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IMPORTANT: Read This 

•  Disclosures 
–  The views expressed in this tutorial are those of the 

people delivering the tutorial.  
•  We are not speaking for our employers. 
•  We are not speaking for the OpenMP ARB or the Khronos 

OpenCL language committee. 

•  We take these tutorials VERY seriously: 
–  Help us improve … tell us how you would make this 

tutorial better. 



OpenCL Learning progression (part 1) 

Topic Exercise concepts 
I. OCL intro OpenCL overview, history and 

Core models. 
II. Host programs Vadd program 

 
Understanding host programs 

III. Kernel programs Basic Jacobi solver The OpenCL execution model 
and how it relates to kernel 
programs. 

IV. Memory 
coalescence 

Reorganizing the A 
matrix in the Jacobi 
solver program. 

Memory layout effects on kernel 
performance 

V. Divergent control 
flows 

Divergent control flow 
in the Jacobi solver 

Control flows and how they 
impact performance 

VI. Occupancy Work group size 
optimization for the 
Jacobi solver 

Keeping all the resources busy 

VII. Memory hierarchy 
in OpenCL 

Demo: Matrix 
Multiplication  

Working with private, local and 
global memory 



OpenMP Learning progression (part 2) 

Topic Exercise concepts 
I. OpenMP intro Parallel Hello world OpenMP overview and checking 

out our OpenMP environment 
II. Core elements of 
traditional OpenMP 

Pi program … parallel 
loops 
 

Parallel loops and supporting 
constructs for shared memory 
systems 

III. The target directive Basic Jacobi solver The host-device model  

IV. Target data 
construct 

Optimizing memory 
movement in the 
Jacobi solver 
program. 

Data regions and optimizing the 
host-device model 

V. OpenMP for GPUs Jacobi optimizations Working with leagues and the 
distribute clause 
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Hardware Diversity: Basic Building Blocks 

ICache 
Scheduler 

CPU Core:  one or more hardware threads sharing 
an address space. Optimized for low latencies. 

SIMD: Single Instruction Multiple Data. 
Vector registers/instructions with 128 to 512 bits so a 
single stream of instructions drives multiple data 
elements. 

SIMT: Single Instruction Multiple Threads. 
A single stream of instructions drives many threads. More 
threads than functional units.  Over subscription to hide 
latencies. Optimized for throughput.    



Hardware Diversity: Combining building 
blocks to construct nodes 

LLC 

LL
C

 

LLC 

LLC 

Multicore CPU 

Heterogeneous: CPU+GPU 
Heterogeneous:  

Integrated CPU+GPU 

Heterogeneous:  
CPU+manycore CPU 

Manycore CPU 



Hardware diversity: CPUs 
Intel® Xeon® processor 
E7 v3 series (Haswell or HSW) 
•  18 cores 
•  36 Hardware threads 
•  256 bit wide vector units  

Intel® Xeon Phi™ coprocessor 
(Knights Corner) 
•  61 cores 
•  244 Hardware threads 
•  512 bit wide vector units  

PCIe 
Client 
Logic 

L2 L2 L2 L2 

TD TD TD TD 

L2 L2 L2 L2 

TD TD TD TD 

GDDR MC 

GDDR MC 

GDDR MC 

GDDR MC 

    

    

    

    



Hardware diversity: GPUs 
•  Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM) 

–  Each SM is analogous to a core of a Multi-Core CPU 
•  Each SM is a collection of SIMD execution pipelines that share 

control logic, register file, and L1 Cache#  

#Source: UC Berkeley, CS194, 
Fall’2014, Kurt Keutzer and Tim Mattson 

For example: an NVIDIA 
Tesla C2050 (Fermi) GPU 
with 3GB of memory and 
14 streaming 
multiprocessor cores*. 

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/ 

Third party names are the property of their owners. 



Hardware Diversity: programming models 

OpenMP, OpenCL, pthreads, MPI, TBB, Cilk, C++’11… 

OpenMP, OpenCL, CUDA, OpenACC 

OpenMP, OpenCL,  

OpenMP, OpenCL, pthreads, TBB, Cilk, C++’11… 

Do you notice a 
trend? 



Hardware Diversity: programming models 

OpenMP, OpenCL, pthreads, MPI, TBB, Cilk, C++’11… 

OpenMP, OpenCL, CUDA, OpenACC 

OpenMP, OpenCL,  

OpenMP, OpenCL, pthreads, TBB, Cilk, C++’11… 

If you want to support the 
diversity of nodes in HPC 

from a single source-
code base, you have only 

two choices: OpenMP 
and OpenCL 
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Industry Standards for Programming 
Heterogeneous Platforms 

OpenCL – Open Computing Language 
 

Open, royalty-free standard for portable, parallel programming of 
heterogeneous parallel computing CPUs, GPUs, and other processors 

 

CPUs 
Multiple cores driving 
performance increases 

GPUs 
Increasingly general 

purpose data-parallel 
computing 

Graphics 
APIs and 
Shading 

Languages 

Multi-
processor 

programming – 
e.g. OpenMP 

Emerging 
Intersection 

Heterogeneous 
Computing 



The origins of OpenCL 
AMD 

ATI 

NVIDIA 

Intel 

Apple 

Merged, needed 
commonality 
across products 

GPU vendor – 
wants to steal 
market share 
from CPU 

CPU vendor – 
wants to steal 
market share 
from GPU 

Was tired of recoding for 
many core, GPUs. 
Pushed vendors to 
standardize. 

Wrote a rough draft 
straw man API 

Khronos Compute 
group formed 

ARM 
Nokia 
IBM 
Sony 
Qualcomm 
Imagination 
TI 

Third party names are the property of their owners. 

+ many 
more 



OpenCL Platform Model 

•  One Host and one or more OpenCL Devices 
–  Each OpenCL Device is composed of one or more 

Compute Units 
•  Each Compute Unit is divided into one or more Processing Elements 

•  Memory divided into host memory and device memory 

Processing 
Element 

OpenCL Device 

… … … 

… 
… … … 

… 
… … … 

… 
… … … 

Host 

Compute Unit 



The BIG idea behind OpenCL 
• Replace loops with functions (a kernel) executing at each point in a 

problem domain. 

– E.g., process a 1024 x 1024 image with one kernel invocation per pixel 
or 1024 x 1024 = 1,048,576 kernel executions 

void 
trad_mul(int n,  
         const float *a,  
         const float *b,  
         float *c) 
{ 
  int i; 
  for (i=0; i<n; i++) 
    c[i] = a[i] * b[i];
 } 

Traditional loops 
kernel void 
dp_mul(global const float *a,  
       global const float *b,  
       global float *c) 
{ 
  int id = get_global_id(0); 
 
  c[id] = a[id] * b[id]; 
  
} // execute over “n” work-items 

Data Parallel OpenCL 



An N-dimensional domain of work-items 
•  Global Dimensions: 

–  1024x1024 (whole problem space) 
•  Local Dimensions: 

–  128x128 (work-group, executes together) 

•  Choose the dimensions that are “best” for 
your algorithm 

1024 

10
24

 

Synchronization between 
work-items possible only 

within work-groups: 
barriers and memory fences 

Cannot synchronize 
between work-groups 

within a kernel 



Execution Model 
•  Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc). 
•  Host enqueues commands to the command queue 

Gy	

Gx	

(wx, wy)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (0,0)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (Sx-1,0)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (0, Sy-1)	

(wxSx + sx, wySy + sy)	
(sx, sy) = (Sx-1, Sy- 1)	

Index Space	 Work items execute together as a work-group. 

Kernel execution 
commands launch 
work-items: i.e. a 
kernel for each point in 
an abstract Index Space 
called an NDRange 

A (Gy by Gx ) 
index space 



OpenCL Memory model 
•  Private Memory 

–  Per work-item 

•  Local Memory 
–  Shared within a 

 work-group 

•  Global Memory /
Constant Memory 
–  Visible to all 

 work-groups 

•  Host memory 
–  On the CPU 

Memory management is explicit:  
You are responsible for moving data from 

 host → global → local and back 



Example: vector addition 

•  The “hello world” program of data parallel 
programming is a program to add two 
vectors 

•  C[i] = A[i] + B[i]   for i=1 to N 

•  For the OpenCL solution, there are two parts 
– Kernel code 
– Host code 



Execution model (kernels) 
OpenCL execution model … define a problem domain 
and execute an instance of a kernel for each point in 
the domain 

__kernel void vadd(!
   __global float* a, __global float* b, __global float* c)!
{!
   int i = get_global_id(0);!
   c[i] = a[i] + b[i];!
}!

i = 0!

a 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 b 

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 c 

+ 

= 

i = 1!i = 2! i = 19!



The basic platform and runtime APIs 
in OpenCL (using C) 

arg [0] 
value 

arg [1] 
value 

arg [2] 
value 

arg [0] 
value 

arg [1] 
value 

arg [2] 
value 

In 
Order 
Queue 

Out of 
Order 
Queue 

GPU 

Context 

__kernel void 
dp_mul(global const float *a, 
       global const float *b, 
       global float *c) 
{ 
  int id = get_global_id(0); 
  c[id] = a[id] * b[id]; 
} 

dp_mul 
CPU program binary 

dp_mul 
GPU program binary 

Programs 

arg[0] value 

arg[1] value 

arg[2] value 

Buffers Images 
In 

Order 
Queue 

Out of 
Order 
Queue 

Compute Device 

  
GPU 

  
CPU 

dp_mul 

Programs Kernels Memory Objects Command Queues 
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Vector Addition – Host 
•  The host program is the code that runs on the host to: 

–  Setup the environment for the OpenCL program 
–  Create and manage kernels 

 
•  5 simple steps in a basic host program: 

1.  Define the platform … platform = devices+context+queues 
2.  Create and Build the program (dynamic library for kernels) 
3.  Setup memory objects 
4.  Define the kernel (attach arguments to kernel function) 
5.  Submit commands … transfer memory objects and execute 

kernels 

As we go over the next set of slides, cross 
reference  content on the slides to your 

reference card.  This will help you get used to 
the reference card and how to pull information 

from the card and express it in code.  



1. Define the platform 

err = clGetDeviceIDs(firstPlatformId, CL_DEVICE_TYPE_CPU, 1, 
                                                                                     &device_id, NULL); 
  

• Grab the first available Platform: 
err = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms); 
 

• Use the first CPU device the platform provides: 

context = clCreateContext(firstPlatformId, 1, &device_id, NULL, 
                                                                     NULL, &err); 

• Create a simple context with a single device: 

commands = clCreateCommandQueue(context, device_id, 0, &err); 
 

• Create a simple command queue to feed our compute device: 



Context and Command-Queues 
•  Context:  

–  The environment within which kernels 
execute and in which synchronization 
and memory management is defined  

•  The context includes: 
–  One or more devices 
–  Device memory  
–  One or more command-queues 

•  All commands for a device (kernel 
execution, synchronization, and 
memory transfer operations) are 
submitted through a command-
queue 

•  Each command-queue points to a 
single device within a context 

Queue 

Context 

  
Device 

Device Memory 



2. Create and Build the program 

 program = clCreateProgramWithSource(context, 1,  
                             (const char **) & KernelSource, NULL, &err); 

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 

• Define source code for the kernel-program as a string literal (great for 
toy programs) or read from a file (common in real apps). 

• Build the program object: 

• Compile the program to create a “dynamic library” from which 
specific kernels can be pulled: 

• Fetch and print error messages ( if (err != CL_SUCCESS) ): 
size_t len;           char buffer[2048]; 
 
clGetProgramBuildInfo(program, device_id,  
                                        CL_PROGRAM_BUILD_LOG, sizeof(buffer),                                                                                                                                        
                                        buffer, &len); 
printf("%s\n", buffer); 



•  OpenCL uses run-time compilation … 
because in general you don’t know what  
the target device will be when you ship 
the program 

__kernel void  
horizontal_reflect(read_only image2d_t src, 
                   write_only image2d_t dst)  
{ 
  int x = get_global_id(0);  // x-coord   
  int y = get_global_id(1);  // y-coord   
  int width = get_image_width(src);   
  float4 src_val = read_imagef(src, sampler,  
                       (int2)(width-1-x, y));   
  write_imagef(dst, (int2)(x, y), src_val); 
} 

Run-time kernel compilation 

Compile for 
GPU 

Compile for 
CPU 

GPU 
code 

CPU 
code 



3. Setup Memory Objects 
•  For vector addition,  3 memory objects … one for each 

input vector (A and B) and one for the output vector (C). 
•  Create input vectors and assign values on the host: 

 d_a  = clCreateBuffer(context,  CL_MEM_READ_ONLY,  sizeof(float) * N, NULL, NULL); 
 d_b  = clCreateBuffer(context,  CL_MEM_READ_ONLY,  sizeof(float) * N, NULL, NULL); 
 d_c  = clCreateBuffer(context,  CL_MEM_WRITE_ONLY, sizeof(float) * N, NULL, NULL); 

float h_a[N], h_b[N], h_c[N];    
    
for (i = 0; i < N; i++) { 
        h_a[i] = rand() / (float)RAND_MAX; 
        h_b[i] = rand() / (float)RAND_MAX; 
} 

• Define OpenCL memory objects: 



4. Define the kernel 

•  Create kernel object from the kernel function “vadd”: 

err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_a); 
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_b); 
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &d_c); 

kernel = clCreateKernel(program, "vadd", &err); 
 

• Attach the “vadd” kernel's arguments to memory objects: 



5. Submit commands 

err = clEnqueueWriteBuffer( commands, d_a, CL_FALSE, 0,  
                         sizeof(float) * N, h_a, 0, NULL, NULL ); 

err = clEnqueueWriteBuffer( commands, d_b, CL_FALSE, 0,  
                         sizeof(float) * N, h_b, 0, NULL, NULL ); 

• Write Buffers from host into global memory (as non-blocking operations) 

size_t global[1] = {N}; 
err = clEnqueueNDRangeKernel( commands, kernel, 1, NULL, 

                                               global, NULL, 0, NULL, NULL ); 

err = clEnqueueReadBuffer( commands, d_c, CL_TRUE, 0,  
                           sizeof(float) * N, h_c, 0, NULL, NULL );   

• Enqueue the kernel for execution (note: in-order queue so this is OK)  

• Read  back the result (as a blocking operation).  Use the fact that we have an 
in-order queue which assures the previous commands are finished before 
the read begins.    



// Create the compute kernel from the program  
ko_vadd = clCreateKernel(program, "vadd", &err); 
 
// Set the four arguments to our compute kernel 
err  = clSetKernelArg(ko_vadd, 0, sizeof(cl_mem), &d_a); 
err |= clSetKernelArg(ko_vadd, 1, sizeof(cl_mem), &d_b); 
err |= clSetKernelArg(ko_vadd, 2, sizeof(cl_mem), &d_c); 
 
 

  
// Write a and b vectors into device global memory  
err = clEnqueueWriteBuffer(commands, d_a, CL_TRUE, 0, 
           sizeof(float) * N, h_a, 0, NULL, NULL); 
 
err = clEnqueueWriteBuffer(commands, d_b, CL_TRUE, 0,  
           sizeof(float) * N, h_b, 0, NULL, NULL); 

  
// Execute the kernel, let the run-time choose WG size 
err = clEnqueueNDRangeKernel(commands, ko_vadd, 1, NULL, 
                          &global, NULL, 0, NULL, NULL); 
 
// Read back the results from device global memory 
err = clEnqueueReadBuffer(commands, d_c, CL_TRUE, 0, 
            sizeof(float) * N, h_c, 0, NULL, NULL );  

// Find number of platforms 
err = clGetPlatformIDs(0, NULL, &numPlatforms); 
 
// Get all platforms 
cl_platform_id Platform[numPlatforms]; 
err = clGetPlatformIDs(numPlatforms, Platform, NULL); 
 
// Find a device 
for (i = 0; i < numPlatforms; i++) { 
  err = clGetDeviceIDs(Platform[i],DEVICE,1,&device_id,NULL); 
  if (err == CL_SUCCESS) 
    break; 
} 
   
// Create a context for 1 device 
context = clCreateContext(0, 1, &device_id, NULL,NULL,&err); 
 
// Create a command queue for our device 
commands = clCreateCommandQueue(context, device_id, 0, &err); 
 
// Create the compute program from the source buffer 
program = clCreateProgramWithSource(context, 1,  
              (const char **) &KernelSource, NULL, &err); 
 
// Build the program   
err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 
 
// Create the input and output arrays in device memory 
d_a = clCreateBuffer(context, CL_MEM_READ_ONLY,  
                     sizeof(float) * N, NULL, NULL); 
d_b = clCreateBuffer(context, CL_MEM_READ_ONLY,  
                     sizeof(float) * N, NULL, NULL); 
d_c = clCreateBuffer(context, CL_MEM_WRITE_ONLY,  
                     sizeof(float) * N, NULL, NULL); 

Vector Addition – Host Program 

2) Create and build the program 

3) Define memory objects 

4) Create and setup kernel 

5) Execute commands: 
    a) Write buffers to device 
    b) Execute the kernel 
    c) Read buffer back to host 

It’s complicated, but most of this is “boilerplate” and the same for most codes. 

1) Define the platform: 
    Devices + Context + Queues 



Vector add kernel code 

__kernel void vadd( 
     __global float *a, __global float *b,  
     __global float *c) 
{ 
    int i = get_global_id(0); 
    c[i] = a[i] + b[i]; 
} 



Exercise 1: Running the Vadd kernel  

•  Goal:  
–  To inspect and verify that you can run an OpenCL 

kernel 

•  Procedure:  
–  Use the vadd.c program we provide.  It will run a 

simple kernel to add two vectors together.  
–  Look at the host code and identify the API calls in the 

host code.    

•  Expected output: 
–  A message verifying that the vector addition 

completed successfully 

•  Extra: 
–  Try the DeviceInfo example, print out information 

about the OpenCL devices in the system. 



Logging in to BlueCrystal 

•  University of Bristol supercomputer 
•  341 16-core x86 nodes 
•  76 NVIDIA K20 GPUs with OpenCL 



Logging in to BlueCrystal 

•  Get inside the firewall: 
ssh workshop@hpc.cs.bris.ac.uk 
Password: An3shmeokit 

•  Then ssh into BlueCrystal with your username 
ssh train01@bluecrystalp3.acrc.bris.ac.uk 

Password: workshop 
 
•  Change directory: cd OpenCL 
 
•  Submit jobs to the queue 
qsub submit_deviceinfo 
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Kernel programming 

•  Kernel programming is where all the 
action is at in OpenCL 

•  Writing simple OpenCL kernels is quite 
easy, so we'll cover that quickly 

•  Optimizing OpenCL kernels to run really 
fast is much harder, so that's where we're 
going to spend some time 



OpenCL C kernel language 
•  Derived from ISO C99 

– A few restrictions: no recursion, function pointers, 
functions in C99 standard headers ... 

–  Preprocessing directives defined by C99 are 
supported (#include etc.) 

•  Built-in data types 
–  Scalar and vector data types, pointers 
– Data-type conversion functions: 

•  convert_type<_sat><_roundingmode>  

–  Image types: image2d_t, image3d_t and sampler_t 



OpenCL C Language Highlights 

•  Function qualifiers 
– __kernel qualifier declares a function as a kernel 

•  I.e. makes it visible to host code so it can be enqueued 

– Kernels can call other device-side functions 

•  Address space qualifiers 
– __global, __local, __constant, __private 
– Pointer kernel arguments must be declared with an 

address space qualifier 



Work-item functions: 
 

•  uint    get_work_dim()             number of dimensions (1, 2, or 3) 

•  size_t get_global_id(uint n)      global work-item ID in dim. “n” 
•  size_t get_local_id(uint n)        local work-item ID in dim. “n 
•  size_t get_group_id(uint n)      ID of work-group in dim. “n” 
•  size_t get_global_size(uint n)   num. of work-items in dim. “n” 
•  size_t get_local_size(uint n)     work group size in dim. “n” 

OpenCL C Language Highlights 



 

Synchronization functions 

•  Barriers - all work-items within a work-group 
must execute the barrier function before any 
work-item can continue 

•  Memory fences - provides ordering between 
memory operations 

OpenCL C Language Highlights 



OpenCL C Language Restrictions 

•  Pointers to functions are not allowed 
•  Pointers to pointers allowed within a kernel, 

but not as an argument to a kernel invocation 
•  Bit-fields are not supported 
•  Variable length arrays and structures are not 

supported 
•  Recursion is not supported (yet!) 
•  Double types are optional in OpenCL v1.2, but 

the key word is reserved 
   (note: most implementations support double) 



void mat_mul(int N, float *A, float *B, float *C) 
{ 
    int i, j, k; 
    for (i = 0; i < N; i++) { 
        for (j = 0; j < N; j++) { 
            C[i*N+j] = 0.0f; 
            for (k = 0; k < N; k++) {  
                // C(i, j) = sum(over k) A(i,k) * B(k,j) 
                C[i*N+j] += A[i*N+k] * B[k*N+j]; 
            } 
        } 
    } 
} 

Matrix multiplication: sequential code 
We calculate C=AB, where all three matrices are NxN 

= x 
A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



Matrix multiplication performance 

•  Serial C code on CPU (single core). 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 
using the gcc compiler. 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 
 



Matrix multiplication: sequential code 

{!
    int i, j, k;!
    for (i = 0; i < N; i++) {!
        for (j = 0; j < N; j++) {!
            C[i*N+j] = 0.0f;!
            for (k = 0; k < N; k++) { !
              // C(i, j) = sum(over k) A(i,k) * B(k,j)!
              C[i*N+j] += A[i*N+k] * B[k*N+j];!
            }!
        }!
    }!
}!

void mat_mul(int N, float *A, float *B, float *C)!



Matrix multiplication: OpenCL kernel (1/2) 

{!
    int i, j, k;!
    for (i = 0; i < N; i++) {!
        for (j = 0; j < N; j++) {!
            C[i*N+j] = 0.0f;!
            for (k = 0; k < N; k++) { !
              // C(i, j) = sum(over k) A(i,k) * B(k,j)!
              C[i*N+j] += A[i*N+k] * B[k*N+j];!
            }!
        }!
    }!
}!

__kernel void mat_mul(const int N, __global float *A, 
                     __global float *B, __global float *C)!

Mark as a kernel function and 
specify memory qualifiers 



Matrix multiplication: OpenCL kernel (2/2) 

{!
    int i, j, k;!
    i = get_global_id(0); 
        j = get_global_id(1); 
            C[i*N+j] = 0.0f;!
            for (k = 0; k < N; k++) { !
              // C(i, j) = sum(over k) A(i,k) * B(k,j)!
              C[i*N+j] += A[i*N+k] * B[k*N+j];!
            }!
        !
    !
}!

Replace loops with the 
work item’s global id 

__kernel void mat_mul(const int N, __global float *A, 
                     __global float *B, __global float *C)!



__kernel void mmul( 
   const int N, 
   __global float *A, 
   __global float *B, 
   __global float *C) 

Matrix multiplication: kernel cleaned-up 

{ 
  int k; 
  int i = get_global_id(0); 
  int j = get_global_id(1); 
  float tmp = 0.0f; 
  for (k = 0; k < N; k++)  
    tmp += A[i*N+k]*B[k*N+j]; 
   
  C[i*N+j] = tmp; 
} 

Rearrange and use a local scalar for intermediate C element 
values (a common optimization in Matrix Multiplication functions)  



Jacobi solver serial code 
   conv = LARGE;  iters = 0;  xnew = x1;  xold = x2; 
   while ((conv > TOLERANCE) && (iters<MAX_ITERS)) { 
     iters++; 
     xtmp = xnew;  xnew = xold;  xold = xtmp;  // swap pointers 
     
     for (i=0; i<Ndim; i++) { 
         xnew[i] = (TYPE) 0.0; 
         for (j=0; j<Ndim;j++) { 
             if (i!=j) 
               xnew[i]+= A[i*Ndim + j]*xold[j]; 
         } 
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
     } 
     // test convergence 
     conv = 0.0; 
     for (i=0; i<Ndim; i++) { 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
     conv = sqrt((double)conv); 
   } 



Exercise 2: Jacobi Solver Program 

•  Goal:  
– To write a non-trivial OpenCL kernel 

•  Procedure:  
– Look at the program Jac_solv_ocl_basic.c 
– We provide a C host program and the function 

prototype for the Jacobi_solver kernel program. 
– Write the body of the kernel program. 

•  Expected output: 
– A message verifying that the program ran 

correctly.    



Jacobi solver kernel code (1/2) 
#define TYPE double 
#if (TYPE == double) 
     #pragma OPENCL EXTENSION cl_khr_fp64 : enable 
#endif 
 
__kernel void jacobi(   
           const unsigned Ndim,   
           __global TYPE * A,  __global TYPE * b,   
           __global TYPE * xold,  __global TYPE * xnew) 
{   
       size_t i = get_global_id(0);   
 
       xnew[i] = (TYPE) 0.0;   
       for (int j = 0; j < Ndim; j++)  {     
             if (i != j)       
                   xnew[i] += A[i*Ndim + j] * xold[j];   
       }   
       xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i]; 
} 



Jacobi solver kernel code (2/2) 
__kernel void convergence(   
           __global TYPE * xold,  __global TYPE * xnew,   
           __local TYPE * conv_loc,  __global TYPE * conv  ) 
{   
    size_t i = get_global_id(0);   
    TYPE tmp;   
    tmp = xnew[i] - xold[i];   
    conv_loc[get_local_id(0)] = tmp * tmp;  
    barrier(CLK_LOCAL_MEM_FENCE);   
 
    for (int offset = get_local_size(0) / 2; offset > 0; offset /= 2)  {     
        if (get_local_id(0) < offset)    {       
            conv_loc[get_local_id(0)] += conv_loc[get_local_id(0) + offset];  
        }     
        barrier(CLK_LOCAL_MEM_FENCE);   
    }   
    if (get_local_id(0) == 0)  {  conv[get_group_id(0)] = conv_loc[0];  } 
} 

A kernel enqueued on the host 
to compute convergence.  This 

implements a reduction with 
the last stage of the reduction 

occurring on the host. 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 
 

Unroll by 4 6.2 6.7 13.3 32.1 

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc 
compiler.  

Third Party names are the property of their owners. 



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization and compilation 

•  Memory coalescence 
•  Divergent control flows 
•  Occupancy 
•  Other Optimizations 
•  Working with the OpenCL Memory Hierarchy 

–  OpenCL ecosystem 

•  OpenMP  



OpenCL Memory model 
•  Private Memory 

–  Per work-item 

•  Local Memory 
–  Shared within a 

 work-group 

•  Global/Constant 
Memory 
–  Visible to all 

 work-groups 

•  Host memory 
–  On the CPU 

Memory management is explicit:  
You are responsible for moving data from 

 host → global → local and back 



The Memory Hierarchy 

Private memory 
O(10) words/work-item 

 
Local memory 

O(1-10) KBytes/work-group 
 

Global memory 
O(1-30) GBytes 

 
Host memory 
O(1-200) GBytes 

Private memory 
O(2-3) words/cycle/work-item 

 
Local memory 

O(10) words/cycle/work-group 
 

Global memory 
O(200-300) GBytes/s 

 
Host memory 
O(1-50) GBytes/s 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2015 

Bandwidths Sizes 

Managing the memory hierarchy is one of the most important 
things to get right to achieve good performance 

 



Coalesced Access 

•  Coalesced memory accesses are key for 
high performance code 

•  In principle, it’s very simple, but 
frequently requires transposing/
transforming data on the host before 
sending it to the GPU 

•  Sometimes this is an issue of AoS vs. SoA 



Memory layout is critical to performance 

•  “Structure of Arrays vs. Array of Structures” 
•  Array of Structures (AoS) more natural to code 

 struct Point{ float x, y, z, a; }; 
 Point *Points; 

 
•  Structure of Arrays (SoA) suits memory 

coalescence in vector units 
 struct { float *x, *y, *z, *a; } Points;  

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items/
vector-lanes like to 
access adjacent 
memory locations 



Coalescence 

•  Coalesce - to combine 
into one 

•  Coalesced memory 
accesses are key for 
high bandwidth 

•  Simply, it means, if 
thread i accesses 
memory location n then 
thread i+1 accesses 
memory location n+1 

•  In practice, it’s not 
quite as strict… 

__kernel func( __global float *memA,  
               __global float *memB) 
{ 

int g_id = get_global_id(0); 
 
// ideal 
float val1 = memA[g_id]; 
 
// still pretty good  
const int c = 3; 
float val2 = memA[g_id + c]; 
 
// stride size is not so good 
float val3 = memA[c*g_id]; 
 
const int loc = 
  some_strange_func(g_id); 
 
// terrible! 
float val4 = memA[loc]; 

} 



0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! GPU Threads 

64 Byte Boundary 
GPU Memory 

64 Byte Boundary 

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns 



float val1 = memA[g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

64 Byte Boundary 

Memory access patterns 



0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x120 !0x11c !0x118 !0x114 ! 0x124 ! 0x128 ! 0x12c ! 0x130 ! 0x134 ! 0x138 ! 0x13c ! 0x140 ! 0x144 ! 0x148 !

64 Byte Boundary 

const int c = 3; !
float val2 = memA[g_id + c]; !
!

!

Memory access patterns 



float val3 = memA[3*g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary Strided access results in multiple  
memory transactions (and  

kills throughput) 

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns 



const int loc = !
  some_strange_func(g_id); !
!
float val4 = memA[loc]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary 

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns 



Thought exercise 

•  Consider the memory access patterns in 
your Jacobi solver kernel. 

•  There is a memory alignment problem… 
•  If you want to generate the transpose of 

the A matrix (a column major order), we 
provide a function inside mm_utils.c that 
you can call inside the host code to do this. 

void init_colmaj_diag_dom_near_identity_matrix(int Ndim,  TYPE *A); 



Jacobi solver kernel code (1/2) 
#define TYPE double 
#if (TYPE == double) 
     #pragma OPENCL EXTENSION cl_khr_fp64 : enable 
#endif 
 
kernel void jacobi(   
           const unsigned Ndim,   
           global TYPE * A,  global TYPE * b,   
           global TYPE * xold,  global TYPE * xnew) 
 
{   
       size_t i = get_global_id(0);   
 
       xnew[i] = (TYPE) 0.0;   
       for (int j = 0; j < Ndim; j++)  {     
             if (i != j)       
                   xnew[i] += A[j*Ndim + i] * xold[j];   
       }   
       xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];} 

Swap indices  
on A to match 
column major 
layout – was 
A[i*Ndim+j]  



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 
 

Unroll by 4 6.2 6.7 13.3 32.1 

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc 
compiler.  

Third Party names are the property of their owners. 



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization and compilation 

•  Memory coalescence 
•  Divergent control flows 
•  Occupancy 
•  Other Optimizations 
•  Working with the OpenCL Memory Hierarchy 

–  OpenCL ecosystem 

•  OpenMP  



Single Instruction Multiple Data 

•  Individual threads of a warp start together at the 
same program address 

•  Each thread has its own instruction address counter 
and register state 
–  Each thread is free to branch and execute independently  
–  Provide the MIMD abstraction 

•  Branch behavior 
–  Each branch will be executed serially 
–  Threads not following the current branch will be disabled 

71 

A warp 

Start Branch1 Branch2 Branch3 Converge 

Time 



Branching 
•  GPUs tend not to support speculative execution, which 

means that branch instructions have high latency 
•  This latency can be hidden by switching to alternative work-

items/work-groups, but avoiding branches where possible is 
still a good idea to improve performance 

•  When different work-items executing within the same SIMD 
ALU array take different paths through conditional control 
flow, we have divergent branches (vs. uniform branches) 

•  These are even worse: work-items will stall while waiting for 
the others to complete 

•  We can use predication, selection and masking to convert 
conditional control flow into straight line code and 
significantly improve the performance of code that has lots 
of conditional branches 



Branching 

Conditional execution 
// Only evaluate expression 
// if condition is met 
if (a > b) 
{ 
  acc += (a - b*c); 
} 
 

Selection and masking 
// Always evaluate expression 
// and mask result 
temp = (a - b*c); 
mask = (a > b ? 1.f : 0.f); 
acc += (mask * temp); 
 
 



Exercise 3 

•  Eliminate the branch in your Jacobi solver 
kernel. 

•  Hint: comparisons return 1 for true and 0 
for false… 

•  Measure the impact – how much faster 
does the code go? 



Jacobi solver kernel code (1/2) 
#define TYPE double 
#if (TYPE == double) 
     #pragma OPENCL EXTENSION cl_khr_fp64 : enable 
#endif 
 
kernel void jacobi(   
           const unsigned Ndim,   
           global TYPE * A,  global TYPE * b,   
           global TYPE * xold,  global TYPE * xnew) 
{   
       size_t i = get_global_id(0);   
 
       xnew[i] = (TYPE) 0.0;   
       for (int j = 0; j < Ndim; j++)  {     
  
                   xnew[i] += A[j*Ndim + i] * xold[j] * (TYPE)(i != j);   
       }   
       xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i]; 
} 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 
 

Unroll by 4 6.2 6.7 13.3 32.1 

Note: optimizations in the table are cumulative 
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.  

Third Party names are the property of their owners. 



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization and compilation 

•  Memory coalescence 
•  Divergent control flows 
•  Occupancy 
•  Other Optimizations 
•  Working with the OpenCL Memory Hierarchy 

–  OpenCL ecosystem 

•  OpenMP  



Keep the processing elements (PE) busy 

•  Occupancy: a measure of the fraction of time 
during a computation when the PE’s are busy.  
Goal is to keep this number high (well over 
50%). 

•  Pay attention to the number of work-items and 
work-group sizes 
– Rule of thumb:  On a modern GPU you want at least 

4 work-items per PE in a Compute Unit 
– More work-items are better, but diminishing returns, 

and there is an upper limit 
•  Each work item consumes PE finite resources (registers etc) 



Occupancy 
•  Number of work-groups per compute unit (CU) 

depends on registers and local memory size per 
work-group 

•  E.g. NVIDIA’s K40 has 128 words of memory per 
processor element (PE), i.e. 128 registers per 
core; and 48KB of local memory per CU 

•  But, multiple work-items (threads) will be 
scheduled on a single PE (similar to 
hyperthreading) 

•  In fact, global memory latency is so high that 
multiple work-items per PE are a requirement for 
achieving a good proportion of peak 
performance! 



Work-group sizes 

•  Work-group sizes being a power of 2 helps on 
most architectures. At a minimum use multiples 
of: 
–  8 for Intel® AVX CPUs 
–  16 for Intel® Xeon Phi™ processors 
–  32 for Nvidia® GPUs 
–  64 for AMD® 
–  May be different on different hardware 

•  On most systems aim to run lots of work-groups. 
For example, on Xeon Phi, multiples of the number 
of threads available (e.g. 240 on a 5110P) is 
optimal, but as many as possible is good (1000+) 

Third party names are the property of their owners 



Effect of work-group sizes 



Optional Exercise 

If time allows: 
 
•  Experiment with different work group 

sizes (can make a big difference!) 

•  Run the host program with the flag –h to 
see the command line options.  One of 
them (--wg) will vary the workgroup size. 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 

Unroll by 4 6.2 6.7 13.3 32.1 

Third Party names are the property of their owners. 

Note: optimizations in the table are cumulative 
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.  



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization and compilation 

•  Memory coalescence 
•  Divergent control flows 
•  Occupancy 
•  Other Optimizations 
•  Working with the OpenCL Memory Hierarchy 

–  OpenCL ecosystem 

•  OpenMP  



Constant Memory 
•  Constant memory can be considered 

a store for data that never changes 
•  Setting and updating constants in 

memory uses the same interface as 
global memory, with enqueueRead/
enqueueWrite commands 

•  The difference is how it is declared 
in the kernel 

•  Some devices may have dedicated 
on-chip caches or data-paths for 
constant memory 

•  Devices are guaranteed to support 
constant memory allocations of at 
least 64kB 

•  Can also declare OpenCL program 
scope constant data, but this has to 
be initialized at OpenCL program 
compile time 

kernel void 
calc_something 
( 
  global float *a,  
  global float *b,  
  global float *c, 
 
  //constant memory is  
  //set on the host 
  constant float *params 
) 
{ 
  //code here 
} 



•  OpenCL compilers accept a number of flags 
that affect how kernels are compiled: 
-cl-opt-disable 
-cl-single-precision-constant 
-cl-denorms-are-zero 
-cl-fp32-correctly-rounded-divide-sqrt 
-cl-mad-enable 
-cl-no-signed-zeros 
-cl-unsafe-math-optimizations 
-cl-finite-math-only 
-cl-fast-relaxed-math 

Compiler Options 

implies 



Other compilation hints 

•  Can use an attribute to inform the compiler 
of the work-group size that you intend to 
launch kernels with: 

__attribute__((reqd_work_group_size(x, y, z))) 
 

•  As with C/C++, use the const/restrict 
keywords for kernel arguments where 
appropriate to make sure the compiler can 
optimise memory accesses 



Optional Exercise 

•  Experiment with different optimizations 
to get the best runtime you can. 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 

Unroll by 4 6.2 6.7 13.3 32.1 

Third Party names are the property of their owners. 

Note: optimizations in the table are cumulative 
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.  



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization and compilation 

•  Memory coalescence 
•  Divergent control flows 
•  Occupancy 
•  Other Optimizations 
•  Working with the OpenCL Memory Hierarchy 

–  OpenCL ecosystem 

•  OpenMP  



OpenCL Memory model 
•  Private Memory 

–  Per work-item 

•  Local Memory 
–  Shared within a 

 work-group 

•  Global/Constant 
Memory 
–  Visible to all 

 work-groups 

•  Host memory 
–  On the CPU 

Memory management is explicit:  
You are responsible for moving data from 

 host → global → local and back 



The Memory Hierarchy 

Private memory 
O(10) words/work-item 

 
Local memory 

O(1-10) KBytes/work-group 
 

Global memory 
O(1-30) GBytes 

 
Host memory 
O(1-200) GBytes 

Private memory 
O(2-3) words/cycle/work-item 

 
Local memory 

O(10) words/cycle/work-group 
 

Global memory 
O(200-300) GBytes/s 

 
Host memory 
O(1-50) GBytes/s 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2015 

Bandwidths Sizes 

Managing the memory hierarchy is one of the most important 
things to get right to achieve good performance 

 



Optimizing matrix multiplication 
•  MM cost determined by FLOPS and memory movement: 

–  2*n3 = O(n3) FLOPS 
–  Operates on 3*n2 = O(n2) numbers 

•  To optimize matrix multiplication, we must ensure that for 
every memory access we execute as many FLOPS as 
possible. 

•  Outer product algorithms are faster, but for pedagogical 
reasons, let’s stick to the simple dot-product algorithm. 

•  We will work with work-item/work-group sizes and the 
memory model to optimize matrix multiplication 

 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



Optimizing matrix multiplication 

•  There may be significant overhead to manage work-items 
and work-groups. 

•  So let’s have each work-item compute a full row of C 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 

•  And with an eye towards future optimizations, let’s collect 
work-items into work-groups with 64 work-items per work-
group  



An N-dimension domain of work-items 

•  Global Dimensions: 1024 (1D) 
 Whole problem space (index space) 

•  Local Dimensions:  64 (work-items per work-group) 
 Only 1024/64 = 16 work-groups in total 

•  Important implication: we will have a lot fewer 
work-items per work-group (64) and work-
groups (16). Why might this matter? 

10
24

 

64
 



__kernel void mmul(!
   const int N,!
   __global float *A,!
   __global float *B,!
   __global float *C)!

Matrix multiplication: One work item per row of C 

{!
  int j, k;!
  int i = get_global_id(0);!
  float tmp;!
  for (j = 0; j < N; j++) {!
    tmp = 0.0f;!
    for (k = 0; k < N; k++) !
      tmp += A[i*N+k]*B[k*N+j];!
    C[i*N+j] = tmp;!
  }!
}!



Mat. Mul. host program (1 row per work-item) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 
auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 
 
  d_A   = cl::Buffer(context, begin(h_A),  
                                           end(h_A), true); 
  d_B   = cl::Buffer(context, begin(h_B),  
                                           end(h_B), true); 
  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 
 
  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 
                             cl::NdRange(64)),  
                             N, d_A,  d_B,  d_C); 
 
  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 
 
   // Timing and check results (not shown) 
} 



Mat. Mul. host program (1 row per work-item) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 
auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 
 
  d_A   = cl::Buffer(context, begin(h_A),  
                                           end(h_A), true); 
  d_B   = cl::Buffer(context, begin(h_B),  
                                           end(h_B), true); 
  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 
 
  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 
                             cl::NdRange(64)),  
                             N, d_A,  d_B,  d_C); 
 
  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 
 
   // Timing and check results (not shown) 
} 

Changes to host program: 
1.  1D ND Range set to 

number of rows in the C 
matrix 

2.  Local Dimension set to 64 
(which gives us 16 work-
groups which matches the 
GPU’s number of compute 
units). 

Third party names are the property of their owners. 



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 

This has started to help. 



Optimizing matrix multiplication 

•  Notice that, in one row of C, each element reuses the same 
row of A. 

•  Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of 
loading it from global memory for each C(i,j) computation. 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 
work-item 



Private Memory 

•  A work-items private memory: 
– A very scarce resource, only a few tens of 32-bit 

words per Work-Item at most (on a GPU) 
–  If you use too much it spills to global memory or 

reduces the number of Work-Items that can be 
run at the same time, potentially harming 
performance* 

– Think of these like registers on the CPU 
•  How do you create and manage private 

memory? 
– Declare statically inside your kernel 

* Occupancy on a GPU 



__kernel void mmul(!
   const int N,!
   __global float *A,!
   __global float *B,!
   __global float *C)!
{!
  int j, k;!
  int i = get_global_id(0);!
  float tmp;  !
  float Awrk[1024];!
!

Matrix multiplication: (Row of A in private memory) 

  for (k = 0; k < N; k++)!
    Awrk[k] = A[i*N+k];!
!
  for (j = 0; j < N; j++) {!
    tmp = 0.0f;!
    for (k = 0; k < N; k++) !
      tmp += Awrk[k]*B[k*N+j];!
       !
    C[i*N+j] = tmp;!
  }!
}!



__kernel void mmul(!
   const int N,!
   __global float *A,!
   __global float *B,!
   __global float *C)!
{!
  int j, k;!
  int i = get_global_id(0);!
  float tmp;  !
  float Awrk[1024];!
!

Matrix multiplication: (Row of A in private memory) 

  for (k = 0; k < N; k++)!
    Awrk[k] = A[i*N+k];!
!
  for (j = 0; j < N; j++) {!
    tmp = 0.0f;!
    for (k = 0; k < N; k++) !
      tmp += Awrk[k]*B[k*N+j];!
       !
    C[i*N+j] = tmp;!
  }!
}!

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory) 

Setup a work array for A in 
private memory* 

Copy a row of A 
into private 

memory from 
global memory 
before we start 
with the matrix 
multiplications. 



Mat. Mul. host program (Row of A in private memory) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 
auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 
 
  d_A   = cl::Buffer(context, begin(h_A),  
                                           end(h_A), true); 
  d_B   = cl::Buffer(context, begin(h_B),  
                                           end(h_B), true); 
  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 
 
  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 
                             cl::NDRange(64)),  
                             N, d_A,  d_B,  d_C); 
 
  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 
 
  // Timing and check results (not shown) 
} 

Host program unchanged from last exercise 



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

Device is Tesla® M2090 GPU from 
NVIDIA® with a max of 16 
compute units, 512 PEs 
Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 
observe completely different results should you run 
these tests on your own system. 

Big impact! 



Optimizing matrix multiplication 
•  We already noticed that, in one row of C, each element uses 

the same row of A 
•  Each work-item in a work-group also uses the same columns 

of B 
•  So let’s store the B columns in local memory (which is 

shared by the work-items in the work-group) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 
work-item Local memory for each 

work-group 



Local Memory 

•  How do you create and manage local memory? 
–  Create local memory kernel argument on the host 

•  err |= clSetKernelArg(mmul, 3, sizeof(float)*N, 
NULL); 

•  This command makes the 4th argument to kernel mmul a pointer to a 
newly allocated local memory buffer of size 4N bytes 

–  Mark kernel arguments that are from local memory as __local 

–  Your kernels are responsible for transferring data between Local 
and Global/Constant memories … there are built-in functions to 
help (async_work_group_copy(), 
async_workgroup_strided_copy(), etc) 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2015 

•  A work-group’s shared memory 
–  Typically 10’s of KBytes per Compute Unit* 
–  Use Local Memory to hold data that can be  

reused by all the work-items in a work-group 
–  As multiple Work-Groups may be running on each Compute Unit 

(CU), only a fraction of the total Local Memory size may be 
available to each Work-Group 



Local Memory performance hints 

•  Local Memory doesn’t always help… 
–  CPUs don’t have special hardware for it 
–  This can mean excessive use of Local Memory might 

slow down kernels on CPUs 
–  GPUs now have effective on-chip caches which can 

provide much of the benefit of Local Memory but 
without programmer intervention 

–  Access patterns to Local Memory affect performance 
in a similar way to accessing Global Memory 

•  Have to think about things like coalescence & bank conflicts 

–  So, your mileage may vary! 



Memory Consistency 
•  OpenCL uses a relaxed consistency memory model; i.e.  

–  The state of memory visible to a work-item is not guaranteed to be 
consistent across the collection of work-items at all times. 

•  Within a work-item: 
–  Memory has load/store consistency to the work-item’s private view of 

memory, i.e. it sees its own reads and writes correctly 

•  Within a work-group: 
–  Local memory is consistent between work-items at a barrier. 

•  Global memory is consistent within a work-group at a 
barrier, but not guaranteed across different work-groups!! 
–  This is a common source of bugs! 

•  Consistency of memory shared between commands (e.g. 
kernel invocations) is enforced by synchronization (barriers, 
events, in-order queue)  



Work-Item Synchronization 

•  Within a work-group 
void barrier()!
–  Takes optional flags 

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE 
–  A work-item that encounters a barrier() will wait until ALL work-

items in its work-group reach the barrier() 
–  Corollary: If a barrier() is inside a branch, then the branch must be 

taken by either: 
•  ALL work-items in the work-group, OR 
•  NO work-item in the work-group 

•  Across work-groups 
–  No guarantees as to where and when a particular work-group will be 

executed relative to another work-group 
–  Cannot exchange data, or have barrier-like synchronization 

between two different work-groups! (Critical issue!) 
–  Only solution: finish the kernel and start another 

Ensure correct order of memory operations 
to local or global memory (with flushes or 
queuing a memory fence) 



__kernel void mmul(!
        const int N,!
   __global float *A,!
   __global float *B,!
   __global float *C,!
   __local  float *Bwrk)!
{!
 int j, k;!
 int i = get_global_id(0);!
!
 int iloc=get_local_id(0);!
 int nloc=get_local_size(0);!
 !
 float tmp;  !
 float Awrk[1024];!
!

Matrix multiplication: B column shared between work-items 

  for (k = 0; k < N; k++)!
    Awrk[k] = A[i*N+k];!
!
  for (j = 0; j < N; j++) {!
!
    for (k=iloc; k< N; k+=nloc)!
      Bwrk[k] = B[k* N+j];!
    barrier(CLK_LOCAL_MEM_FENCE);!
!
    tmp = 0.0f;!
    for (k = 0; k < N; k++) !
      tmp += Awrk[k]*Bwrk[k];!
 !
    C[i*N+j] = tmp;!
    barrier(CLK_LOCAL_MEM_FENCE);!
  }!
}!



__kernel void mmul(!
        const int N,!
   __global float *A,!
   __global float *B,!
   __global float *C,!
   __local  float *Bwrk)!
{!
 int j, k;!
 int i = get_global_id(0);!
!
 int iloc=get_local_id(0);!
 int nloc=get_local_size(0);!
 !
 float tmp;  !
 float Awrk[1024];!
!

Matrix multiplication: B column shared between work-items 

  for (k = 0; k < N; k++)!
    Awrk[k] = A[i*N+k];!
!
  for (j = 0; j < N; j++) {!
!
    for (k=iloc; k< N; k+=nloc)!
      Bwrk[k] = B[k* N+j];!
    barrier(CLK_LOCAL_MEM_FENCE);!
!
    tmp = 0.0f;!
    for (k = 0; k < N; k++) !
      tmp += Awrk[k]*Bwrk[k];!
 !
    C[i*N+j] = tmp;!
    barrier(CLK_LOCAL_MEM_FENCE);!
  }!
}!

Pass a work array in local memory to hold a 
column of B.  All the work-items do the copy 
“in parallel” using a cyclic loop distribution 

(hence why we need iloc and nloc)  



Mat. Mul. host program (Share a column of B within a work-group) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 

auto mmul = cl::make_kernel 
        <int, cl::Buffer, cl::Buffer, cl::Buffer, 
         cl::LocalSpaceArg > (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 
  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 
  d_C   = cl::Buffer(context,  
              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 
 
  cl::LocalSpaceArg Bwrk = 
                    cl::Local(sizeof(float) * Pdim); 
 

  mmul(cl::EnqueueArgs( queue,  
                 cl::NDRange(N),  cl::NDRange(64)),  
                  N, d_A,  d_B,  d_C, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 
} 



Mat. Mul. host program (Share a column of B within a work-group) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 

auto mmul = cl::make_kernel 
        <int, cl::Buffer, cl::Buffer, cl::Buffer, 
         cl::LocalSpaceArg > (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 
  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 
  d_C   = cl::Buffer(context,  
              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 
 
  cl::LocalSpaceArg Bwrk = 
                    cl::Local(sizeof(float) * Pdim); 
 

  mmul(cl::EnqueueArgs( queue,  
                 cl::NDRange(N),  cl::NDRange(64)),  
                  N, d_A,  d_B,  d_C, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 
} 

Change host program to pass 
local memory to kernels.  

•  Add an arg of type 
LocalSpaceArg is needed.  

•  Allocate the size of local 
memory 

•  Update argument list in 
kernel functor 



Matrix multiplication performance 
•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

C row per work-item, A private, B local 10,047.5 8,181.9 

Device is Tesla® M2090 GPU 
from NVIDIA® with a max of 
16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 

The CuBLAS SGEMM provides an effective 
measure of peak achievable performance on the 
GPU.   CuBLAS performance  = 283366.4 MFLOPS 



Matrix multiplication:  
sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
    int i, j, k;!
    for (i = 0; i < N; i++) {!
      for (j = 0; j < N; j++) {!
        for (k = 0; k < N; k++) { !
          C[i*N+j] += A[i*N+k] * B[k*N+j];!
        }!
      }!
    }!
}!



Matrix multiplication:  
sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
    int i, j, k;!
    for (i = 0; i < N; i++)  !
      for (j = 0; j < N; j++)!
        for (k = 0; k < N; k++)!
          C[i*N+j] += A[i*N+k] * B[k*N+j];!
}!
!
!

Let’s get rid of all 
those ugly brackets 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (i = ib*NB; i < (ib+1)*NB; i++)!
     for (jb = 0; jb < NB; jb++) !
       for (j = jb*NB; j < (jb+1)*NB; j++)!
         for (kb = 0; kb < NB; kb++) !
           for (k = kb*NB; k < (kb+1)*NB; k++)!
             C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Break each loop 
into chunks with a 
size chosen to 
match the size of 
your fast memory 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (jb = 0; jb < NB; jb++) !
     for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
   for (j = jb*NB; j < (jb+1)*NB; j++)!
     for (k = kb*NB; k < (kb+1)*NB; k++)!
       C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

Rearrange loop nest 
to move loops over 
blocks “out” and 

leave loops over a 
single block together 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 float tmp;!
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (jb = 0; jb < NB; jb++) !
     for (kb = 0; kb < NB; kb++) !
!
 for (i = ib*NB; i < (ib+1)*NB; i++)!
   for (j = jb*NB; j < (jb+1)*NB; j++)!
     for (k = kb*NB; k < (kb+1)*NB; k++)!
       C[i*N+j] += A[i*N+k] * B[k*N+j];!
} !

This is just a local 
matrix multiplication 

of a single block 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)!
{!
 int i, j, k;   !
 int NB=N/block_size; // assume N%block_size=0!
 for (ib = 0; ib < NB; ib++) !
   for (jb = 0; jb < NB; jb++) !
     for (kb = 0; kb < NB; kb++) !
       sgemm(C, A, B, …)   // Cib,jb = Aib,kb * Bkb,jb!
!
 !
 !
 !
} !

Note: sgemm is the name of the level three BLAS routine to multiply two matrices 

= x 

A(ib,:) B(:,jb) C(ib,jb) 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 

Load A and B 
blocks, wait for all 
work-items to finish 

Wait for 
everyone to 
finish before 
going to next 

iteration of Kblk 
loop. 



Matrix multiplication … Portable Performance 

CPU Xeon Phi Core i7, HD 
Graphics 

NVIDIA 
Tesla 

Sequential C (compiled /O3) 224.4 1221.5  

C(i,j) per work-item, all 
global 841.5 13591 3721 

C row per work-item, all 
global 869.1 4418 4196 

C row per work-item, A row 
private 1038.4 24403 8584 

C row per work-item, A 
private, B local 3984.2 5041 8182 

Block oriented approach 
using local (blksz=16) 12271.3  74051 

(126322*) 
38348 

(53687*) 119305 

Block oriented approach 
using local (blksz=32) 16268.8 

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB 
* The comp was run twice and only the second time is reported (hides cost of memory movement. 

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory.  ICC 2013 sp1 update 2. 
Tesla®	M2090	GPU	from	NVIDIA®	with	a	max	of	16	compute	units,	512	PEs	

•  Single Precision matrix multiplication (order 1000 matrices)   



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

C row per work-item, A private, B local 10,047.5 8,181.9 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 
observe completely different results should you run 
these tests on your own system. 



Matrix multiplication performance (CPU) 
•  Matrices are stored in global memory. 

Case MFLOPS 

CPU 

Sequential C (not OpenCL, compiled /O3) 224.4 

C(i,j) per work-item, all global 841.5 

C row per work-item, all global 869.1 

C row per work-item, A row private 1038.4 

C row per work-item, A private, B local 3984.2 

Block oriented approach using local (blksz=8) 7482.5 

Block oriented approach using local (blksz=16) 12271.3  

Block oriented approach using local (blksz=32) 16268.8 

Intel MKL SGEMM 63780.6 

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel 
compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization   
–  OpenCL ecosystem 

•  OpenMP  
–  Overview   
–  “Target” and “Target data” directives 
–  Mapping onto GPUs: the distribute directive 



OpenCL 2.0 

•  OpenCL 2.0 was ratified in Nov’13 
•  Brings several important new features: 

–  Shared Virtual Memory 
–  Nested parallelism 
–  Built-in work-group reductions 
–  Generic address space 
–  Pipes 
–  C11 atomics 

•  Specification and headers available here 
•  Production drivers now available from Intel and 

AMD, with more expected to follow 



SPIR 

•  Standard Portable Intermediate Representation 
•  Defines an IR for OpenCL programs 
•  Means that developers can ship portable binaries 

instead of their OpenCL source 
•  Also intended to be a target for other languages/

programming models (C++ AMP, SYCL, OpenACC, 
DSLs) 

•  SPIR 1.2 & SPIR 2.0 ratified, SPIR-V provisional 
available now 

•  Implementations available from Intel and AMD, 
with more on the way 



SYCL 

•  Single source C++ abstraction layer for 
OpenCL 

•  Goal is to enable the creation of C++ 
libraries and frameworks that utilize OpenCL 

•  Can utilize SPIR to target OpenCL platform 
•  Supports ‘host-fallback’ (CPU) when no 

OpenCL devices available 
•  Provisional specification released Mar’14 
•  Codeplay and AMD working on 

implementations 



Libraries 

•  clFFT / clBLAS / clRNG (all on github) 
•  Arrayfire (open source soon) 
•  Boost compute with VexCL 
•  ViennaCL (PETSc), PARALUTION 
•  Lots more - see the Khronos OpenCL pages: 

 
     
https://www.khronos.org/opencl/resources  



Resources: 
https://www.khronos.org/opencl/ 

OpenCL Programming Guide:  
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and 
James Fung, 2011  

Heterogeneous Computing with OpenCL 
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry 
and Dana Schaa, 2011 

The OpenCL specification 
Surprisingly approachable for a spec! 

https://www.khronos.org/registry/cl/  

OpenCL reference card 
Useful to have on your desk(top) 
Available on the same page as the spec. 



OpenCL Tutorials 

•  One of the most popular OpenCL training 
courses on the web 

•  Completely open source (creative commons 
attribution CC BY license) 

•  Downloaded over 4,200 times so far! 
•  Lots of training material, examples and 

solutions, source code etc 
•  Works on Linux, Windows, OSX etc. 

http://handsonopencl.github.io  



Other useful resources 

•  Lots of OpenCL examples in the SDKs from 
the vendors: 
–   AMD, Intel, Nvidia, … 

•  The SHOC OpenCL/CUDA benchmark suite 
(available as source code): 
–  https://github.com/vetter/shoc/wiki 

•  The GPU-STREAM memory bandwidth 
benchmark: 
–  https://github.com/UoB-HPC/GPU-STREAM 



Other useful resources 

•  IWOCL webpage & newsletter: 
– http://www.iwocl.org 
– http://www.iwocl.org/signup-for-updates/ 

•  IWOCL annual conference 
– Spring each year 
–  In Vienna, April 19-21 2016! 



Conclusion 
•  OpenCL  

–  Widespread industrial support 

–  Defines a platform-API/framework for heterogeneous parallel 
computing, not just GPGPU or CPU-offload programming 

–  Has the potential to deliver portably performant code; but it has to 
be used correctly 

 



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization   
–  OpenCL ecosystem 

•  OpenMP  
–  Overview   
–  “Target” and “Target data” directives 
–  Mapping onto GPUs: the distribute directive 
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OpenMP* overview: 

omp_set_lock(lck) 

#pragma omp parallel for private(A, B) 

#pragma omp critical 

C$OMP parallel do shared(a, b, c) 

C$OMP PARALLEL  REDUCTION (+: A, B) 

call OMP_INIT_LOCK (ilok) 

call omp_test_lock(jlok)  

setenv OMP_SCHEDULE “dynamic” 

CALL OMP_SET_NUM_THREADS(10) 

C$OMP DO lastprivate(XX) 

C$OMP ORDERED 

C$OMP  SINGLE PRIVATE(X) 

C$OMP SECTIONS  

C$OMP MASTER C$OMP ATOMIC 

C$OMP FLUSH 

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C) 

C$OMP THREADPRIVATE(/ABC/) 

C$OMP PARALLEL COPYIN(/blk/) 

Nthrds = OMP_GET_NUM_PROCS() 

!$OMP  BARRIER 

OpenMP:  An API for Writing Multithreaded 
Applications 
 

§ A set of compiler directives and library routines  for 
parallel application programmers 

§ Greatly simplifies writing multi-threaded (MT) programs 
in Fortran, C and C++ 

§ Standardizes established SMP practice + vectorization and 
heterogeneous device programming 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 
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OpenMP basic definitions: Basic Solution stack 

OpenMP Runtime library 

OS/system support for shared memory and threading 

S
ys

te
m

 la
ye

r 

Directives, 
Compiler 

OpenMP library Environment  
variables P

ro
g.

 
La

ye
r 

Application 

End User 

U
se

r l
ay

er
 

Shared Address Space 

Proc3 Proc2 Proc1 ProcN 

H
W

 



OpenMP basic definitions: Target solution stack 

Supported (since OpenMP 
4.0) with target, teams, 

distribute, and other 
constructs 

Target Device: Xeon Phi™ processor 

Host 

Target Device: GPU 



141 

OpenMP core syntax 

•  Most of the constructs in OpenMP are compiler 
directives. 

#pragma omp construct [clause [clause]…] 
–  Example 

#pragma omp parallel num_threads(4) 
 

•  Function prototypes and types in the file:   
#include <omp.h> 
use omp_lib 
 

•  Most OpenMP* constructs apply to a 
“structured block”. 
–  Structured block: a block of one or more statements with 

one point of entry at the top and one point of exit at the 
bottom.  

–  It’s OK to have an exit() within the structured block. 
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Exercise, Part A: Hello world 
Verify that your environment works 

•  Write a program that prints “hello world”. 

 

#include<stdio.h> 
int main() 
{ 

 

 

     int ID = 0; 

     printf(“ hello(%d) ”, ID); 
     printf(“ world(%d) \n”, ID); 
 
} 
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Exercise, Part B: Hello world 
Verify that your OpenMP environment works 

•  Write a multithreaded program that prints “hello world”. 

 

#include <stdio.h> 
int main() 
{ 

 

 

     int ID = 0; 

     printf(“ hello(%d) ”, ID); 
     printf(“ world(%d) \n”, ID); 

 
} 

Switches for compiling and linking 

gcc -fopenmp     Linux, OSX 

pgcc -mp  pgi 

icl /Qopenmp  intel (windows) 

icc –openmp  intel (linux) 

#pragma omp parallel 

{ 

} 

#include <omp.h> 

} 
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Exercise: Solution 
A multi-threaded “Hello world” program 

•  Write a multithreaded program where each 
thread prints “hello world”. 

#include <omp.h> 
#include <stdio.h> 
int  main() 
{ 

#pragma omp parallel 
 { 

     int ID = omp_get_thread_num(); 
     printf(“ hello(%d) ”, ID); 
     printf(“ world(%d) \n”, ID); 
   } 
} 

Sample Output: 
hello(1) hello(0) world(1) 

world(0) 

hello (3) hello(2) world(3) 

world(2) 

OpenMP include file 

Parallel region with 
default number of threads 

Runtime library function to 
return a thread ID. 

End of the Parallel region 
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OpenMP overview: 
How do threads interact? 

•  OpenMP is a multi-threading, shared address model 
•  Threads communicate by sharing variables. 

•  Unintended sharing of data causes race conditions: 
•  Race condition: when the program’s outcome changes as the threads 

are scheduled differently. 

•  To control race conditions: 
•  Use synchronization to protect data conflicts. 

•  Synchronization is expensive so: 
•  Change how data is accessed to minimize the need for 

synchronization.  
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OpenMP programming model:  
Fork-Join Parallelism:  

u Master thread spawns a team of threads as needed. 

u Parallelism added incrementally until performance goals are met, 
i.e., the sequential program evolves into a parallel program. 

Parallel Regions 
Master 
Thread 
in red 

A Nested 
Parallel 
region 

Sequential Parts 
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Thread creation: Parallel regions 

•  You create threads in OpenMP* with the parallel construct. 
•  For example, To create a 4 thread Parallel region: 

double A[1000]; 
omp_set_num_threads(4); 
#pragma omp parallel 
{ 

 int ID = omp_get_thread_num(); 
     pooh(ID,A); 
} 

•  Each thread calls pooh(ID,A) for ID = 0 to 3 

Each thread 
executes  a 
copy of the 
code within 
the 
structured 
block 

Runtime function to 
request a certain 
number of threads 

Runtime function 
returning a thread ID 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 



148 

Thread creation: Parallel regions 

•  You create threads in OpenMP* with the parallel construct. 
•  For example, To create a 4 thread Parallel region: 

double A[1000]; 
          
#pragma omp parallel num_threads(4) 
{ 

 int ID = omp_get_thread_num(); 
     pooh(ID,A); 
} 

•  Each thread calls pooh(ID,A) for ID = 0 to 3 

Each thread 
executes  a 
copy of the 
code within 
the 
structured 
block 

clause to request a certain 
number of threads 

Runtime function 
returning a thread ID 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 
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Thread creation: Parallel regions example 

•  Each thread executes the 
same code redundantly. 

	double A[1000]; 
omp_set_num_threads(4); 
 #pragma omp parallel 
{ 

         int ID = omp_get_thread_num(); 
    pooh(ID, A); 
} 
 printf(“all done\n”); 

omp_set_num_threads(4) 

pooh(1,A) pooh(2,A) pooh(3,A) 

printf(“all done\n”); 

pooh(0,A) 

double A[1000]; 

A single 
copy of A is 
shared 
between all 
threads. 

Threads wait  here  for all threads to finish 
before proceeding (i.e., a barrier) 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 
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Synchronization: critical   

•  Mutual exclusion: Only one thread at a time can enter a 
critical region. 

float  res; 

#pragma omp parallel 

{     float B;   int i, id, nthrds; 

      id = omp_get_thread_num(); 

      nthrds = omp_get_num_threads(); 

       for(i=id;i<niters;i+=nthrds){ 

 B =  big_job(i); 

#pragma omp critical  
             res += consume (B); 

      } 
} 

Threads wait 
their turn – only 
one at a time 
calls consume() 
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Exercises:  Numerical integration 

∫ 	4.0 
(1+x2) dx = π 

0 

1 

∑ F(xi)Δx ≈ π 
i = 0 

N 

Mathematically, we know that: 

We can approximate the integral as a 
sum of rectangles: 

Where each rectangle has width Δx and 
height F(xi) at the middle of interval i. 

F(
x)

 =
 4

.0
/(1

+x
2 )

 

4.0 

2.0 

1.0 
X 0.0 
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#include <omp.h> 
static long num_steps = 100000;         double step; 
#define NUM_THREADS 2 
void main () 
{   int nthreads; double  pi=0.0;    step = 1.0/(double) num_steps; 

  omp_set_num_threads(NUM_THREADS); 
#pragma omp parallel 
{ 

 int i, id, nthrds;    double x, sum; 
 id = omp_get_thread_num(); 

              nthrds = omp_get_num_threads(); 
              if (id == 0)   nthreads = nthrds;    

   for (i=id, sum=0.0;i< num_steps; i=i+nthrds) { 
    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
   } 

             #pragma omp critical 
          pi += sum * step; 

} 
} 

Example: An SPMD solution to the PI program 

Sum goes “out of scope” beyond the parallel 
region … so you must sum it in here.   Must 
protect summation into pi in a critical region so 
updates don’t conflict 

No array, so 
no false 
sharing.  

Create a scalar local 
to each thread to 
accumulate partial 
sums. 
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#include <omp.h> 
static long num_steps = 100000000;         double step; 
#define NUM_THREADS 2 
void main () 
{   int nthreads; double  pi=0.0;    step = 1.0/(double) num_steps; 

  omp_set_num_threads(NUM_THREADS); 
#pragma omp parallel 
{ 

 int i, id, nthrds;    double x, sum; 
 id = omp_get_thread_num(); 

              nthrds = omp_get_num_threads(); 
              if (id == 0)   nthreads = nthrds;    

   for (i=id, sum=0.0;i< num_steps; i=i+nthrds) { 
    x = (i+0.5)*step; 
    sum += 4.0/(1.0+x*x); 
   } 

             #pragma omp critical 
          pi += sum * step; 

} 
} 

Example: An SPMD solution to the PI program 

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

Original Serial program 
ran in 1.83 seconds.   

threads SPMD 
critical 

1 1.87 

2 1.00 

3 0.68 

4 0.53 
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SPMD vs. worksharing 

•  A parallel construct by itself creates an SPMD or  
“Single Program Multiple Data” program … i.e., each 
thread redundantly executes the same code. 

•  How do you split up pathways through the code 
between threads within a team? 
–  Worksharing constructs 

§  Loop construct 
§  Sections/section constructs 
§  Single construct 
§ Distribute construct 

–  Task constructs 
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The loop worksharing constructs 

•  The loop worksharing construct splits up 
loop iterations among the threads in a 
team #pragma omp parallel 

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
  NEAT_STUFF(I); 
 } 

} 

Loop construct name: 

• C/C++: for 

• Fortran: do 

The variable I is made “private” to each 
thread  by default.  You could do this 
explicitly with a “private(I)” clause 
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Reduction 

•  We are combining values into a single accumulation 
variable (ave) … there is a true dependence between loop 
iterations that can’t be trivially removed 

•  This is a very common situation … it is called a 
“reduction”. 

•  Support for reduction operations is included in most 
parallel programming environments. 

 double  ave=0.0, A[MAX];    int i; 
   for (i=0;i< MAX; i++) { 
         ave + = A[i]; 
   }  
   ave = ave/MAX;  

l  How do we handle this case? 
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Reduction 
•  OpenMP reduction clause:    

reduction (op : list) 
•  Inside a parallel or a work-sharing construct: 

•  A local copy of each list variable is made and initialized 
depending on the “op” (e.g. 0 for “+”). 

•  Updates occur on the local copy.  
•  Local copies are reduced into a single value and combined 

with the original global value. 

•  The variables in “list” must be shared in the enclosing 
parallel region.   

 double  ave=0.0, A[MAX];    int i; 
#pragma omp parallel for reduction (+:ave) 
  for (i=0;i< MAX; i++) { 
         ave + = A[i]; 
  }  
  ave = ave/MAX;  
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OpenMP: Reduction operands/initial-values 
•  Many different associative operands can be used with reduction: 
•  Initial values are the ones that make sense mathematically. 

Operator Initial value 
+ 0 
* 1 
- 0 

min Largest pos. number 

max Most neg. number 

C/C++ only 

Operator Initial value 
&  ~0 
| 0 

^ 0 
&& 1 
|| 0 

Fortran Only 

Operator Initial value 
.AND.  .true. 
.OR. .false. 

.NEQV. .false. 
.IEOR. 0 
.IOR. 0 

.IAND. All bits on 
.EQV. .true. 
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Exercise: Pi with loops 

•  Go back to the serial pi program and parallelize 
it with a loop construct 

•  Your goal is to minimize the number of changes 
made to the serial program. 
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Example: Pi with a loop and a reduction 
#include <omp.h> 
static long num_steps = 100000;         double step; 
void main () 
{    int i;    double x, pi, sum = 0.0;  
      step = 1.0/(double) num_steps; 
      #pragma omp parallel  
      { 
           double x; 
          #pragma omp for reduction(+:sum) 

     for (i=0;i< num_steps; i++){ 
    x = (i+0.5)*step; 
    sum = sum + 4.0/(1.0+x*x); 
     } 

       } 
   pi = step * sum; 

} 

Create a scalar local to each thread to hold 
value of x at the center of each interval 

Create a team of threads … 
without a parallel construct, you’ll 
never have more than one thread 

Break up loop iterations 
and assign them to 
threads … setting up a 
reduction into sum.  Note 
… the loop index is local to 
a thread by default. 



Results*: pi with a loop and a reduction 
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*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW 
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.   

threads SPMD 
critical 

PI Loop 

1 1.87 1.91 

2 1.00 1.02 

3 0.68 0.80 

4 0.53 0.68 
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Combined parallel/worksharing construct 

•  OpenMP shortcut: Put the “parallel” and the 
worksharing directive on the same line 

 double  res[MAX];  int i; 
#pragma omp parallel  
{   
    #pragma omp for 
    for (i=0;i< MAX; i++) { 
         res[i] = huge(); 
    }  
}   

These are equivalent  

 double  res[MAX];  int i; 
#pragma omp parallel for 
    for (i=0;i< MAX; i++) { 
         res[i] = huge(); 
    }  
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Synchronization: Barrier 
•  Barrier: Each thread waits until all threads arrive. 

double A[big], B[big], C[big]; 

#pragma omp parallel  
{ 

 int id=omp_get_thread_num(); 
 A[id] = big_calc1(id); 

#pragma omp barrier  
#pragma omp for  

 for(i=0;i<N;i++){C[i]=big_calc3(i,A);} 
#pragma omp for nowait 

 for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); } 
 A[id] = big_calc4(id); 

} 

implicit barrier at the end of a parallel region 

implicit barrier at 
the end of a for 

worksharing 
construct 

no implicit 
barrier 
due to 
nowait 
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Data environment:Default storage attributes 

•  Shared memory programming model:  
•  Most variables are shared by default 

•  Global variables are SHARED among threads 
•  Fortran: COMMON blocks, SAVE variables, MODULE variables 
•  C: File scope variables, static 
•  Both: dynamically allocated memory (ALLOCATE, malloc, 

new) 

•  But not everything is shared... 
•  Stack variables in subprograms(Fortran) or functions(C) called 

from parallel regions are PRIVATE 
•  Automatic variables within a statement block are PRIVATE. 
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 double A[10]; 
     int main() { 

 int index[10]; 
    #pragma omp parallel   

       work(index); 
 printf(“%d\n”, index[0]); 

   } 

extern double A[10]; 
void work(int *index) { 
  double temp[10]; 
  static int count; 
  ... 
} 

Data sharing: Examples 

temp!

A, index, count!

temp! temp!

A, index, count!

A, index and count are 
shared by all threads. 

temp is local to each 
thread 
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Data sharing: Private clause 

void wrong() { 
      int tmp = 0; 
#pragma omp parallel for private(tmp) 
      for (int j = 0; j < 1000; ++j)  

     tmp += j; 
      printf(“%d\n”, tmp); 
} 

•  private(var)  creates a new local copy of var for each thread. 
•  The value of the private copies is uninitialized 
•  The value of the original variable is unchanged after the region 

tmp was not 
initialized 

tmp is 0 here 



Firstprivate clause 

•  Variables initialized from a shared variable 
•  C++ objects are copy-constructed 
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incr = 0; 
#pragma omp parallel for firstprivate(incr) 
for (i = 0; i <= MAX; i++) { 

 if ((i%2)==0) incr++; 
 A[i] = incr; 

} 

Each thread gets its own copy of 
incr with an initial value of 0 



Exercise 

•  Start from the jacobi_solv.c file. 
•  Parallelize the program using openMP 

loop constructs. 
– #pragma omp parallel for reduction(+:list) 
– Common clauses 

•  private(list) 
•  firstprivate(list) 
•  num_threads(integer-expression) 

– Timing 
•  double omp_get_wtime() Call before and after … 

difference is the elapsed time. 



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization   
–  OpenCL ecosystem 

•  OpenMP  
–  Overview   
–  “Target” and “Target data” directives 
–  Mapping onto GPUs: the distribute directive 



OpenMP basic definitions: Target solution stack 

Supported (since OpenMP 
4.0) with target, teams, 

distribute, and other 
constructs 

Target Device: Xeon Phi™ processor 

Host 

Target Device: GPU 
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The OpenMP device programming model 

#include <omp.h> 
#include <stdio.h> 
Int main() 
{ 
    printf(“There are %d devices\n”, 
              omp_get_num_devices()); 
} 

•  OpenMP uses a host/device model 
•  The host is where the initial thread of the program begins execution 
•  Zero or more devices are connected to the host 

Device 

… … … 

… 
… … … 

… 
… … … 

… 
… … … 

Host 



Target directive 
•  The target construct offloads a code region to a device. 

#pragma omp target 
{….}  // a structured block of code 

•  An initial thread running on the device executes the 
code in the code block. 

#pragma omp target 
{ 
     #pragma omp parallel for 
           {do lots of stuf} 
} 



Target directive 
•  The target construct offloads a code region to a device. 

#pragma omp target device(1) 
{….}  // a structured block of code 

•  An initial thread running on the device executes the 
code in the code block. 

#pragma omp target 
{ 
     #pragma omp parallel for 
           {do lots of stuf} 
} 

Optional clause to 
select some device 

other than the 
default device. 



The target data environment 
•  The target clause creates a data environment on the 

device: 

•  Originals variables copied into corresponding variables 
before the initial thread begins execution on the device. 

•  Corresponding variables copied into original variables when 
the target code region completes 

int i, a[N], b[N], c[N]; 
#pragma omp target 

Original variables on the host: 
N, i, a, b, c … 

Are mapped onto the 
corresponding variables on 
the device: N, i, a, b, c … 

#pragma omp parallel for private(i) 
           for(i=0;i<N;i++){ 
                 c[i]+=a[i]+b[i]; 
           } 



Controlling data movement 

•  The various forms of the map clause 
–  map(to:list): read-only data on the device. Variables in the list are 

initialized on the device using the original values from the host. 
–  map(from:list):  write-only data on the device: initial value of the 

variable is not initialized. At the end of the target region, the values 
from variables in the list are copied into the original variables.  

–  map(tofrom:list): the effect of both a map-to and a map-from 
–  map(alloc:list): data is allocated and uninitialized on the device. 
–  map(list): equivalent to map(tofrom:list). 

•  For pointers you must use array notation .. 
–  Map(to:a[0:N]) 

int i, a[N], b[N], c[N]; 
#pragma omp target map(to:a,b) map(tofrom:c) 

Data movement 
can be explicitly 
controlled with 
the map clause 



Exercise 
•  Start with the parallel jacobi_solver from the last 

exercise. 
•  Use the target clause to offload the execution of this 

solver on the Xeon-phi. 
–  #pragma omp target  
–  #pragma omp target map(to:list) map(from:list) map(tofrom:list) 
–  int omp_get_num_devices(); 
–  #pragma omp parallel for reduction(+:var) private(list) 



Jacobi Solver (serial  1/2) 
 while((conv > TOL) && (iters<MAX_ITERS)) 
   { 
     iters++; 
     xtmp  = xnew;   // don't copy arrays. 
     xnew  = xold;   // just swap pointers. 
     xold  = xtmp; 
 
     for (i=0; i<Ndim; i++){ 
         xnew[i] = (TYPE) 0.0; 
         for (j=0; j<Ndim;j++){ 
             if(i!=j) 
               xnew[i]+= A[i*Ndim + j]*xold[j]; 
         } 
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
     } 
   



Jacobi Solver (serial  2/2) 
     // 
     // test convergence 
     // 
     conv = 0.0; 
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
     conv = sqrt((double)conv); 
 
} \\ end while loop 



Jacobi Solver (Par Targ, 1/2) 
 while((conv > TOL) && (iters<MAX_ITERS)) 
   { 
     iters++; 
     xtmp  = xnew;   // don't copy arrays. 
     xnew  = xold;   // just swap pointers. 
     xold  = xtmp; 
 #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \ 
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim) 
       #pragma omp parallel for private(i,j) 
     for (i=0; i<Ndim; i++){ 
         xnew[i] = (TYPE) 0.0; 
         for (j=0; j<Ndim;j++){ 
             if(i!=j) 
               xnew[i]+= A[i*Ndim + j]*xold[j]; 
         } 
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
     } 
   



Jacobi Solver (Par Targ, 2/2) 
     // 
     // test convergence 
     // 
     conv = 0.0; 
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \ 
                                 map(to:Ndim) map(tofrom:conv) 
        #pragma omp parallel for private(i,tmp) reduction(+:conv) 
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
     conv = sqrt((double)conv); 
 
} \\ end while loop 



Jacobi Solver (Par Targ, 2/2) 
     // 
     // test convergence 
     // 
     conv = 0.0; 
 #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \ 
                                 map(to:Ndim) map(tofrom:conv) 
        #pragma omp parallel for private(i,tmp) reduction(+:conv) 
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
     conv = sqrt((double)conv); 
 
} \\ end while loop 

This worked but the 
performance was awful.  Why? 

System Implementation Ndim = 1000 Ndim = 4096 

Intel® Xeon 
Phi™ co-
processor 
(knights 
corner) 

Target dir per 
loop 

134 seconds Did not 
finish  
(> 40 
minutes) 

Native OMP 3.2 seconds 5.3 seconds 



Data movement dominates!!! 
while((conv > TOLERANCE) && (iters<MAX_ITERS)) 
   { iters++; 
     xtmp  = xnew;   // don't copy arrays. 
     xnew  = xold;   // just swap pointers. 
     xold  = xtmp; 
 
     #pragma omp target map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \ 
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim) 
       #pragma omp parallel for private(i,j) 
       for (i=0; i<Ndim; i++){ 
           xnew[i] = (TYPE) 0.0; 
           for (j=0; j<Ndim;j++){ 
               if(i!=j) 
                 xnew[i]+= A[i*Ndim + j]*xold[j]; 
           } 
           xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
       } 
// test convergence 
     conv = 0.0; 
     #pragma omp target map(to:xnew[0:Ndim],xold[0:Ndim]) \ 
                                 map(to:Ndim) map(tofrom:conv) 
        #pragma omp parallel for private(i,tmp) reduction(+:conv) 
        for (i=0; i<Ndim; i++){ 
            tmp  = xnew[i]-xold[i]; 
            conv += tmp*tmp; 
        } 
     conv = sqrt((double)conv); 
   } 

Typically over 4000 iterations! 

For each iteration, copy to device 
(3*Ndim+Ndim2)*sizeof(TYPE) bytes 

For each iteration, copy from device 
2*Ndim*sizeof(TYPE) bytes  

For each iteration, copy  to device 
2*Ndim*sizeof(TYPE) bytes  



Target data directive 
•  The target data construct creates a target data region. 
•  You use the map clauses for explicit data management  

#pragma omp target data map(to: A,B) map(from: C) 
{….}  // a structured block of code 

•  Data copied into the device data environment at the 
beginning of the directive and at the end 

•  Inside the target data region, multiple target regions 
can work with the single data region 

#pragma omp target data map(to: A,B) map(from: C) 
{ 
     #pragma omp target 
           {do lots of stuff with A, B and C} 
     {do something on the host} 
     #pragma omp target 
           {do lots of stuff with A, B, and C} 
} 



Target update directive 
•  You can update data between target regions with the 

target update directive.  

#pragma omp target data map(to: A,B) map(from: C) 
{ 
     #pragma omp target 
           {do lots of stuf with A, B and C} 
 
     #pragma omp  update from(A) 
 
     host_do_something_with(A) 
 
     #pragma omp update to(A) 
 
     #pragma omp target 
           {do lots of stuff with A, B, and C} 
} 

Copy A from the 
device onto the 
host.  

Copy A on the 
host  to A on the 
device. t 



Exercise 
•  Modify your parallel jacobi_solver from the last exercise. 
•  Use the target data construct to create a data region.  

Manage data movement with map clauses to minimize 
data movement. 
–  #pragma omp target  
–  #pragma omp target data 
–  #pragma omp target map(to:list) map(from:list) map(tofrom:list) 
–  int omp_get_num_devices(); 
–  #pragma omp parallel for reduction(+:var) private(list) 



Jacobi Solver (Par Targ Data, 1/2) 
  #pragma omp target data map(tofrom:xnew[0:Ndim],xold[0:Ndim]) \ 
                        map(to:A[0:Ndim*Ndim], b[0:Ndim] ,Ndim) 
while((conv > TOL) && (iters<MAX_ITERS)) 
   {  iters++; 
     xtmp  = xnew;   // don't copy arrays. 
     xnew  = xold;   // just swap pointers. 
     xold  = xtmp; 
 #pragma update to(xnew[0:Ndim], xold[0:Ndim]) 
 #pragma omp target   
       #pragma omp parallel for private(i,j) 
     for (i=0; i<Ndim; i++){ 
         xnew[i] = (TYPE) 0.0; 
         for (j=0; j<Ndim;j++){ 
             if(i!=j) 
               xnew[i]+= A[i*Ndim + j]*xold[j]; 
         } 
         xnew[i] = (b[i]-xnew[i])/A[i*Ndim+i]; 
     } 
   



Jacobi Solver (Par Targ Data, 2/2) 
     // 
     // test convergence 
     // 
     conv = 0.0; 
 #pragma omp update to(conv) 
 #pragma omp target  
     #pragma omp parallel for private(i,tmp) reduction(+:conv) 
     for (i=0; i<Ndim; i++){ 
         tmp  = xnew[i]-xold[i]; 
         conv += tmp*tmp; 
     } 
#pragma omp update from (conv) 
     conv = sqrt((double)conv); 
 
} \\ end while loop 



Jacobi Solver Results: summary 
System Implementat

ion 
Ndim = 1000 Ndim = 4096 

Intel® 
Xeon™ 
processor 

parfor 0.55 seconds 21 seconds 

par_for 0.36 seconds 21 seconds 

Intel® Xeon 
Phi™ co-
processor 
(knights 
corner) 

Target dir 
per loop 

134 seconds Did not 
finish  
(> 40 
minutes) 

Data region 
+ target per 
loop 

3.4 seconds 12.2 seconds 

Native 
par_for 

3.2 seconds 5.3 seconds 

OpenCL Best 2.9 seconds 32.5 seconds 

Source: Tom Deakin and James Prices, University of Bristol, UK.  All results with the 
Intel icc compiler.  Compiler options -03.    



Agenda 
•  Logistics 
•  Introduction to Heterogeneous computing 
•  OpenCL 

–  Overview  
–  Host Programs 
–  Kernel Programs 
–  Kernel code optimization   
–  OpenCL ecosystem 

•  OpenMP  
–  Overview   
–  “Target” and “Target data” directives 
–  Mapping onto GPUs: the distribute directive 



Mapping onto more complex 
devices 

•  So far, we have just “off-loaded” OpenMP 
code onto a general purpose CPU device 
that supports OpenMP multithreaded 
parallelism. 

•  How would we map OpenMP 4.0 onto a 
more specialized, throughput oriented 
device such as a GPU? 



OpenCL Platform Model 

•  One Host and one or more OpenCL Devices 
–  Each OpenCL Device is composed of one or more 

Compute Units 
•  Each Compute Unit is divided into one or more Processing Elements 

•  Memory divided into host memory and device memory 

Processing 
Element 

OpenCL Device 

… … … 

… 
… … … 

… 
… … … 

… 
… … … 

Host 

Compute Unit 



OpenCL Platform Model and OpenMP 

Processing 
Element 

OpenCL Device 

… … … 

… 
… … … 

… 
… … … 

… 
… … … 

Host 

Compute Unit 

Target 
construct to 
get onto a 

device 

Teams construct to create a 
league of teams with one team of 

threads on each compute unit. 
 

Distribute clause to assign  
work-groups to teams. 

Parallel for simd 
to run on 

processing 
elements + vector 

units 



Consider our familiar VADD 
example 

#include<omp.h> 
#include<stdio.h> 
#define N  1024 
int main() 
{ 
   float a[N], b[N], c[N]; 
   int i; 
 
// initialize a, b and c ….   
 
   for(i=0;i<N;i++) 
           c[i] += a[i] + b[i]; 
 
// Test results, report results … 
 
} 

We will explore how to map 
this code onto Many-core 
processors (GPU and CPU) 
using the OpenMP constructs: 

•  target 
•  teams 
•  distribute 



2 Constructs to control devices 
•  teams construct creates a league of thread teams: 

#pragma omp teams 
•  Supports the clauses: 

–  num_teams(int) … the number of teams in the league 
–  thread_limit(int) … max number of threads per team 
–  Plus private(), firstprivate() and reduction() 

•  distribute construct distributes iterations of following loops to the master 
thread of each team in a league: 
#pragma omp distribute 
//immediately following for loop(s) 

•  Supports the clauses: 
–  dist_schedule(static [, chunk] … the number of teams in the league. 
–  collapse(int) … combine n closely nested loop into one before distributing. 
–  Plus private(), firstprivate() and reduction() 



Vadd: OpenMP to OpenCL connection 

 #pragma omp target map(to:a,b) map(tofrom:c) 
 
 
    #pragma omp teams num_teams(NCU) thread_limit(NPE) 
  
    #pragma omp distribute 
     for (ib=0;ib<N; ib=ib+wrk_grp_sz) 
 
        #pragma omp parallel for simd 
        for (i=ib;  i<ib+wrk_grp_sz; i++) 
           c[i] += a[i] + b[i]; 

Distribute work-
groups to 

compute units 

Offload to a device. 

The body of this loop 
are the Individual 

work-items in a work-
group 

Describe a 
device … 

NCU 
compute 

units &  NPE 
proc. 

elements per 
compute unit 



Vadd: OpenMP to OpenCL connection 
 int blksz=32, ib, Nblk;      
 Nblk = N/blksz;  
#pragma omp target map(to:a,b) map(tofrom:c) 
    #pragma omp teams num_teams(NCU) thread_limit(NPE) 
 
    #pragma omp distribute 
     for (ib=0;ib<Nblk;ib++){ 
        int ibeg=ib*blksz; 
        int iend=(ib+1)*blksz; 
        if(ib==(Nblk-1))iend=N; 
 
        #pragma omp parallel for simd 
        for (i=ibeg; i<iend; i++) 
           c[i] += a[i] + b[i]; 
    } 
   

You can include any work-group wide 
code you want .. For example to explicitly 

control how iterations map onto work 
items in a work-group. 



Vadd: OpenMP to OpenCL connection 

 // A more compact way to write the VADD code, letting the runtime 
//  worry about work-group details 
 
#pragma omp target map(to:a,b) map(tofrom:c) 
 #pragma omp teams distribute parallel for 
      for (i=0; i<N; i++)            
                c[i] += a[i] + b[i]; 

In many cases, you might be better off to just 
distribute the parallel loops to the league of teams 
and leave it to the runtime system to manage the 

details.  This would be more portable code as well. 



NVIDIA Tesla C2050 (Fermi) GPU 
with 14 streaming multiprocessor 
cores*. 
•  Number of compute units: 14 
•  Number of PEs: 32 
•  Ideal work-group size: multiple of 

32 

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/ Third party names are the property of their owners. 

OpenMP Platform Model: GPU 

… 
… … … Host 

•  Let’s consider one host and one Device. 



Intel® Xeon Phi™ processor:  
60 cores, with 2 HW threads 
per core and a 512 bit wide 
vector unit. 
•  Number of compute units: 60 
•  Number of PEs: 2*vector 

width 
•  Ideal work-group size: 

multiple of vector width 

Where “vector width” depends 
floating point type: 512/4*8 for 
float, 512/8*8 for double. 

Third party names are the property of their owners. 

OpenMP Platform Model: Intel® Xeon Phi™ processor  

… 
… … … Host 

•  Let’s consider one host and one Device. 

PCIe 
Client 
Logic 

L2 L2 L2 L2 

TD TD TD TD 

L2 L2 L2 L2 

TD TD TD TD 

GDDR MC 

GDDR MC 

GDDR MC 

GDDR MC 

    

    

    

    



OpenMP Platform Model: summary 

… 
… … … Host 

•  Let’s consider one host and one Device. 

Device: GPU Device: Many Core CPU 

NVIDIA Tesla C2050 (Fermi) GPU 
with 14 streaming multiprocessor 
cores*. 
•  Number of compute units: 14 
•  Number of PEs: 32 
•  Ideal work-group size: multiple of 

32 

Intel® Xeon Phi™ processor:  60 cores, 
with 2 HW threads per core and a 512 bit 
wide vector unit. 
•  Number of compute units: 60 
•  Number of PEs: 2*vector width 
•  Ideal work-group size: multiple of 

vector width 

Where “vector width” depends floating 
point type: 512/4*8 for float, 512/8*8 for 
double. 



OpenMP SIMD Loop Construct 

void sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
    
  #pragma omp simd reduction(+:sum)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
} 

vectorize 

•  Vectorize a loop nest 
–  Cut loop into chunks that fit a SIMD vector register 

#pragma omp simd [clause[[,] clause],…]  
for-loops 



Data Sharing Clauses 

•  reduction(op:var-list): 
Create private variables for var-list and apply reduction operator op at the end of 
the construct 

42 x: ? ? ? ? 

42 x: 42 42 42 42 

42 x: 12 5 8 17 

•  private(var-list): 
Uninitialized vectors for variables in var-list 

•  firstprivate(var-list): 
Initialized vectors for variables in var-list 



SIMD Loop Clauses 
•  safelen (length) 

–  Maximum number of iterations that can run concurrently without breaking a 
dependence 

–  in practice, maximum vector length 

•  linear (list[:linear-step]) 
–  The variable’s value is in relationship with the iteration number 

xi = xorig + i * linear-step 

•  aligned (list[:alignment]) 
–  Specifies that the list items have a given alignment 
–  Default is alignment for the architecture  

•  collapse (n) 



SIMD Worksharing Construct 

void sprod(float *a, float *b, int n) { 
  float sum = 0.0f; 
#pragma omp parallel for simd reduction(+:sum)     
  for (int k=0; k<n; k++)    
    sum += a[k] * b[k]; 
  return sum; 
} 

parallelize 

vectorize 

Thread 0 Thread 1 Thread 2 

•  Parallelize and vectorize a loop nest 
–  Distribute a loop’s iteration space across a thread team 
–  Subdivide loop chunks to fit a SIMD vector register 

•  #pragma omp for simd [clause[[,] clause],…]  
for-loops 



Performance of the SIMD Constructs 

•  M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell. Extending OpenMP with Vector Constructs for Modern 
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312. 
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Exercise 
•  Two options: 

1.  Modify your parallel jacobi_solver from the last exercise. Use the 
teams and distribute constructs to see if you can improve the 
performance of your code. 

2.  Return to the pi program and see if you can achieve reasonable 
performance if you use the target, distribute and teams constructs.  
Hint: the SIMD clauses are critical in this case. 

•  target data construct to create a data region.  Manage data 
movement with map clauses to minimize data movement. 
–  #pragma omp target  
–  #pragma omp target data 
–  #pragma omp target teams num_teams(int) thread_limit(int) 
–  #pragma omp distribute dist_schedule(static[, chunk]) 
–  #pragma omp target map(to:list) map(from:list) map(tofrom:list) 
–  Int omp_get_num_devices(); 
–  #pragma omp parallel for reduction(+:var) private(list) 



Conclusion 
•  OpenCL  

–  Widespread industrial support 

–  Defines a platform-API/framework for heterogeneous parallel 
computing, not just GPGPU or CPU-offload programming 

–  Has the potential to deliver portably performant code; but it has to 
be used correctly 

•  OpenMP 
–  Established technology for programming shared memory systems. 

–  Growing and expanding over time to add NUMA, explicit 
vectorization, and programming heterogenous platforms. 

•  Between these two options, a wide range of programming 
styles are supported … there is no good excuse to use a 
non-portable/proprietary API. 
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