
Introduction to Archival Storage at 
NERSC 
Nick Balthaser 

NERSC Storage Systems Group 
nabalthaser@lbl.gov 

NERSC User Training  
March 8, 2011 



•  NERSC Archive Technologies Overview 
•  Use Cases for the Archive 
•  Authentication 
•  Storage Clients Available at NERSC 
•  Avoiding Common Mistakes 
•  Optimizing Data Storage and Retrieval 

Agenda 



NERSC Archive Technologies 

•  The NERSC archive is a 
hierarchical storage 
management system 
(HSM) 

•  Highest performance 
requirements and access 
characteristics at top 
level 

•  Lowest cost, greatest 
capacity at lower levels 

•  Migration between levels 
is automatic, based on 
policies 

Capacity 

Local 
Disk or Tape 

High Capacity  
Disk 

Fast  
Disk 

Remote 
Disk or Tape 



•  NERSC archive implements 2 levels of HSM based on 
fast access requirement—fast front-end disk cache 
and enterprise tape 

•  Permanent storage is magnetic tape, disk cache is 
transient 
–  10PB data in 100M files written to 26k cartridges 

•  Cartridges and tape drives are contained in robotic 
libraries 
–  Cartridges are loaded/unloaded into tape drives by sophisticated 

library robotics  
•  75 tape drives in user (archive) system 

–  2 cartridge and drive technologies in use: Oracle T10KB (1TB, high 
capacity) and 9840D (fast access, 80GB) 

Archive Technologies, 
Continued 



•  Front-ending the tape subsystem is 140TB fast-
access disk 
–   Data Direct Networks and LSI Logic disk arrays 

•  User system has 10 server nodes, IBM p5 running 
AIX 
–  9 IO nodes called data movers:  read/write to network, 

disk and tape devices 
–  1 core server:  coordinates system activity and serves 

metadata 
•  IBM/DOE HPSS Storage Application 

–  NERSC is a DOE development partner 

Archive Technologies, 
Continued 



•  Approximately 50% data growth per year 

•  Transfer rates of over 1GB/sec are possible 

Archive Technologies, 
Continued 



•  HPSS clients can emulate filesystem 
qualities 
–  FTP-like interfaces can be deceiving:  the archive is backed 

by tape, robotics, and a single SQL database instance for 
metadata 

–  Operations that would be slow on a filesystem, e.g. lots of 
random IO, can be impractical on the archive 

–  It’s important to know how to store and retrieve data efficiently 

•  HPSS does not stop users from making 
mistakes 
–  It is possible to store data in such a way as to make it difficult to 

retrieve 

–  The archive has no batch system.  Inefficient use affects others. 

Archive Technologies, 
Continued… 



•  Typical use case:  long-term storage of very large 
raw data sets 
–  Good for incremental processing 

•  Long-term storage of result data 
•  Data migration between compute platforms 
•  Backups (e.g. /scratch purges on franklin) 

Use Cases for the Archive 



•  NERSC storage uses a token-based 
authentication method 
–  User places encrypted authentication token in 

~/.netrc file at the top level of the home directory on 
the compute platform 

–  Token information is verified in the NERSC LDAP 
user database  

–  All NERSC HPSS clients can use the same token 
–  Tokens are username and IP specific—must 

generate a different token for use offsite 

Authentication 



•  Authentication tokens can be generated in 2 ways: 
–  Automatic – NERSC auth service: 

•  Log into any NERSC compute platform 
•  Type “hsi” 
•  Enter NERSC password 

–  Manual – https://nim.nersc.gov/ website 
•  Under “Actions” dropdown, select “Generate HPSS Token” 

•  Copy/paste content into ~/.netrc 
•  chmod 600 ~/.netrc 

•  Use NIM website to generate token for alternate IP 
address 

Authentication, Continued 



machine archive.nersc.gov!

login joeuser!

password 02UPMUezYJ/Urc7ypflk7M8KHLITsoGN6ZIcfOBdBZBxn+BViShg==!

machine ftp.nersc.gov!

login anonymous!

password joeuser@nersc.gov!

•  Remember to set permissions on this file 
–  The authentication token is a key, like an ssh key—treat accordingly 

~/.netrc example 



•  Parallel, threaded, high performance: 
–  HSI 

•  Unix shell-like interface 
–  HTAR 

•  Like Unix tar, for aggregation of small files 
–  PFTP 

•  Parallel FTP 
•  Non-parallel: 

–  FTP 
•  Ubiquitous, many free scripting utilities 

•  GridFTP interface (garchive) 
–  Connect to other grid-enabled storage 

systems 

HPSS Clients 



HSI 

•  Most flexibility, many features and options 
•  Most easily abused 
•  Features: 

–  Parallel, high speed transfers 
–  Interactive and non-interactive modes 
–  Common shell commands:  chown, chmod, ls, rm, etc. 
–  Recursion 
–  Command-line editing and history 
–  Wildcards 

•  Connecting to the archive:  type “hsi” 
    bash-4.0$ hsi 
    [Authenticating] 
    A:/home/j/joeuser-> 



•  Transfer 
A:/home/j/joeuser-> put myfile 
put 'myfile' : '/home/j/joeuser/myfile' ( 2097152 bytes, 31445.8 KBS (cos=4)) 

•  Retrieve 
A:/home/j/joeuser-> get myfile 
get 'myfile' : '/home/j/joeuser/myfile' (2010/12/19 10:26:49 2097152 bytes, 
 46436.2 KBS ) 

•  Full pathname or rename 
A:/home/j/joeuser-> put local_file : hpss_file 
A:/home/j/joeuser-> get local_file : hpss_file 

•  Wildcards 
A:/home/j/joeuser-> prompt 
prompting turned off 
A:/home/j/joeuser-> mput .bash* 

Interactive HSI 



•  One-line mode 
    bash-4.0$ hsi “mkdir mydir; cd mydir; put myfile; ls –l” 

•  Command File 
    bash-4.0$ cat mycommands.txt 
    put myfile 
    ls -l 
    quit 
    bash-4.0$ hsi “in mycommands.txt” 

•  Here Document 
    bash-4.0$ hsi <<EOF 
    put myfile 
    ls -l 
    quit 
    EOF 

•  Standard Input 
    bash-4.0$ echo 'mkdir mydir; cd mydir; put myfile; ls -l; quit' | hsi 

Non-interactive HSI 



HTAR 

•  Similar to Unix tar 
•  Parallel, high speed transfers, like HSI 
•  Recommended utility for archiving small files 

–  Faster/safer than running Unix tar via pipeline 
–  Creates index for fast file retrieval 

•  HTAR traverses subdirectories to create tar-
compatible aggregate file in HPSS 

•  No staging space required 
•  Limitations: 

–  Aggregate file can be any size, recommend 500GB max 
–  Aggregates limited to 5M member files 
–  Individual HTAR member files max size 64GB 
–  155/100 character prefix/filename limitation 



HTAR, Continued 

•  Create archive 
        bash-4.0$ htar –cvf /home/n/nickb/mytarfile.tar ./mydir 
        HTAR: a   ./mydir/                                                             
        HTAR: a   ./mydir/foofile 
        HTAR: a   /scratch/scratchdirs/nickb/HTAR_CF_CHK_50212_1297706778 
        HTAR Create complete for /home/n/nickb/mytarfile.tar. 2,621,442,560 bytes 
            written for 1 member files, max threads: 3 Transfer time: 11.885 seconds 
            (220.566 MB/s) 

•  List archive 
        bash-4.0$ htar –tvf /home/n/nickb/mytarfile.tar 

•  Extract member file(s) 
        bash-4.0$ htar –xvf /home/n/nickb/mytarfile.tar ./mydir/foofile 



•  PFTP 
–  Standard FTP-like interface distributed with HPSS 
–  Implements parallel transfers for performance 
–  FTP-compatible syntax 
–  Scriptable with some effort (Here doc or command file) 

bash-4.0$ pftp –i < cmds.txt 

•  FTP 
–  Available everywhere, but non-parallel, low performance 
–  Free utilities such as ncftp, curl, and Perl Net::FTP add flexibility 

for scripting 
•  Both interfaces implement ALLO64 <filesize> for 

writing files to the correct COS (more later) 

PFTP and FTP 



• GridFTP uses a certificate based 
authentication method—not ~/.netrc 
– Users can use grid credentials to transfer data 

between other grid-enabled sites 
• GridFTP is the server 

– Clients include uberftp and globus-url-copy 
• Clients often support user-tunable 

parameters for WAN transfer 

GridFTP 



•  Small files 
•  Recursive/unordered requests 
•  Streaming data via Unix pipelines 
•  Massive pre-staging 
•  Large directories in HPSS 
•  Long-running transfers 
•  Session Limits 

Avoiding Common Mistakes 



•  Large tape storage systems do not work well with 
small files 
–  Tape is sequential media—must be mounted in tape drive and 

positioned to start of file for reads—SLOW 
–  Storing large numbers of small files may spread them across 

dozens or hundreds of tapes 
–  mounting dozens of tapes and then seeking to particular 

locations on tape can take a long time, and impair usability for 
others 

–  Store small files as aggregates with HTAR 
•  Large HTAR aggregates end up on fewer tapes 
•  HTAR index speeds member file retrieval 

–  Requests for large numbers of small files can be ordered to 
mitigate performance impact (next section) 

Small Files 



•  Using HSI for recursive storage and retrieval 
is almost always non-optimal 
–  Recursively storing a directory tree is likely to store a lot of small 

files across a large number of tapes 
–  Recursive file retrieval is likely to cause excessive tape mount 

and positioning activity 
•  Not only slow, but ties up system for other users 

•  Use HTAR instead of recursive HSI 
•  Order read requests for small files (next section) 

Recursive/unordered Requests 



•  Unix pipelines often used to alleviate the need for spool area 
for writing large archive files 
–  Pipelines break during transient network issues 
–  Pipelines fail to notify HPSS of data size 

•  Data may be stored on non-optimal resources, and/or transfers fail 
•  Retrieval can be difficult  

•  Use global scratch to spool large archive files 
•  Use HTAR if spool space is an issue 
•  If streaming via pipe is unavoidable, use PFTP with ALLO64 

<bytes> hint 
         bash-4.0$ pftp archive <<EOF 
           > bin 
           > quote allo64 7706750976 
           > put "| tar cf - ./joeuser" /home/j/joeuser/joeuser.tar 
           > quit 
           > EOF 

Streaming Data via Unix 
Pipelines 



•  HSI allows pre-fetching data from tape to disk cache 
•  With data pre-fetched into cache, hypothetically it 

should be available quickly for processing  
–  Problems: 

•  The disk cache is shared, 1st-come, 1st-served basis 
•  If cache is under heavy use by other users, data may be purged before use 
•  If data read to cache is larger than cache, it will be purged before use 
•  Either situation results in performance penalty as data is read twice from 

tape 

•  Solution: pre-stage large data to global scratch, not 
disk cache 

Pre-staging 



Large HPSS Directories 

•  Each HPSS system is backed by a single database 
instance 
–  Every user interaction causes some database activity 
–  One of the most database-intensive commands is HSI long file 

listing, “ls –l” 
–  Directories containing more than a few thousand files may 

become difficult to work with interactively 

bash-4.0$ time hsi -q 'ls -l /home/n/nickb/tmp/testing/80k-files/' > /dev/null 2>&1 

real 20m59.374s 
user 0m7.156s 
sys 0m7.548s 

25 



Large HPSS Directories 



•  Can be failure-prone for a variety of reasons 
–  Transient network issues, planned/unplanned 

maintenance, etc. 

•  HSI and PFTP do not have capability to 
resume interrupted transfers 

•  Data is not completely migrated to tape from 
disk cache until transfer is completed 

•  Recommend keeping transfers to 24 hrs/
under if possible 

Long-running Transfers 



Session Limits 

•  Users are limited to 15 concurrent sessions 
•  This number can be temporarily reduced if a 

user is impacting system usability for 
others 



•  Guidelines for successful storage 
•  Guidelines for successful retrieval 

Optimization 



•  Guidelines for successful storage:  store files 
on as few tapes as possible 
–  Ideally, store (and retrieve) files of optimum size, 

currently 200 – 300GB 
–  Aggregate groups of small files with HTAR (or other 

aggregation method, e.g. tar, cpio, etc.) 
– Do not use Unix pipelines to store data—stage 

archive files to spool area first 
•  If no spool space use HTAR 
•  If pipe is unavoidable, use PFTP with ALLO64 <filesize> 

Storage Optimization 



HSI Transfer Rates 



•  Successful small file retrieval:  minimize tape 
mounts and positioning 
– Order requests by cartridge and position 

•  Use HSI to list cartridge and tape position 
•  We have a sample script to help with this: contact 

consult@nersc.gov 

Retrieval Optimization 



1.  List files to be retrieved in a text file 
        bash-4.0$ cat files.txt 
        /home/j/joeuser/mydir/myfile00 
        /home/j/joeuser/mydir1/myfile01 
        /home/j/joeuser/mydir2/myfile02 

2.  Generate cartridge and position list with HSI 
        bash-4.0$ for file in `cat files.txt` 
        do 
            echo -n "$file" >> pv.list 
            hsi -q "ls -X $file" 2>&1 | grep 'PV List' >> pv.list 
        done 
        bash-4.0$ cat pv.list 
        /home/j/joeuser/mydir/myfile00 Pos: 3536 PV List: EA854100  
        Pos:140790 PV List: ED000100  
        /home/j/joeuser/mydir1/myfile01 Pos: 1 PV List: EM450200  
        /home/j/joeuser/mydir2/myfile02 Pos: 3 PV List: EM450200 

Tape Ordering Example 



3.  Generate per-cartridge lists in position order 
bash-4.0$ for vol in `awk '{print $6}' pv.list | sort -u` 
do 
    grep $vol pv.list | sort -n +2 -3 | awk '{print $1}' > ${vol}.list 
done 

bash-4.0$ cat EM450200.list 
/home/j/joeuser/mydir1/myfile01 
/home/j/joeuser/mydir2/myfile02 
/home/j/joeuser/mydir3/myfile03 

4. Convert per-cartridge lists to HSI command files 
bash-4.0$ cat EM450200.cmd 
get /home/j/joeuser/mydir1/myfile01 
get /home/j/joeuser/mydir1/myfile02 
get /home/j/joeuser/mydir2/myfile03 

Tape Ordering Example, 
Continued 



5. Finally, run HSI using command files 
bash-4.0$ for i in “*.cmd” 
do 
    hsi –q “in ${i}.cmd” 
done  

Tape Ordering Example, 
Continued 



•  Contact NERSC Consulting 
–  Toll-free 800-666-3772  
–  510-486-8611, #3 
–  Email consult@nersc.gov. 

Reporting Problems 



•  NERSC Website 
–  http://www.nersc.gov/nusers/systems/HPSS/ 

•  NERSC Grid documentation 
–  http://www.nersc.gov/nusers/services/Grid/grid.php 

•  HSI, HTAR, PFTP man pages should be 
installed on compute platforms 

•  Gleicher Enterprises Online Documentation 
(HSI, HTAR) 
–  http://www.mgleicher.us/GEL/ 

•  “HSI Best Practices for NERSC Users” – 
LBNL publication number pending 

Further Reading 




