny SERIAL 10,00 10,92

(serial version, maximum optimization without auto-vectorization)

Canny AUTO 8,88 [11.2%] 10,33 [5.4%]

(auto-vectorized serial version, maximum optimization) [1 1 3X] [1 _06)(] Higher %
is faster

Canny PWA SIMD (*) 4,51 [54.9%) 5,09 [53.4%]

(PWA SIMD + auto-vectorized serial version, maximum optimization) [2.22X] [2_1 5X]

Canny PWA MULTI+SIMD 3,48 [65.2%] 3,81 [65.2%]

(PWA Multithreading+SIMD + auto-vectorized serial version, maximum optimization) [2.88X] [2_87)(]

Canny PWA GPU+SIMD - -

(PWA GPU+SIMD + auto-vectorized serial version, maximum optimization)

CPU: AMD Ryzen 7 4800H with Radeon Graphics
Problem size: Image size 15360 x 8640.

(*) Performance optimization achieved by a senior performance software engineer and that is the expected maximum performance
improvement to be provided by Parallelware Analyzer SIMD. g’),appentra 6

Major challenges in CPU+GPU programming

e Thedevelopment and maintenance of bug-free C/C++/Fortran parallel code is far more
complex than that of sequential software.

e Parallel bugs are difficult to find and fix because a buggy parallel code might run correctly
99% of the time and fail just the remaining 1%.

e Thisis even more difficult for Graphical Processing Units (GPUs).
e Inorder totake advantage of the performance promised by CPU+GPUs, developers must

address two main challenges:

o Challenge #1: Data movement (i.e. ensure the proper data synchronization between the CPU memory and the GPU
memory)

o Challenge #2: Data races (i.e. running the computations on the GPU correctly without race conditions between the
GPU threads)

‘.,appentra 7

How can we help CPU+GPU programmers?

e CPU+GPU programming is very hard and very intrusive because it usually requires
major changes in the code
e Major efforts by the CPU+GPU programmer focus on:
o #1:Detect and fix data races and data movement issues
o #2: Verify that parallel code is free of data races and data movement issues

o #3: Discover opportunities in the code to be executed in parallel in CPU+GPU systems

o #4: Implement versions of the code for CPU+GPU systems

e New Dev tools to improve programmer’s productivity on CPU+GPUs are needed
o Helping to find and fix parallel bugs

o Helping to prevent parallel bugs

‘o appentra 3

Parallel Programming Best Practices

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Stage 1: Stage 2: Stage 3:
Preparation of the code for Create a parallel version A ge o
. Optimize your parallel code
parallelism of your code

Analyze the source code to assess if the
code is well suited for parallelism
(e.g. AoS vs SoA)

Modify the source code accordingly to
write code adapted to parallelism
(e.g. refactor AoS as SoA)

Verify the correctness of the new source
code adapted to parallelism
(e.g. debugging & testing)

Analyze the source code to identify
opportunities for parallelization
(e.g. loops, reductions)

Optimize concurrency (synchronization)

Optimize data locality

Modify the source code to write correct
parallel code for CPU

Modify the source code to write correct
parallel code for GPU

Optimize data affinity

Optimize load balancing

Optimize data distribution

Modify the source code to write
performance-portable parallel code

Optimize communication

Verify the correctness of the new parallel
code
(e.g. debugging & testing, data-race free)

Verify the correctness of the optimized
parallel code
(e.g. debugging & testing, free of data
races and data movement issues)

g.,appentra

9

Ensuring Parallel Programming
Best Practices

‘INNOVATIVE SCIENCE"
CATEGORY

2020

Tools to automate time-consuming
development tasks

Open catalog of defects & recommendations

Open catalog of defects and recommendations
for parallel programming built in collaboration
with experts in multicore and GPU programming
to establish parallel programming best practices.
Open set of curated example codes that clearly
describe errors commonly seen in
C/C++/Fortran parallel codes.

Products based on the Parallelware static
code analysis technology are the first tools
supporting this innovative catalog by reporting
race conditions, data movement issues and
best-practice recommendations to create
efficient and bug-free parallel code.

Discover open catalog of checks » Discover Parallelware tools »

““PAﬁALLELWERE ““KﬁxtEYL%AERﬁ

g.),appentra

https://www.appentra.com/products/
https://www.appentra.com/checks
https://www.appentra.com/knowledge/checks/

Download the PDF

https://www.appentra.com/knowledge/checks/

Defects

PWDO0O01: Invalid OpenMP multithreading
datascoping

PWDO002: Unprotected multithreading
reduction operation

PWDO003: Missing array range in data copy
to accelerator device

PWDO004: Out-of-memory-bounds array
access

PWDO0O05: Array range copied to the GPU
does not cover the used range

PWDO006: Missing deep copy of
non-contiguous data to the GPU

PWDO0O07: Unprotected multithreading
recurrence

PWDO008: Unprotected multithreading
recurrence due to out-of-dimension-bounds
array access

Recommendations

PWRO001: Declare global variables as function parameters

PWRO002: Declare scalar variables in the smallest possible scope
PWRO003: Explicitly declare pure functions

PWRO004: Declare OpenMP scoping for all variables

PWRO005: Disable default OpenMP scoping

PWRO006: Avoid privatization of read-only variables

PWRO007: Disable implicit declaration of variables

PWRO008: Declare the intent for each procedure parameter
PWR009: Use OpenMP teams to offload work to GPU

PWRO010: Avoid column-major array access in C/C++

PWRO011: Outline loop to increase compiler and tooling code
coverage

PWRO012: Pass only required fields from derived data types as
parameters

PWR013: Avoid copying unused variables to the GPU
PWRO014: Out-of-dimension-bounds array access
PWRO015: Avoid copying unnecessary array elements to the GPU

PWRO016: Use separate arrays instead of an Array-of-Structs
‘o appentra

https://www.appentra.com/knowledge/checks/
https://www.appentra.com/download/12837/
https://www.appentra.com/knowledge/checks/pwd001/
https://www.appentra.com/knowledge/checks/pwd001/
https://www.appentra.com/knowledge/checks/pwd002/
https://www.appentra.com/knowledge/checks/pwd002/
https://www.appentra.com/knowledge/checks/pwd003/
https://www.appentra.com/knowledge/checks/pwd003/
https://www.appentra.com/knowledge/checks/pwd006/
https://www.appentra.com/knowledge/checks/pwd006/
https://appentra.com/knowledge/checks/pwr001
https://appentra.com/knowledge/checks/pwr002
https://appentra.com/knowledge/checks/pwr003
https://appentra.com/knowledge/checks/pwr004
https://appentra.com/knowledge/checks/pwr005
https://appentra.com/knowledge/checks/pwr006
https://www.appentra.com/knowledge/checks/pwr007/
https://www.appentra.com/knowledge/checks/pwr008/
https://www.appentra.com/knowledge/checks/pwr009/
https://www.appentra.com/knowledge/checks/pwr010/
https://appentra.com/knowledge/checks/pwr011
https://appentra.com/knowledge/checks/pwr011
https://appentra.com/knowledge/checks/pwr012
https://appentra.com/knowledge/checks/pwr012
https://www.appentra.com/knowledge/checks/pwr013
https://www.appentra.com/knowledge/checks/pwr014/
https://www.appentra.com/knowledge/checks/pwr015
https://www.appentra.com/knowledge/checks/pwr016
https://www.appentra.com/download/12837/

Parallelware Tools

perform, i

\e2%¢ Analyg; e
Q.GQ\O,‘ment s
1. Enforce parallel programming best practice recommendations in order to & X
prepare the code for parallelization. g‘\' é;“"
S l3 c
2. Detect and fix defects in parallel code (i.e. race conditions). g § 8 § %
- ™ Q0 —
% = T
3. Verify data-race free parallel code. f‘g %ﬁ S f
A Q
4. Discover opportunities for parallelization. .
%
5. Quickly design and implement parallel code for CPU/GPU using MPilation
OpenMP/OpenACC.
““FARALLELWARE ""PARALLELWARE
TRAINE ALYZE
Learn parallel programming faster and at your own pace A static code analyzer specializing in parallelism
Graphical User Interface (GUI) Command Line Interface (CLI)

g‘,appentra

Parallelware Analyzer

gerformanc
P & E Analysig
C N
&
(2]
IS
g [&
2 & Parallel
S .§ Software
o
g 10 S Development
= “?}Dm Workflow
= 2
. .} X
Identify defects related to < ?(
parallelism while debugging >
O, 5
Mpilation

52 SEPEEC <> MAESTRO OAK RIDGE

Se SC18

Dallas, |hpc
TX|inspires.

Emerging

‘INNOVATIVE SCIENCE'

CATEGORY Technologies

2020

High-level overview of your code: summary of parallelized
regions, defects, recommendations and opportunities.

Identify defects related to parallelism while coding.

c
= 2
o &
ml 8
£ o
5 =
(& g Identify opportunities for parallelization.
Q
Guided generation of parallel code for multicore CPUs and
GPUs, with OpenMP and OpenACC, using multithreading,
offloading and tasking.
LEADERSHIP
COMPUTING ‘o appentra

National Laboratory | FACILITY

Parallel Programming Best Practices

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Stage 1: Stage 2: Stage 3:
Preparation of the code for — Create a parallel version A i Deploy
. Optimize your parallel code
parallelism of your code

g.,appentra 14

Stage 1: Prepare the code for parallelism

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Stage 1:
Preparation of the code for — —
parallelism

Analyze the source code to assess if the
code is well suited for parallelism
(e.g. AoS vs SoA)

Modify the source code accordingly to
write code adapted to parallelism
(e.g. refactor AoS as SoA)

Verify the correctness of the new source
code adapted to parallelism
(e.g. debugging & testing)

g.,appentra 15

PWRO002: Declare
scalar variables in
the smallest
possible scope

Prevent parallel bugs

Code example

[y

OO~NOO AW

Bow N

~ o

o]

WO~ WN R

void foo() {
ANERES
int result[10];

for (int i = 0; i < 10; i++) {
t =1 +4;
result[i] = t;

void foo() {
int result[10];

for (int i = ©; i < 10; i++) {
Int =35
result[i] = t + 1;

void foo() {
int result[10];

#pragma omp parallel for default(none) shared(result)
for (int 1 = 0; 1 < 10; i++) {

int t = 1i;

result[i] = t + 1;

3

Resources related to coding guidelines

r.39

Sz messiatl e

16

http://www.appentra.com/knowledge/checks/pwr002/

PWRO016: Use
separate arrays
instead of an
Array-of-Structs

.ap

entra.com/knowledge/checks/pwr016

Improve code coverage
of tools and compilers

Relevance

Using an Array-of-Structs (AoS) can increase cache misses unless all the fields are always accessed at the same time when iterating
over the AoS. One example case where using an AoS is justificable would be iterating over an array of points, each point being a
struct containing the coordinates that are consumed on each iteration. However, most structs contain fields that will not be
accessed together: data locality can be enhanced by breaking the struct and creating an array for each individual field.

Actions

Convert the Array-of-Structs (AoS) into separate plain arrays.

Code example

The following example shows a loop processing the x and y coordinates for an array of points:

1 typedef struct {
2 int x;
3 int y;
4 int z;
5 } point;
6
7 | void foo() {

point points[1@ee];
9 for (int 1 = 0; i < 1000; i ++) {
10 points[i].x = 1;
11 points[i].y = 1;
12 }
13| ¥

This could seem like an example where using an Array-of-Structs is justifiable. However, since the z coordinate is never accessed
along the other two, there may be cache misses that could be avoided by creating one array for each coordinate:

1| void foo() {
int points_x[1600];
int points_y[1000];
int points_z[1ee0];

5 for (int i = 0; i < 1000; i ++) {
6 points_x[i] = 1;

7 points_y[i] = 1;

8

9

g’),appentra 17

http://www.appentra.com/knowledge/checks/pwr016/

The tool “pwreport”: Entry point and status

$ pwreport NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common
Compiler flags: -I NPB3.3-OMP-C/common

CODE COVERAGE
Analyzable files: 78 / 79 (98.73 %)
Analyzable functions: 66 / 726 (9.09 %)
Analyzable loops: 785 / 1588 (49.43 %)
Parallelized SLOCs: 0/ 0

METRICS SUMMARY
Total defects:
Total recommendations:
Total opportunities:
Total data races:
Total data-race-free:

SUGGESTIONS

1 file could not be analyzed, get more information by enabling error reporting:
pwreport --show-failures NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

803 loops could not be analyzed, get more information with pwloops:
pwloops --non-analyzable NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

3597 recommendations were found in your code, get more information with pwcheck:
pwcheck --only-recommendations NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

205 opportunities for parallelization were found in your code, get more information with pwloops:
pwloops NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

78 files successfully analyzed and 1 failure in 12356 ms

The tool “pwcheck”: Defects and Recommendations

$ pwcheck NPB3.3-OMP-C -- -I NPB3.3-OMP-C/common

FUNCTION BEGIN at NPB3.3-OMP-C/common/randdp.c:vranlc:71:1
71: void vranlc(int n, double *x, double a, double y[])

LOOP BEGIN at NPB3.3-OMP-C/common/randdp.c:vranlc:122:3
122: for (i=0; i<n; is+) {

[PWR@O2] NPB3.3-OMP-C/common/randdp.c:108: not declared in innermost scope possible
108: double t1, t2, t3, t4, al, a2,

[PWR@O2] NPB3.3-OMP-C/common/randdp.c: 8 not declared in innermost scope possible
108: double t1, t2, t3, t4, al, a2,

[PWR0O2] NPB3.3-OMP-C/common/randdp.c: 8 not declared i innermost scope possible
1e8: double t1, t2, t3, t4, al, a2,

[PWR@O2] NPB3.3-OMP-C/common/randdp.c: 3 not declared i innermost scope possible
108: double t1, t2, t3, t4, a1, a2,

[PWR@O2] NPB3.3-OMP-C/common/randdp.c: 8 declared in innermost scope possible
108: double t1, t2, t3, t4, al, a2,

[PWR@O2] NPB3.3-OMP-C/common/randdp.c: 8 z' not declared in the innermost scope possible
108: double t1, t2, t3, t4, al, a2, 2

[PWR0O2] NPB3.3-OMP-C/common/randdp.c: 8 ‘t3' not declared in the innermost scope possible
1e8: double t1, t2, t3, t4, al, a2, X2, z;
LOOP END

FUNCTION END

PWROO1 PWROO2 PWROO3 PWROO4 PWROO5 PWROG9 PWRO10 PWRO11 PWRO12 PWRO13 PWRO14 PWRO15 PWRO16 PWDOO1 PWDOO2 PWDO@3 PWDoR4 PWD@OS5 PWDOO6 PWDOO7 PWDOO8
1433 1179 4 123 125 (2] (2] 450 (2] (2] (2] pLE] (2] (2] (2] (2]
(2] (2]
Found a total of 3597 checks in 78 files successfully analyzed and 1 failure in 11489 ms

Stage 2: Create a parallel version of the code

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Stage 2:
— Create a parallel version —
of your code

Analyze the source code to identify
opportunities for parallelization
(e.g. loops, reductions)

Modify the source code to write correct
parallel code for CPU

Modify the source code to write correct
parallel code for GPU

Modify the source code to write
performance-portable parallel code

Verify the correctness of the new parallel
code
(e.g. debugging & testing, data-race free)

g‘,appentra 20

PWDO0O1:
Invalid OpenMP
multithreading
datascoping

.appentra.com/knowledge/checks/pwd001

Find & fix bugs

Definition

riable is not being correctly handled in the OpenMP multithreading data

Relevance

Actions

Code example

nadvertent

1 wvoid foo() {

2 int result[10][10];

3 int i, j;

4

5 #pragma omp parallel for shared(result)
6 for (i =0; 1< 10; i++) {

7 for (j = 0; j < 10; j++) {
8 result[i][j] = ©;

9

10 }

1| }

1 wvoid foo() {

2 int result[10][10];
3 int i, j;

4

#pragma omp parallel for shared(result) private(i, j)
6 for (i =0; 1 <10; i++) {
7 for (j = 0; j < 10; j++) {
result[i][j] = ©;

Privacy & Cookies Policy I

21

https://www.appentra.com/knowledge/checks/pwd001/

PWDO003:
Missing array
range in data
copy to the GPU

Find & fix bugs

Actions

Specify the array range to be copied to device memory.

Code example

In the following OpenMP code, a pointer is being copied to the offloading target device instead of the dynamic array data pointed
by it.

1| void foo(int* a, int* b, int* sum, int size) {

2 #pragma omp target map(to: a, b) map(from: sum)
3 #pragma omp par‘allel for

4 for (int 1 = 0; 1 < size; i++) {

5 sum[i] = a[i] + b[i];

6

7

}

In this case, it suffices to specify the array bounds in the OpenMP map clauses:

1| void foo(int* a, int* b, int* sum, int size) {
#pragma omp target map(to: a[@:size], b[0@:size]) map(from: sum[@:size])
3 #pragma omp parallel for
4 for (int i =0; i < sue, i++) {
Z sum[i] = a[i] + b[i];
21 %

The same applies to the analogous OpenACC example.

1| void foo(int* a, int* b, int* sum, int size) {
2 #pragma acc data copyin(a, b) copyout(sum)

3 #pragma acc parallel loop

4 for (int 1 = 0; 1 < size; i++) {

2 sum[i] = a[i] + b[i];

74

}
}
And again, specifying the array bounds fixes the problem:

1| void foo(int* a, int* b, int* sum, int size) {

#pragma acc data copyin(a[@:size], b[@:size]) copyout(sum[@:size])
3 #pragma acc parallel loop
4 for (int i = @; i < size; i++) {
g sum[i] = a[i] + b[i];
7

}
} 22

https://www.appentra.com/knowledge/checks/pwd003/

PWDO004:
Out-of-memory-
bounds array
access

.appentra.com/knowledge/checks/pwd004

Find & fix bugs

Issue

A position outside the bounds of the array memory is being accessed which results in undefined behavior most likely causing
invalid memory accesses and crashes.

Relevance

An array is essentially a collection of items that can be randomly accessed through an integer index. Obviously, only a subset of
the possible integer values will correspond to array element positions; accessing an array using index values outside that subset
will access a memory position not associated with any array element. This is called an out-of-memory-bounds access and has
undefined behavior in C/C++, most likely causing invalid memory accesses and crashes.

Actions

Fix the array access so that only positions within the array memory bounds are accessed.

Code example

The following code uses an integer index ranging from 1 to 100 to access the array A:

1 wvoid foo() {

2 int A[100];

3 for (int 1 = 0; 1 < 100; i++) {
4 AL A =1

5

61}

This is incorrect since the array positions range from 0 to 99. Thus, the array access must be fixed, for instance by changing the
array reference from Afi+1] to Afi]:

1 wvoid foo() {

2 int A[100];

3 for (int 1 = 0; i < 100; i++) {

s ARTIE=NE

el 3 23

https://www.appentra.com/knowledge/checks/pwd004/

The tool “pwloops”: Parallelization Opportunities

$ pwloops NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common
Compiler flags: -I NPB3.3-OMP-C/common

Loop Analyzable Compute patterns Opportunity Auto-Parallelizable Parallelized

NPB3.3-0MP-C/SP/error.c
|- rhs_norm:95:3
|- rhs_norm:102:5
|- rhs_norm:106:5
| - rhs_norm:107:7
| - rhs_norm:108:9
| *- rhs_norm:109:11
|- rhs_norm:116:5
|- rhs_norm:122:3
| - rhs_norm:123:5
NPB3.3-OMP-C/BT/error.c
|- rhs_norm:95:3
|- rhs_norm:102:3
|- rhs_norm:106:3
| - rhs_norm:107:5
| - rhs_norm:108:7
| “- rhs_norm:109:9
|- rhs_norm:116:3
“- rhs_norm:122:3
“- rhs_norm:123:5

X X X x X X X X X

X X X x X X X X X

forall
forall
sparse
sparse
sparse
forall
forall
n/a

n/a

forall
forall
sparse
sparse
sparse
forall
forall
n/a

n/a

simd

simd, multi

simd

Loop : loop name following the syntax <file>:<function>:<line>:<column>
Analyzable : all C/C++/Fortran language features present in the loop are supported by Parallelware

Compute patterns : compute patterns found in the loop ('forall',
Opportunity : whether the loop is a parallelization opportunity and for which paradigms ('multi’' for multi-threading or 'simd' for vectorization)

Auto-Parallelizable : loop can be parallelized by Parallelware

Parallelized : loop is already parallelized, for instance with OpenMP or OpenACC directives

SUGGESTIONS

Get more details about the data scoping of each variable within a loop, e.g.:
pwloops --datascoping --loop NPB3.3-OMP-C/SP/error.c:rhs_norm:95:3 NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common

Print the code annotated with opportunities, e.g.:

pwloops --code --function NPB3.3-OMP-C/SP/error.c:rhs_norm NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common

Parallelize an auto-parallelizable loop, e.g.:

pwdirectives NPB3.3-OMP-C/SP/error.c:rhs_norm:95:3 -o <output_file> -- -I NPB3.3-OMP-C/common

Some file could not be analyzed, to get more details:

pwloops --show-failures NPB3.3-OMP-C --function rhs_norm -- -I NPB3.3-OMP-C/common

78 files successfully analyzed and 1 failure in 2465 ms

X X X X X X

X X X X X X

‘scalar’' or 'sparse' reduction,

The tool “pwdirectives”: Parallel Code Generation

$ pwdirectives atmux.c:31 --out-file atmux_offload.c --omp offload -- -I 1lib
Compiler flags: -I lib

Results for file 'atmux.c':
Successfully parallelized loop at 'atmux.c:atmux:31:5' [using offloading]:
31:5: [INFO] Parallel sparse reduction pattern identified for variable 'y' with associative, commutative operator '+’
31:5: INFO] Available parallelization strategies for variable 'y'
31:5: INFO] #1 OpenMP atomic access (* implemented)

31:5: INFO] #2 OpenMP explicit privatization

31:5: INFO] Complete access range for variables: 'col_ind', 'val', 'y
31:5: INFO] Loop parallelized with teams using OpenMP directive 'target teams distribute parallel for'
Successfully created atmux_offload.c

$ sed -n 31,37p atmux_offload.c
#pragma omp target teams distribute parallel for shared(col_ind, n, row_ptr, val, x) map(to: col_ind[:], n, row_ptr[@:n+1], val[:], x[©:n]) private(k)
map(tofrom: y[:]) schedule(auto)
for (i = 0; 1 < n; i++) {
for (k = row_ptr[i]; k < row_ptr[i + 1]; k++) {
#pragma omp atomic update
y[col_ind[k]] = y[col_ind[k]] + x[i] * val[k];

Parallelware Trainer

Project Explorer

Code Editor

Version Manager

ATHIUR atmux.c @ N original omp_atomic . . .
. sy . Parallelization opportunity
» b 13 2 #include <stdio.h>

B atmux 14 double getClock(); 3 #include <stdlib.h>

B Makefile 16 void compute(double #val, double #x, double #y, int *col_ind, int *row_ptr, int n) { 5

W README.md 17 int i, x 6 #include <CRSMatrix.h>
18 = AT x 7 lude <Matrix2D.h> . .
19 #pragma omp parallel default(none) shared(col_ind, n, row_ptr, val, x, y) private(i, k) 8 #include <Vector.h> N t - II I bI t t
: ® on auto-parallelizable opportunity
21 #pragma omp for private(k) schedule(auto) 10 #ifdef _OPENMP
22 for (1 =8; 1 < n; i++) { 11 #include <omp.h>
23 for (k = row_ptr[il; k < row_ptr[i + 1]; k++) { 12 #endif
24 #pragma omp atomic update 13
25 ylcol_ind[k]] = y[col_ind[k]] + x[i] * vallk]; 14 double getClock(); . .
26 } 15
- R ——— Incomplete opportunity analysis
28 } /7 en rallel 1 int i, k
29 } 18 y AAT x
30 19 #pragma omp parallel default(none) shared(col_ind, n, row_ptr,
31 ompute sparse matrix-vecto ultiplication 20
32 void atmux(CRSMatrix *in_sparseMat, Vector *in_vec, Vector *out_vec, int n) { 21 #pragma omp for private(k) schedule(auto)
33 22 for (1 = 8; i < n; i++) { . . .
34 double *val = CRSMatrix_getData(in_sparseMat); 23 for (k = row_ptr[il; k < row_ptr[i + 1]; k++) { F I d pp t ty Iy
35 double *x = Vector_getData(in_vec); 24 #pragna omp atomic update . al e o Or unl ana SIS
36 double *y = Vector_getData(out_vec); 25 ylcol ind[k]] = y[col_ind[k]] + x[i] * vallk];
37 int *col_ind = CRSMatrix_colRef(in_sparseMat); 26
38 int *row_ptr = CRSMatrix_rowRef(in_sparseMat); 27 }
39 28 } end parallel
40 O for (int t = @; t < n; t++) 29} .
" ylt] = 6; 30 R d t
B s waenedisciadios wiNBssli ecommendation
43 compute(val, x, y, col_ind, row_ptr, n); 32 void atmux(CRSMatrix *in_. eMat, Vector *in_vec, Vector *out_vec

[15:44:16] Parallelizing. ..

atmux.c line 19: Parallel sparse reduction pattern identified for variable 'y’ with associative, commutative operator '+'

atmux.c line 19: Available parallelization strategies for variable 'y
atmux.c line 19: #1 OpenHP atomic access (* implemented)

atmux.c line 19: #2 OpenP explicit privatization

atmux.c line 19: Loop parallelized with multithreading using OpenhP directive 'f
atmux.c line 19: Complete access range for variables: 'col_ind’, 'row_ptr’, 'val',
atmux.c line 19: Parallel region defined by OpenMP directive ‘parallel

atmux.c line 19: Make sure there is no aliasing among arguments in 'compute’: val, x, y, col_ind, row.ptr, n

(15:44:16] Parallelization completed successfully

[15:44:16] Analysis completed: @ opportunities and 1 recommendation (PWRE82) found

P C S

Output Consoles

Defect

| 2 | 3 | 4] 5 | 6 |

Identifying
opportunities for
parallelization

Test Performance
performance tuning

Test the
correctness

Introduce
Parallelism

Understanding

your code = appentra 26

Parallel code generation with “pwdirectives”

File Edit Project Help

Pl pi.c (4
#include <math.h>

#inc e <stdio.h>

#include <stdlib.h>

B Makefile

Step 1 s

1
2
3
B READMEmd 4
5
6

double getClock();

e Find opportunities
for parallelization in
your code.

8 int main(int argc, char xargv[]) {

9 if (arge !'= 2) {

1 printf("Usage: %s <steps>\n", argv[@]);

printf(" <steps> controls the precision of the approximation.\1
return 0;

eads the t paramete from the m d 1
unsigned long N = atol(argv[1]);
printf("- Input parameters\n");
printf(“steps\t= %lu\n", N);

e Clickon the “green
circles”...

printf("- Executing test...\n");
double time_start = getClock();

double out_result;

double sum = 0.0;
] for (int i = 8; i < N; i++) {
double x = (i + @.5) / N;
sum += sqrt(1 - x * x);
}

out_result = 4.0 / N * sum;

double time_finish = getClock();

Prints an execution report
printf("time (s)= time_finish - time_start);
printf("result\t= %.8f\n", out_result);
const double realPiValue = 3.141592653589793238;
printf(“"error\t= %.le\n", fabs(out_result - realPiValue));

“ P B © Buildoutput Executionoutput Parallelware output Clean completed (%) " appent ra 27

Generate directives with Parallelware Trainer GUI

Step 1

Find opportunities for Standard
parallelization in your — * OpenMP
COde OpenACC
Click on the “green Device

circles”... — o CPU
GPU
Ste 2: Paradigm
— © Multithreading
e Select asetup: offioading

o Tasking with taskloop
Standard, Device &

Parallel reduction variables

Paradigm Atomic protection X, Y,
i
. Built-in reduction XY,
¢ CIICk On the bUtton ' Explicit privatization x,y, :
“Parallelize’...

Ranges for array variables

Array ranges x[0:100], y[N:M]

e —
g.,appentra 28

Stage 3: Optimize parallel code

“Develop parallel code using C/C++/Fortran targeting multicore CPUs and GPUs”

Stage 3:
Optimize your parallel code

Optimize concurrency (synchronization)

Optimize data locality

Optimize data affinity

Optimize load balancing

Optimize data distribution

Optimize communication

Verify the correctness of the optimized
parallel code
(e.g. debugging & testing, free of data
races and data movement issues)

g.),appentra 29

Relevance

o
: I ([]
PW RO O e Avo I d The most efficient way to process arrays is to iterate over its elements in the same order in which they are laid out in memory, so

that the program performs a sequential access to consecutive data in memory. The C and C++ language specifications state that
arrays are laid out in memory in a row-major order: the elements of the first row are laid out consecutively in memory, followed

[
Co I u m n — m a 0 r by the elements of the second row, and so on. As a result, in order to maximize performance C and C++ code should access multi-
dimensional arrays using a row-major order.
° s
array access in Aetions

Change the code to access the multi-dimensional array in a row-major order.

C/C++ Code example

.ap

In the following code, an outer loop iterates over the columns of a bidimensional array and then an inner loop iterates over the
rows for each one of those columns.

entra.com/knowled
1| #define ROWS 100
% #define COLS 100
4 | void foo() {
é int A[ROWS][COLS];
7 for (1nt j = 0; j < COLS; ++3) {
8 (1nt i=0;1< ROWS ++1) {
19 A[1][J] =1i+73;
11 }
12| }

This way of iterating and accessing the elements of the array doesn’t match its layout in memory. The optimal way is to iterate
over the rows sequentially, then do the same for each column within the row:

1| #define ROWS 100

g #define COLS 100

4 void foo() {

é int A[ROWS][COLS],

for (int 1 = @; i < ROWS; ++i) {
for (int j =0; j < COLS ++3) {
. . 18 }A[i][:i]=i+j;
Optimize performance L

g’),appentra

30

http://www.appentra.com/knowledge/checks/pwr010/

PWRO009: Use

OpenMP teams to cccoemee |
e following code offloads a matrix multiplication computation through the target construct and then creates a parallel region

offload work to

and distributes the work through for construct (note that the matrices are statically sized arrays):

% ?pr‘agma omp target map(to: A[@:m][@:p], B[@:p][@:n], m, n, p) map(tofrom: C[@:m][@:n])
3 ?pragma omp parallel default(none) shared(A, B, C, m, n, p)
I ’ 4
G U 5 | #pragma omp for schedule(auto)
6| for (size_t i =0; i <m; i++) {
7 for (size_t j =0; j < n J++) {
8 for (suetk-% ++) {
.appentra.com/knowledge/checks/pwr009 o CLi105] += AD]Ek] . B[kJ (i1
11 gt
12

13 | } // end parallel
14 | } // end target

When offloading to the GPU it is recommended to use an additional level of parallelism. This can be achieved by using the teams
and distribute constructs, in this case in combination with parallel for:

#pr'a ma omp target teams distribute parallel for map(to: A[@:m][@:p], B[@:p]
? m, n, p) shared(A, B, m, n, p) map(Ctofrom: C[@:m][@:n]) schedule(auto)
for (51ze ti=0;1<m i++) {
for (size_t j = 0; %<n J++){
for (sue t k= k ++) {
CLil[3] += ALICKD * B[k] (i1;

}

Woo~NOUVTAW

}
Related resources

* PWRO009 examples at GitHub
optimize performa nce e OpenMP 4.5 Complete Specifications, November 2015 [last checked June 2020]
» Portability of OpenMP Offload Directives - Jeff Larkin, OpenMP Booth Talk SC17, November 2017 [last checked June 2020]
« OpenMP and NVIDIA - Jeff Larkin, NVIDIA Developer Technologies [last checked June 2020] 31

http://www.appentra.com/knowledge/checks/pwr009/

Parallelware Tools:
Software
Performance

Optimization

x www.appentra.com
) Signup for our newsletter: appentra.com/newsletter/
¢ Emailus at: info@appentra.com

32

https://www.appentra.com/blog/newsletter/
mailto:info@appentra.com

