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Edge Localized Modes Software Design Issues

» Time integration and Newton-Krylov nonlinear solves using SUNDIALS (LLNL) or

PETSc (ANL)

» Fast (~ 100pus) eruption from the edge
( His) erup 2 » Coordinate system and differential operators

of tokamak plasmas - _
» If uncontrolled in ITER, these would > Parallel communications using MP|

release ~ 20 MJ User BOUT++

» World-wide effort to understand and
control these events T Solver

SolverAPI

SUNDIALS: https://computation.llnl.gov/casc/sundials
PETSc: http://www.mcs.anl.gov/petsc

The BOUT++ Simulation Code

» Based on BOUT written by X. Xu, et. al. from LLNL [1]
» New 3D simulation code developed at York with LLNL and ANL

» Simulates plasma fluid equations in curvilinear coordinate systems
» Runs on workstations, clusters, large-scale machines, e.g., Cray XE6

Jacobian-free Newton-Krylov Method

At each timestep, we solve the nonlinear system
F(x) = 0,
where F' : R™ — R"™ by a Newton-Krylov method
Tpt1 = Tk, — [F'(2x)] T F(zx), k=0,1,...,

where x¢ is an initial approximation to the solution and F’(x;), the Jacobian, is
nonsingular at each iteration. In practice, the Newton iteration is implemented by
the following two steps:

ELM Equations
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1. (Approximately) solve F'(xy)Ax, = —F(x).
2. Update =i = o + aAxyg.

where 0 < @ < 1 is a scalar. Jacobian-vector products in Krylov methods are
computed matrix-free via

F(u+ h-a) — F(u)

F’ ~
(w)a -

FACETS

» Framework Application for Core-Edge Transport Simulations
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» Work in progress: Incorporating BOUT++ as a FACETS component
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Performance Analysis

BOUT++ strong scaling (hopper.nersc.gov) o BOUT++ performance on hopper.nersc.gov
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Figure 1: Strong scaling using CrayPAT on Hopper (NERSC) using ELM pb (nx=516, ny=512, nz=64) [2]

Figure 1(a) shows overall walltime, time spent in communication, and time spent in computation. Figure 1(b) presents the flops
performance (Y-axis on left) and the communication as percentage of runtime (Y-axis on right). Figure 1(c) demonstrates strong

scaling. Figure 1(d) illustrates that BOUT++ is relatively insensitive to bandwidth contention. [2]

MPI1 Collectives
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Figure 2: MPI Collectives on Hopper (NERSC)

OMPI_Wait B MPI_AlIReduce

Figure 2(a) shows the role of MPI collectives at high concurrency (65,536 processors) for test case 1. Figure 2(b) indicates that the
cost of MPI Al1Reduce() calls inside Newton-Krylov solver are a significant scalability barrier for ELM pb: nx=516, ny=64, nz=16,

global vector dimension: 1,585,152. Data from 10 timesteps, Newton with restarted GMRES, no preconditioning

Ongoing and Future Work

» Research on robust and scalable preconditioners

» Algebraic approaches that use sparse approximate Jacobian information
» Leverage physics knowledge, including field splits for fast Alfven waves, fast
magnetosonic waves, and thermal conductivity along the field lines

» Experiments with communication-reducing Krylov methods

» Exploration of IMEX techniques for flexible timestepping

» Incorporation into FACETS and exploration of multiphysics coupling issues
» Research on additional modeling capabilities
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