

Quick Introduction to HPSS at NERSC

Nick Balthaser
NERSC Storage Systems Group
nabalthaser@lbl.gov

Joint Genome Institute, Walnut Creek, CA Feb 10, 2011

Agenda

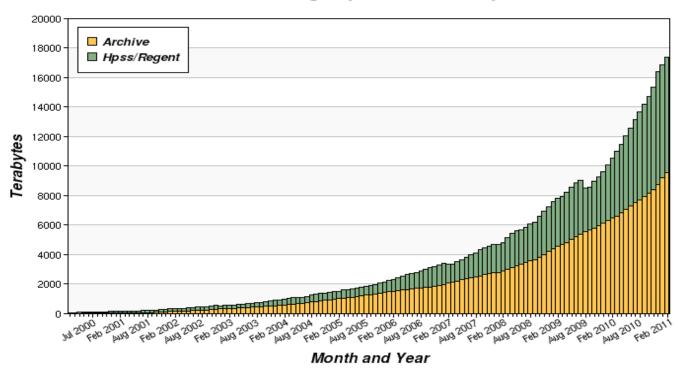
- NERSC Archive Technologies Overview
- Use Cases for the Archive
- Hands-on:
 - Authentication
 - Client Usage and Examples
- Client Installation

NERSC Archive Has 2 Levels, Fast Frontend Disk Cache and Enterprise Tape

- Current data volume: 12PB in 100M files written to 26k tapes (user system)
- Permanent storage is magnetic tape, disk cache is transient
 - All data written to HPSS goes through the disk cache
 - Disk to tape migration occurs every 30 minutes
 - Data retained on disk approximately one week, on average
- Tapes and tape drives are contained in robotic libraries
 - Cartridges are loaded/unloaded into tape drives by sophisticated library robotics
- 110 tape drives in user (archive) system
 - 3 cartridge and drive technologies in use: Oracle T10KB/T10KC (1TB/5TB, high capacity) and 9840D (fast access, 80GB)

Front-ending the Tape Subsystem is 240TB Fast-access disk

- Disk cache hardware: Data Direct Networks 9550 FC and 9900 SAS disk arrays
- User system has 13 server nodes, IBM p4/p5/p7 running AIX
 - 12 IO nodes called data movers: read/write to network, disk and tape devices
 - 1 core server: coordinates system activity and serves metadata
- HPSS storage application is under active development by IBM, LBNL, LLNL, LANL, SNL, and ORNL.
 - NERSC has 2 full-time HPSS developers on staff
 - New features, stability improvements, and bug fixes are continually being developed.

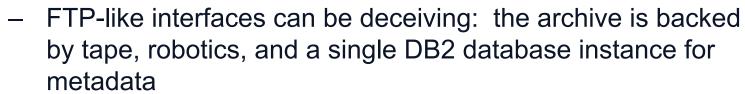


Approximately 50% data growth per year

Cumulative Storage by Month and System

NERSC has 4 dedicated DTN nodes for high-speed transfers

Transfer rates over 1GB/sec are possible



It is Important to Know How to Store and Retrieve Data Efficiently

HPSS clients can emulate file system qualities

 Operations that would be slow on a file system, e.g. lots of random IO, can be impractical on the archive

HPSS does not stop users from making mistakes

- It is possible to store data in such a way as to make it difficult to retrieve
 - Tape storage systems do not work well with small files
- The archive has no batch system. Inefficient use affects others.

Use Cases for the Archive

- Typical use case: long-term storage and retrieval of very large raw data sets
 - Good for incremental processing
- Long-term storage of result data
- Data migration between compute platforms
- Backups (/project and system/server backups)

Authentication is easy

NERSC storage uses a token-based authentication method

- User places encrypted authentication token in ~/.netrc file at the top level of the home directory on the compute platform
- Token information is verified in the NERSC LDAP user database
- All NERSC HPSS clients can use the same token
- Tokens are username and IP specific—must generate a different token for use offsite

Authentication Hands-on

- Authentication tokens can be generated in 2 ways:
 - Automatic NERSC auth service (recommended):
 - Log into any NERSC compute platform
 - Type "hsi"
 - Enter NERSC password
 - Manual https://nim.nersc.gov/ website
 - Under "Actions" dropdown, select "Generate HPSS Token"
 - Copy/paste content into ~/.netrc
 - chmod 600 ~/.netrc
- Use NIM website to generate token for alternate IP address

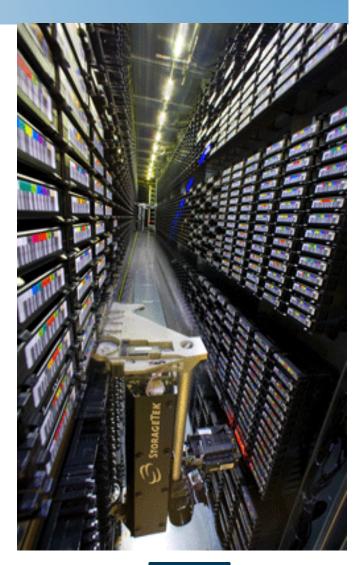
~/.netrc example

machine archive.nersc.gov
login joeuser
password 02UPMUezYJ/Urc7ypflk7M8KHLITsoGN6ZIcfOBdBZBxn+BViShg==

machine ftp.nersc.gov
login anonymous
password joeuser@nersc.gov

Check permissions on this file

Should be rw for user only



HPSS Client Overview

Parallel, threaded, high performance:

- HSI
 - Unix shell-like interface
- HTAR
 - Like Unix tar, for aggregation of small files
- PFTP
 - Parallel FTP
- Non-parallel:
 - FTP
 - Ubiquitous, many free scripting utilities and APIs
- GridFTP interface (garchive)
 - Connect to other grid-enabled storage systems

Hands-on Examples: HSI

- Most flexibility, many features and options
- Can cause problems if not used correctly (supports recursive transfers of small files/ directories)
- Features:
 - Parallel, high speed transfers
 - Interactive and non-interactive modes
 - Common shell commands: chown, chmod, ls, rm, etc.
 - Recursion
 - Command-line editing and history
 - Wildcards
- Connecting to the archive: type "hsi"

bash-4.0\$ **hsi**

[Authenticating]

A:/home/j/joeuser->

Interactive HSI

Transfer

A:/home/j/joeuser-> put myfile put 'myfile' : '/home/j/joeuser/myfile' (2097152 bytes, 31445.8 KBS (cos=4))

Retrieve

A:/home/j/joeuser-> **get myfile**get 'myfile' : '/home/j/joeuser/myfile' (2010/12/19 10:26:49 2097152 bytes, 46436.2 KBS)

Full pathname or rename

A:/home/j/joeuser-> put local_file : hpss_file
A:/home/j/joeuser-> get local_file : hpss_file

Wildcards

A:/home/j/joeuser-> **prompt**prompting turned off
A:/home/j/joeuser-> **mput .bash***

Office of Science

Non-interactive HSI

One-line mode

bash-4.0\$ hsi "mkdir mydir; cd mydir; put myfile; ls -l"

Command File

```
bash-4.0$ cat mycommands.txt
put myfile
ls -l
quit
bash-4.0$ hsi "in mycommands.txt"
```

Here Document

```
bash-4.0$ hsi <<EOF
put myfile
Is -I
quit
EOF
```

Standard Input

bash-4.0\$ echo 'mkdir mydir; cd mydir; put myfile; ls -l; quit' | hsi

Hands-on Examples: HTAR

- Similar to Unix tar
- Parallel, high speed transfers, like HSI
- Recommended utility for archiving small files
 - Faster/safer than running Unix tar via pipeline
 - Creates index for fast file retrieval
- HTAR traverses subdirectories to create tarcompatible aggregate file in HPSS
- No staging space required
- Limitations:
 - Aggregate file can be any size, recommend 500GB max
 - Aggregates limited to 5M member files
 - Individual HTAR member files max size 64GB
 - 155/100 character prefix/filename limitation

HTAR, Continued

Create archive

bash-4.0\$ htar -cvf /home/n/nickb/mytarfile.tar ./mydir

HTAR: a ./mydir/

HTAR: a ./mydir/foofile

HTAR: a /scratch/scratchdirs/nickb/HTAR CF CHK 50212 1297706778

HTAR Create complete for /home/n/nickb/mytarfile.tar. 2,621,442,560 bytes written for 1 member files, max threads: 3 Transfer time: 11.885 seconds (220.566 MB/s)

List archive

bash-4.0\$ htar -tvf /home/n/nickb/mytarfile.tar

Extract member file(s)

bash-4.0\$ htar -xvf /home/n/nickb/mytarfile.tar ./mydir/foofile

PFTP and FTP

PFTP

- Standard FTP-like interface distributed with HPSS
- Implements parallel transfers for performance
- FTP-compatible syntax
- Scriptable with some effort (Here doc or command file)
- NERSC compute platforms only

bash-4.0\$ pftp -i < cmds.txt

FTP

- Available everywhere, but non-parallel, low performance
- Free utilities such as ncftp, curl, and Perl Net::FTP add flexibility for scripting
- Both interfaces implement ALLO64 <filesize> for writing files to the correct COS

GridFTP

- GridFTP uses a certificate based authentication method—not ~/.netrc
 - Users can use grid credentials to transfer data between other grid-enabled sites
- GridFTP is the server
 - Clients include uberftp and globus-url-copy
- Clients often support user-tunable parameters for WAN transfer

HPSS Client Download and Installation

- HPSS clients are provided on NERSC systems (hopper, franklin, etc.) No download/installation necessary
 - HSI and HTAR are now installed on JGI system phoebe
- HSI and HTAR are licensed for binary download for NERSC users (workstations, servers, offsite platforms)
 - Go to the NERSC software download page
 - <u>https://www.nersc.gov/users/data-and-networking/hpss/storing-and-retrieving-data/software-downloads/</u>
 - Select appropriate version for your hardware/OS (NERSC username/ password required)
 - Minor OS version differences may be Ok
- FTP client is usually available on most operating systems
 - Lower performance on high-speed networks
 - Problems with authentication on Windows7

Reporting Problems

- NERSC Staff: Contact Storage Systems
 - Email <u>ssg@nersc.gov</u>
 - 24x7 NERSC Operations: 510-486-6821
- NERSC Users: Contact NERSC Consulting
 - Toll-free 800-666-3772
 - 510-486-8611, #3
 - Email <u>consult@nersc.gov</u>.

Further Reading

- NERSC Website
 - <u>http://www.nersc.gov/users/data-and-networking/hpss/</u>
- NERSC Grid documentation
 - <u>http://www.nersc.gov/users/software/grid/data-transfer/</u>
- HSI, HTAR, PFTP man pages should be installed on NERSC compute platforms
- Gleicher Enterprises Online Documentation (HSI, HTAR)
 - <u>http://www.mgleicher.us/GEL/</u>
- "HSI Best Practices for NERSC Users" LBNL Report #LBNL-4745E

National Energy Research Scientific Computing Center