
Copyright 2016 Cray Inc.

DataWarp	
Glen	Overby	
August	23,	2016	

Copyright 2016 Cray Inc.

Topics

●  Introduction
● Overview
● Concepts
● DataWarp Usage in WLMs
● Using dwstat
●  Future Enhancements

2

Copyright 2016 Cray Inc.

Overview - What is DataWarp?

● DataWarp is Cray’s implementation of the Burst
Buffer concept, plus more

● Has both Hardware & Software components
●  Hardware
● XC40 Service node, directly connected to Aries network
● PCIe SSD Cards installed on the node

●  Software
● DataWarp service daemons
● DataWarp Filesystem (using DVS, LVM, XFS)
●  Integration with WorkLoad Managers (Slurm, M/T,

PBSpro)

3

Copyright 2016 Cray Inc.

Observations & Trends

● Many programs do I/O in bursts
● Read, Compute, Write, Compute, Write, Compute, etc.

● Want to have high bandwidth when doing I/O
● Compute resources largely idle during I/O

● Disk-based PFS bandwidth is expensive, capacity is cheap
● PFS do provide lots of capacity, reliability, permanence, etc.

● SSD bandwidth is (relatively) inexpensive
●  Large I/O load at beginning and end of job
● Cray Aries network is faster, lower latency, shorter

distance than path to PFS

4

Copyright 2016 Cray Inc.

Burst Buffer Concepts

● Burst Buffer (BB) - A high bandwidth, lower capacity, “buffer”
space, backed by a disk based Parallel File System (PFS)
●  Increased BB bandwidth decreases time programs spend on I/O

● BB can interact with PFS before, during, and after program use
● Stage data in to BB before computes allocated
● Stage data back out to PFS after computes deallocated
● Stage data in or out, using BB hardware, while program in

computational phase

5

Copyright 2016 Cray Inc.

Exascale Computing Memory Trends

CPU

Memory
(DRAM)

Storage
 (HDD)

CPU

Near Memory
 (HBM/HMC)

Near Storage
 (SSD)

Far Memory
(DRAM/NVDIMM)

Far Storage
 (HDD)

On Node

Off Node

On Node

Off Node

Past Future Now

DataWarp

6

Copyright 2016 Cray Inc.

Cray DataWarp Motivation

● Handle peaks and spikes in I/O bandwidth requirements
●  ...without increasing the size of the PFS

● Reduce job wall clock time
● Provision capacity on rotating media separately from

provisioning bandwidth
● Prevents excess capacity or insufficient bandwidth
● Reduces cost

7

Copyright 2016 Cray Inc.

DataWarp - Minimize Compute Residence Time

Time (Lustre Only)

Node
Count

Time (DataWarp)

Node
Count DW

Preload
DW
Post Dump

Initial
Data Load

Final Data
Writes

Timestep Writes

C
om

pu
te

Compute Nodes

Compute Nodes - Idle

I/O Time Lustre

I/O Time DataWarp

DW Nodes

Key
Timestep Writes (DataWarp)

8

Copyright 2016 Cray Inc.

Two kinds of DataWarp Instances (Space)

● Can it be shared? What is its lifetime?
●  Job Instance
● Can only be used by job that creates it
● Use Lifetime is the same as the creating job
●  cases: PFS staging, application scratch, checkpoints

● Persistent Instance
● Can be used by any job (subject to permissions)
●  Lifetime is controlled by creator
● Use cases: Shared data, PFS staging, Job workflow,

shared libraries, Python libraries, …..

9

Copyright 2016 Cray Inc.

DataWarp Access Modes

● Striped (“Shared”)
●  Files are striped across all DataWarp nodes assigned to an instance
●  Files are visible to all compute nodes using the instance
● Aggregates both capacity and bandwidth per file
● One DataWarp node elected as the MDS

● Private
●  Files are striped across all DataWarp nodes assigned to an instance
●  File are visible to only the compute node that created them
● Each DataWarp node is an MDS for one or more computes
●  Think of it like a big fast /tmp

● Swap
●  Per-compute node swap space

10

Copyright 2016 Cray Inc.

How to Utilize DataWarp

●  Job script directives - #DW ...
● Allocate job DataWarp space
● Access persistent DataWarp space
● Stage files or directories in from PFS to DW; out from DW to PFS
● Supported by Slurm, Moab/TORQUE, and PBSPro

● User library API - libdatawarp
● Allows direct control of staging files asynchronously
● C library interface

● Mount points
● Perform POSIX I/O through mount points on compute nodes

● Command line
●  “dwstat” command for users and admins to see status of their spaces
● Other commands, like dwcli, mostly for system admins

11

Copyright 2016 Cray Inc.

Job Script commands: Without & With DataWarp

#!/bin/bash
#SBATCH -n 3200 -t 2000

#DW jobdw type=scratch access_mode=striped capacity=1TiB
#DW stage_in type=directory source=/lustre/my_dir destination=$DW_JOB_STRIPED
#DW stage_out type=directory destination=/lustre/my_dir source=$DW_JOB_STRIPED

export JOBDIR=$DW_JOB_STRIPED

srun –n 3200 a.out

12

#!/bin/bash
#SBATCH -n 3200 -t 2000

export JOBDIR=/lustre/my_dir

srun –n 3200 a.out

!

More detailed examples on the NERSC user web pages at:
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/

Copyright 2016 Cray Inc.

User library API example - libdatawarp

13

// module load datawarp (to get access to the user library for building)!
#include <datawarp.h>!
!
// Get Info on DataWarp Configuration:!
int r = dw_get_stripe_configuration(fd, &stripe_size, &stripe_width, &stripe_index);!
!
// Use dw_stage_file_in function to move a file from PFS to DataWarp!
int r = dw_stage_file_in(dw_file, pfs_file);!
!
// Use dw_stage_file_out function to move a file from DataWarp to PFS!
int r = dw_stage_file_out(dw_file, pfs_file, DW_STAGE_IMMEDIATE);!
!
// Use dw_query_file_stage function to check stage in/out completion!
int r = dw_query_file_stage(dw_file, &complete, &pending, &deferred, &failed);!

Copyright 2016 Cray Inc.

Command line example - dwstat
user@cdl1> module load dws!
user@cdl1> dwstat most!
!
 pool units quantity free gran !
wlm_pool bytes 1.52PiB 1.52PiB 397.44GiB !
!
sess state token creator owner created expiration nodes !
 266 CA--- 468473 SLURM 20000 2015-11-09T10:45:59 never 6 !
 287 CA--- bbsat2 JWG 20000 2015-11-09T20:35:03 never 0 !
!
inst state sess bytes nodes created expiration intact label public confs !
 257 CA--- 266 2.33TiB 6 2015-11-09T10:45:59 never true I266-0 false 1 !
 278 CA--- 287 1.16TiB 3 2015-11-09T20:35:03 never true bbsat2 true 1 !

14

An example script for extracting job usage information from dwstat can be found at:
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/#toc-anchor-6

Size of DW Pool

Free space

Allocation unit size

Owner

Size

Copyright 2016 Cray Inc.

DataWarp Usage in WLMs

15

Copyright 2016 Cray Inc.

Overview

● WorkLoad Managers like Slurm understand DataWarp
● New #DW batch job script directives engage DataWarp

Support
● Can request data be staged in to your burst buffer

before your application processes run
●  ...and staged out after your batch job exits
● Burst Buffer accessible via mount points on compute

nodes, communicated via environment variables

16

Copyright 2016 Cray Inc.

Job Script commands: Without & With DataWarp

#!/bin/bash
#SBATCH -n 3200 -t 2000

#DW jobdw type=scratch access_mode=striped capacity=1TiB
#DW stage_in type=directory source=/lustre/my_dir destination=$DW_JOB_STRIPED
#DW stage_out type=directory destination=/lustre/my_dir source=$DW_JOB_STRIPED

export JOBDIR=$DW_JOB_STRIPED

srun –n 3200 a.out

17

#!/bin/bash
#SBATCH -n 3200 -t 2000

export JOBDIR=/lustre/my_dir

srun –n 3200 a.out

!

More detailed examples on the NERSC user web pages at:
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/

Copyright 2016 Cray Inc.

#DW jobdw ...

● Requests a job DataWarp instance
●  Lifetime of the instance is the same as batch job
● Only usable by that batch job

●  capacity=<size>
● How much space do you need?
● No control over server count. May need to request more

space than you need.
●  type=scratch
● Selects use of DWFS filesystem

18

Copyright 2016 Cray Inc.

#DW jobdw ... (continued)

●  access_mode=striped
● All compute nodes see the same filesystem
●  Files are striped across all allocated DW server nodes

●  access_mode=private
● All compute nodes see a different filesystem
● All filesystems share the same space allocation
●  Files are striped across all allocated DW server nodes

●  access_mode=striped,private
●  Two mount points created on each compute node

19

Copyright 2016 Cray Inc.

#DW persistentdw ...

● Requests use of a persistent DataWarp instance
●  Lifetime different from the batch job
● Usable by any batch job

●  name=xyz
● Name of persistent instance to use
●  scontrol show burst
●  ‘dwstat instances’ label column where public=true

20

Copyright 2016 Cray Inc.

#DW swap

● Requests swap space
●  nGiB
● Maximum size of swap for each compute node
● Shares space with the rest of the instance
● Space is allocated as needed
● Running out of space for swap will kill the job

21

Copyright 2016 Cray Inc.

Accessing DataWarp for I/O

● Mount points communicated through environment
variables

●  #DW jobdw access_mode=striped
●  $DW_JOB_STRIPED

●  #DW jobdw access_mode=private
●  $DW_JOB_PRIVATE

●  #DW persistentdw name=xyz
●  $DW_PERSISTENT_STRIPED_xyz

22

Copyright 2016 Cray Inc.

Staging

● DataWarp Filesystem accepts requests to copy data
into a namespace or out of a namespace

●  Transfers performed asynchronous to request
● Concurrency tweakable via libdatawarp
● Concurrency controlled at the mount level
●  512 per DWFS mount by default

●  Files can be marked for stage out at the end of the
batch job’s lifetime

23

Copyright 2016 Cray Inc.

Staging with #DW stage_in and stage_out

● Can request that I/O between PFS and BB happen before
and after your batch job runs

● Only works for striped
● Use libdatawarp for private

●  stage_in: operation occurs before job runs
●  stage_out: operation occurs after job runs
●  type=file: line indicates transfer of a file
●  type=directory: line indicates transfer of a directory
●  type=list: line specifies a .txt file with multiple file

directives

24

Copyright 2016 Cray Inc.

#DW stage_in type=file ...

●  source=/lus/scratch/my-input-file
●  Location of your file on the PFS
● Must be a file or the stage_in will fail

●  destination=$DW_JOB_STRIPED/data/input-file
●  Location in your BB where you wish to access your file

25

Copyright 2016 Cray Inc.

#DW stage_in type=directory ...

●  source=/lus/scratch/my-dir/
●  Location of your directory on the PFS
● Must be a directory or the stage_in will fail

●  destination=$DW_JOB_STRIPED/wherever/you/want/
●  Location in your BB where you wish to access your

directory

26

Copyright 2016 Cray Inc.

#DW stage_in type=list ...

●  source=/some/file.txt
● A text file with ‘source=X destination=Y’ lines

● Not useful at this time at NERSC
● WLM daemon processing directives needs to have

access to the filesystem where the specified file lives

27

Copyright 2016 Cray Inc.

#DW stage_out type=file, directory, list

● Nearly the same as stage_in
●  destination is now PFS path
●  destination=/lus/scratch/my-output-file

●  source is now BB path
●  source=$DW_JOB_STRIPED/my-results

28

Copyright 2016 Cray Inc.

Problems with #DW stage_in or stage_out

● Doesn’t work with hard links
● Doesn’t work with symbolic links
● Errors aren’t reported to users (in log files for admins)
● Original low timeout values lead to failures when

staging directories with many files

29

Copyright 2016 Cray Inc.

Using dwstat

30

Copyright 2016 Cray Inc.

dwstat - your view of DataWarp state

● Command line client to view DataWarp state
● Most useful dwstat commands for users
●  dwstat pools
●  dwstat instances
●  dwstat fragments

31

Copyright 2016 Cray Inc.

dwstat pools

●  pool: name for pool
●  units: future stuff (bytes for now)
●  quantity: how much total space is in the pool
●  free: how much of the total space is available for creating instances
●  gran: granularity; space taken from the pool will be a multiple of the

granularity

32

prompt:#> module load dws!
prompt:#> dwstat pools!
 pool units quantity free gran!
test_pool bytes 5.82TiB 5.82TiB 16MiB!
 wlm_pool bytes 832.5TiB 755.98TiB 212.91GiB!

Copyright 2016 Cray Inc.

dwstat instances

● A request for DataWarp Space
●  Interesting rows are the ones for persistent instances
●  public=true
●  label is the name of the persistent instance

● Other rows are instances that belong to you
● Created as part of a batch job

33

prompt:#> module load dws!
prompt:#> dwstat instances!
inst state sess bytes nodes created expiration intact label public confs!
 29 CA--- 36 16MiB 1 2015-08-21T13:10:05 never true blast true 1!
 37 CA--- 44 16MiB 1 2015-08-26T08:51:28 never true I44-0 false 2!

Copyright 2016 Cray Inc.

dwstat fragments

● A fragment is a portion of an instance on a DW server
node

● Shows you on which nodes your instances reside
● Can show how many DW servers your job is using

34

prompt:#> module load dws!
prompt:#> dwstat fragments!
frag state inst capacity node!
 38 CA-- 29 16MiB nid00009!
 108 CA-- 37 16MiB nid00010!

An example script for extracting job usage information from dwstat can be found at:
http://www.nersc.gov/users/computational-systems/cori/burst-buffer/example-batch-scripts/#toc-anchor-6

Copyright 2016 Cray Inc.

Usage Tips & Lessons Learned

35

Copyright 2016 Cray Inc.

Lessons Learned Page 1

● Pool Granularity = Allocation unit size
● Set to different values on different systems
● Often 200GB or higher on systems with lots of DW nodes
● Use the dwstat command to find the value – warning: dwstat

rounds up! (use dwstat pools -b to see exact byte count)
●  Job Private DW space
● Multiple compute nodes can share space on a single DW node
● Designed for compute nodes using equal capacity and bandwidth
● Can see different behavior if that is not the case
● Wastes space for any amount more than one allocation unit size
● Can provide better performance

36

Copyright 2016 Cray Inc.

Lessons Learned Page 2

● DataWarp filesystems are only mounted on compute
nodes
● Not accessible from login/mom nodes

● No DVS Client Side Caching with this release
● Small I/O requests see high latency
● Performance can be (much) worse than Lustre (seen up

to 9x slower)

37

Copyright 2016 Cray Inc.

Stage_in and stage_out commands

●  Job Stage_In and Stage_out Commands
● Syntax is very specific
● No Environment Variables or wildcards in file/directory names
● Must keep entire command on one long line
● Can use multiple stage in or stage out command lines in a job
● Cannot stage in or out files with hard links or symlinks (See RFE

830185)
● Need to specify full path for file or directory names
● No messages to user if there are errors in the command line (errors may

be put in logs visible to system admins)
● Currently only works with Lustre filesystem (no DVS projected

filesystems like GPFS or NFS)

38

Copyright 2016 Cray Inc.

Workload Managers implement DataWarp support
in different ways

●  SLURM
●  Only supports one DW pool at this time (admin sets which

one in config file)
●  Admins sets various config settings in “slurm.conf” file
●  Runs job script on first compute node, so users can directly

access DW space via simple commands (cd, mkdir, df, ls, cp,
mv, du, ...)

●  Moab/TORQUE
●  Must use the “msub” command to submit DW jobs
●  Job script runs on mom node, and DW is only mounted on

compute nodes, so users need to use aprun to run simple
commands on DW space.

39

Copyright 2016 Cray Inc.

SSD write protection

● SSDs support a set amount of write activity before they wear out
● Runaway application processes may write an excessive amount of

data, and therefore, “destroy” the SSDs
●  Three write protection policies
● Maximum number of bytes written in a period of time
● Maximum size of a file in a namespace
● Maximum number of files allowed to be created in a namespace

●  Log, error, log and error
●  -EROFS (write window exceeded)
●  -EMFILE (maximum files created exceeded)
●  -EFBIG (maximum file size exceeded)

●  #DW syntax options influence behavior

40

Copyright 2016 Cray Inc.

Notes on SSD protection feature

●  SSD protection features can cause jobs to abort
●  Customers expressed concern over rogue jobs "destroying"

an SSD so Cray implemented some SSD protection features.
●  These can force the DW filesystem into “read only” mode.

Error message is “KDWFS protection limit exceeded” in
console log

●  By default, these limit the amount of data written to 10x the
size of the requested instance in 24 hours. For small
requested sizes, can hit this limit in 10 minutes of heavy I/O.

●  Users can tweak values with #DW syntax

41

Copyright 2016 Cray Inc.

#DW jobdw options to adjust SSD protection [1]

● write_window_length=<seconds>
● Number of seconds to use in write window threshold

● write_window_multiplier=<integer>
●  Integer multiples of capacity to use in write window

threshold
●  (capacity * write_window_multiplier) bytes allowed to be

written in any write_window_length second window
before site-specific action taken
● Default: mark filesystem read only!
●  -EROFS

42

Copyright 2016 Cray Inc.

#DW jobdw options to adjust SSD protection [2]

●  access_mode modifiers MFS and MFC
● Maximum File Size
● Maximum Files Creatable

●  access_mode=striped(MFS=16777216)
● No file larger than this size (bytes) can be read/written
●  -EFBIG

●  access_mode=striped(MFC=1200)
● Any file creates after this number of files will fail
●  -EMFILE

●  access_mode=striped(MFS=16777216,MFC=1200)
● Can use both simultaneously

43

Copyright 2016 Cray Inc.

Upcoming Features

● Client Accounting
●  Transparent Cache
● DVS Client-Side Cache

44

Copyright 2016 Cray Inc.

Client Accounting

● DVS collects statistics on I/O activity
● RUR reports:
●  Bytes Read
●  Bytes Written
●  Count of files created
●  Maximum file offset read and written
●  This is all infrastructure, so we can add more if

needed.

45

Copyright 2016 Cray Inc.

Transparent Cache

● DataWarp operates as a file-level cache of a PFS
● Applications see the directories of the PFS, not a

private filesystem
●  DataWarp nodes will read-ahead files being read
●  Write-behind of files being written
●  Several flush options: close, fsync, as needed, and

at the end of the job.
●  Application knobs to flush, invalidate, etc.

46

Copyright 2016 Cray Inc.

Two DataWarp Cache Access Modes

● Striped (“Shared”)
●  Files are striped across all DataWarp nodes assigned to an instance
●  Files are visible to all compute nodes using the instance
● Aggregates both capacity and bandwidth per file
● One DataWarp node elected as the MDS per file

●  Load Balanced
●  File contents are replicated on each DataWarp node
● Compute nodes select which DataWarp node to use
● Read-Only

47

Copyright 2016 Cray Inc.

Take-Away

●  Try to use 512kb transfer sizes
● Have enough compute cores

●  8 read streams per DataWarp node
●  16 write streams per DataWarp node

●  Try private

48

