
Portable Programs for
Heterogeneous Computing:

A Hands-on Introduction

Tim Mattson
Intel Corp.

Alice Koniges
Berkeley Lab/NERSC

Simon McIntosh-Smith
University of Bristol

Acknowledgements: James Price and Tom Deakin of the University of Bristol

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

3

IMPORTANT: Read This

•  Disclosures
–  The views expressed in this tutorial are those of the

people delivering the tutorial.
•  We are not speaking for our employers.
•  We are not speaking for the OpenMP ARB or the Khronos

OpenCL language committee.

•  We take these tutorials VERY seriously:
–  Help us improve … tell us how you would make this

tutorial better.

OpenCL Learning progression (part 1)

Topic Exercise concepts
I. OCL intro OpenCL overview, history and

Core models.
II. Host programs Vadd program

Understanding host programs

III. Kernel programs Basic Jacobi solver The OpenCL execution model
and how it relates to kernel
programs.

IV. Memory
coalescence

Reorganizing the A
matrix in the Jacobi
solver program.

Memory layout effects on kernel
performance

V. Divergent control
flows

Divergent control flow
in the Jacobi solver

Control flows and how they
impact performance

VI. Occupancy Work group size
optimization for the
Jacobi solver

Keeping all the resources busy

VII. Memory hierarchy
in OpenCL

Demo: Matrix
Multiplication

Working with private, local and
global memory

OpenMP Learning progression (part 2)

Topic Exercise concepts
I. OpenMP intro Parallel Hello world OpenMP overview and checking

out our OpenMP environment
II. Core elements of
traditional OpenMP

Pi program … parallel
loops

Parallel loops and supporting
constructs for shared memory
systems

III. The target directive Basic Jacobi solver The host-device model

IV. Target data
construct

Optimizing memory
movement in the
Jacobi solver
program.

Data regions and optimizing the
host-device model

V. OpenMP for GPUs Jacobi optimizations Working with leagues and the
distribute clause

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

Hardware Diversity: Basic Building Blocks

ICache
Scheduler

CPU Core: one or more hardware threads sharing
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data
elements.

SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More
threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

Hardware Diversity: Combining building
blocks to construct nodes

LLC

LL
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU
Heterogeneous:

Integrated CPU+GPU

Heterogeneous:
CPU+manycore CPU

Manycore CPU

Hardware diversity: CPUs
Intel® Xeon® processor
E7 v3 series (Haswell or HSW)
•  18 cores
•  36 Hardware threads
•  256 bit wide vector units

Intel® Xeon Phi™ coprocessor
(Knights Corner)
•  61 cores
•  244 Hardware threads
•  512 bit wide vector units

PCIe
Client
Logic

L2 L2 L2 L2

TD TD TD TD

L2 L2 L2 L2

TD TD TD TD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

Hardware diversity: GPUs
•  Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM)

–  Each SM is analogous to a core of a Multi-Core CPU
•  Each SM is a collection of SIMD execution pipelines that share

control logic, register file, and L1 Cache#

#Source: UC Berkeley, CS194,
Fall’2014, Kurt Keutzer and Tim Mattson

For example: an NVIDIA
Tesla C2050 (Fermi) GPU
with 3GB of memory and
14 streaming
multiprocessor cores*.

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/

Third party names are the property of their owners.

Hardware Diversity: programming models

OpenMP, OpenCL, pthreads, MPI, TBB, Cilk, C++’11…

OpenMP, OpenCL, CUDA, OpenACC

OpenMP, OpenCL,

OpenMP, OpenCL, pthreads, TBB, Cilk, C++’11…

Do you notice a
trend?

Hardware Diversity: programming models

OpenMP, OpenCL, pthreads, MPI, TBB, Cilk, C++’11…

OpenMP, OpenCL, CUDA, OpenACC

OpenMP, OpenCL,

OpenMP, OpenCL, pthreads, TBB, Cilk, C++’11…

If you want to support the
diversity of nodes in HPC

from a single source-
code base, you have only

two choices: OpenMP
and OpenCL

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

Industry Standards for Programming
Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general

purpose data-parallel
computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

The origins of OpenCL
AMD

ATI

NVIDIA

Intel

Apple

Merged, needed
commonality
across products

GPU vendor –
wants to steal
market share
from CPU

CPU vendor –
wants to steal
market share
from GPU

Was tired of recoding for
many core, GPUs.
Pushed vendors to
standardize.

Wrote a rough draft
straw man API

Khronos Compute
group formed

ARM
Nokia
IBM
Sony
Qualcomm
Imagination
TI

Third party names are the property of their owners.

+ many
more

OpenCL Platform Model

•  One Host and one or more OpenCL Devices
–  Each OpenCL Device is composed of one or more

Compute Units
•  Each Compute Unit is divided into one or more Processing Elements

•  Memory divided into host memory and device memory

Processing
Element

OpenCL Device

… … …

…
… … …

…
… … …

…
… … …

Host

Compute Unit

The BIG idea behind OpenCL
• Replace loops with functions (a kernel) executing at each point in a

problem domain.

– E.g., process a 1024 x 1024 image with one kernel invocation per pixel
or 1024 x 1024 = 1,048,576 kernel executions

void
trad_mul(int n,
 const float *a,
 const float *b,
 float *c)
{
 int i;
 for (i=0; i<n; i++)
 c[i] = a[i] * b[i];
 }

Traditional loops
kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

An N-dimensional domain of work-items
•  Global Dimensions:

–  1024x1024 (whole problem space)
•  Local Dimensions:

–  128x128 (work-group, executes together)

•  Choose the dimensions that are “best” for
your algorithm

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

Execution Model
•  Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).
•  Host enqueues commands to the command queue

Gy	

Gx	

(wx, wy)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (0,0)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (Sx-1,0)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (0, Sy-1)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (Sx-1, Sy- 1)	

Index Space	 Work items execute together as a work-group.

Kernel execution
commands launch
work-items: i.e. a
kernel for each point in
an abstract Index Space
called an NDRange

A (Gy by Gx)
index space

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global Memory /
Constant Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

Example: vector addition

•  The “hello world” program of data parallel
programming is a program to add two
vectors

•  C[i] = A[i] + B[i] for i=1 to N

•  For the OpenCL solution, there are two parts
– Kernel code
– Host code

Execution model (kernels)
OpenCL execution model … define a problem domain
and execute an instance of a kernel for each point in
the domain

__kernel void vadd(!
 __global float* a, __global float* b, __global float* c)!
{!
 int i = get_global_id(0);!
 c[i] = a[i] + b[i];!
}!

i = 0!

a 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 b

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 c

+

=

i = 1!i = 2! i = 19!

The basic platform and runtime APIs
in OpenCL (using C)

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

Vector Addition – Host
•  The host program is the code that runs on the host to:

–  Setup the environment for the OpenCL program
–  Create and manage kernels

•  5 simple steps in a basic host program:

1.  Define the platform … platform = devices+context+queues
2.  Create and Build the program (dynamic library for kernels)
3.  Setup memory objects
4.  Define the kernel (attach arguments to kernel function)
5.  Submit commands … transfer memory objects and execute

kernels

As we go over the next set of slides, cross
reference content on the slides to your

reference card. This will help you get used to
the reference card and how to pull information

from the card and express it in code.

1. Define the platform

err = clGetDeviceIDs(firstPlatformId, CL_DEVICE_TYPE_CPU, 1,
 &device_id, NULL);

• Grab the first available Platform:
err = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);

• Use the first CPU device the platform provides:

context = clCreateContext(firstPlatformId, 1, &device_id, NULL,
 NULL, &err);

• Create a simple context with a single device:

commands = clCreateCommandQueue(context, device_id, 0, &err);

• Create a simple command queue to feed our compute device:

Context and Command-Queues
•  Context:

–  The environment within which kernels
execute and in which synchronization
and memory management is defined

•  The context includes:
–  One or more devices
–  Device memory
–  One or more command-queues

•  All commands for a device (kernel
execution, synchronization, and
memory transfer operations) are
submitted through a command-
queue

•  Each command-queue points to a
single device within a context

Queue

Context

Device

Device Memory

2. Create and Build the program

 program = clCreateProgramWithSource(context, 1,
 (const char **) & KernelSource, NULL, &err);

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

• Define source code for the kernel-program as a string literal (great for
toy programs) or read from a file (common in real apps).

• Build the program object:

• Compile the program to create a “dynamic library” from which
specific kernels can be pulled:

• Fetch and print error messages (if (err != CL_SUCCESS)):
size_t len; char buffer[2048];

clGetProgramBuildInfo(program, device_id,
 CL_PROGRAM_BUILD_LOG, sizeof(buffer),
 buffer, &len);
printf("%s\n", buffer);

•  OpenCL uses run-time compilation …
because in general you don’t know what
the target device will be when you ship
the program

__kernel void
horizontal_reflect(read_only image2d_t src,
 write_only image2d_t dst)
{
 int x = get_global_id(0); // x-coord
 int y = get_global_id(1); // y-coord
 int width = get_image_width(src);
 float4 src_val = read_imagef(src, sampler,
 (int2)(width-1-x, y));
 write_imagef(dst, (int2)(x, y), src_val);
}

Run-time kernel compilation

Compile for
GPU

Compile for
CPU

GPU
code

CPU
code

3. Setup Memory Objects
•  For vector addition, 3 memory objects … one for each

input vector (A and B) and one for the output vector (C).
•  Create input vectors and assign values on the host:

 d_a = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * N, NULL, NULL);
 d_b = clCreateBuffer(context, CL_MEM_READ_ONLY, sizeof(float) * N, NULL, NULL);
 d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY, sizeof(float) * N, NULL, NULL);

float h_a[N], h_b[N], h_c[N];

for (i = 0; i < N; i++) {
 h_a[i] = rand() / (float)RAND_MAX;
 h_b[i] = rand() / (float)RAND_MAX;
}

• Define OpenCL memory objects:

4. Define the kernel

•  Create kernel object from the kernel function “vadd”:

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c);

kernel = clCreateKernel(program, "vadd", &err);

• Attach the “vadd” kernel's arguments to memory objects:

5. Submit commands

err = clEnqueueWriteBuffer(commands, d_a, CL_FALSE, 0,
 sizeof(float) * N, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_FALSE, 0,
 sizeof(float) * N, h_b, 0, NULL, NULL);

• Write Buffers from host into global memory (as non-blocking operations)

size_t global[1] = {N};
err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL,

 global, NULL, 0, NULL, NULL);

err = clEnqueueReadBuffer(commands, d_c, CL_TRUE, 0,
 sizeof(float) * N, h_c, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order queue so this is OK)

• Read back the result (as a blocking operation). Use the fact that we have an
in-order queue which assures the previous commands are finished before
the read begins.

// Create the compute kernel from the program
ko_vadd = clCreateKernel(program, "vadd", &err);

// Set the four arguments to our compute kernel
err = clSetKernelArg(ko_vadd, 0, sizeof(cl_mem), &d_a);
err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &d_b);
err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &d_c);

// Write a and b vectors into device global memory
err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0,
 sizeof(float) * N, h_a, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, d_b, CL_TRUE, 0,
 sizeof(float) * N, h_b, 0, NULL, NULL);

// Execute the kernel, let the run-time choose WG size
err = clEnqueueNDRangeKernel(commands, ko_vadd, 1, NULL,
 &global, NULL, 0, NULL, NULL);

// Read back the results from device global memory
err = clEnqueueReadBuffer(commands, d_c, CL_TRUE, 0,
 sizeof(float) * N, h_c, 0, NULL, NULL);

// Find number of platforms
err = clGetPlatformIDs(0, NULL, &numPlatforms);

// Get all platforms
cl_platform_id Platform[numPlatforms];
err = clGetPlatformIDs(numPlatforms, Platform, NULL);

// Find a device
for (i = 0; i < numPlatforms; i++) {
 err = clGetDeviceIDs(Platform[i],DEVICE,1,&device_id,NULL);
 if (err == CL_SUCCESS)
 break;
}

// Create a context for 1 device
context = clCreateContext(0, 1, &device_id, NULL,NULL,&err);

// Create a command queue for our device
commands = clCreateCommandQueue(context, device_id, 0, &err);

// Create the compute program from the source buffer
program = clCreateProgramWithSource(context, 1,
 (const char **) &KernelSource, NULL, &err);

// Build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

// Create the input and output arrays in device memory
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,
 sizeof(float) * N, NULL, NULL);
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,
 sizeof(float) * N, NULL, NULL);
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(float) * N, NULL, NULL);

Vector Addition – Host Program

2) Create and build the program

3) Define memory objects

4) Create and setup kernel

5) Execute commands:
 a) Write buffers to device
 b) Execute the kernel
 c) Read buffer back to host

It’s complicated, but most of this is “boilerplate” and the same for most codes.

1) Define the platform:
 Devices + Context + Queues

Vector add kernel code

__kernel void vadd(
 __global float *a, __global float *b,
 __global float *c)
{
 int i = get_global_id(0);
 c[i] = a[i] + b[i];
}

Exercise 1: Running the Vadd kernel

•  Goal:
–  To inspect and verify that you can run an OpenCL

kernel

•  Procedure:
–  Use the vadd.c program we provide. It will run a

simple kernel to add two vectors together.
–  Look at the host code and identify the API calls in the

host code.

•  Expected output:
–  A message verifying that the vector addition

completed successfully

•  Extra:
–  Try the DeviceInfo example, print out information

about the OpenCL devices in the system.

Logging in to BlueCrystal

•  University of Bristol supercomputer
•  341 16-core x86 nodes
•  76 NVIDIA K20 GPUs with OpenCL

Logging in to BlueCrystal

•  Get inside the firewall:
ssh workshop@hpc.cs.bris.ac.uk
Password: An3shmeokit

•  Then ssh into BlueCrystal with your username
ssh train01@bluecrystalp3.acrc.bris.ac.uk

Password: workshop

•  Change directory: cd OpenCL

•  Submit jobs to the queue
qsub submit_deviceinfo

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

Kernel programming

•  Kernel programming is where all the
action is at in OpenCL

•  Writing simple OpenCL kernels is quite
easy, so we'll cover that quickly

•  Optimizing OpenCL kernels to run really
fast is much harder, so that's where we're
going to spend some time

OpenCL C kernel language
•  Derived from ISO C99

– A few restrictions: no recursion, function pointers,
functions in C99 standard headers ...

–  Preprocessing directives defined by C99 are
supported (#include etc.)

•  Built-in data types
–  Scalar and vector data types, pointers
– Data-type conversion functions:

•  convert_type<_sat><_roundingmode>

–  Image types: image2d_t, image3d_t and sampler_t

OpenCL C Language Highlights

•  Function qualifiers
– __kernel qualifier declares a function as a kernel

•  I.e. makes it visible to host code so it can be enqueued

– Kernels can call other device-side functions

•  Address space qualifiers
– __global, __local, __constant, __private
– Pointer kernel arguments must be declared with an

address space qualifier

Work-item functions:

•  uint get_work_dim() number of dimensions (1, 2, or 3)

•  size_t get_global_id(uint n) global work-item ID in dim. “n”
•  size_t get_local_id(uint n) local work-item ID in dim. “n
•  size_t get_group_id(uint n) ID of work-group in dim. “n”
•  size_t get_global_size(uint n) num. of work-items in dim. “n”
•  size_t get_local_size(uint n) work group size in dim. “n”

OpenCL C Language Highlights

Synchronization functions

•  Barriers - all work-items within a work-group
must execute the barrier function before any
work-item can continue

•  Memory fences - provides ordering between
memory operations

OpenCL C Language Highlights

OpenCL C Language Restrictions

•  Pointers to functions are not allowed
•  Pointers to pointers allowed within a kernel,

but not as an argument to a kernel invocation
•  Bit-fields are not supported
•  Variable length arrays and structures are not

supported
•  Recursion is not supported (yet!)
•  Double types are optional in OpenCL v1.2, but

the key word is reserved
 (note: most implementations support double)

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 C[i*N+j] = 0.0f;
 for (k = 0; k < N; k++) {
 // C(i, j) = sum(over k) A(i,k) * B(k,j)
 C[i*N+j] += A[i*N+k] * B[k*N+j];
 }
 }
 }
}

Matrix multiplication: sequential code
We calculate C=AB, where all three matrices are NxN

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Matrix multiplication performance

•  Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz
using the gcc compiler.

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Matrix multiplication: sequential code

{!
 int i, j, k;!
 for (i = 0; i < N; i++) {!
 for (j = 0; j < N; j++) {!
 C[i*N+j] = 0.0f;!
 for (k = 0; k < N; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
 }!
 }!
 }!
}!

void mat_mul(int N, float *A, float *B, float *C)!

Matrix multiplication: OpenCL kernel (1/2)

{!
 int i, j, k;!
 for (i = 0; i < N; i++) {!
 for (j = 0; j < N; j++) {!
 C[i*N+j] = 0.0f;!
 for (k = 0; k < N; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
 }!
 }!
 }!
}!

__kernel void mat_mul(const int N, __global float *A,
 __global float *B, __global float *C)!

Mark as a kernel function and
specify memory qualifiers

Matrix multiplication: OpenCL kernel (2/2)

{!
 int i, j, k;!
 i = get_global_id(0);
 j = get_global_id(1);
 C[i*N+j] = 0.0f;!
 for (k = 0; k < N; k++) { !
 // C(i, j) = sum(over k) A(i,k) * B(k,j)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
 }!
 !
 !
}!

Replace loops with the
work item’s global id

__kernel void mat_mul(const int N, __global float *A,
 __global float *B, __global float *C)!

__kernel void mmul(
 const int N,
 __global float *A,
 __global float *B,
 __global float *C)

Matrix multiplication: kernel cleaned-up

{
 int k;
 int i = get_global_id(0);
 int j = get_global_id(1);
 float tmp = 0.0f;
 for (k = 0; k < N; k++)
 tmp += A[i*N+k]*B[k*N+j];

 C[i*N+j] = tmp;
}

Rearrange and use a local scalar for intermediate C element
values (a common optimization in Matrix Multiplication functions)

Jacobi solver serial code
 conv = LARGE; iters = 0; xnew = x1; xold = x2;
 while ((conv > TOLERANCE) && (iters<MAX_ITERS)) {
 iters++;
 xtmp = xnew; xnew = xold; xold = xtmp; // swap pointers

 for (i=0; i<Ndim; i++) {
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++) {
 if (i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }
 // test convergence
 conv = 0.0;
 for (i=0; i<Ndim; i++) {
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);
 }

Exercise 2: Jacobi Solver Program

•  Goal:
– To write a non-trivial OpenCL kernel

•  Procedure:
– Look at the program Jac_solv_ocl_basic.c
– We provide a C host program and the function

prototype for the Jacobi_solver kernel program.
– Write the body of the kernel program.

•  Expected output:
– A message verifying that the program ran

correctly.

Jacobi solver kernel code (1/2)
#define TYPE double
#if (TYPE == double)
 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

__kernel void jacobi(
 const unsigned Ndim,
 __global TYPE * A, __global TYPE * b,
 __global TYPE * xold, __global TYPE * xnew)
{
 size_t i = get_global_id(0);

 xnew[i] = (TYPE) 0.0;
 for (int j = 0; j < Ndim; j++) {
 if (i != j)
 xnew[i] += A[i*Ndim + j] * xold[j];
 }
 xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];
}

Jacobi solver kernel code (2/2)
__kernel void convergence(
 __global TYPE * xold, __global TYPE * xnew,
 __local TYPE * conv_loc, __global TYPE * conv)
{
 size_t i = get_global_id(0);
 TYPE tmp;
 tmp = xnew[i] - xold[i];
 conv_loc[get_local_id(0)] = tmp * tmp;
 barrier(CLK_LOCAL_MEM_FENCE);

 for (int offset = get_local_size(0) / 2; offset > 0; offset /= 2) {
 if (get_local_id(0) < offset) {
 conv_loc[get_local_id(0)] += conv_loc[get_local_id(0) + offset];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (get_local_id(0) == 0) { conv[get_group_id(0)] = conv_loc[0]; }
}

A kernel enqueued on the host
to compute convergence. This

implements a reduction with
the last stage of the reduction

occurring on the host.

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc
compiler.

Third Party names are the property of their owners.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization and compilation

•  Memory coalescence
•  Divergent control flows
•  Occupancy
•  Other Optimizations
•  Working with the OpenCL Memory Hierarchy

–  OpenCL ecosystem

•  OpenMP

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global/Constant
Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

The Memory Hierarchy

Private memory
O(10) words/work-item

Local memory

O(1-10) KBytes/work-group

Global memory
O(1-30) GBytes

Host memory
O(1-200) GBytes

Private memory
O(2-3) words/cycle/work-item

Local memory

O(10) words/cycle/work-group

Global memory
O(200-300) GBytes/s

Host memory
O(1-50) GBytes/s

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2015

Bandwidths Sizes

Managing the memory hierarchy is one of the most important
things to get right to achieve good performance

Coalesced Access

•  Coalesced memory accesses are key for
high performance code

•  In principle, it’s very simple, but
frequently requires transposing/
transforming data on the host before
sending it to the GPU

•  Sometimes this is an issue of AoS vs. SoA

Memory layout is critical to performance

•  “Structure of Arrays vs. Array of Structures”
•  Array of Structures (AoS) more natural to code

 struct Point{ float x, y, z, a; };
 Point *Points;

•  Structure of Arrays (SoA) suits memory

coalescence in vector units
 struct { float *x, *y, *z, *a; } Points;

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items/
vector-lanes like to
access adjacent
memory locations

Coalescence

•  Coalesce - to combine
into one

•  Coalesced memory
accesses are key for
high bandwidth

•  Simply, it means, if
thread i accesses
memory location n then
thread i+1 accesses
memory location n+1

•  In practice, it’s not
quite as strict…

__kernel func(__global float *memA,
 __global float *memB)
{

int g_id = get_global_id(0);

// ideal
float val1 = memA[g_id];

// still pretty good
const int c = 3;
float val2 = memA[g_id + c];

// stride size is not so good
float val3 = memA[c*g_id];

const int loc =
 some_strange_func(g_id);

// terrible!
float val4 = memA[loc];

}

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! GPU Threads

64 Byte Boundary
GPU Memory

64 Byte Boundary

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns

float val1 = memA[g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

64 Byte Boundary

Memory access patterns

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x120 !0x11c !0x118 !0x114 ! 0x124 ! 0x128 ! 0x12c ! 0x130 ! 0x134 ! 0x138 ! 0x13c ! 0x140 ! 0x144 ! 0x148 !

64 Byte Boundary

const int c = 3; !
float val2 = memA[g_id + c]; !
!

!

Memory access patterns

float val3 = memA[3*g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary Strided access results in multiple
memory transactions (and

kills throughput)

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns

const int loc = !
 some_strange_func(g_id); !
!
float val4 = memA[loc]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns

Thought exercise

•  Consider the memory access patterns in
your Jacobi solver kernel.

•  There is a memory alignment problem…
•  If you want to generate the transpose of

the A matrix (a column major order), we
provide a function inside mm_utils.c that
you can call inside the host code to do this.

void init_colmaj_diag_dom_near_identity_matrix(int Ndim, TYPE *A);

Jacobi solver kernel code (1/2)
#define TYPE double
#if (TYPE == double)
 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
 const unsigned Ndim,
 global TYPE * A, global TYPE * b,
 global TYPE * xold, global TYPE * xnew)

{
 size_t i = get_global_id(0);

 xnew[i] = (TYPE) 0.0;
 for (int j = 0; j < Ndim; j++) {
 if (i != j)
 xnew[i] += A[j*Ndim + i] * xold[j];
 }
 xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];}

Swap indices
on A to match
column major
layout – was
A[i*Ndim+j]

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc
compiler.

Third Party names are the property of their owners.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization and compilation

•  Memory coalescence
•  Divergent control flows
•  Occupancy
•  Other Optimizations
•  Working with the OpenCL Memory Hierarchy

–  OpenCL ecosystem

•  OpenMP

Single Instruction Multiple Data

•  Individual threads of a warp start together at the
same program address

•  Each thread has its own instruction address counter
and register state
–  Each thread is free to branch and execute independently
–  Provide the MIMD abstraction

•  Branch behavior
–  Each branch will be executed serially
–  Threads not following the current branch will be disabled

71

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Branching
•  GPUs tend not to support speculative execution, which

means that branch instructions have high latency
•  This latency can be hidden by switching to alternative work-

items/work-groups, but avoiding branches where possible is
still a good idea to improve performance

•  When different work-items executing within the same SIMD
ALU array take different paths through conditional control
flow, we have divergent branches (vs. uniform branches)

•  These are even worse: work-items will stall while waiting for
the others to complete

•  We can use predication, selection and masking to convert
conditional control flow into straight line code and
significantly improve the performance of code that has lots
of conditional branches

Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
 acc += (a - b*c);
}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

Exercise 3

•  Eliminate the branch in your Jacobi solver
kernel.

•  Hint: comparisons return 1 for true and 0
for false…

•  Measure the impact – how much faster
does the code go?

Jacobi solver kernel code (1/2)
#define TYPE double
#if (TYPE == double)
 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
 const unsigned Ndim,
 global TYPE * A, global TYPE * b,
 global TYPE * xold, global TYPE * xnew)
{
 size_t i = get_global_id(0);

 xnew[i] = (TYPE) 0.0;
 for (int j = 0; j < Ndim; j++) {

 xnew[i] += A[j*Ndim + i] * xold[j] * (TYPE)(i != j);
 }
 xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];
}

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Note: optimizations in the table are cumulative
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Third Party names are the property of their owners.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization and compilation

•  Memory coalescence
•  Divergent control flows
•  Occupancy
•  Other Optimizations
•  Working with the OpenCL Memory Hierarchy

–  OpenCL ecosystem

•  OpenMP

Keep the processing elements (PE) busy

•  Occupancy: a measure of the fraction of time
during a computation when the PE’s are busy.
Goal is to keep this number high (well over
50%).

•  Pay attention to the number of work-items and
work-group sizes
– Rule of thumb: On a modern GPU you want at least

4 work-items per PE in a Compute Unit
– More work-items are better, but diminishing returns,

and there is an upper limit
•  Each work item consumes PE finite resources (registers etc)

Occupancy
•  Number of work-groups per compute unit (CU)

depends on registers and local memory size per
work-group

•  E.g. NVIDIA’s K40 has 128 words of memory per
processor element (PE), i.e. 128 registers per
core; and 48KB of local memory per CU

•  But, multiple work-items (threads) will be
scheduled on a single PE (similar to
hyperthreading)

•  In fact, global memory latency is so high that
multiple work-items per PE are a requirement for
achieving a good proportion of peak
performance!

Work-group sizes

•  Work-group sizes being a power of 2 helps on
most architectures. At a minimum use multiples
of:
–  8 for Intel® AVX CPUs
–  16 for Intel® Xeon Phi™ processors
–  32 for Nvidia® GPUs
–  64 for AMD®
–  May be different on different hardware

•  On most systems aim to run lots of work-groups.
For example, on Xeon Phi, multiples of the number
of threads available (e.g. 240 on a 5110P) is
optimal, but as many as possible is good (1000+)

Third party names are the property of their owners

Effect of work-group sizes

Optional Exercise

If time allows:

•  Experiment with different work group

sizes (can make a big difference!)

•  Run the host program with the flag –h to
see the command line options. One of
them (--wg) will vary the workgroup size.

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Third Party names are the property of their owners.

Note: optimizations in the table are cumulative
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization and compilation

•  Memory coalescence
•  Divergent control flows
•  Occupancy
•  Other Optimizations
•  Working with the OpenCL Memory Hierarchy

–  OpenCL ecosystem

•  OpenMP

Constant Memory
•  Constant memory can be considered

a store for data that never changes
•  Setting and updating constants in

memory uses the same interface as
global memory, with enqueueRead/
enqueueWrite commands

•  The difference is how it is declared
in the kernel

•  Some devices may have dedicated
on-chip caches or data-paths for
constant memory

•  Devices are guaranteed to support
constant memory allocations of at
least 64kB

•  Can also declare OpenCL program
scope constant data, but this has to
be initialized at OpenCL program
compile time

kernel void
calc_something
(
 global float *a,
 global float *b,
 global float *c,

 //constant memory is
 //set on the host
 constant float *params
)
{
 //code here
}

•  OpenCL compilers accept a number of flags
that affect how kernels are compiled:
-cl-opt-disable
-cl-single-precision-constant
-cl-denorms-are-zero
-cl-fp32-correctly-rounded-divide-sqrt
-cl-mad-enable
-cl-no-signed-zeros
-cl-unsafe-math-optimizations
-cl-finite-math-only
-cl-fast-relaxed-math

Compiler Options

implies

Other compilation hints

•  Can use an attribute to inform the compiler
of the work-group size that you intend to
launch kernels with:

__attribute__((reqd_work_group_size(x, y, z)))

•  As with C/C++, use the const/restrict
keywords for kernel arguments where
appropriate to make sure the compiler can
optimise memory accesses

Optional Exercise

•  Experiment with different optimizations
to get the best runtime you can.

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Third Party names are the property of their owners.

Note: optimizations in the table are cumulative
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization and compilation

•  Memory coalescence
•  Divergent control flows
•  Occupancy
•  Other Optimizations
•  Working with the OpenCL Memory Hierarchy

–  OpenCL ecosystem

•  OpenMP

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global/Constant
Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

The Memory Hierarchy

Private memory
O(10) words/work-item

Local memory

O(1-10) KBytes/work-group

Global memory
O(1-30) GBytes

Host memory
O(1-200) GBytes

Private memory
O(2-3) words/cycle/work-item

Local memory

O(10) words/cycle/work-group

Global memory
O(200-300) GBytes/s

Host memory
O(1-50) GBytes/s

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2015

Bandwidths Sizes

Managing the memory hierarchy is one of the most important
things to get right to achieve good performance

Optimizing matrix multiplication
•  MM cost determined by FLOPS and memory movement:

–  2*n3 = O(n3) FLOPS
–  Operates on 3*n2 = O(n2) numbers

•  To optimize matrix multiplication, we must ensure that for
every memory access we execute as many FLOPS as
possible.

•  Outer product algorithms are faster, but for pedagogical
reasons, let’s stick to the simple dot-product algorithm.

•  We will work with work-item/work-group sizes and the
memory model to optimize matrix multiplication

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Optimizing matrix multiplication

•  There may be significant overhead to manage work-items
and work-groups.

•  So let’s have each work-item compute a full row of C

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

•  And with an eye towards future optimizations, let’s collect
work-items into work-groups with 64 work-items per work-
group

An N-dimension domain of work-items

•  Global Dimensions: 1024 (1D)
 Whole problem space (index space)

•  Local Dimensions: 64 (work-items per work-group)
 Only 1024/64 = 16 work-groups in total

•  Important implication: we will have a lot fewer
work-items per work-group (64) and work-
groups (16). Why might this matter?

10
24

64

__kernel void mmul(!
 const int N,!
 __global float *A,!
 __global float *B,!
 __global float *C)!

Matrix multiplication: One work item per row of C

{!
 int j, k;!
 int i = get_global_id(0);!
 float tmp;!
 for (j = 0; j < N; j++) {!
 tmp = 0.0f;!
 for (k = 0; k < N; k++) !
 tmp += A[i*N+k]*B[k*N+j];!
 C[i*N+j] = tmp;!
 }!
}!

Mat. Mul. host program (1 row per work-item)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),
 end(h_A), true);
 d_B = cl::Buffer(context, begin(h_B),
 end(h_B), true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),
 cl::NdRange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Mat. Mul. host program (1 row per work-item)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),
 end(h_A), true);
 d_B = cl::Buffer(context, begin(h_B),
 end(h_B), true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),
 cl::NdRange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Changes to host program:
1.  1D ND Range set to

number of rows in the C
matrix

2.  Local Dimension set to 64
(which gives us 16 work-
groups which matches the
GPU’s number of compute
units).

Third party names are the property of their owners.

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

This has started to help.

Optimizing matrix multiplication

•  Notice that, in one row of C, each element reuses the same
row of A.

•  Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of
loading it from global memory for each C(i,j) computation.

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item

Private Memory

•  A work-items private memory:
– A very scarce resource, only a few tens of 32-bit

words per Work-Item at most (on a GPU)
–  If you use too much it spills to global memory or

reduces the number of Work-Items that can be
run at the same time, potentially harming
performance*

– Think of these like registers on the CPU
•  How do you create and manage private

memory?
– Declare statically inside your kernel

* Occupancy on a GPU

__kernel void mmul(!
 const int N,!
 __global float *A,!
 __global float *B,!
 __global float *C)!
{!
 int j, k;!
 int i = get_global_id(0);!
 float tmp; !
 float Awrk[1024];!
!

Matrix multiplication: (Row of A in private memory)

 for (k = 0; k < N; k++)!
 Awrk[k] = A[i*N+k];!
!
 for (j = 0; j < N; j++) {!
 tmp = 0.0f;!
 for (k = 0; k < N; k++) !
 tmp += Awrk[k]*B[k*N+j];!
 !
 C[i*N+j] = tmp;!
 }!
}!

__kernel void mmul(!
 const int N,!
 __global float *A,!
 __global float *B,!
 __global float *C)!
{!
 int j, k;!
 int i = get_global_id(0);!
 float tmp; !
 float Awrk[1024];!
!

Matrix multiplication: (Row of A in private memory)

 for (k = 0; k < N; k++)!
 Awrk[k] = A[i*N+k];!
!
 for (j = 0; j < N; j++) {!
 tmp = 0.0f;!
 for (k = 0; k < N; k++) !
 tmp += Awrk[k]*B[k*N+j];!
 !
 C[i*N+j] = tmp;!
 }!
}!

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

Setup a work array for A in
private memory*

Copy a row of A
into private

memory from
global memory
before we start
with the matrix
multiplications.

Mat. Mul. host program (Row of A in private memory)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),
 end(h_A), true);
 d_B = cl::Buffer(context, begin(h_B),
 end(h_B), true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),
 cl::NDRange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Host program unchanged from last exercise

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

Device is Tesla® M2090 GPU from
NVIDIA® with a max of 16
compute units, 512 PEs
Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may
observe completely different results should you run
these tests on your own system.

Big impact!

Optimizing matrix multiplication
•  We already noticed that, in one row of C, each element uses

the same row of A
•  Each work-item in a work-group also uses the same columns

of B
•  So let’s store the B columns in local memory (which is

shared by the work-items in the work-group)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item Local memory for each

work-group

Local Memory

•  How do you create and manage local memory?
–  Create local memory kernel argument on the host

•  err |= clSetKernelArg(mmul, 3, sizeof(float)*N,
NULL);

•  This command makes the 4th argument to kernel mmul a pointer to a
newly allocated local memory buffer of size 4N bytes

–  Mark kernel arguments that are from local memory as __local

–  Your kernels are responsible for transferring data between Local
and Global/Constant memories … there are built-in functions to
help (async_work_group_copy(),
async_workgroup_strided_copy(), etc)

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2015

•  A work-group’s shared memory
–  Typically 10’s of KBytes per Compute Unit*
–  Use Local Memory to hold data that can be

reused by all the work-items in a work-group
–  As multiple Work-Groups may be running on each Compute Unit

(CU), only a fraction of the total Local Memory size may be
available to each Work-Group

Local Memory performance hints

•  Local Memory doesn’t always help…
–  CPUs don’t have special hardware for it
–  This can mean excessive use of Local Memory might

slow down kernels on CPUs
–  GPUs now have effective on-chip caches which can

provide much of the benefit of Local Memory but
without programmer intervention

–  Access patterns to Local Memory affect performance
in a similar way to accessing Global Memory

•  Have to think about things like coalescence & bank conflicts

–  So, your mileage may vary!

Memory Consistency
•  OpenCL uses a relaxed consistency memory model; i.e.

–  The state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.

•  Within a work-item:
–  Memory has load/store consistency to the work-item’s private view of

memory, i.e. it sees its own reads and writes correctly

•  Within a work-group:
–  Local memory is consistent between work-items at a barrier.

•  Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-groups!!
–  This is a common source of bugs!

•  Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization (barriers,
events, in-order queue)

Work-Item Synchronization

•  Within a work-group
void barrier()!
–  Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
–  A work-item that encounters a barrier() will wait until ALL work-

items in its work-group reach the barrier()
–  Corollary: If a barrier() is inside a branch, then the branch must be

taken by either:
•  ALL work-items in the work-group, OR
•  NO work-item in the work-group

•  Across work-groups
–  No guarantees as to where and when a particular work-group will be

executed relative to another work-group
–  Cannot exchange data, or have barrier-like synchronization

between two different work-groups! (Critical issue!)
–  Only solution: finish the kernel and start another

Ensure correct order of memory operations
to local or global memory (with flushes or
queuing a memory fence)

__kernel void mmul(!
 const int N,!
 __global float *A,!
 __global float *B,!
 __global float *C,!
 __local float *Bwrk)!
{!
 int j, k;!
 int i = get_global_id(0);!
!
 int iloc=get_local_id(0);!
 int nloc=get_local_size(0);!
 !
 float tmp; !
 float Awrk[1024];!
!

Matrix multiplication: B column shared between work-items

 for (k = 0; k < N; k++)!
 Awrk[k] = A[i*N+k];!
!
 for (j = 0; j < N; j++) {!
!
 for (k=iloc; k< N; k+=nloc)!
 Bwrk[k] = B[k* N+j];!
 barrier(CLK_LOCAL_MEM_FENCE);!
!
 tmp = 0.0f;!
 for (k = 0; k < N; k++) !
 tmp += Awrk[k]*Bwrk[k];!
 !
 C[i*N+j] = tmp;!
 barrier(CLK_LOCAL_MEM_FENCE);!
 }!
}!

__kernel void mmul(!
 const int N,!
 __global float *A,!
 __global float *B,!
 __global float *C,!
 __local float *Bwrk)!
{!
 int j, k;!
 int i = get_global_id(0);!
!
 int iloc=get_local_id(0);!
 int nloc=get_local_size(0);!
 !
 float tmp; !
 float Awrk[1024];!
!

Matrix multiplication: B column shared between work-items

 for (k = 0; k < N; k++)!
 Awrk[k] = A[i*N+k];!
!
 for (j = 0; j < N; j++) {!
!
 for (k=iloc; k< N; k+=nloc)!
 Bwrk[k] = B[k* N+j];!
 barrier(CLK_LOCAL_MEM_FENCE);!
!
 tmp = 0.0f;!
 for (k = 0; k < N; k++) !
 tmp += Awrk[k]*Bwrk[k];!
 !
 C[i*N+j] = tmp;!
 barrier(CLK_LOCAL_MEM_FENCE);!
 }!
}!

Pass a work array in local memory to hold a
column of B. All the work-items do the copy
“in parallel” using a cyclic loop distribution

(hence why we need iloc and nloc)

Mat. Mul. host program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer,
 cl::LocalSpaceArg > (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Bwrk =
 cl::Local(sizeof(float) * Pdim);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N), cl::NDRange(64)),
 N, d_A, d_B, d_C, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)
}

Mat. Mul. host program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer,
 cl::LocalSpaceArg > (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Bwrk =
 cl::Local(sizeof(float) * Pdim);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N), cl::NDRange(64)),
 N, d_A, d_B, d_C, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)
}

Change host program to pass
local memory to kernels.

•  Add an arg of type
LocalSpaceArg is needed.

•  Allocate the size of local
memory

•  Update argument list in
kernel functor

Matrix multiplication performance
•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU
from NVIDIA® with a max of
16 compute units, 512 PEs
Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

The CuBLAS SGEMM provides an effective
measure of peak achievable performance on the
GPU. CuBLAS performance = 283366.4 MFLOPS

Matrix multiplication:
sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;!
 for (i = 0; i < N; i++) {!
 for (j = 0; j < N; j++) {!
 for (k = 0; k < N; k++) { !
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
 }!
 }!
 }!
}!

Matrix multiplication:
sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;!
 for (i = 0; i < N; i++) !
 for (j = 0; j < N; j++)!
 for (k = 0; k < N; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
}!
!
!

Let’s get rid of all
those ugly brackets

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (i = ib*NB; i < (ib+1)*NB; i++)!
 for (jb = 0; jb < NB; jb++) !
 for (j = jb*NB; j < (jb+1)*NB; j++)!
 for (kb = 0; kb < NB; kb++) !
 for (k = kb*NB; k < (kb+1)*NB; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Break each loop
into chunks with a
size chosen to
match the size of
your fast memory

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (jb = 0; jb < NB; jb++) !
 for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
 for (j = jb*NB; j < (jb+1)*NB; j++)!
 for (k = kb*NB; k < (kb+1)*NB; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Rearrange loop nest
to move loops over
blocks “out” and

leave loops over a
single block together

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (jb = 0; jb < NB; jb++) !
 for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
 for (j = jb*NB; j < (jb+1)*NB; j++)!
 for (k = kb*NB; k < (kb+1)*NB; k++)!
 C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

This is just a local
matrix multiplication

of a single block

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k; !
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
 for (jb = 0; jb < NB; jb++) !
 for (kb = 0; kb < NB; kb++) !
 sgemm(C, A, B, …) // Cib,jb = Aib,kb * Bkb,jb!
!
 !
 !
 !
} !

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:) B(:,jb) C(ib,jb)

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Load A and B
blocks, wait for all
work-items to finish

Wait for
everyone to
finish before
going to next

iteration of Kblk
loop.

Matrix multiplication … Portable Performance

CPU Xeon Phi Core i7, HD
Graphics

NVIDIA
Tesla

Sequential C (compiled /O3) 224.4 1221.5

C(i,j) per work-item, all
global 841.5 13591 3721

C row per work-item, all
global 869.1 4418 4196

C row per work-item, A row
private 1038.4 24403 8584

C row per work-item, A
private, B local 3984.2 5041 8182

Block oriented approach
using local (blksz=16) 12271.3 74051

(126322*)
38348

(53687*) 119305

Block oriented approach
using local (blksz=32) 16268.8

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla®	M2090	GPU	from	NVIDIA®	with	a	max	of	16	compute	units,	512	PEs	

•  Single Precision matrix multiplication (order 1000 matrices)

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may
observe completely different results should you run
these tests on your own system.

Matrix multiplication performance (CPU)
•  Matrices are stored in global memory.

Case MFLOPS

CPU

Sequential C (not OpenCL, compiled /O3) 224.4

C(i,j) per work-item, all global 841.5

C row per work-item, all global 869.1

C row per work-item, A row private 1038.4

C row per work-item, A private, B local 3984.2

Block oriented approach using local (blksz=8) 7482.5

Block oriented approach using local (blksz=16) 12271.3

Block oriented approach using local (blksz=32) 16268.8

Intel MKL SGEMM 63780.6

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel
compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

OpenCL 2.0

•  OpenCL 2.0 was ratified in Nov’13
•  Brings several important new features:

–  Shared Virtual Memory
–  Nested parallelism
–  Built-in work-group reductions
–  Generic address space
–  Pipes
–  C11 atomics

•  Specification and headers available here
•  Production drivers now available from Intel and

AMD, with more expected to follow

SPIR

•  Standard Portable Intermediate Representation
•  Defines an IR for OpenCL programs
•  Means that developers can ship portable binaries

instead of their OpenCL source
•  Also intended to be a target for other languages/

programming models (C++ AMP, SYCL, OpenACC,
DSLs)

•  SPIR 1.2 & SPIR 2.0 ratified, SPIR-V provisional
available now

•  Implementations available from Intel and AMD,
with more on the way

SYCL

•  Single source C++ abstraction layer for
OpenCL

•  Goal is to enable the creation of C++
libraries and frameworks that utilize OpenCL

•  Can utilize SPIR to target OpenCL platform
•  Supports ‘host-fallback’ (CPU) when no

OpenCL devices available
•  Provisional specification released Mar’14
•  Codeplay and AMD working on

implementations

Libraries

•  clFFT / clBLAS / clRNG (all on github)
•  Arrayfire (open source soon)
•  Boost compute with VexCL
•  ViennaCL (PETSc), PARALUTION
•  Lots more - see the Khronos OpenCL pages:

https://www.khronos.org/opencl/resources

Resources:
https://www.khronos.org/opencl/

OpenCL Programming Guide:
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and
James Fung, 2011

Heterogeneous Computing with OpenCL
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry
and Dana Schaa, 2011

The OpenCL specification
Surprisingly approachable for a spec!

https://www.khronos.org/registry/cl/

OpenCL reference card
Useful to have on your desk(top)
Available on the same page as the spec.

OpenCL Tutorials

•  One of the most popular OpenCL training
courses on the web

•  Completely open source (creative commons
attribution CC BY license)

•  Downloaded over 4,200 times so far!
•  Lots of training material, examples and

solutions, source code etc
•  Works on Linux, Windows, OSX etc.

http://handsonopencl.github.io

Other useful resources

•  Lots of OpenCL examples in the SDKs from
the vendors:
–  AMD, Intel, Nvidia, …

•  The SHOC OpenCL/CUDA benchmark suite
(available as source code):
–  https://github.com/vetter/shoc/wiki

•  The GPU-STREAM memory bandwidth
benchmark:
–  https://github.com/UoB-HPC/GPU-STREAM

Other useful resources

•  IWOCL webpage & newsletter:
– http://www.iwocl.org
– http://www.iwocl.org/signup-for-updates/

•  IWOCL annual conference
– Spring each year
–  In Vienna, April 19-21 2016!

Conclusion
•  OpenCL

–  Widespread industrial support

–  Defines a platform-API/framework for heterogeneous parallel
computing, not just GPGPU or CPU-offload programming

–  Has the potential to deliver portably performant code; but it has to
be used correctly

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

138

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

§ A set of compiler directives and library routines for
parallel application programmers

§ Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++

§ Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

139

OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

S
ys

te
m

 la
ye

r

Directives,
Compiler

OpenMP library Environment
variables P

ro
g.

La

ye
r

Application

End User

U
se

r l
ay

er

Shared Address Space

Proc3 Proc2 Proc1 ProcN

H
W

OpenMP basic definitions: Target solution stack

Supported (since OpenMP
4.0) with target, teams,

distribute, and other
constructs

Target Device: Xeon Phi™ processor

Host

Target Device: GPU

141

OpenMP core syntax

•  Most of the constructs in OpenMP are compiler
directives.

#pragma omp construct [clause [clause]…]
–  Example

#pragma omp parallel num_threads(4)

•  Function prototypes and types in the file:
#include <omp.h>
use omp_lib

•  Most OpenMP* constructs apply to a
“structured block”.
–  Structured block: a block of one or more statements with

one point of entry at the top and one point of exit at the
bottom.

–  It’s OK to have an exit() within the structured block.

142

Exercise, Part A: Hello world
Verify that your environment works

•  Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

 int ID = 0;

 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

143

Exercise, Part B: Hello world
Verify that your OpenMP environment works

•  Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

 int ID = 0;

 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);

}

Switches for compiling and linking

gcc -fopenmp Linux, OSX

pgcc -mp pgi

icl /Qopenmp intel (windows)

icc –openmp intel (linux)

#pragma omp parallel

{

}

#include <omp.h>

}

144

Exercise: Solution
A multi-threaded “Hello world” program

•  Write a multithreaded program where each
thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with
default number of threads

Runtime library function to
return a thread ID.

End of the Parallel region

145

OpenMP overview:
How do threads interact?

•  OpenMP is a multi-threading, shared address model
•  Threads communicate by sharing variables.

•  Unintended sharing of data causes race conditions:
•  Race condition: when the program’s outcome changes as the threads

are scheduled differently.

•  To control race conditions:
•  Use synchronization to protect data conflicts.

•  Synchronization is expensive so:
•  Change how data is accessed to minimize the need for

synchronization.

146

OpenMP programming model:
Fork-Join Parallelism:

u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

Sequential Parts

147

Thread creation: Parallel regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

•  Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within
the
structured
block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

148

Thread creation: Parallel regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

•  Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread
executes a
copy of the
code within
the
structured
block

clause to request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

149

Thread creation: Parallel regions example

•  Each thread executes the
same code redundantly.

	double A[1000];
omp_set_num_threads(4);
 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}
 printf(“all done\n”);

omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A is
shared
between all
threads.

Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

150

Synchronization: critical

•  Mutual exclusion: Only one thread at a time can enter a
critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for(i=id;i<niters;i+=nthrds){

 B = big_job(i);

#pragma omp critical
 res += consume (B);

 }
}

Threads wait
their turn – only
one at a time
calls consume()

151

Exercises: Numerical integration

∫ 	4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Δx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

152

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 #pragma omp critical
 pi += sum * step;

}
}

Example: An SPMD solution to the PI program

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi in a critical region so
updates don’t conflict

No array, so
no false
sharing.

Create a scalar local
to each thread to
accumulate partial
sums.

153

#include <omp.h>
static long num_steps = 100000000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 #pragma omp critical
 pi += sum * step;

}
}

Example: An SPMD solution to the PI program

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Original Serial program
ran in 1.83 seconds.

threads SPMD
critical

1 1.87

2 1.00

3 0.68

4 0.53

154

SPMD vs. worksharing

•  A parallel construct by itself creates an SPMD or
“Single Program Multiple Data” program … i.e., each
thread redundantly executes the same code.

•  How do you split up pathways through the code
between threads within a team?
–  Worksharing constructs

§  Loop construct
§  Sections/section constructs
§  Single construct
§ Distribute construct

–  Task constructs

155

The loop worksharing constructs

•  The loop worksharing construct splits up
loop iterations among the threads in a
team #pragma omp parallel

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
 NEAT_STUFF(I); 
 } 

}

Loop construct name:

• C/C++: for

• Fortran: do

The variable I is made “private” to each
thread by default. You could do this
explicitly with a “private(I)” clause

156

Reduction

•  We are combining values into a single accumulation
variable (ave) … there is a true dependence between loop
iterations that can’t be trivially removed

•  This is a very common situation … it is called a
“reduction”.

•  Support for reduction operations is included in most
parallel programming environments.

 double ave=0.0, A[MAX]; int i;
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

l  How do we handle this case?

157

Reduction
•  OpenMP reduction clause:

reduction (op : list)
•  Inside a parallel or a work-sharing construct:

•  A local copy of each list variable is made and initialized
depending on the “op” (e.g. 0 for “+”).

•  Updates occur on the local copy.
•  Local copies are reduced into a single value and combined

with the original global value.

•  The variables in “list” must be shared in the enclosing
parallel region.

 double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

158

OpenMP: Reduction operands/initial-values
•  Many different associative operands can be used with reduction:
•  Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0
| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

159

Exercise: Pi with loops

•  Go back to the serial pi program and parallelize
it with a loop construct

•  Your goal is to minimize the number of changes
made to the serial program.

160

Example: Pi with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 }
 pi = step * sum;

}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum. Note
… the loop index is local to
a thread by default.

Results*: pi with a loop and a reduction

161

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads SPMD
critical

PI Loop

1 1.87 1.91

2 1.00 1.02

3 0.68 0.80

4 0.53 0.68

162

Combined parallel/worksharing construct

•  OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

 double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

 double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

163

Synchronization: Barrier
•  Barrier: Each thread waits until all threads arrive.

double A[big], B[big], C[big];

#pragma omp parallel
{

 int id=omp_get_thread_num();
 A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc4(id);

}

implicit barrier at the end of a parallel region

implicit barrier at
the end of a for

worksharing
construct

no implicit
barrier
due to
nowait

164

Data environment:Default storage attributes

•  Shared memory programming model:
•  Most variables are shared by default

•  Global variables are SHARED among threads
•  Fortran: COMMON blocks, SAVE variables, MODULE variables
•  C: File scope variables, static
•  Both: dynamically allocated memory (ALLOCATE, malloc,

new)

•  But not everything is shared...
•  Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE
•  Automatic variables within a statement block are PRIVATE.

165

 double A[10];
 int main() {

 int index[10];
 #pragma omp parallel

 work(index);
 printf(“%d\n”, index[0]);

 }

extern double A[10];
void work(int *index) {
 double temp[10];
 static int count;
 ...
}

Data sharing: Examples

temp!

A, index, count!

temp! temp!

A, index, count!

A, index and count are
shared by all threads.

temp is local to each
thread

166

Data sharing: Private clause

void wrong() {
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j = 0; j < 1000; ++j)

 tmp += j;
 printf(“%d\n”, tmp);
}

•  private(var) creates a new local copy of var for each thread.
•  The value of the private copies is uninitialized
•  The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

Firstprivate clause

•  Variables initialized from a shared variable
•  C++ objects are copy-constructed

167

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;
 A[i] = incr;

}

Each thread gets its own copy of
incr with an initial value of 0

Exercise

•  Start from the jacobi_solv.c file.
•  Parallelize the program using openMP

loop constructs.
– #pragma omp parallel for reduction(+:list)
– Common clauses

•  private(list)
•  firstprivate(list)
•  num_threads(integer-expression)

– Timing
•  double omp_get_wtime() Call before and after …

difference is the elapsed time.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

OpenMP basic definitions: Target solution stack

Supported (since OpenMP
4.0) with target, teams,

distribute, and other
constructs

Target Device: Xeon Phi™ processor

Host

Target Device: GPU

171

The OpenMP device programming model

#include <omp.h>
#include <stdio.h>
Int main()
{
 printf(“There are %d devices\n”,
 omp_get_num_devices());
}

•  OpenMP uses a host/device model
•  The host is where the initial thread of the program begins execution
•  Zero or more devices are connected to the host

Device

… … …

…
… … …

…
… … …

…
… … …

Host

Target directive
•  The target construct offloads a code region to a device.

#pragma omp target
{….} // a structured block of code

•  An initial thread running on the device executes the
code in the code block.

#pragma omp target
{
 #pragma omp parallel for
 {do lots of stuf}
}

Target directive
•  The target construct offloads a code region to a device.

#pragma omp target device(1)
{….} // a structured block of code

•  An initial thread running on the device executes the
code in the code block.

#pragma omp target
{
 #pragma omp parallel for
 {do lots of stuf}
}

Optional clause to
select some device

other than the
default device.

The target data environment
•  The target clause creates a data environment on the

device:

•  Originals variables copied into corresponding variables
before the initial thread begins execution on the device.

•  Corresponding variables copied into original variables when
the target code region completes

int i, a[N], b[N], c[N];
#pragma omp target

Original variables on the host:
N, i, a, b, c …

Are mapped onto the
corresponding variables on
the device: N, i, a, b, c …

#pragma omp parallel for private(i)
 for(i=0;i<N;i++){
 c[i]+=a[i]+b[i];
 }

Controlling data movement

•  The various forms of the map clause
–  map(to:list): read-only data on the device. Variables in the list are

initialized on the device using the original values from the host.
–  map(from:list): write-only data on the device: initial value of the

variable is not initialized. At the end of the target region, the values
from variables in the list are copied into the original variables.

–  map(tofrom:list): the effect of both a map-to and a map-from
–  map(alloc:list): data is allocated and uninitialized on the device.
–  map(list): equivalent to map(tofrom:list).

•  For pointers you must use array notation ..
–  Map(to:a[0:N])

int i, a[N], b[N], c[N];
#pragma omp target map(to:a,b) map(tofrom:c)

Data movement
can be explicitly
controlled with
the map clause

Exercise
•  Start with the parallel jacobi_solver from the last

exercise.
•  Use the target clause to offload the execution of this

solver on the Xeon-phi.
–  #pragma omp target
–  #pragma omp target map(to:list) map(from:list) map(tofrom:list)
–  int omp_get_num_devices();
–  #pragma omp parallel for reduction(+:var) private(list)

Jacobi Solver (serial 1/2)
 while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;
 xtmp = xnew; // don't copy arrays.
 xnew = xold; // just swap pointers.
 xold = xtmp;

 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

Jacobi Solver (serial 2/2)
 //
 // test convergence
 //
 conv = 0.0;
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

} \\ end while loop

Jacobi Solver (Par Targ, 1/2)
 while((conv > TOL) && (iters<MAX_ITERS))
 {
 iters++;
 xtmp = xnew; // don't copy arrays.
 xnew = xold; // just swap pointers.
 xold = xtmp;
 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
 #pragma omp parallel for private(i,j)
 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

Jacobi Solver (Par Targ, 2/2)
 //
 // test convergence
 //
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:Ndim) map(tofrom:conv)
 #pragma omp parallel for private(i,tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

} \\ end while loop

Jacobi Solver (Par Targ, 2/2)
 //
 // test convergence
 //
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:Ndim) map(tofrom:conv)
 #pragma omp parallel for private(i,tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);

} \\ end while loop

This worked but the
performance was awful. Why?

System Implementation Ndim = 1000 Ndim = 4096

Intel® Xeon
Phi™ co-
processor
(knights
corner)

Target dir per
loop

134 seconds Did not
finish
(> 40
minutes)

Native OMP 3.2 seconds 5.3 seconds

Data movement dominates!!!
while((conv > TOLERANCE) && (iters<MAX_ITERS))
 { iters++;
 xtmp = xnew; // don't copy arrays.
 xnew = xold; // just swap pointers.
 xold = xtmp;

 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
 #pragma omp parallel for private(i,j)
 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }
// test convergence
 conv = 0.0;
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:Ndim) map(tofrom:conv)
 #pragma omp parallel for private(i,tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
 conv = sqrt((double)conv);
 }

Typically over 4000 iterations!

For each iteration, copy to device
(3*Ndim+Ndim2)*sizeof(TYPE) bytes

For each iteration, copy from device
2*Ndim*sizeof(TYPE) bytes

For each iteration, copy to device
2*Ndim*sizeof(TYPE) bytes

Target data directive
•  The target data construct creates a target data region.
•  You use the map clauses for explicit data management

#pragma omp target data map(to: A,B) map(from: C)
{….} // a structured block of code

•  Data copied into the device data environment at the
beginning of the directive and at the end

•  Inside the target data region, multiple target regions
can work with the single data region

#pragma omp target data map(to: A,B) map(from: C)
{
 #pragma omp target
 {do lots of stuff with A, B and C}
 {do something on the host}
 #pragma omp target
 {do lots of stuff with A, B, and C}
}

Target update directive
•  You can update data between target regions with the

target update directive.

#pragma omp target data map(to: A,B) map(from: C)
{
 #pragma omp target
 {do lots of stuf with A, B and C}

 #pragma omp update from(A)

 host_do_something_with(A)

 #pragma omp update to(A)

 #pragma omp target
 {do lots of stuff with A, B, and C}
}

Copy A from the
device onto the
host.

Copy A on the
host to A on the
device. t

Exercise
•  Modify your parallel jacobi_solver from the last exercise.
•  Use the target data construct to create a data region.

Manage data movement with map clauses to minimize
data movement.
–  #pragma omp target
–  #pragma omp target data
–  #pragma omp target map(to:list) map(from:list) map(tofrom:list)
–  int omp_get_num_devices();
–  #pragma omp parallel for reduction(+:var) private(list)

Jacobi Solver (Par Targ Data, 1/2)
 #pragma omp target data map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \
 map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim)
while((conv > TOL) && (iters<MAX_ITERS))
 { iters++;
 xtmp = xnew; // don't copy arrays.
 xnew = xold; // just swap pointers.
 xold = xtmp;
 #pragma update to(xnew[0:Ndim], xold[0:Ndim])
 #pragma omp target
 #pragma omp parallel for private(i,j)
 for (i=0; i<Ndim; i++){
 xnew[i] = (TYPE) 0.0;
 for (j=0; j<Ndim;j++){
 if(i!=j)
 xnew[i]+= A[i*Ndim + j]*xold[j];
 }
 xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i];
 }

Jacobi Solver (Par Targ Data, 2/2)
 //
 // test convergence
 //
 conv = 0.0;
 #pragma omp update to(conv)
 #pragma omp target
 #pragma omp parallel for private(i,tmp) reduction(+:conv)
 for (i=0; i<Ndim; i++){
 tmp = xnew[i]-xold[i];
 conv += tmp*tmp;
 }
#pragma omp update from (conv)
 conv = sqrt((double)conv);

} \\ end while loop

Jacobi Solver Results: summary
System Implementat

ion
Ndim = 1000 Ndim = 4096

Intel®
Xeon™
processor

parfor 0.55 seconds 21 seconds

par_for 0.36 seconds 21 seconds

Intel® Xeon
Phi™ co-
processor
(knights
corner)

Target dir
per loop

134 seconds Did not
finish
(> 40
minutes)

Data region
+ target per
loop

3.4 seconds 12.2 seconds

Native
par_for

3.2 seconds 5.3 seconds

OpenCL Best 2.9 seconds 32.5 seconds

Source: Tom Deakin and James Prices, University of Bristol, UK. All results with the
Intel icc compiler. Compiler options -03.

Agenda
•  Logistics
•  Introduction to Heterogeneous computing
•  OpenCL

–  Overview
–  Host Programs
–  Kernel Programs
–  Kernel code optimization
–  OpenCL ecosystem

•  OpenMP
–  Overview
–  “Target” and “Target data” directives
–  Mapping onto GPUs: the distribute directive

Mapping onto more complex
devices

•  So far, we have just “off-loaded” OpenMP
code onto a general purpose CPU device
that supports OpenMP multithreaded
parallelism.

•  How would we map OpenMP 4.0 onto a
more specialized, throughput oriented
device such as a GPU?

OpenCL Platform Model

•  One Host and one or more OpenCL Devices
–  Each OpenCL Device is composed of one or more

Compute Units
•  Each Compute Unit is divided into one or more Processing Elements

•  Memory divided into host memory and device memory

Processing
Element

OpenCL Device

… … …

…
… … …

…
… … …

…
… … …

Host

Compute Unit

OpenCL Platform Model and OpenMP

Processing
Element

OpenCL Device

… … …

…
… … …

…
… … …

…
… … …

Host

Compute Unit

Target
construct to
get onto a

device

Teams construct to create a
league of teams with one team of

threads on each compute unit.

Distribute clause to assign
work-groups to teams.

Parallel for simd
to run on

processing
elements + vector

units

Consider our familiar VADD
example

#include<omp.h>
#include<stdio.h>
#define N 1024
int main()
{
 float a[N], b[N], c[N];
 int i;

// initialize a, b and c ….

 for(i=0;i<N;i++)
 c[i] += a[i] + b[i];

// Test results, report results …

}

We will explore how to map
this code onto Many-core
processors (GPU and CPU)
using the OpenMP constructs:

•  target
•  teams
•  distribute

2 Constructs to control devices
•  teams construct creates a league of thread teams:

#pragma omp teams
•  Supports the clauses:

–  num_teams(int) … the number of teams in the league
–  thread_limit(int) … max number of threads per team
–  Plus private(), firstprivate() and reduction()

•  distribute construct distributes iterations of following loops to the master
thread of each team in a league:
#pragma omp distribute
//immediately following for loop(s)

•  Supports the clauses:
–  dist_schedule(static [, chunk] … the number of teams in the league.
–  collapse(int) … combine n closely nested loop into one before distributing.
–  Plus private(), firstprivate() and reduction()

Vadd: OpenMP to OpenCL connection

 #pragma omp target map(to:a,b) map(tofrom:c)

 #pragma omp teams num_teams(NCU) thread_limit(NPE)

 #pragma omp distribute
 for (ib=0;ib<N; ib=ib+wrk_grp_sz)

 #pragma omp parallel for simd
 for (i=ib; i<ib+wrk_grp_sz; i++)
 c[i] += a[i] + b[i];

Distribute work-
groups to

compute units

Offload to a device.

The body of this loop
are the Individual

work-items in a work-
group

Describe a
device …

NCU
compute

units & NPE
proc.

elements per
compute unit

Vadd: OpenMP to OpenCL connection
 int blksz=32, ib, Nblk;
 Nblk = N/blksz;
#pragma omp target map(to:a,b) map(tofrom:c)
 #pragma omp teams num_teams(NCU) thread_limit(NPE)

 #pragma omp distribute
 for (ib=0;ib<Nblk;ib++){
 int ibeg=ib*blksz;
 int iend=(ib+1)*blksz;
 if(ib==(Nblk-1))iend=N;

 #pragma omp parallel for simd
 for (i=ibeg; i<iend; i++)
 c[i] += a[i] + b[i];
 }

You can include any work-group wide
code you want .. For example to explicitly

control how iterations map onto work
items in a work-group.

Vadd: OpenMP to OpenCL connection

 // A more compact way to write the VADD code, letting the runtime
// worry about work-group details

#pragma omp target map(to:a,b) map(tofrom:c)
 #pragma omp teams distribute parallel for
 for (i=0; i<N; i++)
 c[i] += a[i] + b[i];

In many cases, you might be better off to just
distribute the parallel loops to the league of teams
and leave it to the runtime system to manage the

details. This would be more portable code as well.

NVIDIA Tesla C2050 (Fermi) GPU
with 14 streaming multiprocessor
cores*.
•  Number of compute units: 14
•  Number of PEs: 32
•  Ideal work-group size: multiple of

32

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/ Third party names are the property of their owners.

OpenMP Platform Model: GPU

…
… … … Host

•  Let’s consider one host and one Device.

Intel® Xeon Phi™ processor:
60 cores, with 2 HW threads
per core and a 512 bit wide
vector unit.
•  Number of compute units: 60
•  Number of PEs: 2*vector

width
•  Ideal work-group size:

multiple of vector width

Where “vector width” depends
floating point type: 512/4*8 for
float, 512/8*8 for double.

Third party names are the property of their owners.

OpenMP Platform Model: Intel® Xeon Phi™ processor

…
… … … Host

•  Let’s consider one host and one Device.

PCIe
Client
Logic

L2 L2 L2 L2

TD TD TD TD

L2 L2 L2 L2

TD TD TD TD

GDDR MC

GDDR MC

GDDR MC

GDDR MC

OpenMP Platform Model: summary

…
… … … Host

•  Let’s consider one host and one Device.

Device: GPU Device: Many Core CPU

NVIDIA Tesla C2050 (Fermi) GPU
with 14 streaming multiprocessor
cores*.
•  Number of compute units: 14
•  Number of PEs: 32
•  Ideal work-group size: multiple of

32

Intel® Xeon Phi™ processor: 60 cores,
with 2 HW threads per core and a 512 bit
wide vector unit.
•  Number of compute units: 60
•  Number of PEs: 2*vector width
•  Ideal work-group size: multiple of

vector width

Where “vector width” depends floating
point type: 512/4*8 for float, 512/8*8 for
double.

OpenMP SIMD Loop Construct

void sprod(float *a, float *b, int n) {
 float sum = 0.0f;

 #pragma omp simd reduction(+:sum)
 for (int k=0; k<n; k++)
 sum += a[k] * b[k];
 return sum;
}

vectorize

•  Vectorize a loop nest
–  Cut loop into chunks that fit a SIMD vector register

#pragma omp simd [clause[[,] clause],…]
for-loops

Data Sharing Clauses

•  reduction(op:var-list):
Create private variables for var-list and apply reduction operator op at the end of
the construct

42 x: ? ? ? ?

42 x: 42 42 42 42

42 x: 12 5 8 17

•  private(var-list):
Uninitialized vectors for variables in var-list

•  firstprivate(var-list):
Initialized vectors for variables in var-list

SIMD Loop Clauses
•  safelen (length)

–  Maximum number of iterations that can run concurrently without breaking a
dependence

–  in practice, maximum vector length

•  linear (list[:linear-step])
–  The variable’s value is in relationship with the iteration number

xi = xorig + i * linear-step

•  aligned (list[:alignment])
–  Specifies that the list items have a given alignment
–  Default is alignment for the architecture

•  collapse (n)

SIMD Worksharing Construct

void sprod(float *a, float *b, int n) {
 float sum = 0.0f;
#pragma omp parallel for simd reduction(+:sum)
 for (int k=0; k<n; k++)
 sum += a[k] * b[k];
 return sum;
}

parallelize

vectorize

Thread 0 Thread 1 Thread 2

•  Parallelize and vectorize a loop nest
–  Distribute a loop’s iteration space across a thread team
–  Subdivide loop chunks to fit a SIMD vector register

•  #pragma omp for simd [clause[[,] clause],…]
for-loops

Performance of the SIMD Constructs

•  M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell. Extending OpenMP with Vector Constructs for Modern
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.

3.66x

2.04x 2.13x

4.34x

1.47x

2.40x

0.00x

0.50x

1.00x

1.50x

2.00x

2.50x

3.00x

3.50x

4.00x

4.50x

5.00x

Mandelbrot Volume
Rendering

BlackScholes Fast Walsh Perlin Noise SGpp

re
la

ti
ve

 s
pe

ed
-u

p
(h

ig
he

r
is

 b
et

te
r)

ICC auto-vec

ICC SIMD directive

Exercise
•  Two options:

1.  Modify your parallel jacobi_solver from the last exercise. Use the
teams and distribute constructs to see if you can improve the
performance of your code.

2.  Return to the pi program and see if you can achieve reasonable
performance if you use the target, distribute and teams constructs.
Hint: the SIMD clauses are critical in this case.

•  target data construct to create a data region. Manage data
movement with map clauses to minimize data movement.
–  #pragma omp target
–  #pragma omp target data
–  #pragma omp target teams num_teams(int) thread_limit(int)
–  #pragma omp distribute dist_schedule(static[, chunk])
–  #pragma omp target map(to:list) map(from:list) map(tofrom:list)
–  Int omp_get_num_devices();
–  #pragma omp parallel for reduction(+:var) private(list)

Conclusion
•  OpenCL

–  Widespread industrial support

–  Defines a platform-API/framework for heterogeneous parallel
computing, not just GPGPU or CPU-offload programming

–  Has the potential to deliver portably performant code; but it has to
be used correctly

•  OpenMP
–  Established technology for programming shared memory systems.

–  Growing and expanding over time to add NUMA, explicit
vectorization, and programming heterogenous platforms.

•  Between these two options, a wide range of programming
styles are supported … there is no good excuse to use a
non-portable/proprietary API.

Shared
L3

Cache
(45 MB)

Shared
L3

Cache
(45 MB)

QPI PCIe

Mem Cntr Mem Cntr

buffered switch

buffered switch

